TWI629512B - Birefringent body, beam combination device and method for manufacturing birefringent body - Google Patents
Birefringent body, beam combination device and method for manufacturing birefringent body Download PDFInfo
- Publication number
- TWI629512B TWI629512B TW102105532A TW102105532A TWI629512B TW I629512 B TWI629512 B TW I629512B TW 102105532 A TW102105532 A TW 102105532A TW 102105532 A TW102105532 A TW 102105532A TW I629512 B TWI629512 B TW I629512B
- Authority
- TW
- Taiwan
- Prior art keywords
- birefringent
- optically anisotropic
- matrix
- patent application
- birefringent body
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/30—Polarising elements
- G02B5/3008—Polarising elements comprising dielectric particles, e.g. birefringent crystals embedded in a matrix
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B30/00—Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
- G02B30/20—Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
- G02B30/22—Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type
- G02B30/25—Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type using polarisation techniques
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/18—Diffraction gratings
- G02B5/1809—Diffraction gratings with pitch less than or comparable to the wavelength
Landscapes
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Polarising Elements (AREA)
Abstract
本發明涉及一種雙折射體,一種製造雙折射體的方法及一種產生複數像素PK用的光學光束組合裝置BC。
本發明尤其是要提出一種能夠以較低成本製造及可供大面積應用的雙折射體。本發明提出的光學光束組合裝置BC要能夠產生3D顯示場景用的複數像素PK,而且即使是應用於大型顯示器,也能夠達到足夠的尺寸及足夠的均勻性。
為達到上述目的,本發明提出的雙折射體含有光學各向異性的雙折射材料的成分,這些成分以在空間中相同定向的方式埋在一種光學透明基質中,本發明提出的方法是將一種基質基本材料與光學各向異性的雙折射材料混合,然後使光學各向異性材料在混合物中空間相同定向,並使基質基本材料受空間相同定向的成分的影響而固化,同時本發明提出的光學光束組合裝置BC的雙折射平板含有本發明的雙折射體SP。The invention relates to a birefringent body, a method for manufacturing the birefringent body, and an optical beam combining device BC for generating a plurality of pixels PK.
In particular, the present invention proposes a birefringent body that can be manufactured at a lower cost and can be applied to a large area. The optical beam combination device BC proposed by the present invention needs to be able to generate a plurality of pixels PK for 3D display scenes, and even if it is applied to a large display, it can achieve sufficient size and sufficient uniformity.
To achieve the above object, the birefringent body proposed by the present invention contains components of an optically anisotropic birefringent material, which are buried in an optically transparent matrix in the same orientation in space. The method proposed by the present invention is to The matrix base material is mixed with the optically anisotropic birefringent material, and then the optically anisotropic material is spatially oriented in the mixture, and the matrix base material is cured by the influence of the components in the same spatial orientation, and the optical The birefringent plate of the beam combining device BC includes the birefringent body SP of the present invention.
Description
本發明涉及一種雙折射體,一種製造雙折射體的方法及一種產生複數像素用的光學光束組合裝置,其中光束組合裝置包括一個帶有像素配置的光調制裝置、一個光學延遲元件、一個雙折射平面板、以及一個偏振元件。
雙折射是光學各向異性材料的一個特性。雙折射造成的效應是,當光線垂直入射到雙折射材料,所謂的規則光束在穿過雙折射材料的過程中不會改變方向。但是當光線垂直入射到雙折射材料,且該雙折射材料的光學軸與入射光線既非平行亦非垂直時,則非規則光束的pointing向量會發生方向改變。規則光束及非規則光束的區別在於其偏振方向,也就是其偏振狀態,也就是說二者區別在於電場的振動。這個特性可以被應用在各種不同的光學應用。例如可以應用於3D顯示器的光學元件,所謂3D顯示器是指以三度空間顯示場景的顯示器。
The invention relates to a birefringent body, a method for manufacturing the birefringent body, and an optical beam combining device for generating a plurality of pixels. The beam combining device includes a light modulation device with a pixel configuration, an optical delay element, and a birefringence. A flat panel, and a polarizing element.
Birefringence is a characteristic of optically anisotropic materials. The effect of birefringence is that when light is incident perpendicularly to the birefringent material, the so-called regular beam does not change direction during the process of passing through the birefringent material. However, when the light is incident perpendicularly to the birefringent material, and the optical axis of the birefringent material is neither parallel nor perpendicular to the incident light, the direction of the pointing vector of the irregular beam will change. The difference between regular and irregular beams lies in their polarization direction, that is, their polarization state, that is, the difference between the two lies in the vibration of the electric field. This feature can be applied to a variety of different optical applications. For example, it can be applied to optical elements of a 3D display. The so-called 3D display refers to a display that displays a scene in a three-dimensional space.
解石及石英是已知的雙折射材料。但是對需要用到大型雙折射體(通常是製造成大片的平板)的應用而言,卻很難製作出大片的方解石板或石英板。合成的方解石結晶雖然能夠造製出足夠純度且直徑大於300mm的平板,但是製造成本非常高。目前預計,在未來10年內,這種尺寸與直視顯示器相當的合成方解石結晶板仍無法成為大量製造的產品。
例如,應用於3D顯示器的雙折射平板的作用是,在全像法中利用光學光束組合裝置從光調制器的兩個相位像素產生複數像素。例如,將光調制器的兩個不同相位的像素產生的TE波場(垂直偏振光)及TM波場(水平偏振光)--或至少是不同偏振的波場--疊在一起,因而達到能夠從兩個相位像素產生一個複數像素的光束組合。
一種可以取代應用於光學光束組合裝置之雙折射平板的替代方案是使用所謂的體積光柵,相應的光線在為此目的製造的合成體積光柵的光柵平面上會被繞射。為了達到雙折射平板的效應,必須使用兩個這種厚度由到待組合之像素的距離決定且彼此相距特定距離的體積光柵。WO 2010/149588 A1有詳細說明如何以雙折射平板及這種(繞射光學主動)體積光柵作為光學光束組合裝置。但是這種光學主動體積光柵(也就是繞射體積光柵)的厚度會受到限制,且其製造通常需用到配向層。此外,必須以非常高的精密度將墊片放置到兩個體積光柵之間,才能夠以無缺陷或缺陷率很低的方式將兩個相位像素結合成一個能夠用於全像顯示的複數像素。
將雙折射元件”插入”光學主動體積光柵,以使其達到其他的光學態的作法非常的複雜(參見”Multiplexed holographic transmission gratings recorded in holographic polymerdispersed liquid crystals: static and dynamic studies”, Sebastien lkmaria Camacho Perez, Raymond Chevallier, and Jean-Louis de Bougrenet dela Tocnaye, Applied Optics, Vol. 44, Issue 25, pp. 5273-5280(2005)),因為這種作法的體積光柵及其製造方法密度要求都非常高,才有可能達到所希望的繞射條件,同時又必須調整雙折射元件與光學主動體積光柵的配合方式,以符合應用上的要求。
此外,光學光束組合裝置還需要用到偏振器。先前技術使用的偏振器的一個例子是一種週期明顯小於λ/2的精細的金屬格柵。位於金屬線內的電子可以沿著金屬線自由移動,其中電子幾乎不能進行垂直於偶極子振動的移動。
這種各向異性電子移動性會使平行於金屬線振動的電場受到很大的電子有效截面的作用,這些電子可能被激發成偶極子振動,因而將入射光線反射。相反的,垂直於金屬線振動的電場則受到較小的電子有效截面的作用,由於這些電子不會被激發成偶極子振動,因此入射光線在通過時只有很小一部分光線會被反射。這種偏振元件的額定偏振的透過率的一個典型值是0.98,其中其正交偏振的反射值>0.95。
但是製造這種光柵是一件很麻煩的事。因此有必要找出一種製造成本較低的替代用偏振元件。Calcite and quartz are known birefringent materials. However, for applications that require large birefringent bodies (usually made into large flat plates), it is difficult to make large calcite or quartz plates. Although the synthetic calcite crystal can produce a flat plate with sufficient purity and a diameter greater than 300 mm, the manufacturing cost is very high. It is currently expected that within the next 10 years, this type of synthetic calcite crystal plate with a size equivalent to a direct-view display will still not be a mass-produced product.
