TWI629684B - Column decoder of memory device - Google Patents

Column decoder of memory device Download PDF

Info

Publication number
TWI629684B
TWI629684B TW106125407A TW106125407A TWI629684B TW I629684 B TWI629684 B TW I629684B TW 106125407 A TW106125407 A TW 106125407A TW 106125407 A TW106125407 A TW 106125407A TW I629684 B TWI629684 B TW I629684B
Authority
TW
Taiwan
Prior art keywords
gate
bit
address
sub
multiplexer
Prior art date
Application number
TW106125407A
Other languages
Chinese (zh)
Other versions
TW201911318A (en
Inventor
何文喬
Original Assignee
華邦電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 華邦電子股份有限公司 filed Critical 華邦電子股份有限公司
Priority to TW106125407A priority Critical patent/TWI629684B/en
Application granted granted Critical
Publication of TWI629684B publication Critical patent/TWI629684B/en
Publication of TW201911318A publication Critical patent/TW201911318A/en

Links

Abstract

一種記憶體裝置的行解碼器,包括第一選擇電路、第二選擇電路與解碼電路。第一選擇電路、第二選擇電路與記憶體裝置中的記憶體陣列相互串疊。解碼電路接收包括第一子位址與第二子位址的行位址。解碼電路基於第一子位址與第二子位址產生用以控制第一選擇電路與第二選擇電路的第一解碼資料與第二解碼資料。解碼電路中的第一解碼器將第一子位址解碼成第一解碼資料,且第一解碼資料響應於第二子位址中的第一預設位元的改變而被反轉。A row decoder of a memory device includes a first selection circuit, a second selection circuit, and a decoding circuit. The first selection circuit, the second selection circuit, and the memory array in the memory device are stacked one on another. The decoding circuit receives a row address including a first subaddress and a second subaddress. The decoding circuit generates first decoded data and second decoded data for controlling the first selection circuit and the second selection circuit based on the first sub-address and the second sub-address. A first decoder in the decoding circuit decodes the first sub-address into a first decoded material, and the first decoded data is inverted in response to a change in the first preset bit in the second sub-address.

Description

記憶體裝置的行解碼器Row decoder of memory device

本發明是有關於一種記憶體裝置的解碼技術,且特別是有關於一種記憶體裝置的行解碼器。The present invention relates to a decoding technique for a memory device, and more particularly to a row decoder for a memory device.

一般而言,記憶體裝置可透過行解碼器與列解碼器來選取記憶體陣列中的記憶胞,以對所選取的記憶胞進行讀取操作、驗證操作或是程式化操作。此外,在進行讀取操作、驗證操作或是程式化操作的期間,記憶體裝置中的控制邏輯電路會連續地累加記憶胞的行位址,以針對記憶體陣列中的預設區塊進行對應的操作。Generally, the memory device can select a memory cell in the memory array through a row decoder and a column decoder to perform a read operation, a verification operation, or a program operation on the selected memory cell. In addition, during a read operation, a verify operation, or a program operation, the control logic in the memory device continuously accumulates the row address of the memory cell to correspond to the preset block in the memory array. Operation.

現有的行解碼器可將行位址解碼成第一至第三解碼資料,以分別控制其內部的第一至第三選擇電路。此外,在處理連續累加之行位址的過程中,現有之行解碼器所解碼出的解碼資料往往會出現多次的同時轉態。舉例來說,就現有的行解碼器而言,當行位址從{000000}逐一累加至{111111}的過程中,第一至第三解碼資料同時發生轉態的次數為4,且第一至第三解碼資料中的兩解碼資料同時發生轉態的次數為12。然而,當解碼資料的狀態同時改變時,則代表第一至第三選擇電路中越多的開關同時被切換。因此,當解碼資料同時出現轉態的次數越多時,則將導致越多的電力切換損失,進而增加行解碼器的功率消耗,並降低行解碼器的解碼速度。更甚者,還可能會使解碼資料無法於約定時間內完成轉態,而導致行解碼器的失效,進而降低行解碼器的可靠度。The existing row decoder can decode the row address into the first to third decoded data to respectively control the first to third selection circuits therein. In addition, in the process of processing consecutive accumulated row addresses, the decoded data decoded by the existing row decoder tends to have multiple simultaneous transitions. For example, in the case of the existing row decoder, when the row address is accumulated from {000000} one by one to {111111}, the number of times the first to third decoded data are simultaneously transitioned is 4, and the first The number of simultaneous transitions of the two decoded data in the third decoded data is 12. However, when the state of the decoded material is simultaneously changed, it means that the more switches in the first to third selection circuits are simultaneously switched. Therefore, the more times the decoded data occurs at the same time, the more power switching loss will be caused, thereby increasing the power consumption of the row decoder and reducing the decoding speed of the row decoder. What's more, it may also make the decoded data unable to complete the transition within the agreed time, which will cause the row decoder to fail, which will reduce the reliability of the row decoder.

本發明提供一種記憶體裝置的行解碼器,其解碼電路中的第一解碼器可依據第二子位址中的第一預設位元將第一子位址解碼成第一解碼資料。藉此,將可降低行解碼器的功率消耗,並有助於增加行解碼器的解碼速度與可靠度。The present invention provides a row decoder of a memory device, wherein a first decoder in the decoding circuit can decode the first sub-address into the first decoded data according to the first preset bit in the second sub-address. Thereby, the power consumption of the row decoder can be reduced and the decoding speed and reliability of the row decoder can be increased.

本發明的記憶體裝置的行解碼器,包括第一選擇電路、第二選擇電路與解碼電路,且解碼電路包括第一解碼器。第一選擇電路、第二選擇電路與記憶體裝置中的記憶體陣列相互串疊。解碼電路電性連接第一選擇電路與第二選擇電路,並接收包括第一子位址與第二子位址的行位址。解碼電路基於第一子位址產生用以控制第一選擇電路的第一解碼資料,並基於第二子位址產生用以控制第二選擇電路的第二解碼資料。第一解碼器將第一子位址解碼成第一解碼資料,且第一解碼資料響應於第二子位址中的第一預設位元的改變而被反轉。The row decoder of the memory device of the present invention includes a first selection circuit, a second selection circuit and a decoding circuit, and the decoding circuit includes a first decoder. The first selection circuit, the second selection circuit, and the memory array in the memory device are stacked one on another. The decoding circuit is electrically connected to the first selection circuit and the second selection circuit, and receives a row address including the first sub-address and the second sub-address. The decoding circuit generates a first decoded data for controlling the first selection circuit based on the first sub-address, and generates second decoded data for controlling the second selection circuit based on the second sub-address. The first decoder decodes the first sub-address into the first decoded data, and the first decoded data is inverted in response to the change of the first preset bit in the second sub-address.

在本發明的一實施例中,上述的記憶體裝置的行解碼器更包括第三選擇電路。其中,第三選擇電路電性連接解碼電路且藉由第二選擇電路電性連接第一選擇電路。行位址更包括第三子位址,且第一預設位元為第二子位址的最低有效位元。解碼電路更基於第三子位址產生用以控制第三選擇電路的第三解碼資料。解碼電路更包括第二解碼器與第三解碼器。第二解碼器將第二子位址解碼成第二解碼資料。第三解碼器將第三子位址解碼成第三解碼資料。In an embodiment of the invention, the row decoder of the memory device further includes a third selection circuit. The third selection circuit is electrically connected to the decoding circuit and electrically connected to the first selection circuit by the second selection circuit. The row address further includes a third sub-address, and the first preset bit is the least significant bit of the second sub-address. The decoding circuit further generates third decoded data for controlling the third selection circuit based on the third sub-address. The decoding circuit further includes a second decoder and a third decoder. The second decoder decodes the second sub-address into the second decoded material. The third decoder decodes the third sub-address into a third decoded material.

基於上述,本發明之行解碼器中的解碼電路可接收包括第一子位址與第二子位址的行位址。此外,解碼電路中的第一解碼器可將第一子位址解碼成第一解碼資料,且第一解碼資料響應於第二子位址中的第一預設位元的改變而被反轉。藉此,將可降低行解碼器的功率消耗,並有助於增加行解碼器的解碼速度與可靠度。Based on the above, the decoding circuit in the row decoder of the present invention can receive the row address including the first subaddress and the second subaddress. Furthermore, the first decoder in the decoding circuit can decode the first sub-address into the first decoded data, and the first decoded data is inverted in response to the change of the first preset bit in the second sub-address. . Thereby, the power consumption of the row decoder can be reduced and the decoding speed and reliability of the row decoder can be increased.

