TWI631290B - Non-contact bearing manufacturing method - Google Patents
Non-contact bearing manufacturing method Download PDFInfo
- Publication number
- TWI631290B TWI631290B TW105139922A TW105139922A TWI631290B TW I631290 B TWI631290 B TW I631290B TW 105139922 A TW105139922 A TW 105139922A TW 105139922 A TW105139922 A TW 105139922A TW I631290 B TWI631290 B TW I631290B
- Authority
- TW
- Taiwan
- Prior art keywords
- bearing
- layer
- guiding surface
- micro
- microelectromechanical
- Prior art date
Links
Landscapes
- Magnetic Bearings And Hydrostatic Bearings (AREA)
Abstract
一種非接觸式軸承製造方法,包括下列步驟:提供一軸承本體,包括一導引面;以及將一微電子機械層形成於該導引面,其中該微電子機械層包括至少一微感測器及/或至少一微致動器。 A non-contact bearing manufacturing method comprising the steps of: providing a bearing body including a guiding surface; and forming a microelectromechanical layer on the guiding surface, wherein the microelectromechanical layer comprises at least one micro sensor And/or at least one microactuator.
Description
本發明有關於一種軸承製造方法,特別是關於一種非接觸式軸承製造方法,其中該非接觸式軸承表面設置有至少一微感測器及/或至少一微致動器。 The present invention relates to a method of manufacturing a bearing, and more particularly to a method of manufacturing a non-contact bearing, wherein the non-contact bearing surface is provided with at least one micro-sensor and/or at least one micro-actuator.
軸承(bearing)為一種應用在轉動機構或移動機構上,用來支撐、減少摩擦以及承受負載的裝置,例如應用在主軸馬達等。而隨著科技的日漸進步,相對的零件是越來越小,越精密,但相對的要求軸承的精度卻越來越高;一般說來,要求精度的軸承最常見的是滾珠軸承,但是卻存在有一些問題,包含有噪音大、迴轉精度不足以及小型化成本過高等,並無法符合小型且精密的要求。為了達到上述要求,且更進一步減低轉動的摩擦,流體軸承或磁浮軸承也隨之問世,不僅精度高、噪音低且抗震能力強。 Bearing is a device used on a rotating mechanism or a moving mechanism to support, reduce friction, and withstand loads, such as a spindle motor. With the advancement of technology, the relative parts are getting smaller and more precise, but the relative requirements of the bearings are getting higher and higher. Generally speaking, the bearings that require precision are the most common, but the ball bearings, but There are some problems, including high noise, insufficient rotation accuracy, and high cost of miniaturization, which cannot meet the requirements of small and precise. In order to achieve the above requirements, and to further reduce the friction of rotation, fluid bearings or magnetic bearings have also come out, not only high precision, low noise and strong seismic resistance.
流體軸承概分兩種:流體靜壓軸承與流體動壓軸承,流體靜壓軸承為常態下軸承內部就具有流體潤滑介質,轉動時,即可利用流體的壓力支撐起軸心,如果軸心偏移,則於偏移側加壓使軸心回復至正確位置;而流體動壓軸承則為軸承內孔部分具有細微的溝槽,而溝槽內部具有潤滑介質,於軸心轉動時,溝槽內的潤滑介質會受到牽引與擠壓,而建立起一動壓,而將軸心支撐在中央的位置。該流體靜壓軸承可分為氣體靜壓軸承及液體靜壓軸承,而該流體動壓軸承可分為氣體動壓軸承及液體動壓軸承。 There are two types of fluid bearings: hydrostatic bearings and hydrodynamic bearings. Hydrostatic bearings have fluid lubrication medium inside the bearing. When rotating, the pressure can be used to support the shaft. Shifting, the pressure is applied to the offset side to return the shaft to the correct position; and the fluid dynamic bearing has a fine groove in the inner bore portion of the bearing, and the groove has a lubricating medium inside, and the groove is rotated when the shaft is rotated. The lubricating medium inside is subjected to traction and squeezing, and a dynamic pressure is established, and the shaft center is supported at a central position. The hydrostatic bearing can be divided into a gas hydrostatic bearing and a hydrostatic bearing, and the hydrodynamic bearing can be divided into a gas dynamic pressure bearing and a hydrodynamic bearing.
然而,以流體靜壓軸承為例,在現有量測技術中,習知感測器皆為設置在獨立於該流體靜壓軸承以外的量 測元件,僅能在軸承外部間接進行單點量測,而無法即時且直接由軸承表面取得正確及足夠的數據進行監控及分析,並提供回授控制的調整策略。 However, taking hydrostatic bearings as an example, in the prior art measurement techniques, the conventional sensors are all disposed independently of the hydrostatic bearing. The measuring component can only perform in-situ measurement indirectly outside the bearing, and it is impossible to obtain correct and sufficient data for monitoring and analysis immediately and directly from the bearing surface, and provide an adjustment strategy for feedback control.
有鑑於此,因此,便有需要提供一種非接觸式軸承,來解決前述的問題。 In view of this, it is therefore necessary to provide a non-contact bearing to solve the aforementioned problems.
本發明的主要目的在於提供一種非接觸式軸承製造方法,其中該非接觸式軸承表面設置有至少一微感測器及/或至少一微致動器。 SUMMARY OF THE INVENTION A primary object of the present invention is to provide a method of manufacturing a non-contact bearing wherein the non-contact bearing surface is provided with at least one micro-sensor and/or at least one micro-actuator.
為達成上述目的,本發明提供一種非接觸式軸承製造方法,包括下列步驟:提供一軸承本體,包括一導引面;以及將一微電子機械層形成於該導引面,其中該微電子機械層包括至少一微感測器及/或至少一微致動器。 In order to achieve the above object, the present invention provides a non-contact bearing manufacturing method comprising the steps of: providing a bearing body including a guiding surface; and forming a microelectromechanical layer on the guiding surface, wherein the microelectromechanical The layer includes at least one microsensor and/or at least one microactuator.
在量測時,由於本發明之多個微感測器及/或多個微致動器皆設置在非接觸式軸承的表面(即引導面),因此可藉由該些微感測器即時且直接由該非接觸式軸承之表面取得正確及足夠的數據進行監控及分析,並藉由該些微致動器在該非接觸式軸承之表面進行回授控制的調整策略。 In the measurement, since the plurality of micro sensors and/or the plurality of microactuators of the present invention are disposed on the surface of the non-contact bearing (ie, the guiding surface), the micro sensors can be used instantaneously and Correct and sufficient data is directly obtained from the surface of the non-contact bearing for monitoring and analysis, and the adjustment mechanism of the feedback control is performed on the surface of the non-contact bearing by the microactuators.
為了讓本發明之上述和其他目的、特徵和優點能更明顯,下文將配合所附圖示,作詳細說明如下。 The above and other objects, features, and advantages of the present invention will become more apparent from the accompanying drawings.