For example, the role of a birefringent flat plate applied to a 3D display is to generate a plurality of pixels from two phase pixels of a light modulator using an optical beam combining device in a holographic method. For example, the TE wave field (vertically polarized light) and TM wave field (horizontal polarized light) generated by two pixels with different phases of the optical modulator--or at least wave fields of different polarizations--are stacked together, thereby achieving It is possible to generate a beam combination of a plurality of pixels from two phase pixels.
An alternative that can replace birefringent flat plates applied to optical beam combining devices is to use so-called volume gratings, where the corresponding light is diffracted on the grating plane of a composite volume grating manufactured for this purpose. In order to achieve the effect of a birefringent plate, two such volume gratings having thicknesses determined by the distance to the pixels to be combined and at a specific distance from each other must be used. WO 2010/149588 A1 describes in detail how to use a birefringent plate and such a (diffractive optically active) volume grating as an optical beam combination device. However, the thickness of such an optical active volume grating (ie, a diffractive volume grating) is limited, and an alignment layer is usually required for its manufacture. In addition, the spacer must be placed between the two volume gratings with very high precision to be able to combine two phase pixels into a single complex pixel that can be used for full-image display in a defect-free or low defect rate manner. .
Inserting the birefringent element into the optical active volume grating to achieve other optical states is very complicated (see "Multiplexed holographic transmission gratings recorded in holographic polymerdispersed liquid crystals: static and dynamic studies", Sebastien lkmaria Camacho Perez, Raymond Chevallier, and Jean-Louis de Bougrenet dela Tocnaye, Applied Optics, Vol. 44, Issue 25, pp. 5273-5280 (2005)), because the volume grating and its manufacturing method require very high density, It is possible to achieve the desired diffraction conditions, and at the same time, the matching mode of the birefringent element and the optical active volume grating must be adjusted to meet the application requirements.
In addition, the optical beam combining device also needs a polarizer. An example of a polarizer used in the prior art is a fine metal grid with a period significantly less than λ / 2. The electrons located in the metal wire can move freely along the metal wire, wherein the electrons can hardly move perpendicular to the dipole vibration.
This anisotropic electron mobility causes the electric field vibrating parallel to the metal wire to be affected by a large effective cross section of the electrons. These electrons may be excited into dipole vibrations and thus reflect incident light. In contrast, the electric field vibrating perpendicular to the metal wire is affected by a smaller effective cross section of the electrons. Since these electrons are not excited to vibrate as dipoles, only a small part of the incident light will be reflected when it passes through. A typical value for the nominal polarization transmittance of such a polarizing element is 0.98, where the reflection value of its orthogonal polarization is> 0.95.
But making such a grating is a cumbersome task. Therefore, it is necessary to find an alternative polarizing element with lower manufacturing cost.
本發明的目的是提出一種雙折射體,一種製造雙折射體的方法及一種產生複數像素及偏振元件用的光學光束組合裝置,以解決前面提及的問題。本發明尤其是要提出一種能夠以較低成本製造的大尺寸雙折射體,而且這種雙折射體能夠作為應用在大面積3D顯示器的光學元件。此外,本發明提出的光學光束組合裝置的作用是產生3D顯示場景用的複數像素,而且即使是應用於大型顯示器(也就是大於45吋的顯示器),也能夠達到足夠的尺寸及足夠的均勻性。