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。The above described features and advantages of the invention will be apparent from the following description.

圖1為依據本發明之一實施例之記憶體裝置的示意圖。如圖1所示,記憶體裝置100包括記憶體陣列110與行解碼器120,且行解碼器120包括解碼電路130以及第一至第三選擇電路141~143。其中,第一至第三選擇電路141~143與記憶體陣列110相互串疊,並具有階層式結構(hierarchical structure)。此外,第一選擇電路141包括N 2個選擇器(例如,選擇器151~15N、161~16N),且所述N 2個選擇器中的每一者電性連接N條區域位元線(local bit line)。第二選擇電路142包括N個選擇器171~17N,且選擇器171~17N中的每一者透過N條全域位元線(global bit line)電性連接至第一選擇電路141。第三選擇電路143包括選擇器180。此外,選擇器180電性連接資料線(data line)DL1,並透過N條區域資料線(local data line)電性連接至第二選擇電路142。再者,第一至第三選擇電路141~143中的每一選擇器包括N個開關。其中N為正整數,可根據選定的解碼關係來選擇開關數量。 1 is a schematic diagram of a memory device in accordance with an embodiment of the present invention. As shown in FIG. 1, the memory device 100 includes a memory array 110 and a row decoder 120, and the row decoder 120 includes a decoding circuit 130 and first to third selection circuits 141 to 143. The first to third selection circuits 141 to 143 and the memory array 110 are stacked one on another and have a hierarchical structure. In addition, the first selection circuit 141 includes N 2 selectors (eg, selectors 151 15 15N, 16 16 16 N), and each of the N 2 selectors is electrically connected to N area bit lines ( Local bit line). The second selection circuit 142 includes N selectors 171~17N, and each of the selectors 171~17N is electrically connected to the first selection circuit 141 through N global bit lines. The third selection circuit 143 includes a selector 180. In addition, the selector 180 is electrically connected to the data line DL1 and electrically connected to the second selection circuit 142 through the N local data lines. Furthermore, each of the first to third selection circuits 141 to 143 includes N switches. Where N is a positive integer and the number of switches can be selected according to the selected decoding relationship.

解碼電路130電性連接第一至第三選擇電路141~143,並接收具有 位元的行位址A[3K-1:0],其中N=2 K,且K為正整數。解碼電路130將行位址A[3K-1:0]解碼成分別具有N位元的第一至第三解碼資料X[N-1:0]、Y[N-1:0]與Z[N-1:0],以分別控制第一至第三選擇電路141~143。舉例來說,第一選擇電路141中的每一選擇器受控於第一解碼資料X[N-1:0]。第二選擇電路142中的每一選擇器受控於第二解碼資料Y[N-1:0]。第三選擇電路143中的選擇器180受控於第三解碼資料Z[N-1:0]。 The decoding circuit 130 is electrically connected to the first to third selection circuits 141 to 143 and receives The row address of the bit is A[3K-1:0], where N=2 K and K is a positive integer. The decoding circuit 130 decodes the row address A[3K-1:0] into first to third decoded data X[N-1:0], Y[N-1:0], and Z[, respectively, having N bits. N-1:0] to control the first to third selection circuits 141 to 143, respectively. For example, each selector in the first selection circuit 141 is controlled by the first decoded material X[N-1:0]. Each of the second selection circuits 142 is controlled by the second decoded material Y[N-1:0]. The selector 180 in the third selection circuit 143 is controlled by the third decoded material Z[N-1:0].

在解碼電路130的控制下,第一至第三選擇電路141~143可從所連接的N 3條區域位元線中選取其一,並將所選取的區域位元線導通至資料線DL1。此外,記憶體裝置100可響應於選擇開關101的切換,將資料線DL1導通至感測放大器102或是電壓產生器103。藉此,透過選擇開關101的切換,所選取的區域位元線將可進一步地導通至感測放大器102或是電壓產生器103,進而致使記憶體裝置100可對記憶體陣列110進行一預設操作(例如:讀取操作、驗證操作或是程式化操作)。 Under the control of the decoding circuit 130, the first to third selection circuits 141 to 143 may select one of the connected N 3 area bit lines and turn on the selected area bit line to the data line DL1. In addition, the memory device 100 can conduct the data line DL1 to the sense amplifier 102 or the voltage generator 103 in response to the switching of the selection switch 101. Thereby, through the switching of the selection switch 101, the selected region bit line can be further turned on to the sense amplifier 102 or the voltage generator 103, thereby causing the memory device 100 to make a preset to the memory array 110. Operations (for example: read operations, verify operations, or stylized operations).

舉例來說,當所選取的區域位元線透過選擇開關101導通至電壓產生器103時,所選取的區域位元線將可維持在高電壓準位,進而致使記憶體裝置100可對記憶體陣列110進行程式化操作。另一方面,當所選取的區域位元線透過選擇開關101導通至感測放大器102時,感測放大器102可將來自所選取之區域位元線的電壓與參考電壓VR1進行比較,進而致使記憶體裝置100可對記憶體陣列110進行讀取操作或是驗證操作。For example, when the selected area bit line is turned on to the voltage generator 103 through the selection switch 101, the selected area bit line can be maintained at a high voltage level, thereby causing the memory device 100 to be compatible with the memory. The array 110 performs a programmatic operation. On the other hand, when the selected region bit line is turned on to the sense amplifier 102 through the selection switch 101, the sense amplifier 102 can compare the voltage from the selected bit line to the reference voltage VR1, thereby causing the memory. The body device 100 can perform a read operation or a verify operation on the memory array 110.

圖2為依據本發明之一實施例之行解碼器的部分示意圖,且為了說明方便起見,圖2實施例以K=2且N=4的狀態來說明行解碼器的操作。如圖2所示,解碼電路130包括第一解碼器211、第二解碼器212與第三解碼器213。第一選擇電路141中的每一選擇器(例如,選擇器151~154)包括4個開關221~224。第二選擇電路142中的每一選擇器(例如,選擇器171)包括4個開關231~234。第三選擇電路143中的選擇器180包括4個開關,其中圖2僅繪示出選擇器180中的開關241。2 is a partial schematic diagram of a row decoder in accordance with an embodiment of the present invention, and for convenience of explanation, the embodiment of FIG. 2 illustrates the operation of the row decoder in a state of K=2 and N=4. As shown in FIG. 2, the decoding circuit 130 includes a first decoder 211, a second decoder 212, and a third decoder 213. Each of the first selection circuits 141 (for example, the selectors 151 to 154) includes four switches 221 to 224. Each of the second selection circuits 142 (e.g., selector 171) includes four switches 231-234. The selector 180 in the third selection circuit 143 includes four switches, of which FIG. 2 only shows the switch 241 in the selector 180.

解碼電路130所接收的行位址A[5:0]包括第一子位址A[1:0]、第二子位址A[3:2]與第三子位址A[5:4]。此外,解碼電路130基於第一子位址A[1:0]產生用以控制第一選擇電路141的第一解碼資料X[3:0],並基於第二子位址A[3:2]產生用以控制第二選擇電路142的第二解碼資料Y[3:0],並基於第三子位址A[5:4]產生用以控制第三選擇電路143的第三解碼資料Z[3:0]。The row address A[5:0] received by the decoding circuit 130 includes a first sub-address A[1:0], a second sub-address A[3:2], and a third sub-address A[5:4 ]. Furthermore, the decoding circuit 130 generates a first decoded data X[3:0] for controlling the first selection circuit 141 based on the first sub-address A[1:0], and based on the second sub-address A[3:2 Generating a second decoded data Y[3:0] for controlling the second selection circuit 142, and generating a third decoded data Z for controlling the third selection circuit 143 based on the third sub-address A[5:4] [3:0].