1‧‧‧非接觸式軸承 1‧‧‧ Non-contact bearings
10‧‧‧軸承本體 10‧‧‧ bearing body
101‧‧‧多孔性材料層 101‧‧‧Porosive material layer
1011‧‧‧微孔 1011‧‧‧Micropores
102‧‧‧規則通道基板 102‧‧‧Regular channel substrate
1021‧‧‧微通道 1021‧‧‧Microchannel
11‧‧‧第二導引面 11‧‧‧Second guiding surface
12‧‧‧微電子機械層 12‧‧‧Microelectromechanical layer
12a‧‧‧微感測器 12a‧‧‧Microsensor
12b‧‧‧微致動器 12b‧‧‧Micro Actuator
121‧‧‧溫度感測器 121‧‧‧temperature sensor
1211‧‧‧絕緣層 1211‧‧‧Insulation
1212‧‧‧第一金屬層 1212‧‧‧First metal layer
1213‧‧‧第二金屬層 1213‧‧‧Second metal layer
1214‧‧‧光阻 1214‧‧‧Light resistance
1215a‧‧‧連接通道 1215a‧‧‧Connected channel
1215b‧‧‧連接通道 1215b‧‧‧ Connection channel
1216‧‧‧感光型覆蓋層 1216‧‧‧Photosensitive overlay
1217‧‧‧電偶串聯處 1217‧‧‧Electrical couples
1218‧‧‧熱端溫度感測區 1218‧‧‧ hot end temperature sensing area
1219‧‧‧冷端感測區 1219‧‧‧ Cold end sensing area
122‧‧‧壓力感測器 122‧‧‧pressure sensor
1221‧‧‧基材 1221‧‧‧Substrate
1222‧‧‧微感測元件 1222‧‧‧Micro-sensing components
1223‧‧‧感測薄膜 1223‧‧‧Sensing film
1224‧‧‧銲線 1224‧‧‧welding line
1225‧‧‧封蓋 1225‧‧‧ Cover
1226‧‧‧腔室 1226‧‧ ‧ chamber
1227‧‧‧開口 1227‧‧‧ openings
123‧‧‧微泵 123‧‧‧Micropump
123a‧‧‧入口通道 123a‧‧ Entrance Channel
123b‧‧‧出口通道 123b‧‧‧Export channel
1231‧‧‧閥座 1231‧‧‧ valve seat
1232‧‧‧閥體 1232‧‧‧ valve body
1233‧‧‧閥體薄膜 1233‧‧‧ valve body film
1234‧‧‧壓電驅動器 1234‧‧‧ Piezoelectric actuator
1235‧‧‧蓋體 1235‧‧‧ cover
1236‧‧‧入口閥門 1236‧‧‧ inlet valve
1237‧‧‧出口閥門 1237‧‧‧Export valve
1238‧‧‧壓力腔室 1238‧‧‧pressure chamber
124‧‧‧微閥 124‧‧‧Microvalve
124a‧‧‧入口通道 124a‧‧ Entrance Channel
124b‧‧‧出口通道 124b‧‧‧Export channel
1241‧‧‧閥座 1241‧‧‧ valve seat
1242‧‧‧閥體 1242‧‧‧ valve body
1243‧‧‧閥體薄膜 1243‧‧‧ valve body film
1244‧‧‧壓電驅動器 1244‧‧‧ Piezoelectric actuator
1245‧‧‧蓋體 1245‧‧‧ cover
125‧‧‧位移感測器 125‧‧‧ Displacement Sensor
1251‧‧‧線圈 1251‧‧‧ coil
1252‧‧‧待測物 1252‧‧‧Test object
1253‧‧‧金屬表面 1253‧‧‧Metal surface
1254‧‧‧渦電流 1254‧‧‧ eddy current
126‧‧‧加速規 126‧‧ ‧ Acceleration regulations
1261‧‧‧質量塊 1261‧‧‧Quality
1262‧‧‧壓電材料 1262‧‧‧Piezoelectric materials
13‧‧‧間隙支撐件 13‧‧‧Gap support
2‧‧‧氣體靜壓軸承 2‧‧‧Gas Static Bearings
20‧‧‧軸承本體 20‧‧‧ bearing body
201‧‧‧多孔材料層 201‧‧‧ porous material layer
2011‧‧‧微孔 2011‧‧‧Micropores
202‧‧‧腔體 202‧‧‧ cavity
203‧‧‧氣體入口 203‧‧‧ gas inlet
21‧‧‧表面 21‧‧‧ surface
22‧‧‧微電子機械層 22‧‧‧Microelectromechanical layer
2215‧‧‧連接通道 2215‧‧‧Connected channel
3‧‧‧液體靜壓軸承 3‧‧‧ Hydrostatic bearing
30‧‧‧軸承本體 30‧‧‧ bearing body
301‧‧‧規則通道基板 301‧‧‧Regular channel substrate
3011‧‧‧微通道 3011‧‧‧Microchannel
302‧‧‧腔體 302‧‧‧ cavity
303‧‧‧液體入口 303‧‧‧Liquid inlet
32‧‧‧微電子機械層 32‧‧‧Microelectromechanical layer
3215‧‧‧連接通道 3215‧‧‧Connection channel
4‧‧‧液體動壓軸承 4‧‧‧Hydraulic pressure bearing
40‧‧‧軸承本體 40‧‧‧ bearing body
401‧‧‧多孔材料層 401‧‧‧ porous material layer
4011‧‧‧微孔 4011‧‧‧Micropores
402‧‧‧腔體 402‧‧‧ cavity
403‧‧‧液體入口 403‧‧‧Liquid inlet
41‧‧‧表面 41‧‧‧ surface
42‧‧‧微電子機械層 42‧‧‧Microelectromechanical layer
4215‧‧‧連接通道 4215‧‧‧ Connection channel
5‧‧‧氣體動壓軸承 5‧‧‧Gas dynamic pressure bearing
50‧‧‧軸承本體 50‧‧‧ bearing body
501‧‧‧規則通道基板 501‧‧‧Regular channel substrate
5011‧‧‧微通道 5011‧‧‧Microchannel
502‧‧‧腔體 502‧‧‧ cavity
503‧‧‧氣體入口 503‧‧‧ gas inlet
52‧‧‧微電子機械層 52‧‧‧Microelectromechanical layer
5215‧‧‧連接通道 5215‧‧‧ Connection channel
6‧‧‧磁浮軸承 6‧‧‧Magnetic bearing
60‧‧‧軸承本體 60‧‧‧ bearing body
612‧‧‧第二磁性區 612‧‧‧Second magnetic zone
62‧‧‧微電子機械層 62‧‧‧Microelectromechanical layer
7‧‧‧具有滑軌組件之裝置 7‧‧‧Devices with rail assemblies
71‧‧‧導軌 71‧‧‧rails
711‧‧‧方向 711‧‧‧ Direction
712‧‧‧表面 712‧‧‧ surface
72‧‧‧滑塊 72‧‧‧ Slider
81‧‧‧第一導引面 81‧‧‧First guiding surface
812‧‧‧第一磁性區 812‧‧‧First Magnetic Zone
9‧‧‧具有轉動構件之裝置 9‧‧‧Devices with rotating members
91‧‧‧轉軸 91‧‧‧ shaft
911‧‧‧表面 911‧‧‧ surface
92‧‧‧支撐軸套 92‧‧‧Support bushing
93‧‧‧鎖合元件 93‧‧‧Locking components
94‧‧‧外罩 94‧‧‧ Cover
D‧‧‧預定間距 D‧‧‧Predetermined spacing
F‧‧‧受力 F‧‧‧ force
Y‧‧‧箭號 Y‧‧‧ arrows
S100‧‧‧步驟 S100‧‧‧ steps
S200‧‧‧步驟 S200‧‧‧ steps
圖1a為本發明之一實施例之非接觸式軸承之剖面示意圖;圖1b為本發明之一實施例之非接觸式軸承之平面示意圖;圖1c為本發明之一實施例之非接觸式軸承製造方法之流程圖;圖2a為本發明之一實施例之溫度感測器之第一層金屬圖樣線路之平面示意圖; 圖2b為本發明之一實施例之溫度感測器之第二層金屬圖樣線路之平面示意圖;圖2c為本發明之一實施例之溫度感測器之完成兩層金屬層製作之串聯熱電偶圖樣之平面示意圖;圖3a至圖3i為本發明之一實施例之溫度感測器之製造方法之剖面示意圖;圖3j為本發明之另一實施例之溫度感測器之製造方法之剖面示意圖;圖3k為本發明之又一實施例之溫度感測器之製造方法之剖面示意圖;圖4a為本發明之一實施例之壓力感測器之剖面示意圖;圖4b為本發明之一實施例之位移感測器之剖面示意圖;圖4c為本發明之一實施例之加速規之剖面示意圖;圖5為本發明之一實施例之微泵之剖面示意圖;圖6為本發明之一實施例之微閥之剖面示意圖;圖7為本發明之一實施例之氣體靜壓軸承之剖面示意圖;圖8為本發明之具有滑軌組件之裝置之立體示意圖;圖9為本發明之一實施例之液體靜壓軸承之剖面示意圖;圖10為本發明之一實施例之氣體動壓軸承之剖面示意圖;圖11為本發明之一實施例之具有轉動構件之裝置之剖面示意圖;圖12為本發明之一實施例之液體動壓軸承之剖面示意圖;以及 圖13為本發明之一實施例之磁浮軸承之剖面示意圖。 1a is a schematic cross-sectional view of a non-contact bearing according to an embodiment of the present invention; FIG. 1b is a plan view of a non-contact bearing according to an embodiment of the present invention; and FIG. 1c is a non-contact bearing according to an embodiment of the present invention; A flow chart of a manufacturing method; FIG. 2a is a schematic plan view of a first layer metal pattern line of a temperature sensor according to an embodiment of the present invention; 2b is a schematic plan view of a second layer of metal pattern lines of a temperature sensor according to an embodiment of the present invention; and FIG. 2c is a series thermocouple of a temperature sensor for completing two layers of metal layers according to an embodiment of the invention; FIG. 3 is a schematic cross-sectional view showing a method of manufacturing a temperature sensor according to an embodiment of the present invention; FIG. 3 is a cross-sectional view showing a method of manufacturing a temperature sensor according to another embodiment of the present invention; 3k is a cross-sectional view showing a method of manufacturing a temperature sensor according to still another embodiment of the present invention; FIG. 4a is a schematic cross-sectional view showing a pressure sensor according to an embodiment of the present invention; and FIG. 4b is an embodiment of the present invention; FIG. 4 is a schematic cross-sectional view of an acceleration gauge according to an embodiment of the present invention; FIG. 5 is a schematic cross-sectional view of a micropump according to an embodiment of the present invention; FIG. 7 is a schematic cross-sectional view of a gas hydrostatic bearing according to an embodiment of the present invention; FIG. 8 is a perspective view of a device having a slide rail assembly according to the present invention; FIG. 9 is an embodiment of the present invention; BRIEF DESCRIPTION OF THE DRAWINGS FIG. 10 is a cross-sectional view showing a gas dynamic pressure bearing according to an embodiment of the present invention; FIG. 11 is a schematic cross-sectional view showing a device having a rotating member according to an embodiment of the present invention; A schematic cross-sectional view of a hydrodynamic bearing of one embodiment; Figure 13 is a cross-sectional view showing a magnetic bearing according to an embodiment of the present invention.
