TWI631336B - Magnetic metal two-dimensional nano tablet and manufacturing method thereof - Google Patents

Magnetic metal two-dimensional nano tablet and manufacturing method thereof Download PDF

Info

Publication number
TWI631336B
TWI631336B TW105119278A TW105119278A TWI631336B TW I631336 B TWI631336 B TW I631336B TW 105119278 A TW105119278 A TW 105119278A TW 105119278 A TW105119278 A TW 105119278A TW I631336 B TWI631336 B TW I631336B
Authority
TW
Taiwan
Prior art keywords
dimensional
magnetic
metal
nanosheet
nanoparticles
Prior art date
Application number
TW105119278A
Other languages
English (en)
Other versions
TW201800752A (zh
Inventor
劉定宇
陳玨伶
王冠勛
詹子儀
林江珍
王玉麟
宮非
Original Assignee
明志科技大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 明志科技大學 filed Critical 明志科技大學
Priority to TW105119278A priority Critical patent/TWI631336B/zh
Publication of TW201800752A publication Critical patent/TW201800752A/zh
Application granted granted Critical
Publication of TWI631336B publication Critical patent/TWI631336B/zh

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

一種磁性金屬二維奈米片,透過以下步驟製作而成,包含A、合成一二維片狀載體;B、附著複數個金屬奈米粒子於該二維片狀載體之表面;以及C、附著複數個磁性奈米粒子於該二維片狀載體之表面。該二維片狀載體包含奈米矽片、氧化石墨烯,或二硫化鉬奈米片;該些金屬粒子係選自金奈米粒子或奈米銀粒子;該些磁性奈米粒子包含一四氧化三鐵,使該二維片狀載體具有磁性。藉由將金屬粒子及磁性奈米粒子的添加於二維片狀載體,該磁性金屬二維奈米片能有效磁性分離濃縮待測物及達到快速拉曼放大之檢測功能。