具體而言,第一解碼器211更響應於第二子位址A[3:2]中的第一預設位元A2的改變,而反轉第一解碼資料X[3:0]。其中,第一預設位元A2為第二子位址A[3:2]的最低有效位元(Least Significant Bit)。第二解碼器212將第二子位址A[3:2]解碼成第二解碼資料Y[3:0]。第三解碼器213將第三子位址A[5:4]解碼成第三解碼資料Z[3:0]。Specifically, the first decoder 211 inverts the first decoded material X[3:0] in response to the change of the first preset bit A2 in the second sub-address A[3:2]. The first preset bit A2 is the least significant bit (Least Significant Bit) of the second sub-address A[3:2]. The second decoder 212 decodes the second sub-address A[3:2] into the second decoded material Y[3:0]. The third decoder 213 decodes the third sub-address A[5:4] into the third decoded material Z[3:0].

舉例來說,圖3為依據本發明之一實施例之解碼電路的真值表。如圖3所示,行位址A[5:0]的位元值從{000000}逐一累加至{111111}。由於第一解碼器211受控於第一預設位元A2,因此第一解碼器211可針對相同的第一子位址A[1:0]解碼出不同的第一解碼資料X[3:0]。舉例來說,在期間T31中,亦即當第一預設位元A2為{0},且第一子位址A[1:0]從{00}逐一累加至{11}的過程中,第一解碼器211所解碼出的第一解碼資料X[3:0]分別為{0001}、{0010}、{0100}與{1000}。在期間T41中,亦即當第一預設位元A2為{1},且第一子位址A[1:0]從{00}逐一累加至{11}的過程中,第一解碼器211所解碼出的第一解碼資料X[3:0]分別為{1000}、{0100}、{0010}與{0001}。For example, FIG. 3 is a truth table of a decoding circuit in accordance with an embodiment of the present invention. As shown in FIG. 3, the bit values of the row address A[5:0] are accumulated one by one from {000000} to {111111}. Since the first decoder 211 is controlled by the first preset bit A2, the first decoder 211 can decode different first decoded data X[3 for the same first sub-address A[1:0]: 0]. For example, in the period T31, that is, when the first preset bit A2 is {0}, and the first sub-address A[1:0] is accumulated from {00} one by one to {11}, The first decoded data X[3:0] decoded by the first decoder 211 are {0001}, {0010}, {0100}, and {1000}, respectively. In the period T41, that is, when the first preset bit A2 is {1}, and the first sub-address A[1:0] is accumulated from {00} one by one to {11}, the first decoder The first decoded data X[3:0] decoded by 211 are {1000}, {0100}, {0010}, and {0001}, respectively.

換言之,第一解碼資料X[3:0]可響應於第一預設位元A2之狀態的改變而被反轉。因此,相較於期間T31中的第一解碼資料X[3:0],於期間T41中的第一解碼器211相當於反轉了第一解碼資料X[3:0]的位元順序。以此類推,在期間T32~T38中,第一預設位元A2為{0},且第一解碼資料X[3:0]分別為{0001}、{0010}、{0100}與{1000}。在期間T42~T48中,第一預設位元A2為{1},且第一解碼器211反轉了第一解碼資料X[3:0],進而致使第一解碼資料X[3:0]分別為{1000}、{0100}、{0010}與{0001}。In other words, the first decoded material X[3:0] may be inverted in response to a change in the state of the first preset bit A2. Therefore, the first decoder 211 in the period T41 corresponds to the bit order in which the first decoded material X[3:0] is inverted, compared to the first decoded material X[3:0] in the period T31. By analogy, in the period T32~T38, the first preset bit A2 is {0}, and the first decoded data X[3:0] are {0001}, {0010}, {0100} and {1000 respectively. }. In the period T42~T48, the first preset bit A2 is {1}, and the first decoder 211 inverts the first decoded data X[3:0], thereby causing the first decoded data X[3:0 ] are {1000}, {0100}, {0010}, and {0001}, respectively.

值得注意的是,在行位址A[5:0]從{000000}逐一累加至{111111}的過程中,第一至第三解碼資料X[3:0]、Y[3:0]與Z[3:0]不會同時產生轉態,且第二與第三解碼資料Y[3:0]與Z[3:0]僅分別於轉態點P30~P33同時產生轉態。舉例來說,當行位址A[5:0]從{001111}轉變至{010000}的過程中,亦即在轉態點P31時,第二解碼資料Y[3:0]中之兩位元Y3與Y0的狀態產生改變,且第三解碼資料Z[3:0]中之兩位元Z1與Z0的狀態產生改變。此時,第二選擇電路142中的每一選擇器(例如,選擇器171)將響應於位元Y3與Y0的轉態,而同時切換其內部之兩開關234與231的狀態。此外,第三選擇電路143中的選擇器180也會同時切換其內部之兩開關的狀態。It is worth noting that in the process of row address A[5:0] being accumulated from {000000} one by one to {111111}, the first to third decoded data X[3:0], Y[3:0] and Z[3:0] does not generate the transition state at the same time, and the second and third decoded data Y[3:0] and Z[3:0] only generate the transition state at the transition point P30~P33, respectively. For example, when the row address A[5:0] transitions from {001111} to {010000}, that is, at the transition point P31, two of the second decoded data Y[3:0] The states of the elements Y3 and Y0 are changed, and the states of the two bits Z1 and Z0 in the third decoded material Z[3:0] are changed. At this time, each of the second selection circuits 142 (for example, the selector 171) will simultaneously switch the state of the two switches 234 and 231 in its interior in response to the transition of the bits Y3 and Y0. Further, the selector 180 in the third selection circuit 143 also switches the states of the two switches therein.

換言之,在行位址A[5:0]從{000000}逐一累加至{111111}的過程中,第一至第三解碼資料同時產生轉態的次數為0,且第一至第三解碼資料中的兩解碼資料同時產生轉態的次數為4。因此,相較於現有的行解碼器而言,圖2實施例中的行解碼器120可以避免第一至第三解碼資料同時出現轉態,並可降低第一至第三解碼資料中的兩解碼資料同時出現轉態的機率。如此一來,第一至第三選擇電路141~143中同時被切換狀態之開關的個數將可大幅地降低,進而可降低第一至第三選擇電路141~143的切換損失,從而有助於降低行解碼器120的功率消耗,並有助於增加行解碼器120的解碼速度。此外,還可避免行解碼器120的失效,進而有助於增加行解碼器120的可靠度。In other words, in the process of accumulating the row address A[5:0] from {000000} one by one to {111111}, the first to third decoded data simultaneously generate the number of transitions of 0, and the first to third decoded data The number of transitions in the two decoded data at the same time is 4. Therefore, the row decoder 120 in the embodiment of FIG. 2 can avoid the simultaneous transition of the first to third decoded data, and can reduce two of the first to third decoded data, compared to the existing row decoder. The probability of a transition is also present in the decoded data. As a result, the number of switches in the first to third selection circuits 141 to 143 that are simultaneously switched can be greatly reduced, thereby reducing the switching loss of the first to third selection circuits 141 to 143, thereby facilitating The power consumption of the row decoder 120 is reduced and helps to increase the decoding speed of the row decoder 120. In addition, the failure of the row decoder 120 can also be avoided, thereby helping to increase the reliability of the row decoder 120.

圖4為依據本發明之一實施例之第一解碼器的示意圖。如圖4所示,第一解碼器211包括第一與第二反相器411與412、第一至第四多工器421~424與第一至第四及閘431~434。其中,第一反相器411接收第一子位址A[1:0]中的第一位元A0。第一與第二多工器421與422分別接收第一位元A0與第一反相器411的輸出位元。第二反相器412接收第一子位址A[1:0]中的第二位元A1。第三與第四多工器423與424分別接收第二位元A1與第二反相器412的輸出位元。4 is a schematic diagram of a first decoder in accordance with an embodiment of the present invention. As shown in FIG. 4, the first decoder 211 includes first and second inverters 411 and 412, first to fourth multiplexers 421 to 424, and first to fourth NAND gates 431 to 434. The first inverter 411 receives the first bit A0 of the first sub-address A[1:0]. The first and second multiplexers 421 and 422 receive the output bits of the first bit A0 and the first inverter 411, respectively. The second inverter 412 receives the second bit A1 of the first sub-address A[1:0]. The third and fourth multiplexers 423 and 424 receive the output bits of the second bit A1 and the second inverter 412, respectively.