請參考圖1a,其顯示本發明之一實施例之非接觸式軸承。該非接觸式軸承1在懸浮狀態時,其與一第一導引面81之間以一預定間距D而設置。該非接觸式軸承1包括:一軸承本體10及一微電子機械層(Micro Electro Mechanical Layer)12。該軸承本體10包括一第二導引面11,該第二導引面11相對該第一導引面81。該微電子機械層12設置於該第二導引面11,並包括至少一微感測器(例如多個微感測器12a)及/或至少一微致動器(例如多個微致動器12b)。請參考圖1b,該些微感測器12a及該些微致動器12b可沿二維方向而排列佈置。該些微感測器12a可選自溫度感測器、壓力感測器、位移感測器及加速規所構成之群組中。該些微致動器12b可為微泵及/或微閥。該微電子機械層12更包括多條線路及絕緣層(圖未示),該些線路用以傳送該微感測器12a及/或多個微致動器12b之訊號。在本實施例中,該非接觸式軸承1可選擇性更包括:多個間隙支撐件(spacer)13,亦設置於該第二導引面11,用以當該非接觸式軸承1在非懸浮狀態時,該些間隙支撐件13接觸該第一導引面81。由於該些間隙支撐件13之厚度大於該微電子機械層12之厚度,可避免該微感測器12a及/或該微致動器12b接觸該第一導引面81。該些間隙支撐件13之材質可相同於該微電子機械層12之絕緣層之材質。在另一實施例中,該微電子機械層12可選擇性更包括:一保護層(圖未示),設置於該微電子機械層12之最外側,用以當該非接觸式軸承1在非懸浮狀態時,該保護層接觸該第一導引面81,可避免該微感測器12a及/或該微致動器12b接觸該第一導引面81。 Referring to Figure 1a, a non-contact bearing of one embodiment of the present invention is shown. The non-contact bearing 1 is disposed at a predetermined distance D from a first guiding surface 81 when in the suspended state. The non-contact bearing 1 includes a bearing body 10 and a micro electro mechanical layer 12 . The bearing body 10 includes a second guiding surface 11 opposite to the first guiding surface 81. The microelectromechanical layer 12 is disposed on the second guiding surface 11 and includes at least one micro sensor (eg, a plurality of micro sensors 12a) and/or at least one micro actuator (eg, a plurality of microactuators) 12b). Referring to FIG. 1b, the micro-sensors 12a and the micro-actuators 12b may be arranged in a two-dimensional direction. The micro-sensors 12a can be selected from the group consisting of a temperature sensor, a pressure sensor, a displacement sensor, and an accelerometer. The microactuators 12b can be micropumps and/or microvalves. The microelectromechanical layer 12 further includes a plurality of lines and an insulating layer (not shown) for transmitting signals of the micro-sensor 12a and/or the plurality of micro-actuators 12b. In this embodiment, the non-contact bearing 1 can further include: a plurality of gap supports 13 disposed on the second guiding surface 11 for the non-contact bearing 1 to be in a non-suspended state. The gap support members 13 contact the first guiding surface 81. Since the thickness of the gap support members 13 is greater than the thickness of the microelectromechanical layer 12, the micro-sensor 12a and/or the micro-actuator 12b can be prevented from contacting the first guiding surface 81. The material of the gap support members 13 may be the same as the material of the insulating layer of the microelectromechanical layer 12. In another embodiment, the microelectromechanical layer 12 can further include: a protective layer (not shown) disposed on the outermost side of the microelectromechanical layer 12 for when the non-contact bearing 1 is in the non-contact In the floating state, the protective layer contacts the first guiding surface 81 to prevent the micro-sensor 12a and/or the micro-actuator 12b from contacting the first guiding surface 81.
請參考圖1c,其顯示本發明之一實施例之非接觸式軸承製造方法之流程。該非接觸式軸承製造方法包括下列步驟:在步驟S100中,提供一軸承本體10,包括一導引面(即第二導引面11)。在步驟S200中,將一微電子機械層12形成於該導引面,其中該微電子機械層12包括至少一微感測器(例如多個微感測器12a)及/或至少一微致動器(例如多個微致動器12b),如圖1a所示。 Please refer to FIG. 1c, which shows the flow of a method for manufacturing a non-contact bearing according to an embodiment of the present invention. The non-contact bearing manufacturing method includes the following steps: In step S100, a bearing body 10 is provided, including a guiding surface (ie, a second guiding surface 11). In step S200, a microelectromechanical layer 12 is formed on the guiding surface, wherein the microelectromechanical layer 12 includes at least one micro sensor (eg, a plurality of micro sensors 12a) and/or at least one micro A actuator (eg, a plurality of microactuators 12b), as shown in Figure 1a.
以溫度感測器為例,熱電偶是普遍使用的溫度感測器。熱電偶溫度計係將兩種不同金屬(或金屬線)之部分接合在一起,串聯成一個迴路以供使用。兩金屬連接之接合處(junction)於一溫度下,它們之間就會產生微量電壓。電壓大小取決於金屬之種類及接面,而在微安培計可測量出流經金屬上的微弱電流,此即席貝克效應(Seebeck Effect)。換言之,熱電偶型式的感測元件則是利用兩組不同材質的電阻溫度計,以差動的方式求取兩組電阻溫度計間的電壓差。 Taking a temperature sensor as an example, a thermocouple is a commonly used temperature sensor. A thermocouple thermometer is a combination of two different metals (or wires) that are connected in series to form a loop for use. The junction of the two metal connections is at a temperature where a slight voltage is generated between them. The magnitude of the voltage depends on the type of metal and the junction, and the microamperemeter measures the weak current flowing through the metal, which is the Seebeck Effect. In other words, the thermocouple type sensing element uses two sets of resistance thermometers of different materials to obtain the voltage difference between the two sets of resistance thermometers in a differential manner.