採用申請專利範圍第1項的理論即可達到上述目的。附屬於申請專利範圍第1項之附屬申請專利項目的內容為各種相關的有利的實施方式及改良方式。
雙折射體含有光學各向異性的雙折射材料的成分。此處所謂的成分是指單一的元件、微粒及/或空間範圍受到一定限制的特定組件。
根據本發明,這些成分是以在空間中相同定向的方式埋在一種光學透明基質中。此處所謂的在空間中相同定向是指,這些成分的光學軸都指向一個所希望的方向。這些成分通常都是很穩固的埋入光學透明的基質中,所謂光學透明基質是指透明度很高的基質。光學透明基質的作用是作為光學各向異性的雙折射材料之定向成分的填充構架。在一種選擇方案中,基質材料可以根據偏振狀態定向。
根據本發明的一種特別的實施方式,光學各向異性材料的成分是埋在一種含有光學非活性體積光柵的光學透明基質中,其中光學非活性體積光柵的特性是對所使用之光線的所有波長都不會造成繞射。這表示光學非活性體積光柵對可見光的整個波長範圍都不會造成繞射。此處描述的光學非活性體積光柵亦在所謂的”布拉格失配”條件下應用於相應的波長範圍,並構成一種人工電介質。在”布拉格失配”條件下的應用可能涉及角度選擇性及/或波長選擇性。
光學非活性體積光柵具有一種至少在一維具有週期性的遠結構,而且其周期對所使用之光線的所有波長及光線入射方向可以不滿足布拉格繞射條件。這種在意義上相當於繞射光學非活性體積光柵基質支持光學各向異性的雙折射材料的成分的定向。在特殊情況下甚至只有光學非活性體積光柵基質能夠對光學各向異性的雙折射材料的成分的光學軸定向。
根據本發明另一種實施方式,光學非活性體積光柵是由雙光束干涉曝光或多光束干涉曝光產生的聚合物構成。因此以簡單的方法即可從單體及/或寡聚物及光學各向異性的雙折射材料的成分的混合物即可製造出一種固化的光學透明非活性體積光柵基質,且其內含有相同空間定向的雙折射成分。這樣就可以在不需配向層的情況下達到雙折射成分的定向,而且一直到mm範圍的厚度都可以保持相同的定向。
根據本發明的另一種實施方式,光學透明基質的固化材料也具有雙折射的特性。除了定向及固定功能外,這種具有雙折射特性的基質材料還能夠提高由基質及埋在基質中的具有相同空間定向的雙折射成分產生的人工介電質的雙折射效應。
定向埋入本身並不具備折射特性、但形狀並非旋轉對稱的微觀膨脹成分(例如具有次波長膨脹的玻璃橢圓體)能夠產生一種形狀雙折射。此外所謂的形狀雙折射是指,物體的雙折射特性並非源自基質材料或基質所含成分的雙折射特性,而是源自基質所含成分的其幾何形狀、內部結構及排列方式及/或基質本身的雙折射特性。僅是將本身並不具備折射特性的微觀膨脹成分(例如具有次波長膨脹的玻璃微粒)埋入具有可區別之折射率的週期性結構化材料,同樣可以產生形狀雙折射,也就是說,透過對埋入微粒(例如圓球狀的微粒)的空間區隔及沒有另外定向,亦可產生形狀雙折射。但是為了能夠以這種形狀雙折射體實現光學應用,這種形狀雙折射體的厚度必須遠大於本發明之雙折射體的厚度,其中本發明之雙折射體含有雙折射材料的成分,而且這些成分是以相同的空間定向被埋入光學透明基質。
但如果這種形狀雙折射體具有足夠的層厚度,同時使用這種形狀雙折射體的裝置也有足夠的空間可容這種形狀雙折射體,則視光學應用而定,也可以僅使用形狀雙折射體,例如用來實現光束組合。
但為了盡可能縮小光學應用(例如光學光束組合)所需的雙折射體的層厚度,可以埋入雙折射率很高的粒子,使最後達到的雙折射明顯大於形狀雙折射,例如大於引進繞射光學非活性體積光柵基質能夠達到的雙折射,也就是說大於透過這種成分本身的肱折射或定性埋入本身不具備雙折射特性、但不是旋轉對稱的成分所產生的雙折射。
根據本發明的另一種實施方式,埋入基質中的成分含有光學各向異性的雙折射材料,通常這種材料是微觀膨脹的可聚合的單體及/或寡聚物,尤其是可聚合的液晶(LC)。
如果存在一種形成擇優極化方向的體積光柵基質,則聚合成非對稱聚合物鏈或傾向於聚合成非對稱聚合物鏈的可聚合的液晶及單體及寡聚物對這種埋入光學透明基質中的相同空間定向的成分是一種特別有利的雙折射材料。
其中雙折射成分本身也可以被聚合,但並非一定要被聚合。也可以埋入不同材料的橢圓形奈米粒子,例如不同的介電材料或金屬,尤其是碳奈米管。
這樣做的優點是,除了液晶單體、液晶寡聚物及/或液晶聚合物定向至傾斜於表面的分子,或是液晶單體、液晶寡聚物及/或液晶聚合物定向至紫外線輻射的電場外,相應的雙折射成分也能夠在較厚的層中實現相同的空間定向,也就是說,其光學軸也能夠在較厚的層及/或較厚的物體中朝所希望的方向定位,其中在顯示器應用上,層厚度可能是d=50μm至d=500μm。
根據本發明的一種有利的實施方式,所選擇的光學透明基質的材料及光學各向異性材料的成分會使雙折射極大化及散射光所比例極小化。這對於可混合性很高的基質材料及光學各向異性材料的成分而言更是如此。
根據本發明的另一種有利的實施方式,可以透過控制元件及/或調整元件改變光學各向異性材料的成分的雙折射特性。透過控制元件及/或調整元件能夠對光學各向異性材料的成分的雙折射特性造成影響的可能的控制量及/或調整量的例子有:磁場、電場、輻射場(尤其是紫外線照射)、或是作用在雙折射體上的壓力。如果要利用電場改變光學各向異性材料的成分的雙折射特性,則可以用一個設置在雙折射體上的可控制電極(較佳是光學透明的電極)作為相應的控制元件及/或調整元件。透過這種控制元件及/或調整元件可以改變入射光線被雙折射體偏轉的角度,以平衡雙折射體的厚度變化及/或對入射光線的波長改變做出反應。
根據本發明的一種特別的實施方式,光學各向異性的雙折射材料的成分在光學透明基質中是空間週期性相同的定向。這表示在一個週期內在存不同定向的特定量的疇,或是光學各向異性材料的成分的定向在一個週期內以特定的方式連續變化。這樣就可以對雙折射體內的雙折射達到所需要的調制。視製造方法而定,可以是只在一個方向、複數個個方向或整個空間達到光學各向異性雙折射體的成分的相同定向的這種週期性變化。
根據本發明的另一種實施方式,光學各向異性的雙折射材料的成分在雙折射體的同一個範圍內被置於複數個特定的方向,以使其折射率-橢圓形體在空間中重疊。因此而產生的折射率體是多軸的。
採用具有申請專利範圍第10項之特徵的光學光束組合裝置即可達到前面提及的本發明關於裝置方面的目的。附屬於申請專利範圍第10項之附屬申請專利項目的內容為各種相關的有利的實施方式及改良方式。
本發明提出的產生複數像素用的光學光束組合裝置具有一個包含一個像素配置的光調制器、一個光學延遲元件、一個雙折射平板及一個偏振元件,其特徵為雙折射平板具有一個如前面所述之實施方式中的一種的雙折射體,且其厚度(d)及/或其他的特性使不同偏振的兩個像素的波場在通過雙折射平板後,可以結合成一個複數像素。光學光束組合裝置的光學延遲元件通常具有與光調制器之像素配置適配的延遲結構,例如光學延遲元件可以是由一個所謂的結構化半波長板構成,例如可以用一個所謂的45度偏振器作為可當作分析器用的偏振元件。
具有TE及TM偏振的兩個待結合之像素的光線位於雙折射平板之前。在雙折射平板之後設有一個進行線性偏振用的偏振濾光鏡(簡稱為”偏振器”),其最大傳輸率的軸正好構成TE及TM偏振的電場的角等分線,也就是說朝二者各轉動45度。
這種光學光束組合裝置可具有如WO 2010/149588 A1第5圖、第10圖至第14圖、第17圖、或第21圖描述的結構。
此處需指出的是,光調制器的兩個像素之波場是否能結合成一個複數像素是由雙折射體的品質決定,尤其是由雙折射體的光學特性及厚度等特性決定。必要時可利用前面提及的控制元件及/或調整元件影響雙折射體(此處為雙折射平板)的雙折射特性,以平衡這些特性的變動。可以透過一個電場產生這個影響。為此可將可控制的電極以盡可能平行於裝有光學光束組合裝置之全像顯示器的編碼方向的方式設置在雙折射體上。
根據本發明的光學光束組合裝置的另一種實施方式,作為雙折射平板用的雙折射體具有一種含有光學非活性體積光柵的基質,其中該光學非活性體積光柵的光柵週期Λ及光柵傾斜角γ使照射雙折射體的光線的所有波長及光線的入射角都不會被雙折射體繞射。也就是說僅在所謂的”布拉格失配”條件下工作,因此光學非活性體積光柵不會或僅將很小一部分的入射光繞射。
一種有利的方式是,雙折射平板內的光學非活性體積光柵的光柵傾斜角,也就是光柵對平板基部的傾斜角,是在30度是50度之間。此處所謂的平板基部是指平板面對光調制器(SLM)的表面。一種特別有利的方式是,光柵傾斜角是在42度至45度之間,埋在光學非活性體積光柵中的空間相同定向的雙折射成分的光學軸是沿著光柵平面定向。如果含有單體、寡聚物或聚合物的雙折射液晶在一種含有單體、寡聚物或聚合物的體積光柵材料中被雙光束或多光束干涉曝光定向或固定住,這通常會出現這種情況。
根據本發明的光學光束組合裝置的另一種實施方式,光調制器的各單一顏色(紅,綠,藍)的像素間距是根據其波長在雙折射體中的橫向偏移(剪切距離si)來選擇。當然在根據其波長在雙折射體中的橫向偏移選擇像素間距時,也必須與相應的開口及光學延元件匹配。為本發明的光學光束組合裝置中不同波長的光程引進的橫向偏移的差異最好是小於5%。