Description

磁性金屬二維奈米片及其製造方法
本發明係與用於磁分離濃縮及偵測微生物之多功能生物晶片有關;特別是指一種兼具磁性分離及拉曼放大檢測功能之磁性金屬二維奈米片及其製造方法。
近年由於食品添加物的濫用、工業廢水的排放,以及抗藥型細菌檢測況日費時,對於病菌、水質及食品添加物的檢測需求與技術也日益增加,拉曼散射(raman scattering)是一種利用光散射的原理來測定分子振動(molecular vibration)的光譜學,常被運用於化學、生醫等領域的分析工具。
拉曼光譜有著以下的優點:(1)可用於偵測各種狀態之樣品;(2)樣品製備簡易,不需要螢光標定,且不需要長時間培養;(3)可用水當作溶劑,有利於生化分子的檢測。
然而,由於拉曼光譜的樣品前處理需花費大量的時間與人力成本,因此,如何尋找一個較方便且快速的方式達到分離及濃縮待測物的目的,是相關領域人員目前急欲解決的問題。
有鑑於此,本發明之目的在於提供一種磁性金屬二維奈米片,可快速分離且濃縮待測物,且同時兼具拉曼放大檢測能力,藉此增加拉曼放大檢測技術之方便性及靈敏度。
緣以達成上述目的,本發明提供的一種磁性金屬二維奈米片包括有一二維片狀載體、複數個金屬奈米粒子以及複數個磁性奈米粒子。該二維片狀載體係包含一奈米矽片、一氧化石墨烯,或一二硫化鉬奈米片;該些金屬奈米粒子係選自金奈米粒子及銀奈米粒子所構成族群中之至少一者,且附著於該二維片狀載體表面;該些磁性奈米粒子包含一四氧化三鐵,且附著於該二維片狀載體表面,使該二維片狀載體具有磁性。藉此,該磁性金屬二維奈米片兼具磁性分離濃縮待測物及拉曼放大檢測待測物的功能。
本發明更提供一種磁性金屬二維奈米片的製造方法,包含以下步驟:A、合成一二維片狀載體,其中該二維片狀載體係包含一奈米矽片、一氧化石墨烯,或一二硫化鉬奈米片;B、附著複數個金屬奈米粒子於該二維片狀載體之表面;以及C、附著複數個磁性奈米粒子於該二維片狀載體之表面,使該磁性金屬二維奈米片具有磁性。
本發明之效果在於透過該些金屬粒子提高拉曼光譜之檢測訊號,並藉由該些磁性奈米粒子的添加,快速磁分離及濃縮溶液中的待測分子,以此建立一高效能的檢測平台。
〔本發明〕
1‧‧‧待測溶液
1a‧‧‧微生物
1b‧‧‧分離液
2‧‧‧磁鐵
100‧‧‧磁性二維奈米矽片
10‧‧‧奈米矽片
12‧‧‧四氧化三鐵
S1‧‧‧步驟一
S2‧‧‧步驟二
S3‧‧‧步驟三
200‧‧‧金奈米粒子/石墨烯奈米片
20‧‧‧片狀石墨
20a‧‧‧脫層氧化石墨烯二維奈米片
20b‧‧‧均勻分散的脫層氧化石墨烯二維奈米片
20c‧‧‧表面帶正電石墨烯奈米片
22‧‧‧高分子聚二甲基二烯丙基氯化銨
24‧‧‧金奈米粒子
S'1‧‧‧步驟一
S'2‧‧‧步驟二
S'3‧‧‧步驟三
S'4‧‧‧步驟四
S'5‧‧‧步驟五
300‧‧‧磁性金屬二維奈米片
30‧‧‧奈米矽片
32‧‧‧金奈米粒子
34‧‧‧四氧化三鐵
D1‧‧‧片徑
D2‧‧‧粒徑
D3‧‧‧粒徑
圖1為本發明第一實施例之使用方法示意圖,揭示四氧化三鐵/二維奈米片(磁性二維奈米矽片)磁性分離及濃縮溶液中的微生物。
圖2為本發明第二實施例之製造方法示意圖,揭示金奈米粒子/脫層石墨烯二維奈米片之合成及用於表面增強拉曼光譜之檢測。
圖3為本發明第三實施例之使用方法示意圖,揭示磁性金屬二維奈米片磁性分離微生物並同時進行表面增強拉曼光譜之快速檢測。
圖4為拉曼光譜圖,顯示不同複合材料於含有腺嘌呤的溶液中所呈現的拉曼光譜。
圖5為拉曼光譜圖,顯示金屬奈米粒子/磁性二維奈米片於不同DNA鹼基對溶液中所呈現的拉曼光譜。
圖6為拉曼光譜圖,顯示金屬奈米粒子/磁性二維奈米片於β-胡蘿蔔素溶液中所呈現的拉曼光譜。
圖7為拉曼光譜圖,顯示金屬奈米粒子/磁性二維奈米片於不同濃度之孔雀石綠溶液中所呈現的拉曼光譜。
為能更清楚地說明本發明,茲舉複數實施例並配合圖式詳細說明如後。首先,本案提供之二維奈米片包含一二維片狀載體,以及附著於該二維片狀載體上的複數個金屬粒子或複數個磁性奈米粒子;其中該二維片狀載體包含有奈米矽片(nanoscale silicate platelets,NSP)、氧化石墨烯(graphene oxide,GO)或二硫化鉬(MoS2)奈 米片等二維材料;該些金屬粒子則包含金粒子及銀粒子;該些磁性奈米粒子則包含四氧化三鐵(Fe3O4)。以下詳述各實施例之合成步驟。