圖2a為第一層金屬圖樣線路之平面示意圖,圖2b為第二層金屬圖樣線路之平面示意圖,圖2c為完成兩層金屬層製作之串聯熱電偶圖樣之平面示意圖。參考圖2a至圖2c,在串聯兩層金屬層(第一及第二金屬層1212、1213)的熱電偶圖樣中,熱端溫度感測區1218為第一金屬層1212(例如鎳金屬)與第二金屬層1213(例如銅金屬)之重疊區,冷端感測區1219為焊墊部分,電偶串聯處1217為第一金屬層1212(例如鎳金屬)與第二金屬層1213(例如銅金屬)之串接區,如此以形成一薄膜式溫度感測器之結構,即本發明之溫度感測器121。 2a is a plan view of a first layer of metal pattern lines, FIG. 2b is a plan view of a second layer of metal pattern lines, and FIG. 2c is a plan view of a series thermocouple pattern for completing two layers of metal layers. Referring to FIGS. 2a to 2c, in a thermocouple pattern in which two metal layers (first and second metal layers 1212, 1213) are connected in series, the hot end temperature sensing region 1218 is a first metal layer 1212 (eg, nickel metal) and An overlap region of the second metal layer 1213 (eg, copper metal), the cold junction sensing region 1219 is a pad portion, and the ferrule series 1217 is a first metal layer 1212 (eg, nickel metal) and a second metal layer 1213 (eg, copper) The metal) is connected in series to form a structure of a film type temperature sensor, that is, the temperature sensor 121 of the present invention.
本發明之溫度感測器之製造方法以銅、鎳金屬為例,說明如後,請參考圖3a至圖3i。 The method for manufacturing the temperature sensor of the present invention is exemplified by copper and nickel metal. For the following, please refer to FIG. 3a to FIG. 3i.
首先提供一軸承本體10,本實施例中該軸承本體10之第二導引面11可為多孔性材料層的表面或規則通道 基板的表面。於軸承本體10上以化學氣相沈積法形成一層氮化矽做為絕緣層1211,如圖3a。再於氮化矽層1211塗佈上一光阻(圖未示),進行黃光製程,曝光顯影出欲蝕刻之圖樣,再蝕刻未受光阻覆蓋部分之氮化矽1211,形成第一圖樣,移除光阻後,如圖3b。 Firstly, a bearing body 10 is provided. In this embodiment, the second guiding surface 11 of the bearing body 10 can be a surface or a regular channel of a porous material layer. The surface of the substrate. A layer of tantalum nitride is formed on the bearing body 10 by chemical vapor deposition as the insulating layer 1211, as shown in Fig. 3a. Further coating a photoresist (not shown) on the tantalum nitride layer 1211, performing a yellow light process, exposing and developing a pattern to be etched, and etching the tantalum nitride 1211 not covered by the photoresist to form a first pattern. After removing the photoresist, as shown in Figure 3b.
於絕緣層1211上蒸鍍一第一金屬層1212,於本實施例中為鎳金屬,作為熱電偶第一種金屬材料之金屬電阻材料,如圖3c。於第一金屬層1212(鎳金屬層)上塗佈上一光阻(圖未示),同樣進行黃光製程,曝光顯影出第一層熱電偶圖樣,再蝕刻鎳金屬,成形出第一層熱電偶圖樣,移除光阻後,如圖3d。 A first metal layer 1212 is deposited on the insulating layer 1211, which is nickel metal in this embodiment, and is a metal resistive material of the first metal material of the thermocouple, as shown in FIG. 3c. Applying a photoresist (not shown) on the first metal layer 1212 (nickel metal layer), performing a yellow light process, exposing and developing the first layer of thermocouple pattern, and etching the nickel metal to form the first layer. Thermocouple pattern, after removing the photoresist, as shown in Figure 3d.
於第一金屬層1212(鎳金屬層)上再蒸鍍上一層銅金屬,為第二金屬層1213。於本實施例中為銅金屬,作為熱電偶第二種金屬材料之焊墊材料,如圖3e。於第二金屬層1213(銅金屬)上再塗佈一層光阻1214,如圖3f。再利用含第二圖樣之光罩,於塗佈光阻1214上之該第二金屬層1213(銅金屬)進行黃光製程,曝光顯影出第二層熱電偶圖樣焊墊圖樣,如圖3g。再蝕刻第二金屬層1213(銅金屬),如圖3h。成形出第二層熱電偶焊墊圖樣,移除光阻1214後,如此以完成一薄膜式溫度感測器,即本發明之溫度感測器121(該微電子機械層12之一部分),如圖3i。完成該薄膜式溫度感測器的同時,也完成多個連接通道1215(該連接通道1215可作為讓氣體或液體通過之用)。另外,前述步驟中提及光罩、黃光製程、曝光顯影、蝕刻及移除光阻等多個製程(通常稱為曝光顯影蝕刻製程)亦可以一雷射直寫製程取代。 A layer of copper metal is further vapor-deposited on the first metal layer 1212 (nickel metal layer) to form a second metal layer 1213. In this embodiment, it is copper metal, which is used as a pad material for the second metal material of the thermocouple, as shown in FIG. 3e. A layer of photoresist 1214 is further coated on the second metal layer 1213 (copper metal), as shown in FIG. 3f. Then, the second metal layer 1213 (copper metal) on the coating photoresist 1214 is subjected to a yellow light process by using a photomask containing the second pattern, and a second layer thermocouple pattern pad pattern is exposed and developed, as shown in FIG. 3g. The second metal layer 1213 (copper metal) is etched again as shown in FIG. 3h. Forming a second layer of thermocouple pad pattern, removing the photoresist 1214, thus completing a film type temperature sensor, that is, the temperature sensor 121 of the present invention (a part of the microelectromechanical layer 12), such as Figure 3i. While the film type temperature sensor is completed, a plurality of connection channels 1215 are also completed (the connection channel 1215 can be used as a gas or liquid to pass). In addition, a plurality of processes (hereinafter, referred to as an exposure and development etching process), which are mentioned in the foregoing steps, such as a photomask, a yellow light process, an exposure development, an etching, and a photoresist removal, may also be replaced by a laser direct writing process.
因此,根據本發明之非接觸式軸承製造方法,藉由一曝光顯影蝕刻製程(包括多個曝光顯影蝕刻步驟)及一薄膜形成製程(包括多個薄膜形成步驟),或者藉由一雷射直寫製程(包括多個雷射直寫步驟)及一薄膜形成製程(包括多個薄膜 形成步驟),可將該微電子機械層形成有該至少一微感測器及/或至少一微致動器。 Therefore, the non-contact bearing manufacturing method according to the present invention is performed by an exposure and development etching process (including a plurality of exposure and development etching steps) and a film forming process (including a plurality of film forming steps), or by a laser beam Write process (including multiple laser direct writing steps) and a film forming process (including multiple films) Forming step), the microelectromechanical layer may be formed with the at least one micro sensor and/or at least one microactuator.
參考圖3j,在另一實施例中,當該軸承本體10為多孔性材料層101時,較佳地該軸承本體10之第二導引面11上可先形成一感光型覆蓋層1216(Photo Imageable Coverlay;PIC)作為中介層,然後再進行後續之該絕緣層1211、第一金屬層1212及第二金屬層1213的薄膜形成製程,如此可增加該溫度感測器121貼附在多孔性材料層101的效果。因此,根據本發明之非接觸式軸承製造方法,將一感光型覆蓋層形成於該導引面,並藉由一曝光顯影蝕刻製程(包括多個曝光顯影蝕刻步驟)及一薄膜形成製程(包括多個薄膜形成步驟),或者藉由一雷射直寫製程(包括多個雷射直寫步驟)及一薄膜形成製程(包括多個薄膜形成步驟),可將至少一微感測器及/或至少一微致動器形成於該感光型覆蓋層上。 Referring to FIG. 3j, in another embodiment, when the bearing body 10 is a porous material layer 101, preferably, a photosensitive cover layer 1216 is formed on the second guiding surface 11 of the bearing body 10. Imageable Coverlay; PIC) is used as an interposer, and then a subsequent film formation process of the insulating layer 1211, the first metal layer 1212, and the second metal layer 1213 is performed, so that the temperature sensor 121 is attached to the porous material. The effect of layer 101. Therefore, according to the non-contact bearing manufacturing method of the present invention, a photosensitive cover layer is formed on the guide surface by an exposure and development etching process (including a plurality of exposure and development etching steps) and a film forming process (including a plurality of thin film forming steps), or by a laser direct writing process (including a plurality of laser direct writing steps) and a thin film forming process (including a plurality of thin film forming steps), at least one micro sensor and/or Or at least a microactuator is formed on the photosensitive cover layer.