根據一種特別的實施方式,透過選擇定向埋入基質中的成分,可以達到一個消色差及/或複消色差引入的光束偏移s,也就是不論使用何種波長均保持不變的光束偏移s,其中埋入基質中的成分可以是雙折射的成分,也可以是本身並非雙折射但形狀不是旋轉對稱的成分。例如可以埋入由不同成分組成的混合物,其中組成混合物的各成分的色散要能夠將最終的色散降至最低。
根據另一種實施方式,透過定向埋入雙折射成分實現的雙折射的色散可用於平衡所實現的形狀雙折射的色散,因而引入消色散或複消色散的光束偏移。
也可以利用由本發明的雙折射體所含有平面平行板構成的層堆疊實現較小的色散,這是因為這些平面平行板的色散會彼此抵消。
根據本發明的一種替代的實施方式,光學光束組合裝置具有一個器具,其作用是根據光線的波長配合光線在雙折射平板上的入射角,使光線的所有波長在通過光束組合裝置(BC)時,光束偏移始終保持不變。
這樣紅光、綠光及藍光就能夠分別以略有不同的入射角照射在雙折射平板上,以便即使在有色散存在的情況下,也能夠實現一個相同的光束偏移。例如藍光可以用-5度、紅光用0度(也就是垂直)及紅光用+3度的入射角照射在雙折射平板上。
顯示器的位於光束組合裝置之後的光學元件,例如在布拉格條件下繞射的體積光柵-場透鏡,可以配合位於雙折射平板之後的略有不同的出射角,以便將所有顏色聚焦到RGB(紅綠藍)多工場透鏡的一個焦點上。
根據本發明的另一種實施方式,光學光束組合器還具有一個顏色變跡法-濾光輝-光圈,其作用是平衡不同波長的光線(例如顯示彩色三維場景用的紅光、綠光及藍光)在通過雙折射平板時產生的橫向偏移。WO 2010/149588 A1有關於這種顏色變跡法-濾光鏡-光圈的說明,尤其是第16圖的說明。可以將顏色變跡法-濾光鏡-光圈設置在光調制器(SLM)的平面上或靠近光調制器(SLM)的平面的位置,也就是位於入射面之前,也可以設置在光束組合元件(例如雙折射平板)的出射面上。
根據本發明的另一種實施方式,光學光束組合器還具有另外一個雙折射平板,此雙折射平板具有如前述實施例中的一個雙折射體,其中光學光束組合器的兩個雙折射板是以彼此旋轉一個角度的方式設置,且二者的厚度使不同偏振的兩個相鄰像素的波場在通過兩個雙折射平板後,能夠結合成一個無光程差的複數像素。這種配置方式是對波長變動及入射角變動最不敏感的配置方式。為此通常是使用兩個相同的雙折射平板,也就是兩個具有相同厚度且含有相同之雙折射體的雙折射平板。雙折射平板的這種配置方式也稱為薩伐特板或薩伐特雙板。
本發明的光學光束組合裝置(其作用是將兩個不同定向的相位像素的波場的光束組合在一起)的一種可能的實施方式是使用兩個彼此繞對方轉動90度的相同的雙折射平板。這兩個雙折射平板各具有一個與其光束入射面之平面法線夾45度角的光學軸。第一個波場被第一個雙折射平板橫向偏移,第二個波場被第二個雙折射平板橫向偏移,因而波場在裝置的出射面以基本上無光程差的方式結合,其中這些波場較佳是彼此對中心,並在一個共同的方向上傳播。
根據本發明的光學光束組合裝置(其作用是將兩個不同定向的相位像素的波場的光束組合在一起)的另一種實施方式,第一個步驟是使第一個波場在第一個雙折射平板中在一個方向上橫向偏移一個特定的量,第2個步驟是利用一個半波長板使兩個待結合的相位像素的波長產生偏振旋轉,第三個步驟是使第二個波場在第二個相同的雙折射平板中在另一個方向上產生與第一個步驟相同的橫向偏移量,其中第二個雙折射平板相對於第一個雙折射平板繞光束入射面的平面法線轉動180度。同樣的,在一個共同方向上傳播的兩個波場也會在裝置的出射面以基本上無光程差的方式結合。
在光線以垂直方式入射到本發明的一個雙折射體上時,為非規則光束引進的偏轉角是由雙折射的量及光學軸對平面法線的定向決定,其中該雙折射體具有光學各向異性(也就是雙折射)材料的成分,且其折射率-橢圓體並非一個球,也就是說該折射率-橢圓體具有兩個或三個不同大小的主軸。如果光學軸的定向固定不變,則雙折射的正負號決定是朝向光學軸偏轉,或是遠離光學軸偏轉。例如,光學軸對平面法線的定向固定為43度,如果雙折射是正的,則非規則光束的pointing向量的偏轉方向會與雙折射是負的時候的偏轉方向相反。
如果所使用的本發明的雙折射體具有光學各向異性(也就是雙折射)材料的成分,且其折射率-橢圓體並非一個球,也就是說該折射率-橢圓體具有兩個或三個不同大小的主軸,則兩個入射光束的pointing向量也可以根據所使用的折射率-橢圓體的定向被橫向偏移,其中這個橫向偏移是在不同方向及以不同的偏移量進行。本發明的雙折射體的配置也必須配合光束組合進行調整。
根據本發明,可以製造及使用折射率-橢圓體具有兩個或三個不同大小的主軸的雙折射體,其中折射率-橢圓體相對於在以這個雙折射體或多個這種雙折射體構成的薄的平面平行板內位置的定向可以自由選擇。因此可以將具有不同的雙折射特性(尤其是負的雙折射及正的雙折射)且含有本發明的雙折射體的平面平行板結合到一個執行光學功能的層堆疊中。
本發明提出的人工雙折射體的另一個優點是可以最佳化所使用的波長的雙折射,例如最佳化紅光-綠光-藍光(RGB)的雙折射。這可以利用含有本發明的雙折射體的平面平行板構成的層堆疊獲得實現,其中這個層堆疊產生的色散較低。
根據一種有利的實施方式,本發明的光束組合裝置具有兩個雙折射平板,而且每一個雙折射平板都包含一個由至少兩個含有本發明之雙折射體的雙折射子平板構成的堆疊,其中至少有一個子平板能夠實現負色散,以及至少有一個子平板能夠實現正色散。
例如,在通過這種光束組合裝置時,三個不同波長的波場的橫向偏移在第一個半步驟中會在一個本發明的雙折射子平板中產生負色散,以及在第二個半步驟中會在一個本發明的雙折射子平板中產生正色散,或是反過來在第一個半步驟中會在一個本發明的雙折射子平板中產生正色散,以及在第二個半步驟中會在一個本發明的雙折射子平板中產生負色散,而且會使為三種顏色引進的偏移彼此之間的差異盡可能的小。如果第二個雙折射平板還含有另一個具有產生負色散的子平板及產生正色散的子平板的堆疊,但這兩個子平板的位置均相對於第一個具有由雙折射子平板構成之堆疊的雙折射平板轉動90度,或是還含有另一個位於第一個具有兩個分別產生負色散及正色散之雙折射子平板的堆疊的半波長板,其具有兩個繞第一個堆疊的兩個雙折射子平板轉動180度的雙折射子平板,則可形成一個光束組合裝置,此光束組合裝置使不同偏振的兩個相鄰像素的波場在通過兩個雙折射平板後,能夠以基本上與色散無關且無光程差的方式結合成一個複數像素。
本發明之光學光束組合裝置的優點是,由於使用本發明的雙折射體的關係,因此所製造出的光學光束組合裝置的尺寸是使用先前技術之石英板或方解石板及光學非活性體積光柵無法或很難達到的。尤其是可以製造出可應用於45吋或甚至更大的顯示器的具有足夠厚度的雙折射平板。此外,相對於使用石英板或方解石板,本發明的另一個優點是製造成本較低。
此外,將本發明的”人工製造”的雙折射體應用於光學光束組合裝置的另一個優點是可以有很大的自由度實現所希望的光學特性,尤其是雙折射及色散的大小及正負符號。
根據本發明的光學光束組合裝置,光學延遲元件也具有一個雙折射體,而且這個雙折射體含有光學各向異性的雙折射材料的成分,同時這些成分以在空間中相同定向的方式埋在一種光學透明基質中。因此能夠以相同的製程依序製造出本發明之光束組合裝置所需的雙折射平板/或雙折射平板的順序及光學延遲元件,或甚至是在同一個製程中製造出來。
因此根據本發明的光學光束組合裝置的另一種實施方式,光學延遲元件還具有一個如前面描述的本發明的雙折射體。
根據本發明的另一種實施方式,光學光束組合裝置還具有一個如以下描述的本發明的偏振元件。
採用具有申請專利範圍第23項之特徵的偏振元件即可達到本發明與裝置有關的目的。附屬於申請專利範圍第23項之附屬申請專利項目的內容為各種相關的有利的實施方式及改良方式。
本發明的偏振元件具一個雙折射體,而且這個雙折射體含有光學各向異性的雙折射材料的成分,同時這些成分以在空間中相同定向的方式埋在一種光學透明基質中,其中光學各向異性材料的成分具有金屬特性。
可自由移動的電荷載體,例如電子,是這種偏振元件的一個邊界條件。移動的電荷載體不必是在線內移動。使用在奈米-橢圓體上的移動即可足夠。如果這些橢圓體是定向的,則也會產生與偏振有關的反射及透射功能。
本發明的偏振元件也可以含有一種如前面描述的雙折射體,其中雙折射體之光學各向異性材料的成分具有金屬特性。
根據本發明的偏振元件的一種有利的實施方式,光學各向異性材料的成分含有具有金屬特性的橢圓形金屬奈米微粒及/或碳奈米管。
例如可以使用在體積光柵內及/或經由體積光柵定向的金屬奈米微粒。也可以用碳奈米管作為埋入材料,但前提是碳奈米管要能夠使電荷載體具有足夠的可移動性。此處要注意的是,電荷載體的可移動性與碳奈米管的形狀有關,可能會在純介電性、半導電性及金屬導電性之間變化。即使是埋入金屬碳奈米管或金屬橢圓形奈米微粒,所產生的材料也不是金屬材料。而且這種材料是不導電的,這是因為只有埋入的奈米微粒具有金屬特性,而且金屬特性被限制在奈米微粒中。