第一至第四多工器421~424分別受控於第一預設位元A2。藉此,第一與第二多工器421與422的輸出位元將互為反相,且第三與第四多工器423與424的輸出位元將互為反相。第一及閘431電性連接第一與第三多工器421與423的輸出端,並產生第一解碼資料X[3:0]中的位元X0。第二及閘432電性連接第二與第三多工器422與423的輸出端,並產生第一解碼資料X[3:0]中的位元X1。第三及閘433電性連接第一與第四多工器421與424的輸出端,並產生第一解碼資料X[3:0]中的位元X2。第四及閘434電性連接第二與第四多工器422與424的輸出端,並產生第一解碼資料X[3:0]中的位元X3。The first to fourth multiplexers 421 to 424 are respectively controlled by the first preset bit A2. Thereby, the output bits of the first and second multiplexers 421 and 422 will be mutually inverted, and the output bits of the third and fourth multiplexers 423 and 424 will be inverted from each other. The first AND gate 431 is electrically connected to the outputs of the first and third multiplexers 421 and 423, and generates a bit X0 in the first decoded data X[3:0]. The second AND gate 432 is electrically coupled to the outputs of the second and third multiplexers 422 and 423 and generates a bit X1 in the first decoded data X[3:0]. The third AND gate 433 is electrically connected to the outputs of the first and fourth multiplexers 421 and 424, and generates the bit X2 in the first decoded data X[3:0]. The fourth sum gate 434 is electrically coupled to the outputs of the second and fourth multiplexers 422 and 424 and generates a bit X3 in the first decoded data X[3:0].

圖5為依據本發明之一實施例之用以說明第一解碼器的真值表,且圖5之真值表中的B0與B1分別為第二與第四多工器422與424的輸出位元。請同時參照圖4與圖5,第一至第四多工器421~424穿插在第一子位址A[1:0]以及第一至第四及閘431~434之間。此外,第一至第四多工器421~424可響應於第一預設位元A2來調整其輸出位元,且第一至第四及閘431~434可響應於第一至第四多工器421~424的輸出位元來產生第一解碼資料X[3:0]。藉此,第一預設位元A2將相當於第一解碼器211的反轉資訊。舉例來說,當第一預設位元A2為{0},且第一子位址A[1:0]分別為{00}、{01}、{10}與{11}時,第一解碼資料X[3:0]將分別為{0001}、{0010}、{0100}與{1000}。另一方面,當第一預設位元A2為{1},且第一子位址A[1:0]分別為{00}、{01}、{10}與{11}時,第一解碼資料X[3:0]將分別為{1000}、{0100}、{0010}與{0001}。FIG. 5 is a diagram showing a truth table of the first decoder according to an embodiment of the present invention, and B0 and B1 in the truth table of FIG. 5 are outputs of the second and fourth multiplexers 422 and 424, respectively. Bit. Referring to FIG. 4 and FIG. 5 simultaneously, the first to fourth multiplexers 421 to 424 are interspersed between the first sub-address A[1:0] and the first to fourth and gates 431-434. In addition, the first to fourth multiplexers 421 424 424 can adjust their output bits in response to the first preset bit A2, and the first to fourth NAND gates 431 434 434 can respond to the first to fourth multiplexes The output bits of the tools 421~424 generate the first decoded data X[3:0]. Thereby, the first preset bit A2 will correspond to the inverted information of the first decoder 211. For example, when the first preset bit A2 is {0}, and the first sub-address A[1:0] is {00}, {01}, {10}, and {11}, respectively, the first The decoded data X[3:0] will be {0001}, {0010}, {0100} and {1000}, respectively. On the other hand, when the first preset bit A2 is {1}, and the first sub-address A[1:0] is {00}, {01}, {10}, and {11}, respectively, the first The decoded data X[3:0] will be {1000}, {0100}, {0010} and {0001}, respectively.

圖6為依據本發明之另一實施例之第一解碼器的示意圖。如圖6所示,第一解碼器211包括第一與第二反互斥或閘611與612、第一與第二反相器621與622以及第一至第四及閘631~634。第一反互斥或閘611接收第一子位址A[1:0]中的第一位元A0與第一預設位元A2。第二反互斥或閘612接收第一子位址A[1:0]中的第二位元A1與第一預設位元A2。6 is a schematic diagram of a first decoder in accordance with another embodiment of the present invention. As shown in FIG. 6, the first decoder 211 includes first and second anti-mutation gates 611 and 612, first and second inverters 621 and 622, and first to fourth gates 631 to 634. The first anti-mutation or gate 611 receives the first bit A0 and the first preset bit A2 of the first sub-address A[1:0]. The second anti-mutation or gate 612 receives the second bit A1 and the first preset bit A2 of the first sub-address A[1:0].

第一反相器621電性連接第一反互斥或閘611的輸出端。第二反相器622電性連接第二反互斥或閘612的輸出端。第一及閘631電性連接第一反互斥或閘611的輸出端與第二反互斥或閘612的輸出端。第二及閘632電性連接第二反互斥或閘612的輸出端與第一反相器621的輸出端。第三及閘633電性連接第一反互斥或閘611的輸出端與第二反相器622的輸出端。第四及閘634電性連接第一反相器621的輸出端與第二反相器622的輸出端。此外,第一至第四及閘631~634產生第一解碼資料X[3:0]。The first inverter 621 is electrically connected to the output of the first anti-mutation or gate 611. The second inverter 622 is electrically connected to the output of the second anti-mutation or gate 612. The first AND gate 631 is electrically connected to the output of the first anti-mutation gate 611 and the output of the second anti-mutation gate 612. The second AND gate 632 is electrically connected to the output end of the second anti-mutation gate 612 and the output end of the first inverter 621. The third sum gate 633 is electrically connected to the output end of the first anti-mutation gate 611 and the output end of the second inverter 622. The fourth sum gate 634 is electrically connected to the output end of the first inverter 621 and the output end of the second inverter 622. In addition, the first to fourth gates 631-634 generate the first decoded data X[3:0].

圖7為依據本發明之另一實施例之用以說明第一解碼器的真值表,且圖7之真值表中的C0與C1分別為第一與第二反互斥或閘611與612的輸出位元。請同時參照圖6與圖7,在第一預設位元A2的控制下,第一與第二反互斥或閘611與612可直接輸出第一子位址A[1:0]或是產生第一子位址A[1:0]的反相訊號。藉此,第一預設位元A2將相當於第一解碼器211的反轉資訊。例如,當第一預設位元A2為{0},且第一子位址A[1:0]分別為{00}、{01}、{10}與{11}時,第一解碼資料X[3:0]將分別為{0001}、{0010}、{0100}與{1000}。另一方面,當第一預設位元A2為{1},且第一子位址A[1:0]分別為{00}、{01}、{10}與{11}時,第一解碼資料X[3:0]將分別為{1000}、{0100}、{0010}與{0001}。FIG. 7 is a diagram showing a truth table of a first decoder according to another embodiment of the present invention, and C0 and C1 in the truth table of FIG. 7 are first and second exclusive mutex or gate 611, respectively. Output bit of 612. Referring to FIG. 6 and FIG. 7 simultaneously, under the control of the first preset bit A2, the first and second anti-mutation gates 611 and 612 can directly output the first sub-address A[1:0] or The inverted signal of the first sub-address A[1:0] is generated. Thereby, the first preset bit A2 will correspond to the inverted information of the first decoder 211. For example, when the first preset bit A2 is {0} and the first sub-address A[1:0] is {00}, {01}, {10}, and {11}, respectively, the first decoded data X[3:0] will be {0001}, {0010}, {0100}, and {1000}, respectively. On the other hand, when the first preset bit A2 is {1}, and the first sub-address A[1:0] is {00}, {01}, {10}, and {11}, respectively, the first The decoded data X[3:0] will be {1000}, {0100}, {0010} and {0001}, respectively.

圖8為依據本發明之另一實施例之行解碼器的部分示意圖。相較於圖2實施例,圖8之解碼電路130中的第二解碼器810不同於圖2中的第二解碼器212。具體而言,第二解碼器810更響應於第三子位址A[5:4]中的第二預設位元A4的改變,反轉第二解碼資料Y[3:0]。此外,第二預設位元A4為第三子位址A[5:4]的最低有效位元。FIG. 8 is a partial schematic diagram of a row decoder in accordance with another embodiment of the present invention. The second decoder 810 in the decoding circuit 130 of FIG. 8 is different from the second decoder 212 in FIG. 2 in comparison to the FIG. 2 embodiment. Specifically, the second decoder 810 inverts the second decoded material Y[3:0] in response to the change of the second preset bit A4 in the third sub-address A[5:4]. In addition, the second preset bit A4 is the least significant bit of the third sub-address A[5:4].