或者,先進行後續之該絕緣層1211、第一金屬層1212及第二金屬層1213的薄膜形成製程,將該溫度感測器121形成於一感光型覆蓋層1216上,然後藉由該感光型覆蓋層1216將該溫度感測器121真空貼合於該軸承本體10之第二導引面11(如圖3j所示),如此亦可增加該溫度感測器121貼附在多孔性材料層101的效果。因此,根據本發明之非接觸式軸承製造方法,藉由一曝光顯影蝕刻製程(包括多個曝光顯影蝕刻步驟)及一薄膜形成製程(包括多個薄膜形成步驟),或者藉由一雷射直寫製程(包括多個雷射直寫步驟)及一薄膜形成製程(包括多個薄膜形成步驟),可將該至少一微感測器及/或至少一微致動器形成於該感光型覆蓋層上。然後再將該至少一微感測器及/或至少一微致動器及該感光型覆蓋層真空貼合於該第二導引面。 Alternatively, a film forming process of the insulating layer 1211, the first metal layer 1212, and the second metal layer 1213 is performed first, and the temperature sensor 121 is formed on a photosensitive cover layer 1216, and then the photosensitive type is formed. The cover layer 1216 vacuum-attaches the temperature sensor 121 to the second guiding surface 11 of the bearing body 10 (as shown in FIG. 3j), so that the temperature sensor 121 can be attached to the porous material layer. The effect of 101. Therefore, the non-contact bearing manufacturing method according to the present invention is performed by an exposure and development etching process (including a plurality of exposure and development etching steps) and a film forming process (including a plurality of film forming steps), or by a laser beam a writing process (including a plurality of laser direct writing steps) and a film forming process (including a plurality of film forming steps), wherein the at least one micro sensor and/or at least one microactuator may be formed on the photosensitive cover On the floor. Then, the at least one micro sensor and/or the at least one microactuator and the photosensitive cover layer are vacuum-bonded to the second guiding surface.
再者,藉由雷射打孔製程將該微電子機械層12及該感光型覆蓋層1216選擇性地形成有更多連接通道 1215a、1215b,可以依序連通該多孔性材料層101之微孔1011。 Furthermore, the microelectromechanical layer 12 and the photosensitive cover layer 1216 are selectively formed with more connection channels by a laser puncturing process. 1215a, 1215b, the micropores 1011 of the porous material layer 101 may be sequentially connected.
參考圖3k,在又一實施例中,當該軸承本體10為規則通道基板102時,亦可藉由雷射打孔製程將該微電子機械層12及該感光型覆蓋層1216選擇性地形成有更多連接通道1215a、1215b,以連通該規則通道基板102之多個微通道1021。 Referring to FIG. 3k, in another embodiment, when the bearing body 10 is a regular channel substrate 102, the microelectromechanical layer 12 and the photosensitive cover layer 1216 may be selectively formed by a laser drilling process. There are more connection channels 1215a, 1215b to connect the plurality of microchannels 1021 of the regular channel substrate 102.
參考圖4a及圖1a,以壓力感測器122為例,該壓力感測器122包括基材1221、一微感測元件1222、一感測薄膜1223、多條銲線1224及一封蓋1225。該微感測元件1222設置於該基材1221上。該感測薄膜1223設置於該微感測元件1222上,且與該微感測元件1222間形成一腔室1226。該銲線1224用以將該感測薄膜1223電性連接於該基材1221。該封蓋1225設置於該基材1221上,並遮蓋住該微感測元件1222。該封蓋1225上開設有開口1227,用以以使外界氣或液壓力能進入該封蓋1225內,而該腔室1226內本身已具有一固定壓力,當外界壓力壓迫該感測薄膜1223,則會與腔室1226內壓力產生一壓力差,則可藉由該微感測元件1222測得,再透過銲線1224將訊號傳至該基材1221,而該基材1221設置於欲應用之該非接觸式軸承,如此則可構成一壓力感測迴路。在本實施例中,該壓力感測器122(為該微電子機械層12之一部分)可設置在該軸承本體10之第二導引面11上或上述感光型覆蓋層(PIC)上。 Referring to FIG. 4a and FIG. 1a , the pressure sensor 122 includes a substrate 1221 , a micro sensing element 1222 , a sensing film 1223 , a plurality of bonding wires 1224 , and a cover 1225 . . The micro sensing element 1222 is disposed on the substrate 1221. The sensing film 1223 is disposed on the micro sensing element 1222 and forms a chamber 1226 with the micro sensing element 1222. The bonding wire 1224 is used to electrically connect the sensing film 1223 to the substrate 1221. The cover 1225 is disposed on the substrate 1221 and covers the micro sensing element 1222. An opening 1227 is defined in the cover 1225 for allowing external air or hydraulic pressure to enter the cover 1225. The chamber 1226 itself has a fixed pressure, and when the external pressure presses the sensing film 1223, A pressure difference is generated between the pressure in the chamber 1226, and the signal is transmitted to the substrate 1221 through the bonding wire 1224, and the substrate 1221 is disposed to be applied. The non-contact bearing thus forms a pressure sensing circuit. In the present embodiment, the pressure sensor 122 (which is a part of the microelectromechanical layer 12) may be disposed on the second guiding surface 11 of the bearing body 10 or on the photosensitive cover layer (PIC).
參考圖4b及圖1a,以位移感測器125為例,該位移感測器125包括一線圈1251。該位移感測器125主要是量測感測器與待測物1252的金屬表面1253(亦即第一導引面81)間之位移量,其感測原理為該位移感測器125之線圈1251的磁力線會誘發待測物1252的金屬表面1253產生渦電流1254,當位移量增加時,渦電流1254則會減少:而當位移量減少時,渦電流1254則會增加,藉此計算出位移量。在本實 施例中,該位移感測器(為該微電子機械層12之一部分)可設置在該軸承本體10之第二導引面11上或上述感光型覆蓋層(PIC)上。 Referring to FIG. 4b and FIG. 1a, taking the displacement sensor 125 as an example, the displacement sensor 125 includes a coil 1251. The displacement sensor 125 is mainly for measuring the displacement between the sensor and the metal surface 1253 (ie, the first guiding surface 81) of the object to be tested 1252, and the sensing principle is the coil of the displacement sensor 125. The magnetic field lines of 1251 induce the eddy current 1254 of the metal surface 1253 of the object to be tested 1252. When the displacement increases, the eddy current 1254 decreases: when the displacement decreases, the eddy current 1254 increases, thereby calculating the displacement. the amount. In this reality In an embodiment, the displacement sensor (which is part of the microelectromechanical layer 12) may be disposed on the second guiding surface 11 of the bearing body 10 or on the photosensitive cover layer (PIC).
參考圖4c及圖1a,以加速規126為例,該加速規126包括一質量塊1261及一壓電材料1262。透過該質量塊1261位移促使該壓電材料1262變形釋出電荷,然後依據電荷釋出量來計算該質量塊1261之受力F大小,進而計算出該質量塊1261之加速度。在本實施例中,該質量塊1261可為該軸承本體10之一部分,該壓電材料1262可為該微電子機械層12之一部分,該加速規126之壓電材料1262可設置在該軸承本體10之第二導引面11上或上述感光型覆蓋層(PIC)上。 Referring to FIG. 4c and FIG. 1a, taking the acceleration gauge 126 as an example, the accelerometer 126 includes a mass 1261 and a piezoelectric material 1262. The piezoelectric material 1262 is deformed to release the electric charge by the displacement of the mass 1261, and then the force F of the mass 1261 is calculated according to the charge release amount, thereby calculating the acceleration of the mass 1261. In this embodiment, the mass 1261 can be a part of the bearing body 10. The piezoelectric material 1262 can be a part of the microelectromechanical layer 12. The piezoelectric material 1262 of the accelerometer 126 can be disposed on the bearing body. On the second guiding surface 11 of 10 or on the above-mentioned photosensitive cover layer (PIC).