採用具有申請專利範圍第25項之特徵的方法即可達到本發明與方法有關的目的。附屬於申請專利範圍第25項之附屬申請專利項目的內容為各種相關的有利的實施方式及改良方式。
本發明提出的製造雙折射體的方法包括以下的步驟:
-- 將一種基質基本材料與光學各向異性的雙折射材料混合。在這個步驟結束時,這個混合物通常是均勻的。選擇一種在本發明的步驟結束後,尤其是在輸入能量後,會成為一種光學透明的固態基質的材料作為基質基本材料。
-- 透過外場的作用及/或與基質基本材料的交互作用,使光學各向異性材料在混合物中空間相同定向。這與製造許多繞射光學活性光柵(也就是將所使用射光繞射的光柵)不同的地方在於無需外界的配向協助。
-- 再輸入一次能量,使基質基本材料受空間相同定向的成分的影響而固化。這個步驟在光學透明基質中形成埋入的空間相同定向的成分。
本發明的製造雙折射體的方法的一種特殊的實施方式具有以下三個步驟中的至少兩個步驟:
-- 將基質-基本材料與光學各向異性的成分混合;
-- 將光學各向異性的雙折射材料定向;
-- 在空間相同定向的成分的影響下與時間並行或至少與時間部分並行使基質固化。通常這涉及雙折射成分的定向,當光學透明基質被固化後,這些雙折射成分才會保持其定向。
視所選擇的基質基本材料而定,本發明的製造雙折射體的方法的一種特殊的實施方式是在固化基質基本材料的期間發生轉換反應。因此可以聚合單體或寡聚物。還有許多其他的反應在輸入能量及/或在相應的環境中能夠產生固化的光學透明基質。例如充分氧化的矽或鋅。
根據本發明的製造雙折射體的方法的一種實施方式,透過將基質-基本材料與光學各向異性的成分混合及/或將光學各向異性的雙折射材料定向的步驟,可以決定光學各向異性材料的成分在固化的基質中的分佈輪廓。如前面所述,通常的做法是試圖使雙折射成分達到均勻的分佈。但是必要的情況下,另一種可能的方式是實現一種非均勻的分佈輪廓,以改良雙折射體內的雙折射特性。相較於以石英板及方解石板作為雙折射體,本發明的方法在這方面提供多一種選擇性。
有不同的可能性可以實現光學各向異性的雙折射材料的定向及/或基質基本材料的固化。
本發明的製造雙折射體的方法的一種實施方式是利用雷射及/或電場及/或磁場實現光學各向異性材料的成的定向及/或基質的固化。產生這種電場及/或磁場的方法是將磁鐵或電極置於基質基本材料及雙折射分成構成的混合物之外很靠近混合物的位置,以使混合物位於電場及/或磁場的作用範圍內。如果是利用雷射實現光學各向異性材料的成分的定向及/或基質的固化,其作法是以雷射大面積的照射材料,或是根據一個由希望實現的基質內部結構決定的特定圖形以雷射照射材料。
本發明的製造雙折射體的方法的另一種實施方式是利用泛光曝光實現光學各向異性材料的成分的定向及/或基質的固化。所謂泛光曝光是指均勻且同時間的照射所有的混合物,而且不使用掩模裝置,因為使用掩模裝置會只照射特定的範圍,及/或在空間及待照射的材料中形成干涉平面。
本發明的製造雙折射體的方法的另一種實施方式是利用雙光束干涉曝光或多光束干涉曝光實現光學各向異性材料的成分的定向及/或基質的固化。這也可以透過兩個不同的曝光來進行,其中在同一個曝光內是使用相干光束,但是兩個曝光彼此之間是使用非相干光束。因此會在兩個方向上各產生一個週期性結構,
空間干涉圖形雙光束干涉或多光束干涉可以產生一個空間干涉圖形,例如這個空間干涉圖形會在投入高劑量的地方觸發聚合反應。形成週期性結構的光柵使雙折射成分能夠定向。
空間干涉圖形也可以直接引起溶入混合物的成分的分離。例如接著可以利用平面非相干紫外線曝光將這個分離固定住。由於與光線的輻射場的交互作用的關係,金屬奈米微粒會被移動到低劑量投入的範圍,也就是干涉圖中較暗的範圍。感應雙極及永久雙極同樣也會在干涉圖形中被空間定向。
根據本發明的方法的一種特殊的實施方式,在使用這種曝光方法時,曝光步驟是在一個圖形的協助下進行,也就是在一種”複制模型”的協助下進行。這是一種作為掩模用的體積光柵,且具有與待產生的體積光柵相同的光柵週期,這個待產生的體積光柵決定應在那一個位置透過曝光將能量輸入基質基本材料及雙折射成分的混合物。例如,如果以一個平面波照射圖形光柵,而且這個平面波的繞射率大約是50%,則第0及第1繞射級會在圖形光柵之後產生一個對比度很高的干涉圖形,這個適於用對初始混合物進行曝光。
本發明的製造雙折射體的方法的一種特殊的實施方式包括以下的步驟:
-- 將一種(均勻的)體積光柵材料與一種光學各向異性材料的成分混合。體積光柵材料的選擇與光柵對光線繞射的方式無關,反而是應防止發生繞射。可以使用已知的材料及已知的方法製造出相應的體積光柵基質,以作為雙折射成分之空間定向及埋入的定向及填充構架及/或配向基質。
-- 透過其週期對所使用之光線的所有波長均會產生光學非活性(不會造成繞射)之體積光柵的雙光束干涉曝光或三光束干涉曝光,以時間並行的方式使光學各向異性材料的成分形成相同的空間定向,以及使體積光柵材料固化,其中光學各向異性材料的成分在所形成的光學非活性的體積光柵基質以相同的方式被定向固定。也就是說要以不會發生繞射的方式使用以上列舉的已知材料:雖然是以一般的方法對體積光柵進行曝光,但由於所選擇的光柵週期、相對於要使用的光線的波長及/或可見光的所有波長的曝光方向、以及光線的入射角的關係,所以不會發生繞射。在任何情況下都不會符合布拉格繞射條件。以這種方式產生的體積光柵在繞射上是非活性的,因此是一種人工介電質,但是含有分布在光柵中且具有相同空間定向的雙折射成分,同時這些雙折射成分會將其雙折射特性賦予所形成的雙折射體。
光學非活性體積光柵基質可以佔總體積的大約50%。如果埋入的成分彼此對準,則作為配向基質的光學非活性體積光柵基質佔總體積的比例甚至可以降低到25%以下。
本發明的製造雙折射體的方法的一種特殊的實施方式是以雙光束干涉或三光束干涉含有可聚合的非對稱單體及/或寡聚物的體積光柵材料進行曝光及使其聚合。
此外,本發明之方法的一種實施方式使用的是光學各向異性材料的成分含有液晶。液晶具有雙折射的功能。此外,如果要透過控制元件及/或調整元件改變雙折射特性,也比較容易影響液晶,以改變其雙折射特性。
這種實施方式的另一個優點是,除了使液晶單體/液晶寡聚物/液晶聚合物在傾斜於表面的分子上定向外,及/或使液晶單體/液晶寡聚物/液晶聚合物在紫外線輻射電場上定向外,還提供一種使具有很高的方向偏振的較厚的層定向的作用方式。
本發明的製造雙折射體的方法的另外一種實施方式是透過能量輸入使雙折射成分所含的液晶聚合。這樣做可以使這些成分的空間定向獲得更好的固定,尤其是相對於這些成分對要製造的雙折射體的雙折射特性具有直接影體力的光學軸的位置。
有多種不同可能性的可能性能夠以有利的方式實現及改良本發明的理論,及/或使前面描述的實施方式彼此組合。這些可能性均記載於申請專利範圍第1項、第8項及第18項的附屬申請專利項目,以及以下配合圖式對本發明之有利的實施例的說明中。The object of the present invention is to provide a birefringent body, a method for manufacturing the birefringent body, and an optical beam combining device for generating a plurality of pixels and a polarizing element, so as to solve the aforementioned problems. The present invention particularly proposes a large-size birefringent body that can be manufactured at a lower cost, and such a birefringent body can be used as an optical element applied to a large-area 3D display. In addition, the function of the optical beam combination device proposed by the present invention is to generate a plurality of pixels for a 3D display scene, and even if it is applied to a large display (that is, a display larger than 45 inches), it can achieve sufficient size and sufficient uniformity .