實施例一:四氧化三鐵/二維奈米片(磁性二維奈米矽片) 合成磁性二維奈米矽片
本實施例之二維片狀載體係包含一奈米矽片10,其中該奈米矽片10的製備方法請見申請人先前專利(中華民國專利公告號I496194-可撓式表面增強拉曼光譜之基板)。首先,將該奈米矽片10透過攪拌分散於25ml的去離子水中,並進行超聲波處理20分鐘,以獲得良好的分散溶液。接著,將25%的NH4OH溶液加入含有奈米矽片10的水溶液中,直到pH值達到11至12。
取500mg的四氧化三鐵(Fe3O4)12,緩慢加入含有奈米矽片10的水溶液中,並持續攪拌12小時;12小時後,將呈灰色的水溶液用去離子水洗滌三次,以去除多餘的NH4OH;最後,真空乾燥樣品,以獲得磁性二維奈米矽片100。
磁性分離微生物之應用
如圖1所示,提供一包含微生物1a之待測溶液1,接著將磁性二維奈米矽片100加入該待測溶液1中(步驟一S1),使該些磁性二維奈米矽片100吸附分布於該微生物1a表面。接著提供一磁鐵2,並將該磁鐵2靠置於該待測溶液1之容器的一側(步驟二S2),使得該些微生物1a被吸引至該容器的該側。藉此,可分離該待測溶液1中的微生物1a,而得到不含有該些微生物1a的分離液1b(步驟三S3)。
實施例二:金奈米粒子/脫層石墨烯二維奈米片 脫層石墨烯二維奈米片
本實施例之二維片狀載體係以表面帶正電石墨烯奈米片20c,當然,在其他實施例中,亦可以是奈米矽片或硫化鉬奈米片,而不以石墨烯奈米片為限。以下請參圖2所示,首先進行步驟一(S'1),將未脫層塊狀材料,即片狀石墨20,加入過錳酸鉀(KMnO4)、濃硫酸(H2SO4)和濃硝酸(HNO3)的混合液進行氧化反應後,先以過氧化氫水溶液(H2O2(aq))洗去反應殘餘離子後,再以去離子水多次洗至溶液接近中性為止,最終,以超音波震盪剝離出脫層氧化石墨烯二維奈米片20a。經上述化學反應後,該片狀石墨20表面將產生許多氧化官能基鍵結,而由於該些氧化官能基具有親水性,故在水溶液中會透過親水作用力以及表面帶負電之靜電排斥力,使得該片狀石墨20能克服層與層間的凡得瓦力以達脫層的效果。
合成均勻分散的脫層氧化石墨烯二維奈米片
步驟二(S'2)如下:將脫層氧化石墨烯二維奈米片20a粉末溶於水中,接著將該脫層氧化石墨烯水溶液以超音波震盪約10分鐘,再加入聚乙烯吡咯烷酮(polyvinylpyrrolidone,PVP)後持續攪拌12小時,之後再加入聯氨(N2H4)和氨水攪拌一小時,即可得到均勻分散的脫層氧化石墨烯二維奈米片20b。其中聚乙烯吡咯烷酮之結構式為:
合成表面帶正電石墨烯奈米片
接著執行步驟三(S'3),將均勻分散的脫層氧化石墨烯二維奈米片20b粉末溶於水中,接著將該溶液以超音波震盪約10分鐘,加入以高分子聚二甲基二烯丙基氯化銨(polydiallyldimethylammoniun chloride,PDDA)22為例的高分子橋接物後,持續攪拌並以90℃加熱迴流12小時,溶液則會逐漸由褐色轉為黑色而成為表面帶正電石墨烯奈米片20c。其中高分子聚二甲基二烯丙基氯化銨22之結構式為:
合成金奈米粒子/石墨烯奈米片
本實施例之金屬粒子為金奈米粒子24,當然,在其他實施例中則不以此為限,例如還可以是銀奈米粒子。步驟四(S'4)首先包含金奈米粒子24的製備,該製備方法係利用檸檬酸鈉熱還原法(citrate thermal reduction method),其中以檸檬酸鈉(Na3Ct.2H2O)作為還原劑,還原四氯金酸(HAuCl4.3H2O)中的金離子(Au3+),使之還原成原子態的金。詳細實驗步驟如下,將四氯金酸(HAuCl4(aq))加熱至沸騰後再加入檸檬酸鈉(Na3Ct(aq)),則溶液顏色會由淺黃色逐漸轉為磚紅色,待顏色不再變化,反應即完成。