舉例來說,圖9為依據本發明之另一實施例之解碼電路的真值表。如圖9所示,行位址A[5:0]的位元值從{000000}逐一累加至{111111}。由於第二解碼器810受控於第二預設位元A4,因此第二解碼器810可針對相同的第二子位址A[3:2]解碼出不同的第二解碼資料Y[3:0]。舉例來說,在期間T91與T93中,亦即當第二預設位元A4為{0},且第二子位址A[3:2]分別為{00}、{01}、{10}與{11}時,第二解碼器810所解碼出的第二解碼資料Y[3:0]分別為{0001}、{0010}、{0100}與{1000}。另一方面,在期間T92與T94中,亦即當第二預設位元A4為{1},且第二子位址A[3:2]分別為{00}、{01}、{10}與{11}時,第二解碼器810所解碼出的第二解碼資料Y[3:0]分別為{1000}、{0100}、{0010}與{0001}。For example, Figure 9 is a truth table of a decoding circuit in accordance with another embodiment of the present invention. As shown in FIG. 9, the bit values of the row address A[5:0] are cumulatively added from {000000} to {111111}. Since the second decoder 810 is controlled by the second preset bit A4, the second decoder 810 can decode different second decoded data Y[3 for the same second sub-address A[3:2]: 0]. For example, in the periods T91 and T93, that is, when the second preset bit A4 is {0}, and the second sub-address A[3:2] is {00}, {01}, {10, respectively } and {11}, the second decoded data Y[3:0] decoded by the second decoder 810 are {0001}, {0010}, {0100}, and {1000}, respectively. On the other hand, in the periods T92 and T94, that is, when the second preset bit A4 is {1}, and the second sub-address A[3:2] is {00}, {01}, {10, respectively } and {11}, the second decoded data Y[3:0] decoded by the second decoder 810 are {1000}, {0100}, {0010}, and {0001}, respectively.

換言之,相較於期間T91與T93中的第二解碼資料Y[3:0],於期間T92與T94中的第二解碼器810相當於反轉了第二解碼資料Y[3:0]的位元順序。此外,與圖2實施例相似地,在期間T91~T94中,第一解碼器211可依據第一預設位元A2而決定是否反轉第一解碼資料X[3:0]。如此一來,在行位址A[5:0]從{000000}逐一累加至{111111}的過程中,亦即在期間T91~T94中,第一至第三解碼資料X[3:0]、Y[3:0]與Z[3:0]中的任意兩解碼資料皆不會同時產生轉態。In other words, compared to the second decoded material Y[3:0] in the periods T91 and T93, the second decoder 810 in the periods T92 and T94 corresponds to the second decoded data Y[3:0] inverted. Bit order. In addition, similar to the embodiment of FIG. 2, in the period T91~T94, the first decoder 211 can decide whether to invert the first decoded data X[3:0] according to the first preset bit A2. In this way, in the process of accumulating the row address A[5:0] from {000000} one by one to {111111}, that is, in the period T91~T94, the first to third decoded data X[3:0] Any two decoded data in Y[3:0] and Z[3:0] will not simultaneously produce a transition state.

如此一來,就圖8實施例而言,在行位址A[5:0]從{000000}逐一累加至{111111}的過程中,第一至第三解碼資料同時產生轉態的次數為0,且第一至第三解碼資料中的兩解碼資料同時產生轉態的次數也為0。換言之,當第一至第三解碼資料中的一解碼資料產生轉態時,其餘的兩解碼資料將維持不變。藉此,將可降低行解碼器120的功率消耗,並有助於增加行解碼器120的解碼速度與可靠度。至於圖8實施例中其餘元件的細部配置與操作已包含在上述各實施例中,故在此不予贅述。In this way, in the embodiment of FIG. 8, in the process of accumulating the row address A[5:0] from {000000} one by one to {111111}, the number of transitions of the first to third decoded data simultaneously is 0, and the number of times the two decoded data in the first to third decoded data simultaneously generate the transition state is also zero. In other words, when one of the first to third decoded data produces a transition, the remaining two decoded data will remain unchanged. Thereby, the power consumption of the row decoder 120 can be reduced and the decoding speed and reliability of the row decoder 120 can be increased. The detailed configuration and operation of the remaining components in the embodiment of FIG. 8 are included in the above embodiments, and thus will not be described herein.

圖10為依據本發明之一實施例之第二解碼器的示意圖。如圖10所示,第二解碼器810包括第一與第二反相器1011與1012、第一至第四多工器1021~1024以及第一至第四及閘1031~1034。其中,第一反相器1011接收第二子位址A[3:2]中的第一位元A2(亦即,最低有效位元)。第一與第二多工器1021與1022分別接收第一位元A2與第一反相器1011的輸出位元。第二反相器1012接收第二子位址A[3:2]中的第二位元A3。第三與第四多工器1023與1024分別接收第二位元A3與第二反相器1012的輸出位元。10 is a schematic diagram of a second decoder in accordance with an embodiment of the present invention. As shown in FIG. 10, the second decoder 810 includes first and second inverters 1011 and 1012, first to fourth multiplexers 1021 to 1024, and first to fourth gates 1031 to 1034. The first inverter 1011 receives the first bit A2 (ie, the least significant bit) in the second sub-address A[3:2]. The first and second multiplexers 1021 and 1022 receive the output bits of the first bit A2 and the first inverter 1011, respectively. The second inverter 1012 receives the second bit A3 of the second sub-address A[3:2]. The third and fourth multiplexers 1023 and 1024 receive the output bits of the second bit A3 and the second inverter 1012, respectively.

第一至第四多工器1021~1024分別受控於第二預設位元A4。藉此,第一與第二多工器1021與1022的輸出位元將互為反相,且第三與第四多工器1023與1024的輸出位元將互為反相。第一及閘1031電性連接第一與第三多工器1021與1023的輸出端。第二及閘1032電性連接第二與第三多工器1022與1023的輸出端。第三及閘1033電性連接第一與第四多工器1021與1024的輸出端。第四及閘1034電性連接第二與第四多工器1022與1024的輸出端。第一至第四及閘1031~1034產生第二解碼資料Y[3:0]。此外,圖10之第二解碼器的操作類似於圖4實施例中的第一解碼器,故在此不予贅述。The first to fourth multiplexers 1021 to 1024 are respectively controlled by the second preset bit A4. Thereby, the output bits of the first and second multiplexers 1021 and 1022 will be mutually inverted, and the output bits of the third and fourth multiplexers 1023 and 1024 will be inverted from each other. The first sum gate 1031 is electrically connected to the output ends of the first and third multiplexers 1021 and 1023. The second AND gate 1032 is electrically connected to the outputs of the second and third multiplexers 1022 and 1023. The third sum gate 1033 is electrically connected to the outputs of the first and fourth multiplexers 1021 and 1024. The fourth sum gate 1034 is electrically connected to the outputs of the second and fourth multiplexers 1022 and 1024. The first to fourth gates 1031 to 1034 generate second decoded data Y[3:0]. In addition, the operation of the second decoder of FIG. 10 is similar to the first decoder in the embodiment of FIG. 4, and thus will not be described herein.

圖11為依據本發明之另一實施例之第二解碼器的示意圖。如圖11所示,第二解碼器810包括第一與第二反互斥或閘1111與1112、第一與第二反相器1121與1122以及第一至第四及閘1131~1134。第一反互斥或閘1111接收第二子位址A[3:2]中的第一位元A2(亦即,最低有效位元)與第二預設位元A4。第二反互斥或閘1112接收第二子位址A[3:2]中的第二位元A3與第二預設位元A4。第一反相器1121電性連接第一反互斥或閘1111的輸出端。第二反相器1122電性連接第二反互斥或閘1112的輸出端。11 is a schematic diagram of a second decoder in accordance with another embodiment of the present invention. As shown in FIG. 11, the second decoder 810 includes first and second anti-mutation gates 1111 and 1112, first and second inverters 1121 and 1122, and first to fourth gates 1131 to 1134. The first anti-mutual repulsion gate 1111 receives the first bit A2 (ie, the least significant bit) of the second sub-address A[3:2] and the second preset bit A4. The second anti-mutation or gate 1112 receives the second bit A3 and the second preset bit A4 of the second sub-address A[3:2]. The first inverter 1121 is electrically connected to the output end of the first anti-mutation gate 1111. The second inverter 1122 is electrically connected to the output of the second anti-mutation or gate 1112.