The above purpose can be achieved by applying the theory of the first patent application scope. The content of the attached patent application item attached to item 1 of the scope of patent application is various related advantageous implementation and improvement methods.
The birefringent body contains components of an optically anisotropic birefringent material. A component as referred to herein refers to a single component, a particulate, and / or a specific component with a limited spatial range.
According to the invention, these components are buried in an optically transparent matrix in the same orientation in space. The so-called same orientation in space here means that the optical axes of these components all point in a desired direction. These components are usually embedded in an optically transparent substrate. The so-called optically transparent substrate refers to a substrate with high transparency. The role of the optically transparent matrix is as a filling framework for the orientation component of an optically anisotropic birefringent material. In one option, the matrix material can be oriented according to the state of polarization.
According to a particular embodiment of the present invention, the composition of the optically anisotropic material is buried in an optically transparent matrix containing an optically inactive volume grating, wherein the characteristic of the optically inactive volume grating is for all wavelengths of the light used Neither will cause diffraction. This means that the optically inactive volume grating does not cause diffraction over the entire wavelength range of visible light. The optically inactive volume grating described here is also applied to the corresponding wavelength range under the so-called "Bragg mismatch" condition, and constitutes an artificial dielectric. Applications under "Bragg mismatch" conditions may involve angular selectivity and / or wavelength selectivity.
An optically inactive volume grating has a distant structure with periodicity in at least one dimension, and its period may not satisfy the Bragg diffraction conditions for all wavelengths and incident directions of light rays used. This kind of diffractive optically inactive volume grating matrix supports the orientation of the components of a birefringent material that is optically anisotropic. In special cases, only optically inactive volume grating matrices can orient the optical axis of the components of an optically anisotropic birefringent material.
According to another embodiment of the present invention, the optically inactive volume grating is composed of a polymer produced by two-beam interference exposure or multi-beam interference exposure. Therefore, a simple method can be used to produce a cured optically transparent non-reactive volume grating matrix from a mixture of monomers and / or oligomers and components of an optically anisotropic birefringent material, which contains the same space. Directional birefringence component. In this way, the orientation of the birefringent component can be achieved without the need for an alignment layer, and the same orientation can be maintained up to a thickness in the mm range.
According to another embodiment of the present invention, the cured material of the optically transparent matrix also has a birefringent property. In addition to the orientation and fixation functions, this matrix material with birefringent properties can also enhance the birefringence effect of artificial dielectrics produced by the matrix and birefringent components with the same spatial orientation buried in the matrix.
Directional embedding itself does not have refractive properties, but microscopic expansion components (such as glass ellipsoids with sub-wavelength expansion) that are not rotationally symmetrical in shape can produce a shape birefringence. In addition, the so-called shape birefringence means that the birefringence characteristics of an object do not originate from the birefringence characteristics of the matrix material or the components contained in the matrix, but from the geometry, internal structure and arrangement of the components contained in the matrix, and / or The birefringence of the matrix itself. Just embedding microscopic expansion components (such as glass particles with sub-wavelength expansion) that do not have refractive characteristics themselves into periodic structured materials with distinguishable refractive indices can also produce shape birefringence, that is, transmission It is also possible to generate shape birefringence for the spatial separation of the embedded particles (such as spherical particles) and without other orientation. However, in order to be able to realize optical applications with this shape of the birefringent body, the thickness of the birefringent body in this shape must be much larger than the thickness of the birefringent body of the present invention. The components are embedded in the optically transparent matrix in the same spatial orientation.
However, if the birefringent body of this shape has sufficient layer thickness, and the device using the birefringent body of this shape also has enough space to accommodate the birefringent body of this shape, then depending on the optical application, only the birefringent body may be used. Refractors, for example, are used to achieve beam combining.
However, in order to reduce the layer thickness of the birefringent body required for optical applications (such as optical beam combination) as much as possible, particles with high birefringence can be buried so that the final birefringence is significantly greater than the shape birefringence, such as greater than the The birefringence that can be achieved by the inactive volume grating matrix is greater than the birefringence generated by the brachial refraction or qualitative embedding through the component itself, which does not have birefringence properties, but is not rotationally symmetrical.
According to another embodiment of the present invention, the component embedded in the matrix contains an optically anisotropic birefringent material, usually such a material is a microscopically expandable polymerizable monomer and / or oligomer, especially a polymerizable polymer. Liquid crystal (LC).
If there is a volume grating matrix that forms a preferred polarization direction, polymerizable liquid crystals and monomers and oligomers that polymerize into asymmetric polymer chains or tend to polymerize into asymmetric polymer chains are optically transparent to this embedding The same spatially oriented component in the matrix is a particularly advantageous birefringent material.
The birefringent component itself can be polymerized, but it does not have to be polymerized. It is also possible to embed oval nano particles of different materials, such as different dielectric materials or metals, especially carbon nanotubes.
This has the advantage that in addition to the liquid crystal monomer, liquid crystal oligomer and / or liquid crystal polymer being oriented to molecules inclined to the surface, or the liquid crystal monomer, liquid crystal oligomer and / or liquid crystal polymer being oriented to ultraviolet radiation, Outside the electric field, the corresponding birefringent component can also achieve the same spatial orientation in thicker layers, that is, its optical axis can also be positioned in the desired direction in thicker layers and / or thicker objects. In the display application, the layer thickness may be d = 50 μm to d = 500 μm.
According to an advantageous embodiment of the present invention, the material of the optically transparent matrix and the composition of the optically anisotropic material are selected to maximize birefringence and minimize the proportion of scattered light. This is especially true for components of highly miscible matrix materials and optically anisotropic materials.
According to another advantageous embodiment of the present invention, the birefringence characteristic of the composition of the optically anisotropic material can be changed through the control element and / or the adjustment element. Examples of possible control amounts and / or adjustment amounts that can affect the birefringence characteristics of the components of the optically anisotropic material through the control element and / or the adjustment element include magnetic fields, electric fields, radiation fields (especially ultraviolet radiation), Or pressure on a birefringent body. If the electric field is used to change the birefringence characteristics of the composition of the optically anisotropic material, a controllable electrode (preferably an optically transparent electrode) provided on the birefringent body can be used as the corresponding control element and / or adjustment element . Through such a control element and / or an adjustment element, the angle at which the incident light is deflected by the birefringent body can be changed to balance the thickness change of the birefringent body and / or respond to the wavelength change of the incident light.