參考圖5及圖1a,以微泵123為例,微泵(Micro Pump)是一種結合壓電驅動器(Piezo Actuator)與隔膜式(Diaphragm/Membrane)微泵技術的微流體壓電裝置。該微泵123包括一閥座1231、一閥體1232、一閥體薄膜1233、一壓電驅動器1234、一蓋體1235、一入口閥門1236及一出口閥門1237。該蓋體1235包括一入口通道123a及一出口通道123b。該閥體1232與該壓電驅動器1234之間定義有一壓力腔室1238。該閥體薄膜1233設置在該閥座1231與該閥體1232之間。在本實施例中,當該非接觸式軸承為流體軸承時,該閥座1231可設置在該軸承本體10之第二導引面11上或設置在上述感光型覆蓋層(PIC)上,即可作為氣體或液體的主要供應源。若有足夠數量的微泵,則可單獨地使該非接觸式軸承1產生懸浮特性。在另一實施例中,該微泵123可作為氣體或液體的輔助供應源。該微泵123可設置在第二導引面11上不具有微孔1011的位置或不具有微通道1021的位置,以免該微泵123擋住來自該軸承本體10的第二導引面11的微孔1011或微通道1021的氣體或液體而影響非接觸式軸承1的懸浮特性。 Referring to FIG. 5 and FIG. 1a, taking the micropump 123 as an example, the micro pump is a microfluidic piezoelectric device combining a piezoelectric actuator (Piezo Actuator) and a diaphragm (Diaphragm/Membrane) micropump technology. The micropump 123 includes a valve seat 1231, a valve body 1232, a valve body film 1233, a piezoelectric actuator 1234, a cover 1235, an inlet valve 1236 and an outlet valve 1237. The cover 1235 includes an inlet passage 123a and an outlet passage 123b. A pressure chamber 1238 is defined between the valve body 1232 and the piezoelectric actuator 1234. The valve body film 1233 is disposed between the valve seat 1231 and the valve body 1232. In this embodiment, when the non-contact bearing is a fluid bearing, the valve seat 1231 can be disposed on the second guiding surface 11 of the bearing body 10 or on the photosensitive cover layer (PIC). As the main source of supply for gases or liquids. If there is a sufficient number of micropumps, the non-contact bearing 1 can be individually made to have suspension characteristics. In another embodiment, the micropump 123 can be used as an auxiliary source of gas or liquid. The micropump 123 can be disposed at a position on the second guiding surface 11 that does not have the micro hole 1011 or a position without the micro channel 1021 so as to prevent the micro pump 123 from blocking the micro guiding surface 11 from the bearing body 10. The gas or liquid of the hole 1011 or the microchannel 1021 affects the suspension characteristics of the non-contact bearing 1.
舉例,當一電壓作用在壓電驅動器1234的上下兩極時,會產生一電場,使得壓電驅動器1234在此電場之作用下產生彎曲,當壓電驅動器1234朝箭號Y所指之方向彎曲變形,將使得壓力腔室1238之體積增加,因而產生一吸力,使閥體薄膜1233之入口閥門結構1236開啟,使流體可自閥座1231上之入口通道123a被吸取進來,並流經該入口閥門1236而流入壓力腔室1238內,反之當壓電驅動器1234因電場方向改變而朝箭號Y之反方向彎曲變形時,則會壓縮壓力腔室1238之體積,使得壓力腔室1238對內部之流體產生一推力,並使該入口閥門1236及該出口閥門1237承受朝箭號Y之反方向的推力,而該出口閥門1237將開啟,並使流體由壓力腔室1238經由該出口閥門結構1237,而從閥座1231之出口通道123b流出微泵123外,因而完成流體之傳輸過程。 For example, when a voltage is applied to the upper and lower poles of the piezoelectric actuator 1234, an electric field is generated, so that the piezoelectric actuator 1234 is bent by the electric field, and the piezoelectric actuator 1234 is bent and deformed in the direction indicated by the arrow Y. The volume of the pressure chamber 1238 will be increased, thereby creating a suction force that opens the inlet valve structure 1236 of the valve body membrane 1233 so that fluid can be drawn in from the inlet passage 123a on the valve seat 1231 and flow through the inlet valve. 1236 flows into the pressure chamber 1238. Conversely, when the piezoelectric actuator 1234 is bent and deformed in the opposite direction of the arrow Y due to the change of the electric field direction, the volume of the pressure chamber 1238 is compressed, so that the pressure chamber 1238 is internally fluid. A thrust is generated and the inlet valve 1236 and the outlet valve 1237 are subjected to a thrust in the opposite direction of the arrow Y, and the outlet valve 1237 is opened and fluid is passed from the pressure chamber 1238 via the outlet valve structure 1237. The outflow of the micropump 123 from the outlet passage 123b of the valve seat 1231 completes the fluid transfer process.
以微閥124為例,其可類似微泵之結構。參考圖6及圖1a,微閥124包括一閥座1241、一閥體1242、一閥體薄膜1243、一壓電驅動器1244及一蓋體1245。該閥座1241包括一入口通道124a,該蓋體1245包括一出口通道124b。該閥體薄膜1243設置在該閥座1241與該閥體1242之間。當一電壓作用在壓電驅動器1244的上下兩極時,則開啟微閥124,使該入口通道124a連通於該出口通道124b;反之,當沒有電壓作用在壓電驅動器1244的上下兩極時,則關閉微閥124,此微閥124為一種常閉微閥。該微閥124須設置於對應於該軸承本體10之多孔性材料層101的微孔1011的位置或該軸承本體10之規則通道基板102的微通道1021的位置,才能控制該軸承本體10內之氣體或液體是否流出。 Taking the microvalve 124 as an example, it can be similar to the structure of a micropump. Referring to FIGS. 6 and 1a, the microvalve 124 includes a valve seat 1241, a valve body 1242, a valve body film 1243, a piezoelectric actuator 1244, and a cover 1245. The valve seat 1241 includes an inlet passage 124a that includes an outlet passage 124b. The valve body film 1243 is disposed between the valve seat 1241 and the valve body 1242. When a voltage is applied to the upper and lower poles of the piezoelectric actuator 1244, the microvalve 124 is opened to connect the inlet passage 124a to the outlet passage 124b; otherwise, when no voltage is applied to the upper and lower poles of the piezoelectric actuator 1244, the shutdown is performed. The microvalve 124 is a normally closed microvalve. The microvalve 124 must be disposed at a position corresponding to the micropore 1011 of the porous material layer 101 of the bearing body 10 or the position of the microchannel 1021 of the regular passage substrate 102 of the bearing body 10 to control the inside of the bearing body 10. Whether the gas or liquid flows out.
本發明之非接觸式軸承可為流體軸承或磁浮軸承。該流體軸承可選自氣體靜壓軸承、液體靜壓軸承、氣體動壓軸承及液體動壓軸承所構成之群組。 The non-contact bearing of the present invention may be a fluid bearing or a magnetic bearing. The fluid bearing may be selected from the group consisting of a hydrostatic bearing, a hydrostatic bearing, a gas dynamic bearing and a hydrodynamic bearing.