第一及閘1131電性連接第一反互斥或閘1111的輸出端與第二反互斥或閘1112的輸出端。第二及閘1132電性連接第二反互斥或閘1112的輸出端與第一反相器1121的輸出端。第三及閘1133電性連接第一反互斥或閘1111的輸出端與第二反相器1122的輸出端。第四及閘1134電性連接第一反相器1121的輸出端與第二反相器1122的輸出端。第一至第四及閘1131~1134產生第二解碼資料Y[3:0]。此外,圖11之第二解碼器的操作類似於圖6實施例中的第一解碼器,故在此不予贅述。The first AND gate 1131 is electrically connected to the output end of the first anti-mutation gate 1111 and the output end of the second anti-mutation gate 1112. The second AND gate 1132 is electrically connected to the output end of the second anti-mutation gate 1112 and the output end of the first inverter 1121. The third sum gate 1133 is electrically connected to the output end of the first anti-mutation gate 1111 and the output end of the second inverter 1122. The fourth sum gate 1134 is electrically connected to the output end of the first inverter 1121 and the output end of the second inverter 1122. The first to fourth gates 1131 to 1134 generate second decoded data Y[3:0]. In addition, the operation of the second decoder of FIG. 11 is similar to the first decoder in the embodiment of FIG. 6, and therefore will not be described herein.

綜上所述,本發明之行解碼器中的解碼電路可接收包括M個子位址的行位址,且解碼電路中的第i-1解碼器所產生的第i-1解碼資料除了是基於第i-1子位址,更可響應於第i子位址中的一預設位元(例如最低有效位元)的改變被反轉。亦即,響應於第i子位址中的預設位元的改變,解碼電路中的第i-1解碼器輸出被反轉後的第i-1解碼資料。其中,i為大於1且小於等於M的正整數。藉此,將可降低行解碼器的功率消耗,並有助於增加行解碼器的解碼速度與可靠度。In summary, the decoding circuit in the row decoder of the present invention can receive a row address including M sub-addresses, and the i-1th decoded data generated by the i-1th decoder in the decoding circuit is based on The i-1th subaddress is further inverted in response to a change in a preset bit (e.g., least significant bit) in the i th subaddress. That is, in response to the change of the preset bit in the i-th sub-address, the i-1th decoder in the decoding circuit outputs the inverted i-1th decoded material. Where i is a positive integer greater than 1 and less than or equal to M. Thereby, the power consumption of the row decoder can be reduced and the decoding speed and reliability of the row decoder can be increased.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and any one of ordinary skill in the art can make some changes and refinements without departing from the spirit and scope of the present invention. The scope of the invention is defined by the scope of the appended claims.

100‧‧‧記憶體裝置100‧‧‧ memory device

110‧‧‧記憶體陣列110‧‧‧Memory array

120‧‧‧行解碼器120‧‧‧ line decoder

130‧‧‧解碼電路130‧‧‧Decoding circuit

141~143‧‧‧第一至第三選擇電路141~143‧‧‧first to third selection circuits

151~15N、161~16N、171~17N、180‧‧‧選擇器151~15N, 161~16N, 171~17N, 180‧‧‧ selector

101‧‧‧選擇開關101‧‧‧Selection switch

102‧‧‧感測放大器102‧‧‧Sense Amplifier

103‧‧‧電壓產生器103‧‧‧Voltage generator

DL1‧‧‧資料線DL1‧‧‧ data line

VR1‧‧‧參考電壓VR1‧‧‧ reference voltage

A[3K-1:0]、A[5:0]‧‧‧行位址A[3K-1:0], A[5:0]‧‧‧ addresses

X[N-1:0]、X[3:0]‧‧‧第一解碼資料X[N-1:0], X[3:0]‧‧‧ first decoding data

Y[N-1:0]、Y[3:0]‧‧‧第二解碼資料Y[N-1:0], Y[3:0]‧‧‧ second decoding data

Z[N-1:0]、Z[3:0]‧‧‧第三解碼資料Z[N-1:0], Z[3:0]‧‧‧ third decoding data

211‧‧‧第一解碼器211‧‧‧First decoder

212、810‧‧‧第二解碼器212, 810‧‧‧ second decoder

213‧‧‧第三解碼器213‧‧‧ third decoder

221~224、231~234、241‧‧‧開關221~224, 231~234, 241‧‧ ‧ switch

A[1:0]‧‧‧第一子位址A[1:0]‧‧‧ first subaddress

A[3:2]‧‧‧第二子位址A[3:2]‧‧‧ second sub-address

A[5:4]‧‧‧第三子位址A[5:4]‧‧‧ third sub-address

X0~X3、Y0~Y3、Z0~Z3、A0~A5‧‧‧位元X0~X3, Y0~Y3, Z0~Z3, A0~A5‧‧‧ bits

T31~T38、T41~T48、T91~T94‧‧‧期間During T31~T38, T41~T48, T91~T94‧‧

P30~P33‧‧‧轉態點P30~P33‧‧‧Transition point

411、621、1011、1121‧‧‧第一反相器411, 621, 1011, 1121‧‧‧ first inverter

412、622、1012、1122‧‧‧第二反相器412, 622, 1012, 1122‧‧‧ second inverter

421、1021‧‧‧第一多工器421, 1021‧‧‧ first multiplexer

422、1022‧‧‧第二多工器422, 1022‧‧‧ second multiplexer

423、1023‧‧‧第三多工器423, 1023‧‧‧ third multiplexer

424、1024‧‧‧第四多工器424, 1024‧‧‧ fourth multiplexer

431、631、1031、1131‧‧‧第一及閘431, 631, 1031, 1131‧‧‧ first gate

432、632、1032、1132‧‧‧第二及閘432, 632, 1032, 1132‧‧‧ second gate

433、633、1033、1133‧‧‧第三及閘433, 633, 1033, 1133‧‧‧ third gate

434、634、1034、1134‧‧‧第四及閘434, 634, 1034, 1134‧‧‧ fourth and gate

B0‧‧‧第二多工器的輸出位元B0‧‧‧ output multiplexer of the second multiplexer

B1‧‧‧第四多工器的輸出位元Output bit of B1‧‧‧ fourth multiplexer

611、1111‧‧‧第一反互斥或閘611, 1111‧‧‧ first anti-mutation or gate

612、1112‧‧‧第二反互斥或閘612, 1112‧‧‧ second anti-mutation or gate

C0‧‧‧第一反互斥或閘的輸出位元 C0‧‧‧ output bin of the first anti-mutation or gate

C1‧‧‧第二反互斥或閘的輸出位元 C1‧‧‧2nd anti-mutual or gate output bit

圖1為依據本發明之一實施例之記憶體裝置的示意圖。 圖2為依據本發明之一實施例之行解碼器的部分示意圖。 圖3為依據本發明之一實施例之解碼電路的真值表。 圖4為依據本發明之一實施例之第一解碼器的示意圖。 圖5為依據本發明之一實施例之用以說明第一解碼器的真值表。 圖6為依據本發明之另一實施例之第一解碼器的示意圖。 圖7為依據本發明之另一實施例之用以說明第一解碼器的真值表。 圖8為依據本發明之另一實施例之行解碼器的部分示意圖。 圖9為依據本發明之另一實施例之解碼電路的真值表。 圖10為依據本發明之一實施例之第二解碼器的示意圖。 圖11為依據本發明之另一實施例之第二解碼器的示意圖。1 is a schematic diagram of a memory device in accordance with an embodiment of the present invention. 2 is a partial schematic diagram of a row decoder in accordance with an embodiment of the present invention. 3 is a truth table of a decoding circuit in accordance with an embodiment of the present invention. 4 is a schematic diagram of a first decoder in accordance with an embodiment of the present invention. FIG. 5 is a table of truth values for illustrating a first decoder in accordance with an embodiment of the present invention. 6 is a schematic diagram of a first decoder in accordance with another embodiment of the present invention. FIG. 7 is a diagram showing a truth table of a first decoder in accordance with another embodiment of the present invention. FIG. 8 is a partial schematic diagram of a row decoder in accordance with another embodiment of the present invention. 9 is a truth table of a decoding circuit in accordance with another embodiment of the present invention. 10 is a schematic diagram of a second decoder in accordance with an embodiment of the present invention. 11 is a schematic diagram of a second decoder in accordance with another embodiment of the present invention.