According to a particular embodiment of the present invention, the components of the optically anisotropic birefringent material have the same spatially periodic orientation in the optically transparent matrix. This means that there are specific amounts of domains with different orientations in one cycle, or that the orientation of the components of the optically anisotropic material changes continuously in a specific way in one cycle. In this way, the required modulation can be achieved for the birefringence in the birefringence body. Depending on the manufacturing method, this periodic change in the same orientation of the components of the optically anisotropic birefringent body can be achieved in only one direction, a plurality of directions, or the entire space.
According to another embodiment of the present invention, the components of the optically anisotropic birefringent material are placed in a plurality of specific directions within the same range of the birefringent body, so that their refractive index-ellipsoidal bodies overlap in space. The resulting refractive index body is multiaxial.
The optical beam combination device having the features of the tenth aspect of the patent application can be used to achieve the device object of the present invention mentioned above. The contents of the subsidiary patent item attached to item 10 of the scope of patent application are various related advantageous implementation and improvement methods.
The optical beam combination device for generating a plurality of pixels provided by the present invention has a light modulator including a pixel configuration, an optical delay element, a birefringent plate, and a polarizing element, and is characterized in that the birefringent plate has one as described above. In one embodiment, the birefringent body has a thickness (d) and / or other characteristics such that the wave fields of two pixels with different polarizations can be combined into a plurality of pixels after passing through a birefringent plate. The optical delay element of an optical beam combination device usually has a delay structure that is adapted to the pixel configuration of the light modulator. For example, the optical delay element may be composed of a so-called structured half-wavelength plate. For example, a so-called 45-degree polarizer may be used. As a polarizing element that can be used as an analyzer.
The light of the two pixels to be combined with TE and TM polarization is located in front of the birefringent plate. A polarizing filter (referred to as a “polarizer”) for linear polarization is provided behind the birefringent plate. The axis of the maximum transmission rate is exactly the angular bisector of the electric field of TE and TM polarization. Both are turned 45 degrees.
Such an optical beam combining device may have a structure as described in FIG. 5, FIG. 10 to FIG. 14, FIG. 17, or FIG. 21 of WO 2010/149588 A1.
It should be pointed out here that whether the wave field of the two pixels of the optical modulator can be combined into a complex pixel is determined by the quality of the birefringent body, especially the optical characteristics and thickness characteristics of the birefringent body. If necessary, the aforementioned control element and / or adjustment element can be used to influence the birefringence characteristics of the birefringent body (here, the birefringent plate) to balance the variation of these characteristics. This effect can be generated by an electric field. To this end, the controllable electrodes can be arranged on the birefringent body as parallel as possible to the coding direction of the holographic display equipped with the optical beam combining device.
According to another embodiment of the optical beam combining device of the present invention, a birefringent body for a birefringent flat plate has a substrate containing an optically inactive volume grating, wherein the grating period Λ and the grating tilt angle γ of the optically inactive volume grating All wavelengths of the light irradiating the birefringent body and the incident angle of the light are prevented from being diffracted by the birefringent body. That is to say, it only works under the so-called "Bragg mismatch" condition, so the optical inactive volume grating will not or only diffract a small part of the incident light.
An advantageous method is that the inclination angle of the grating of the optically inactive volume grating in the birefringent plate, that is, the inclination angle of the grating to the base of the plate, is between 30 degrees and 50 degrees. The so-called flat base refers to the surface of the flat plate facing the light modulator (SLM). A particularly advantageous method is that the grating tilt angle is between 42 degrees and 45 degrees, and the optical axis of the spatially-oriented birefringent component buried in the optically inactive volume grating is oriented along the grating plane. This usually occurs if birefringent liquid crystals containing monomers, oligomers, or polymers are oriented or fixed in a volume grating material containing monomers, oligomers, or polymers by two-beam or multi-beam interference exposure. Situation.
According to another embodiment of the optical beam combining device of the present invention, the pixel pitch of each single color (red, green, blue) of the light modulator is a lateral shift (shear distance s) in the birefringent body according to its wavelength. i ) To choose. Of course, when the pixel pitch is selected according to the lateral shift of its wavelength in the birefringent body, it must also be matched with the corresponding opening and optical extension element. The difference in the lateral offset introduced for the optical paths of different wavelengths in the optical beam combination device of the present invention is preferably less than 5%.
According to a special embodiment, by selecting the components embedded in the matrix, a beam shift s introduced by achromatic and / or apochromatic, that is, a beam shift that remains unchanged regardless of the wavelength used, can be achieved. s, where the component embedded in the matrix can be a birefringent component, or it can be a component that is not birefringent but is not rotationally symmetric in shape. For example, a mixture composed of different components can be embedded, and the dispersion of the components constituting the mixture should be able to minimize the final dispersion.
According to another embodiment, the birefringence dispersion achieved by directionally embedding the birefringence component can be used to balance the realized shape birefringence dispersion, thus introducing a de-dispersion or de-dispersion beam shift.
It is also possible to use a layer stack composed of planar parallel plates contained in the birefringent body of the present invention to achieve smaller dispersion, because the dispersions of these planar parallel plates will cancel each other out.
According to an alternative embodiment of the present invention, the optical beam combining device has a device whose function is to match the incident angle of the light on the birefringent plate according to the wavelength of the light so that all wavelengths of the light pass through the beam combining device (BC) The beam offset remains the same.
In this way, red light, green light, and blue light can be irradiated on the birefringent plate at slightly different angles of incidence, so that the same beam shift can be achieved even in the presence of dispersion. For example, blue light can be irradiated on a birefringent plate with -5 degrees, red light with 0 degrees (that is, vertical), and red light with an incidence angle of +3 degrees.
The optical elements of the display behind the beam combining device, such as volume grating-field lenses that are diffracted under Bragg conditions, can be matched with slightly different exit angles behind the birefringent plate to focus all colors to RGB (red-green (Blue) One focal point of a multi-factory lens.
According to another embodiment of the present invention, the optical beam combiner also has a color apodization method-filtering glow-aperture, which is used to balance light of different wavelengths (for example, red light, green light, and blue light for displaying a color three-dimensional scene). A lateral shift when passing through a birefringent plate. WO 2010/149588 A1 has a description of this color apodization method-filter-aperture, especially the description of FIG. 16. The color apodization method-filter-aperture can be set on the plane of the light modulator (SLM) or near the plane of the light modulator (SLM), that is, in front of the incident surface, or it can be set on the beam combination element. (Such as a birefringent plate).
According to another embodiment of the present invention, the optical beam combiner further has another birefringent plate. The birefringent plate has a birefringent body as in the foregoing embodiment. The two birefringent plates of the optical beam combiner are It is set by rotating at an angle to each other, and the thickness of the two allows the wave fields of two adjacent pixels with different polarizations to pass through two birefringent plates, and then they can be combined into a complex pixel with no optical path difference. This arrangement is the arrangement that is least sensitive to wavelength variations and incident angle variations. For this purpose, two identical birefringent plates are generally used, that is, two birefringent plates having the same thickness and containing the same birefringent body. This configuration of the birefringent flat plate is also called a savant plate or a savant double plate.
One possible implementation of the optical beam combining device of the present invention (its role is to combine the light beams of the wave fields of two differently-oriented phase pixels together) is to use two identical birefringent plates that rotate 90 degrees around each other. . Each of the two birefringent plates has an optical axis at an angle of 45 degrees to the plane normal of the incident surface of the light beam. The first wave field is laterally shifted by the first birefringent plate, and the second wave field is laterally shifted by the second birefringent plate. Therefore, the wave fields are combined on the exit surface of the device in a manner substantially free of optical path difference. These wave fields are preferably centered on each other and propagate in a common direction.