參考圖7,在本發明之第一實施態樣,當該非接 觸式軸承為一氣體靜壓軸承2或一氣體動壓軸承時,該氣體靜壓軸承2之軸承本體20包括一多孔材料層201、一腔體202及一氣體入口203,該多孔材料層201之微孔2011、該腔體202及該氣體入口203依序連通,且該多孔材料層201之微孔2011通過該第二導引面11,藉此使氣體通過該氣體入口203、該腔體202及該多孔材料層201之微孔2011,然後通過該微電子機械層22之多個連接通道2215且流進該氣體靜壓軸承2(即非接觸式軸承)與該第一導引面81之間的預定間距D,如此以產生懸浮效果。在本實施例中,該多孔材料層201之一表面21為該第二導引面11。舉例,參考圖8,該氣體靜壓軸承2可應用於一具有滑軌組件之裝置7,亦即該非接觸式軸承(氣體靜壓軸承2)設置於可沿一導軌71移動的一滑塊72上,該第一導引面81為該導軌71之表面712。該裝置7可應用於工具機或精密機械。工具機或精密機械(例如:光電半導體設備中的曝光機、製作超精密模具的超精密車床與超精密加工中心、超精密量測設備中的定位載台等)利用該導軌71、氣體靜壓軸承2、滑塊72而使工作平台73以極小摩擦力沿導軌71的方向711進行直線運動,提昇加工上的便利性。 Referring to FIG. 7, in the first embodiment of the present invention, when the non-connected When the contact bearing is a gas static pressure bearing 2 or a gas dynamic pressure bearing, the bearing body 20 of the gas static pressure bearing 2 comprises a porous material layer 201, a cavity 202 and a gas inlet 203, the porous material layer The microholes 201 of 201, the cavity 202 and the gas inlet 203 are sequentially connected, and the micropores 2011 of the porous material layer 201 pass through the second guiding surface 11 , thereby passing gas through the gas inlet 203 and the cavity. The body 202 and the micropores 2011 of the porous material layer 201 are then passed through the plurality of connecting channels 2215 of the microelectromechanical layer 22 and flow into the gas hydrostatic bearing 2 (ie, the non-contact bearing) and the first guiding surface The predetermined spacing D between 81 is such that a floating effect is produced. In the present embodiment, one surface 21 of the porous material layer 201 is the second guiding surface 11. For example, referring to FIG. 8, the gas static pressure bearing 2 can be applied to a device 7 having a slide rail assembly, that is, the non-contact bearing (aerostatic bearing 2) is disposed on a slider 72 movable along a guide rail 71. The first guiding surface 81 is the surface 712 of the guide rail 71. The device 7 can be applied to machine tools or precision machines. Machine tools or precision machinery (for example, exposure machines in optoelectronic semiconductor equipment, ultra-precision lathes and ultra-precision machining centers for making ultra-precision molds, positioning stages in ultra-precision measuring equipment, etc.) use this guide rail 71, gas static pressure The bearing 2 and the slider 72 linearly move the work platform 73 in the direction 711 of the guide rail 71 with a very small frictional force, thereby improving the convenience in processing.
參考圖9,在本發明之第二實施態樣,當該非接觸式軸承為一液體靜壓軸承3或一液體動壓軸承時,該液體靜壓軸承3之軸承本體30包括一規則通道基板301、一腔體302及一液體入口303,該規則通道基板301之多個微通道3011、該腔體302及該液體入口303依序連通,且該些微通道3011通過該第二導引面11,藉此使液體經過該液體入口303、該腔體302及該些微通道3011,然後通過該微電子機械層32之連接通道3215且流進該液體靜壓軸承3(非接觸式軸承)與該第一導引面81之間的預定間距D,如此以產生懸浮效果。舉例,該液體靜壓軸承亦可應用於上述滑軌組件,亦即該液體靜壓軸承(非接觸式軸承)設置於一滑塊上,該第一導 引面為一導軌之表面。雖然該液體靜壓軸承3是使用液體作為產生懸浮效果之介質,但是該液體並不會汙染該微電子機械層32或使該微電子機械層32失效,因為該微電子機械層32之外表面會設置有一保護層(圖未示),作為隔離該液體之用。 Referring to FIG. 9, in the second embodiment of the present invention, when the non-contact bearing is a hydrostatic bearing 3 or a hydrodynamic bearing, the bearing body 30 of the hydrostatic bearing 3 includes a regular passage substrate 301. a cavity 302 and a liquid inlet 303. The plurality of microchannels 3011, the cavity 302 and the liquid inlet 303 of the regular channel substrate 301 are sequentially connected, and the microchannels 3011 pass through the second guiding surface 11. Thereby, the liquid is passed through the liquid inlet 303, the cavity 302 and the microchannels 3011, and then passes through the connecting passage 3215 of the microelectromechanical layer 32 and flows into the hydrostatic bearing 3 (non-contact bearing) and the first A predetermined spacing D between the guiding faces 81 is such that a floating effect is produced. For example, the hydrostatic bearing can also be applied to the above-mentioned slide rail assembly, that is, the hydrostatic bearing (non-contact bearing) is disposed on a slider, the first guide The lead surface is the surface of a guide rail. Although the hydrostatic bearing 3 uses a liquid as a medium for generating a suspending effect, the liquid does not contaminate or deactivate the microelectromechanical layer 32 because the outer surface of the microelectromechanical layer 32 A protective layer (not shown) is provided for isolating the liquid.
參考圖10,在本發明之第三實施態樣,當該非接觸式軸承為一液體靜壓軸承或液體動壓軸承4時,該液體動壓軸承4之軸承本體40包括一多孔材料層401、一腔體402及一液體入口403,該多孔材料層401之多個微孔4011、該腔體402及該液體入口403依序連通,該多孔材料層401之一表面41為該第二導引面11,且該些微孔4011通過該第二導引面11,藉此使液體通過該液體入口403、該腔體402及該些微孔4011,然後通過該微電子機械層42之連接通道4215且流進該液體動壓軸承4(非接觸式軸承)與該第一導引面81之間的預定間距D,如此以產生懸浮效果。舉例,參考圖11,該液體動壓軸承4可應用於一具有轉動構件之裝置9,亦即該液體動壓軸承4(非接觸式軸承)設置於一支撐軸套92上,該第一導引面81為一轉軸91之表面911。該支撐軸套92包覆及限位該液體動壓軸承4。至少一個以上之鎖合元件93將多個對應之外罩94對合鎖結而固定該支撐軸套92。該裝置9藉由該支撐軸套92及該液體動壓軸承4可使該轉軸92以極小摩擦力進行旋轉運動。 Referring to FIG. 10, in a third embodiment of the present invention, when the non-contact bearing is a hydrostatic bearing or hydrodynamic bearing 4, the bearing body 40 of the hydrodynamic bearing 4 includes a porous material layer 401. a cavity 402 and a liquid inlet 403, the plurality of micropores 4011 of the porous material layer 401, the cavity 402 and the liquid inlet 403 are sequentially connected, and one surface 41 of the porous material layer 401 is the second guide Leading surface 11, and the micro holes 4011 pass through the second guiding surface 11, thereby passing liquid through the liquid inlet 403, the cavity 402 and the micro holes 4011, and then through the connection of the microelectromechanical layer 42 The passage 4215 flows into the predetermined distance D between the hydrodynamic bearing 4 (non-contact bearing) and the first guiding surface 81, so as to generate a suspension effect. For example, referring to FIG. 11, the hydrodynamic bearing 4 can be applied to a device 9 having a rotating member, that is, the hydrodynamic bearing 4 (non-contact bearing) is disposed on a supporting bushing 92. The lead surface 81 is a surface 911 of a rotating shaft 91. The support bushing 92 covers and limits the hydrodynamic bearing 4 . At least one or more of the latching elements 93 lock the plurality of corresponding outer covers 94 to secure the support bushing 92. The device 9 can rotate the shaft 92 with a very small frictional force by the support bushing 92 and the hydrodynamic bearing 4.