Claims (11)

一種記憶體裝置的行解碼器,包括:一第一選擇電路與一第二選擇電路,與該記憶體裝置中的一記憶體陣列相互串疊;以及一解碼電路,電性連接該第一選擇電路與該第二選擇電路,並接收包括一第一子位址與第二子位址的一行位址,該解碼電路基於該第一子位址產生用以控制該第一選擇電路的一第一解碼資料,並基於該第二子位址產生用以控制該第二選擇電路的一第二解碼資料,且該解碼電路包括:一第一解碼器,將該第一子位址解碼成該第一解碼資料,且該第一解碼資料響應於該第二子位址中的一第一預設位元的改變而被反轉。 A row decoder of a memory device, comprising: a first selection circuit and a second selection circuit, and a memory array in the memory device are stacked in series; and a decoding circuit electrically connecting the first selection a circuit and the second selection circuit, and receiving a row address including a first sub-address and a second sub-address, the decoding circuit generating a first one for controlling the first selection circuit based on the first sub-address Decoding data, and generating a second decoded data for controlling the second selection circuit based on the second sub-address, and the decoding circuit comprises: a first decoder, decoding the first sub-address into the First decoding data, and the first decoded data is inverted in response to a change of a first preset bit in the second sub-address. 如申請專利範圍第1項所述的記憶體裝置的行解碼器,其中該第一預設位元為該第二子位址的最低有效位元。 The row decoder of the memory device of claim 1, wherein the first preset bit is the least significant bit of the second sub-address. 如申請專利範圍第2項所述的記憶體裝置的行解碼器,其中該第一解碼器包括:一第一反相器,接收該第一子位址中的一第一位元;一第二反相器,接收該第一子位址中的一第二位元;一第一多工器與一第二多工器,分別接收該第一位元與該第一反相器的輸出位元,且該第一多工器與該第二多工器分別受控於該第一預設位元,以致使該第一多工器與該第二多工器的輸出位元互為反相; 一第三多工器與一第四多工器,分別接收該第二位元與該第二反相器的輸出位元,且該第三多工器與該第四多工器分別受控於該第一預設位元,以致使該第三多工器與該第四多工器的輸出位元互為反相;一第一及閘,電性連接該第一多工器與該第三多工器的輸出端;一第二及閘,電性連接該第二多工器與該第三多工器的輸出端;一第三及閘,電性連接該第一多工器與該第四多工器的輸出端;以及一第四及閘,電性連接該第二多工器與該第四多工器的輸出端,且該第一及閘至該第四及閘產生該第一解碼資料。 The row decoder of the memory device of claim 2, wherein the first decoder comprises: a first inverter, receiving a first bit in the first sub-address; a second inverter receiving a second bit in the first sub-address; a first multiplexer and a second multiplexer respectively receiving the output of the first bit and the first inverter a bit, and the first multiplexer and the second multiplexer are respectively controlled by the first preset bit, so that the first multiplexer and the output bit of the second multiplexer are mutually Inverted a third multiplexer and a fourth multiplexer respectively receiving the second bit and the output bit of the second inverter, and the third multiplexer and the fourth multiplexer are respectively controlled In the first preset bit, so that the third multiplexer and the output bit of the fourth multiplexer are mutually inverted; a first NAND gate is electrically connected to the first multiplexer and the An output end of the third multiplexer; a second damper electrically connected to the output end of the second multiplexer and the third multiplexer; and a third damper electrically connected to the first multiplexer And an output end of the fourth multiplexer; and a fourth damper electrically connected to the output ends of the second multiplexer and the fourth multiplexer, and the first damper to the fourth damper The first decoded data is generated. 如申請專利範圍第2項所述的記憶體裝置的行解碼器,其中該第一解碼器包括:一第一反互斥或閘,接收該第一子位址中的一第一位元與該第一預設位元;一第二反互斥或閘,接收該第一子位址中的一第二位元與該第一預設位元;一第一反相器,電性連接該第一反互斥或閘的輸出端;一第二反相器,電性連接該第二反互斥或閘的輸出端;一第一及閘,電性連接該第一反互斥或閘的輸出端與該第二反互斥或閘的輸出端; 一第二及閘,電性連接該第二反互斥或閘的輸出端與該第一反相器的輸出端;一第三及閘,電性連接該第一反互斥或閘的輸出端與該第二反相器的輸出端;以及一第四及閘,電性連接該第一反相器的輸出端與該第二反相器的輸出端,且該第一及閘至第四及閘產生該第一解碼資料。 The row decoder of the memory device of claim 2, wherein the first decoder comprises: a first anti-mutation or gate, receiving a first bit in the first sub-address and The first preset bit; a second anti-mutation or gate, receiving a second bit in the first sub-address and the first preset bit; a first inverter, electrically connected An output of the first anti-mutation or gate; a second inverter electrically connected to the output of the second anti-mutation or gate; a first gate, electrically connected to the first anti-mutation or An output end of the gate and an output of the second anti-mutation or gate; a second gate is electrically connected to the output end of the second anti-mutation gate and the output end of the first inverter; a third gate is electrically connected to the output of the first anti-mutation or gate And an output terminal of the second inverter; and a fourth gate, electrically connecting the output end of the first inverter and the output end of the second inverter, and the first gate to the first The fourth gate generates the first decoded data. 如申請專利範圍第2項所述的記憶體裝置的行解碼器,更包括一第三選擇電路,電性連接該解碼電路且藉由該第二選擇電路電性連接該第一選擇電路,其中該行位址更包括一第三子位址,該解碼電路更基於該第三子位址產生用以控制該第三選擇電路的一第三解碼資料,該解碼電路更包括:一第二解碼器,將該第二子位址解碼成該第二解碼資料;以及一第三解碼器,將該第三子位址解碼成該第三解碼資料。 The row decoder of the memory device of claim 2, further comprising a third selection circuit electrically connected to the decoding circuit and electrically connected to the first selection circuit by the second selection circuit, wherein The row address further includes a third sub-address, and the decoding circuit further generates a third decoded data for controlling the third selection circuit based on the third sub-address, the decoding circuit further comprising: a second decoding Decoding the second sub-address into the second decoded data; and a third decoder decoding the third sub-address into the third decoded data. 如申請專利範圍第5項所述的記憶體裝置的行解碼器,其中該行位址具有(3×K)位元,該第一選擇電路中的N2個選擇器分別受控於該第一解碼資料,該第二選擇電路中的N個選擇器分別受控於該第二解碼資料,該第三選擇電路中的一選擇器受控於該第三解碼資料,且該第一選擇電路中的所述N2個選擇器、該第二選擇電路中的所述N個選擇器以及該第三選擇電路中的所述選擇器分別包括N個開關,其中N=2K,且K為正整數。 The row decoder of the memory device according to claim 5, wherein the row address has (3×K) bits, and the N 2 selectors in the first selection circuit are respectively controlled by the first a decoding data, wherein the N selectors in the second selection circuit are respectively controlled by the second decoding data, a selector of the third selection circuit is controlled by the third decoding data, and the first selection circuit The N 2 selectors, the N selectors of the second selection circuit, and the selectors of the third selection circuit respectively include N switches, where N=2 K and K is A positive integer. 如申請專利範圍第6項所述的記憶體裝置的行解碼器,其中該第一選擇電路中的所述N2個選擇器分別電性連接該記憶體陣列中的N條區域位元線,該第三選擇電路中的所述選擇器透過一資料線電性連接至該記憶體裝置中的一選擇開關,且該記憶體裝置響應於該選擇開關的切換將該資料線導通至一感測放大器或是一電壓產生器。 The row decoder of the memory device of claim 6, wherein the N 2 selectors in the first selection circuit are electrically connected to the N area bit lines in the memory array, respectively. The selector in the third selection circuit is electrically connected to a selection switch in the memory device through a data line, and the memory device turns on the data line to a sensing in response to the switching of the selection switch. The amplifier is either a voltage generator. 如申請專利範圍第5項所述的記憶體裝置的行解碼器,其中該第二解碼器將該第二子位址解碼成該第二解碼資料,且該第二解碼資料響應於依據該第三子位址中的一第二預設位元的改變而被反轉。 The row decoder of the memory device of claim 5, wherein the second decoder decodes the second sub-address into the second decoded data, and the second decoded data is responsive to the The change of a second preset bit in the three subaddresses is reversed. 如申請專利範圍第8項所述的記憶體裝置的行解碼器,其中該第二預設位元為該第三子位址的最低有效位元。 The row decoder of the memory device of claim 8, wherein the second preset bit is the least significant bit of the third subaddress. 如申請專利範圍第8項所述的記憶體裝置的行解碼器,其中該第二解碼器包括:一第一反相器,接收該第二子位址中的一第一位元;一第二反相器,接收該第二子位址中的一第二位元;一第一與第二多工器,分別接收該第一位元與該第一反相器的輸出位元,且該第一與第二多工器分別受控於該第二預設位元,以致使該第一與第二多工器的輸出位元互為反相;一第三與第四多工器,分別接收該第二位元與該第二反相器的輸出位元,且該第三與第四多工器分別受控於該第二預設位元,以致使該第三與第四多工器的輸出位元互為反相; 一第一及閘,電性連接該第一與第三多工器的輸出端;一第二及閘,電性連接該第二與第三多工器的輸出端;一第三及閘,電性連接該第一與第四多工器的輸出端;以及一第四及閘,電性連接該第二與第四多工器的輸出端,且該第一至第四及閘產生該第二解碼資料。 The row decoder of the memory device of claim 8, wherein the second decoder comprises: a first inverter, receiving a first bit in the second sub-address; a second inverter receiving a second bit of the second sub-address; a first and a second multiplexer respectively receiving the first bit and an output bit of the first inverter, and The first and second multiplexers are respectively controlled by the second preset bit, so that the output bits of the first and second multiplexers are mutually inverted; a third and fourth multiplexer Receiving the second bit and the output bit of the second inverter, respectively, and the third and fourth multiplexers are respectively controlled by the second preset bit to cause the third and fourth The output bits of the multiplexer are inverted with each other; a first gate is electrically connected to the output ends of the first and third multiplexers; a second gate is electrically connected to the output ends of the second and third multiplexers; and a third gate is connected Electrically connecting the output ends of the first and fourth multiplexers; and a fourth damper electrically connecting the outputs of the second and fourth multiplexers, and the first to fourth dampers generate the Second decoded data. 如申請專利範圍第8項所述的記憶體裝置的行解碼器,其中該第二解碼器包括:一第一反互斥或閘,接收該第二子位址中的一第一位元與該第二預設位元;一第二反互斥或閘,接收該第二子位址中的一第二位元與該第二預設位元;一第一反相器,電性連接該第一反互斥或閘的輸出端;一第二反相器,電性連接該第二反互斥或閘的輸出端;一第一及閘,電性連接該第一反互斥或閘的輸出端與該第二反互斥或閘的輸出端;一第二及閘,電性連接該第二反互斥或閘的輸出端與該第一反相器的輸出端;一第三及閘,電性連接該第一反互斥或閘的輸出端與該第二反相器的輸出端;以及一第四及閘,電性連接該第一反相器的輸出端與該第二反相器的輸出端,且該第一至第四及閘產生該第二解碼資料。 The row decoder of the memory device of claim 8, wherein the second decoder comprises: a first anti-mutation or gate, receiving a first bit in the second sub-address and The second preset bit; a second anti-mutation or gate, receiving a second bit in the second sub-address and the second preset bit; a first inverter, electrically connected An output of the first anti-mutation or gate; a second inverter electrically connected to the output of the second anti-mutation or gate; a first gate, electrically connected to the first anti-mutation or An output end of the gate and an output end of the second anti-mutation or gate; a second AND gate electrically connected to the output end of the second anti-mutation or gate and the output end of the first inverter; a third gate, electrically connecting the output end of the first anti-mutation or gate and the output end of the second inverter; and a fourth gate, electrically connecting the output end of the first inverter and the An output of the second inverter, and the first to fourth gates generate the second decoded data.
TW106125407A 2017-07-28 2017-07-28 Column decoder of memory device TWI629684B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW106125407A TWI629684B (en) 2017-07-28 2017-07-28 Column decoder of memory device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW106125407A TWI629684B (en) 2017-07-28 2017-07-28 Column decoder of memory device