接著,將含有特定比例之金奈米粒子24的溶液加入含有表面帶正電石墨烯奈米片20c的溶液後,攪拌一小時即可得到含有金奈米粒子/石墨烯奈米片200的水溶液。以X光繞射儀可測得其繞射圖譜,而以穿透式電子顯微鏡則可觀察其微結構。而最終獲得的金奈米粒子/石 墨烯奈米片200則可應用於表面增強拉曼光譜之生物分子測試(步驟五,S'5)。
實施例三:磁性金屬二維奈米片 合成磁性金屬二維奈米片
如圖3所示,本實施例磁性金屬二維奈米片300包含該二維片狀載體,並同時包含該些金屬粒子及該些磁性奈米粒子,其中該二維片狀載體為奈米矽片30(其製備方法請見申請人先前專利:中華民國專利公告號I496194-可撓式表面增強拉曼光譜之基板),而透過穿透式電子顯微鏡下可觀察到其片徑D1約100至1000奈米;該些金屬奈米粒子為金奈米粒子32,其合成於該奈米矽片30上的步驟同樣請見實施例二之S'4,且各該金奈米粒子32的粒徑D2為5-50奈米;該些磁性奈米粒子為四氧化三鐵(Fe3O4)34,其附著於該奈米矽片30的方式同實施例一,且其粒徑D3為5-500奈米。在其他實施例中,上述磁性金屬二維奈米片的二維片狀載體不以奈米矽片30為限,而也可以是實施例二中的表面帶正電石墨烯奈米片20c(其合成詳見實施例二之S'1至S'3)。
磁性分離微生物及生物分子測試之應用
由於該磁性金屬二維奈米片300可透過磁性分離並收集濃縮待測物,例如微生物,亦可利用表面增強拉曼效應(surface-enhanced Raman scattering,SERS)檢測分子物種,其靈敏且專一的訊號得以快速分辨溶液中的汙染物或生物分子。
以下茲舉該磁性金屬奈米二維奈米片300應用於磁性分離後之SERS檢測實驗結果。
不同複合材料於含有腺嘌呤的溶液中所呈現的拉曼光譜
請配合圖4,光譜(a)為使用金屬奈米粒子/二維奈米片所得到的腺嘌呤(adenine,A)拉曼光譜;光譜(b)為使用單獨金屬奈米粒子所得到的腺嘌呤拉曼光譜;光譜(c)為使用金屬奈米粒子/二維奈米片所得到的水溶液(Blank)拉曼光譜;光譜(d)為不添加任何材料下之腺嘌呤的拉曼光譜。其中腺嘌呤於溶液中的濃度為10-4M。
觀察使用單獨金屬奈米粒子所得到的腺嘌呤拉曼光譜(光譜b)可知,金屬奈米粒子有很好的拉曼放大能力,相較於對照組腺嘌呤的拉曼光譜(光譜d),放大效果明顯增強。再者,金屬奈米粒子/二維奈米片所得到的腺嘌呤拉曼光譜(光譜a),相較單獨使用金屬奈米粒子所得到的腺嘌呤拉曼光譜(光譜b),則拉曼放大效果更是有3至4倍的顯著增強效果。
針對不同化學結構產生特定的光譜
如圖5所示,該磁性金屬二維奈米片300可區分組成核酸並帶有編碼遺傳訊息的四種鹼基對:腺嘌呤(A)、胸腺嘧啶(T)、鳥嘌呤(G)及胞嘧啶(C)。
測定體內β-胡蘿蔔素含量
β-胡蘿蔔素為一種抗氧化劑,可保護人體免受自由基的侵害,並降低癌症和心臟疾病的發生。而如圖6所示,該磁性金屬奈米複合材料300可用以偵測體內微量的β-胡蘿蔔素的含量,以作為健康指數的指標。
水中汙染物體孔雀石綠之定量分析
近幾年,養殖漁業為殺死水中對魚類有害的菌類而在水中添加孔雀石綠(malachite green),然而其本身具有致癌性,故若孔雀石綠殘留或累積於水產品中,將對人類健康產生潛在性威脅。
是以,將孔雀石綠作為檢測標的,此實驗利用該磁性金屬奈米複合材料300進行定量分析。觀察圖7之實驗結果可發現,隨著孔雀石綠於水溶液中的濃度提高,拉曼光譜的強度亦隨之提高。
綜上所述,將本發明該磁性金屬二維奈米片300應用於磁性分離及濃縮技術,可快速前處理待測物,另外,可同時利用表面增強拉曼(SERS)光譜技術以偵測生物分子及水中有害物質之振動光譜,可有效作為一種「光譜指紋」以辨識各分子的種類,進而做到定性及定量的檢測分析。
另外一提的是,在其他實施例中,該磁性金屬二維奈米片的二維片狀載體並不以奈米矽片或表面帶正電石墨烯奈米片為例,亦可以是二硫化鉬奈米片;該金屬粒子亦可以是銀奈米粒子,而不以金奈米粒子為限;該磁性奈米粒子亦可以其他具磁性的奈米粒子代替四氧化三鐵。而上述該些實施例同樣可產生上述應用於磁性分離後之SERS檢測的實驗結果。
以上所述僅為本發明較佳可行實施例而已,舉凡應用本發明說明書及申請專利範圍所為之等效變化,理應包含在本發明之專利範圍內。