參考圖12,在本發明之第四實施態樣,當該非接觸式軸承為一氣體靜壓軸承或一氣體動壓軸承5時,該氣體動壓軸承5之軸承本體50包括至少一規則通道基板501、一腔體502及一氣體入口503,該規則通道基板501之多個微通道5011、該腔體502及該氣體入口503依序連通,該些微通道5011通過該第二導引面11,藉此使氣體經過該氣體入口503、該腔體502及該些微通道5011,然後通過該微電子機械 層52之連接通道5215且流進該氣體動壓軸承5(非接觸式軸承)與該第一導引面81之間的預定間距D,如此以產生懸浮效果。舉例,該氣體動壓軸承5亦可應用於一具有轉動構件之裝置,亦即該氣體動壓軸承5(非接觸式軸承)設置於一支撐軸套上,該第一導引面為一轉軸之表面。 Referring to FIG. 12, in a fourth embodiment of the present invention, when the non-contact bearing is a gas static pressure bearing or a gas dynamic pressure bearing 5, the bearing body 50 of the gas dynamic pressure bearing 5 includes at least one regular passage substrate. 501, a cavity 502 and a gas inlet 503, the plurality of microchannels 5011 of the regular channel substrate 501, the cavity 502 and the gas inlet 503 are sequentially connected, and the microchannels 5011 pass through the second guiding surface 11 Thereby passing gas through the gas inlet 503, the cavity 502 and the microchannels 5011, and then passing through the microelectromechanical The connecting passage 5215 of the layer 52 flows into the predetermined distance D between the gas dynamic pressure bearing 5 (non-contact bearing) and the first guiding surface 81, thereby generating a suspension effect. For example, the gas dynamic pressure bearing 5 can also be applied to a device having a rotating member, that is, the gas dynamic pressure bearing 5 (non-contact bearing) is disposed on a supporting bushing, and the first guiding surface is a rotating shaft. The surface.
參考圖13,在本發明之第五實施態樣,當該非接觸式軸承為一磁浮軸承6時,該磁浮軸承6與一第一導引面81之間以一預定間距D而設置。該磁浮軸承6包括:一軸承本體60及一微電子機械層62。該第一導引面81設有一第一磁性區812,該軸承本體60之第二導引面11更設有一第二磁性區612,且該第一及第二磁性區812、612具有相同磁性。該第一及第二磁性區812、612可同為S極或N極。該磁浮軸承6利用該第一及第二磁性區812、612所預設磁極排列之磁性相斥,以產生磁浮效果。舉例,該磁浮軸承6亦可應用於上述滑軌組件,亦即該磁浮軸承6(非接觸式軸承)設置於一滑塊上,該第一導引面81為一導軌之表面。再舉例,該磁浮軸承6亦可應用於一具有轉動構件之裝置,亦即該磁浮軸承6(非接觸式軸承)設置於一支撐軸套上,該第一導引面為一轉軸之表面。 Referring to Fig. 13, in the fifth embodiment of the present invention, when the non-contact bearing is a magnetic bearing 6, the magnetic bearing 6 and a first guiding surface 81 are disposed at a predetermined interval D. The magnetic bearing 6 includes a bearing body 60 and a microelectromechanical layer 62. The first guiding surface 81 is provided with a first magnetic region 812. The second guiding surface 11 of the bearing body 60 is further provided with a second magnetic region 612, and the first and second magnetic regions 812 and 612 have the same magnetic property. . The first and second magnetic regions 812, 612 can be the same as the S pole or the N pole. The magnetic bearing 6 is magnetically repelled by the magnetic pole arrangement of the first and second magnetic regions 812, 612 to generate a magnetic floating effect. For example, the magnetic bearing 6 can also be applied to the above-mentioned rail assembly, that is, the magnetic bearing 6 (non-contact bearing) is disposed on a slider, and the first guiding surface 81 is a surface of a rail. For example, the magnetic bearing 6 can also be applied to a device having a rotating member, that is, the magnetic bearing 6 (non-contact bearing) is disposed on a supporting sleeve, and the first guiding surface is a surface of a rotating shaft.
在量測時,由於本發明之多個微感測器及/或多個微致動器皆設置在非接觸式軸承的表面(即引導面),因此可藉由該些微感測器即時且直接由該非接觸式軸承之表面取得正確及足夠的數據進行監控及分析,並藉由該些微致動器在該非接觸式軸承之表面進行回授控制的調整策略。 In the measurement, since the plurality of micro sensors and/or the plurality of microactuators of the present invention are disposed on the surface of the non-contact bearing (ie, the guiding surface), the micro sensors can be used instantaneously and Correct and sufficient data is directly obtained from the surface of the non-contact bearing for monitoring and analysis, and the adjustment mechanism of the feedback control is performed on the surface of the non-contact bearing by the microactuators.
綜上所述,乃僅記載本發明為呈現解決問題所採用的技術手段之實施方式或實施例而已,並非用來限定本發明專利實施之範圍。即凡與本發明專利申請範圍文義相符,或依本發明專利範圍所做的均等變化與修飾,皆為本發明專利範圍所涵蓋。 In the above, it is merely described that the present invention is an embodiment or an embodiment of the technical means for solving the problem, and is not intended to limit the scope of implementation of the present invention. That is, the equivalent changes and modifications made in accordance with the scope of the patent application of the present invention or the scope of the invention are covered by the scope of the invention.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW105139922A TWI631290B (en) | 2016-12-02 | 2016-12-02 | Non-contact bearing manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW105139922A TWI631290B (en) | 2016-12-02 | 2016-12-02 | Non-contact bearing manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201821706A TW201821706A (en) | 2018-06-16 |
TWI631290B true TWI631290B (en) | 2018-08-01 |
Family
ID=63258245
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW105139922A TWI631290B (en) | 2016-12-02 | 2016-12-02 | Non-contact bearing manufacturing method |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI631290B (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050211505A1 (en) * | 2004-03-26 | 2005-09-29 | Kroupenkine Timofei N | Nanostructured liquid bearing |
US20110159446A1 (en) * | 2009-04-24 | 2011-06-30 | First Principles Technology, Llc | Plasmon head with hydrostatic gas bearing for near field photolithography |
-
2016
- 2016-12-02 TW TW105139922A patent/TWI631290B/en active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050211505A1 (en) * | 2004-03-26 | 2005-09-29 | Kroupenkine Timofei N | Nanostructured liquid bearing |
US20110159446A1 (en) * | 2009-04-24 | 2011-06-30 | First Principles Technology, Llc | Plasmon head with hydrostatic gas bearing for near field photolithography |
Also Published As
Publication number | Publication date |
---|---|
TW201821706A (en) | 2018-06-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Konishi et al. | A conveyance system using air flow based on the concept of distributed micro motion systems | |
Böhm et al. | A micromachined silicon valve driven by a miniature bi-stable electro-magnetic actuator | |
Oosterbroek et al. | A micromachined pressure/flow-sensor | |
TWI675186B (en) | Micro-position gap sensor assembly | |
US20110127455A1 (en) | Improved Microvalve Device | |
Zhe et al. | A microfabricated wall shear-stress sensor with capacitative sensing | |
JP6691234B2 (en) | Substrate assembly and related methods | |
US20050092106A1 (en) | Microelectromechanical floating element flow sensor | |
NL2014801B1 (en) | Fluid flow device, comprising a valve unit, as well as method of manufacturing the same. | |
Messenger et al. | Piezoresistive feedback control of a MEMS thermal actuator | |
US10215223B2 (en) | Non-contact bearing | |
TWI631290B (en) | Non-contact bearing manufacturing method | |
TWI636200B (en) | Non-contact bearing | |
Fan et al. | Parylene surface-micromachined membranes for sensor applications | |
Xu et al. | A MEMS multi-sensor chip for gas flow sensing | |
KR101743668B1 (en) | Micromachined convective accelerometer and a method for manufacturing the same | |
Lee et al. | Fabrication, characterization, and computational modeling of a piezoelectrically actuated microvalve for liquid flow control | |
Raventhiran et al. | Design and fabrication of a novel on-chip pressure sensor for microchannels | |
Souilah et al. | Fabrication process for PCBMEMS capacitive pressure sensors using the cu layer to define the gap | |
Peng et al. | CMOS compatible integration of three-dimensional microfluidic systems based on low-temperature transfer of SU-8 films | |
Sun et al. | Development of a miniature shear sensor for direct comparison of skin-friction drags | |
CN114572928A (en) | Semiconductor device and method for manufacturing semiconductor device | |
Pramanick et al. | MEMS based normally closed silicon microregulator for gas and water | |
JP2007162760A (en) | Microvalve | |
Groen et al. | Proportional control valves integrated in silicon nitride surface channel technology |