Publications (2)

Publication Number Publication Date
TWI629684B true TWI629684B (en) 2018-07-11
TW201911318A TW201911318A (en) 2019-03-16

Family

ID=63640411

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106125407A TWI629684B (en) 2017-07-28 2017-07-28 Column decoder of memory device

Country Status (1)

Country Link
TW (1) TWI629684B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010028598A1 (en) * 2000-02-29 2001-10-11 Daniele Balluchi Column decoder circuit for page reading of a semiconductor memory
US20010038363A1 (en) * 1998-05-08 2001-11-08 Campbell John G. Row and/or column decoder optimization method and apparatus
TW201435885A (en) * 2012-10-16 2014-09-16 Mosaid Technologies Inc Split block decoder for a nonvolatile memory device
US20160012894A1 (en) * 2014-07-08 2016-01-14 Ememory Technology Inc. Non-volatile memory and column decoder thereof
US20160099033A1 (en) * 2014-10-06 2016-04-07 Stmicroelectronics International N.V. Column decoder circuitry for a non-volatile memory

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010038363A1 (en) * 1998-05-08 2001-11-08 Campbell John G. Row and/or column decoder optimization method and apparatus
US20010028598A1 (en) * 2000-02-29 2001-10-11 Daniele Balluchi Column decoder circuit for page reading of a semiconductor memory
TW201435885A (en) * 2012-10-16 2014-09-16 Mosaid Technologies Inc Split block decoder for a nonvolatile memory device
US20160012894A1 (en) * 2014-07-08 2016-01-14 Ememory Technology Inc. Non-volatile memory and column decoder thereof
US20160099033A1 (en) * 2014-10-06 2016-04-07 Stmicroelectronics International N.V. Column decoder circuitry for a non-volatile memory

Also Published As

Publication number Publication date
TW201911318A (en) 2019-03-16

Similar Documents

Publication Publication Date Title
JP5100677B2 (en) Random number generator and random number generation method
KR20130048394A (en) Semiconductor memory device and memory system including the same
CN112712839A (en) Read operation circuit, semiconductor memory and read operation method
JP4489454B2 (en) Semiconductor integrated circuit
KR100518604B1 (en) Data inversion circuit of semiconductor device for performing inversion operation based on the interval for reading data and data inversion method using the same
TWI629684B (en) Column decoder of memory device
KR20110031522A (en) Memory device and memory system having the same and method of controlling the same
KR100558492B1 (en) Semiconductor memory device and test pattern data generating method thereof
US20070288810A1 (en) Semiconductor memory, and testing method thereof
CN112712840A (en) Read operation circuit, semiconductor memory and read operation method
CN109308928B (en) Row decoder for memory device
CN211125038U (en) Write operation circuit and semiconductor memory
US20130111101A1 (en) Semiconductor memory device and operating method thereof
CN210667807U (en) Read operation circuit and semiconductor memory
JP3459330B2 (en) High-speed barrel shifter
KR101404844B1 (en) A dual-port memory and a method thereof
CN112712836A (en) Write operation circuit, semiconductor memory and write operation method
EP3926630B1 (en) Read operation circuit, semiconductor memory and read operation method
JPH07226079A (en) Semiconductor memory
JP3910650B2 (en) Semiconductor memory device
KR101057195B1 (en) Matt Compression Circuit and Semiconductor Memory Device Using the Same
US9184766B1 (en) Decoding circuit
JPH11134863A (en) Semiconductor memory and data writing method
JP5071655B2 (en) Control circuit
JP3052937B2 (en) Semiconductor device