Claims (11)

  1. 一種磁性金屬二維奈米片,包含有:一二維片狀載體,係包含一奈米矽片,或一二硫化鉬奈米片;其中該二維片狀載體更具有複數個高分子聚二甲基二烯丙基氯化銨,使該二維片狀載體之表面帶有正電;複數個金屬奈米粒子,選自金奈米粒子及銀奈米粒子所構成族群中之至少一者,且附著於該二維片狀載體表面;以及複數個磁性奈米粒子,包含一四氧化三鐵,且附著於已附著有該些金屬奈米粒子之該二維片狀載體的表面,使該二維片狀載體具有磁性;其中該些磁性奈米粒子係於pH值介於11至12的環境中,附著於該二維片狀載體表面;藉此,該磁性金屬二維奈米片兼具磁性分離濃縮待測物及拉曼放大檢測待測物的功能。
  2. 如請求項1所述之磁性金屬二維奈米片,其中該奈米矽片、該氧化石墨烯或該二硫化鉬奈米片之片徑介於100至1000奈米。
  3. 如請求項2所述之磁性金屬二維奈米片,其中各該金屬奈米粒子之粒徑介於5至50奈米。
  4. 如請求項3所述之磁性金屬二維奈米片,其中該些磁性奈米粒子之粒徑介於5至500奈米。
  5. 一種磁性金屬二維奈米片之製造方法,包含以下步驟:A、合成一二維片狀載體,其中該二維片狀載體係包含一奈米矽片、,或一二硫化鉬奈米片;B、附著複數個金屬奈米粒子於該二維片狀載體之表面;以及 C、附著複數個磁性奈米粒子於該二維片狀載體之表面,使該磁性金屬二維奈米片具有磁性;其中步驟A包含:將一高分子橋接物加入該二維片狀載體中,以合成表面帶正電之二維片狀載體;其中該些磁性奈米粒子包含一四氧化三鐵;於步驟C中,將該二維片狀載體置於pH值介於11至12的環境中,加入該些四氧化三鐵。
  6. 如請求項5所述磁性金屬二維奈米片之製造方法,其中該高分子橋接物包含一高分子聚二甲基二烯丙基氯化銨。
  7. 如請求項5所述磁性金屬二維奈米片之製造方法,其中該二維片狀載體之片徑介於100至1000奈米。
  8. 如請求項5所述磁性金屬二維奈米片之製造方法,其中步驟B包含:將一含有金屬離子之溶液與一還原劑混和並加熱,使該金屬離子還原產生該些金屬奈米粒子。
  9. 如請求項8所述磁性金屬二維奈米片之製造方法,其中該金屬離子包含一金離子,且該含有金離子之溶液包含四氯金酸溶液;該還原劑包含檸檬酸鈉;該些金離子還原後產生該些金奈米粒子。
  10. 如請求項9所述磁性金屬二維奈米片之製造方法,其中各該金奈米粒子之粒徑介於5至50奈米。
  11. 如請求項5所述磁性金屬二維奈米片之製造方法,其中該四氧化三鐵之粒徑介於5至500奈米。
TW105119278A 2016-06-20 2016-06-20 Magnetic metal two-dimensional nano tablet and manufacturing method thereof TWI631336B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW105119278A TWI631336B (zh) 2016-06-20 2016-06-20 Magnetic metal two-dimensional nano tablet and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW105119278A TWI631336B (zh) 2016-06-20 2016-06-20 Magnetic metal two-dimensional nano tablet and manufacturing method thereof

Publications (2)

Publication Number Publication Date
TW201800752A TW201800752A (zh) 2018-01-01
TWI631336B true TWI631336B (zh) 2018-08-01

Family

ID=61725424

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105119278A TWI631336B (zh) 2016-06-20 2016-06-20 Magnetic metal two-dimensional nano tablet and manufacturing method thereof

Country Status (1)

Country Link
TW (1) TWI631336B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4596445A (en) * 1983-03-30 1986-06-24 Manchester R & D Partnership Colored encapsulated liquid crystal apparatus using enhanced scattering
US6548168B1 (en) * 1997-10-28 2003-04-15 The University Of Melbourne Stabilized particles and methods of preparation and use thereof
CN104549361A (zh) * 2014-12-10 2015-04-29 郑州轻工业学院 一种具有拉曼增强活性的磁性贵金属催化剂及其制备方法
TWI496194B (zh) * 2012-10-30 2015-08-11 Univ Nat Taiwan 可撓式表面增強拉曼光譜之基板

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4596445A (en) * 1983-03-30 1986-06-24 Manchester R & D Partnership Colored encapsulated liquid crystal apparatus using enhanced scattering
US6548168B1 (en) * 1997-10-28 2003-04-15 The University Of Melbourne Stabilized particles and methods of preparation and use thereof
TWI496194B (zh) * 2012-10-30 2015-08-11 Univ Nat Taiwan 可撓式表面增強拉曼光譜之基板
CN104549361A (zh) * 2014-12-10 2015-04-29 郑州轻工业学院 一种具有拉曼增强活性的磁性贵金属催化剂及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Mevold AH et al,"Fabrication of Gold Nanoparticles/Graphene-PDDA Nanohybrids for Biodetection by SERS Nanotechnology.", Nanoscale Res Lett. 2015 Dec;10(1):397, Epub 2015 Oct 12. *

Also Published As

Publication number Publication date
TW201800752A (zh) 2018-01-01

Similar Documents

Publication Publication Date Title
Song et al. Applications of magnetic nanoparticles in surface-enhanced Raman scattering (SERS) detection of environmental pollutants
Tang et al. Surface-enhanced Raman scattering sensors for food safety and environmental monitoring
Xiong et al. Magnetic nanochain integrated microfluidic biochips
Zhang et al. Three-dimensional paper-based electrochemiluminescence device for simultaneous detection of Pb2+ and Hg2+ based on potential-control technique
Desai et al. Ultra-small two dimensional MXene nanosheets for selective and sensitive fluorescence detection of Ag+ and Mn2+ ions
Rohilla et al. An overview of advanced nanomaterials for sensor applications
Maruthupandi et al. One minute synthesis of green fluorescent copper nanocluster: The preparation of smartphone aided paper-based kit for on-site monitoring of nanomolar level mercury and sulfide ions in environmental samples
Huang et al. Adsorption of Cr (VI) in wastewater using magnetic multi-wall carbon nanotubes
Brahmkhatri et al. Recent progress in detection of chemical and biological toxins in Water using plasmonic nanosensors
Christus et al. A novel Hg (II) sensor based on Fe3O4@ ZnO nanocomposite as peroxidase mimics
Lin et al. D-penicillamine-templated copper nanoparticles via ascorbic acid reduction as a mercury ion sensor
Liu et al. Highly selective, colorimetric detection of Hg2+ based on three color changes of AuNPs solution from red through sandy beige to celandine green
Kim et al. Microfluidic-SERS devices for one shot limit-of-detection
Kibar et al. Newly designed silver coated-magnetic, monodisperse polymeric microbeads as SERS substrate for low-level detection of amoxicillin
Malakar et al. Nanoparticles as sources of inorganic water pollutants
Wang et al. Carbon dot-and gold nanocluster-based three-channel fluorescence array sensor: Visual detection of multiple metal ions in complex samples
Atapour et al. Integrated optical and electrochemical detection of Cu 2+ ions in water using a sandwich amino acid–gold nanoparticle-based nano-biosensor consisting of a transparent-conductive platform
Abdollahiyan et al. Application of Cys A@ AuNPs supported amino acids towards rapid and selective identification of Hg (II) and Cu (II) ions in aqueous solution: An innovative microfluidic paper-based (μPADs) colorimetric sensing platform
Fang et al. One-step synthesis of porous cuprous oxide microspheres on reduced graphene oxide for selective detection of mercury ions
Liu et al. Sensitive detection of 2, 4, 6-trinitrotoluene utilizing fluorescent sensor from carbon dots and reusable magnetic core-shell nanomaterial
Li et al. Thermo-responsive molecularly imprinted sensor based on the surface-enhanced Raman scattering for selective detection of R6G in the water
Qiu et al. Colorimetric detection of Ba 2+, Cd 2+ and Pb 2+ based on a multifunctionalized Au NP sensor
Li et al. Ratiometric fluorescence detection of Hg2+ and Fe3+ based on BSA-protected Au/Ag nanoclusters and His-stabilized Au nanoclusters
Laurentius et al. Advantages and limitations of nanoparticle labeling for early diagnosis of infection
Paul et al. A brief review on the application of gold nanoparticles as sensors in multi dimensional aspects