According to another embodiment of the optical beam combining device of the present invention (its function is to combine the beams of the wave fields of two differently-oriented phase pixels together), the first step is to make the first wave field at the first The birefringent plate is laterally shifted by a specific amount in one direction. The second step is to use a half-wave plate to polarize the wavelengths of the two phase pixels to be combined. The third step is to make the second wave The field produces the same lateral offset in the other direction in the second identical birefringent plate as in the first step, where the second birefringent plate is about the plane of the incident plane of the light beam relative to the first birefringent plate The normal is rotated 180 degrees. Similarly, two wave fields propagating in a common direction will also be combined at the exit surface of the device in a manner substantially free of optical path difference.
When light is incident on a birefringent body of the present invention in a vertical manner, the deflection angle introduced for an irregular beam is determined by the amount of birefringence and the orientation of the optical axis to the plane normal. The birefringent body has optical components The composition of an anisotropic (ie, birefringent) material, and its refractive index-ellipsoid is not a sphere, that is, the refractive index-ellipsoid has two or three major axes of different sizes. If the orientation of the optical axis is fixed, the sign of the birefringence determines whether it is deflected toward or away from the optical axis. For example, the orientation of the optical axis to the plane normal is fixed at 43 degrees. If the birefringence is positive, the deflection direction of the pointing vector of the irregular beam will be opposite to that when the birefringence is negative.
If the birefringent body of the present invention has the composition of an optically anisotropic (ie, birefringent) material, and its refractive index-ellipsoid is not a sphere, that is, the refractive index-ellipsoid has two or three With two major axes of different sizes, the pointing vectors of the two incident beams can also be laterally shifted according to the orientation of the refractive index-ellipsoid used, where this lateral shift is performed in different directions and with different offsets. The configuration of the birefringent body of the present invention must also be adjusted in accordance with the beam combination.
According to the present invention, a birefringent body in which the refractive index-ellipsoid has two or three major axes of different sizes can be manufactured and used, wherein the refractive index-ellipsoid is relative to the birefringent body or multiple such birefringent bodies The orientation of the internal positions of the formed thin plane parallel plates can be freely selected. Therefore, a plane parallel plate having different birefringence characteristics (especially negative birefringence and positive birefringence) and containing the birefringent body of the present invention can be combined into a layer stack performing optical functions.
Another advantage of the artificial birefringent body proposed by the present invention is that the birefringence of the wavelength used can be optimized, for example, the birefringence of red light-green light-blue light (RGB) can be optimized. This can be achieved using a layer stack consisting of a plane parallel plate containing the birefringent body of the present invention, where the dispersion produced by this layer stack is low.
According to an advantageous embodiment, the beam combining device of the present invention has two birefringent plates, and each birefringent plate includes a stack of at least two birefringent sub-plates containing the birefringent body of the present invention, wherein At least one sub-plate can achieve negative dispersion, and at least one sub-plate can achieve positive dispersion.
For example, when passing through such a beam combining device, the lateral shifts of the wave fields of three different wavelengths will produce negative dispersion in a birefringent sub-plate of the present invention in the first half step, and in the second half In the step, positive dispersion is generated in a birefringent sub-plate of the present invention, or in the first half step, positive dispersion is generated in a birefringent sub-plate of the present invention, and in the second half step Negative dispersion occurs in a birefringent sub-plate of the present invention, and the deviations introduced for the three colors are made as small as possible from each other. If the second birefringent plate also contains another sub-plate with negative dispersion and a sub-plate with positive dispersion, the positions of these two sub-plates are relative to the first one with birefringent sub-plates. The stacked birefringent plate is rotated 90 degrees, or it also contains another stacked half-wavelength plate located on the first with two birefringent sub-plates that generate negative dispersion and positive dispersion, respectively, which has two stacks around the first The two birefringent sub-plates that are rotated by 180 degrees can form a beam combining device. This beam combining device enables the wave fields of two adjacent pixels with different polarizations to pass through the two birefringent plates. Combine into a complex pixel in a manner that is essentially independent of dispersion and has no optical path difference.
The advantage of the optical beam combining device of the present invention is that the size of the manufactured optical beam combining device is incapable of using the prior art quartz plate or calcite plate and optical inactive volume grating due to the use of the birefringent body of the present invention. Or hard to reach. In particular, a birefringent flat plate having a sufficient thickness which can be applied to a display of 45 inches or even larger can be manufactured. In addition, compared with the use of a quartz plate or a calcite plate, another advantage of the present invention is that the manufacturing cost is lower.
In addition, another advantage of applying the "manufactured" birefringent body of the present invention to an optical beam combination device is that it can have a large degree of freedom to achieve the desired optical characteristics, especially the magnitude of the birefringence and dispersion, and the sign of the sign .
According to the optical beam combining device of the present invention, the optical delay element also has a birefringent body, and this birefringent body contains components of an optically anisotropic birefringent material, and these components are buried in Optically transparent matrix. Therefore, the order of the birefringent plate and / or the birefringent plate and the optical delay element required by the beam combination device of the present invention can be sequentially manufactured by the same process, or even manufactured in the same process.
Therefore, according to another embodiment of the optical beam combining device of the present invention, the optical delay element further has a birefringent body of the present invention as described above.
According to another embodiment of the present invention, the optical beam combining device further includes a polarizing element of the present invention as described below.
The device-related object of the present invention can be achieved by using a polarizing element having the characteristics of the scope of the patent application. The contents of the attached patent application item attached to item 23 of the scope of patent application are various related advantageous implementation and improvement methods.
The polarizing element of the present invention has a birefringent body, and the birefringent body contains components of an optically anisotropic birefringent material, and these components are buried in an optically transparent matrix in the same orientation in space, where the optical components The composition of the anisotropic material has metallic properties.
Freely movable charge carriers, such as electrons, are a boundary condition for such polarizing elements. The moving charge carrier does not have to be moved within the line. A movement on a nano-ellipsoid is sufficient. If these ellipsoids are oriented, they also have polarization-dependent reflection and transmission functions.
The polarizing element of the present invention may also contain a birefringent body as described above, wherein the composition of the optically anisotropic material of the birefringent body has metallic characteristics.
According to an advantageous embodiment of the polarizing element of the present invention, the composition of the optically anisotropic material contains elliptical metallic nano-particles and / or carbon nanotubes having metallic characteristics.
For example, metal nano-particles that are oriented within and / or via a volume grating can be used. Carbon nanotubes can also be used as the embedding material, but the prerequisite is that the carbon nanotubes can make the charge carrier sufficiently mobile. It should be noted here that the mobility of the charge carrier is related to the shape of the carbon nanotube, and may change between pure dielectric, semi-conductivity and metal conductivity. Even if the metal carbon nanotubes or metal oval nano-particles are embedded, the material produced is not a metal material. And this material is non-conductive, because only the buried nano particles have metallic properties, and the metal properties are limited to the nano particles.
The method related to the present invention can be achieved by adopting the method having the characteristics of the scope of application for patent No. 25. The content of the attached patent application item attached to item 25 of the scope of patent application is various related advantageous implementation and improvement methods.
The method for manufacturing a birefringent body proposed by the present invention includes the following steps:
-Mix a matrix base material with an optically anisotropic birefringent material. At the end of this step, the mixture is usually homogeneous. After the steps of the present invention are completed, especially after inputting energy, a material that will become an optically transparent solid matrix is selected as the matrix base material.
-Through the action of the external field and / or the interaction with the base material of the matrix, the optically anisotropic material has the same spatial orientation in the mixture. This is different from manufacturing many diffractive optically active gratings (that is, gratings that diffract the used light rays) in that no external alignment assistance is required.
-Enter the energy again to cure the matrix base material under the influence of the components with the same spatial orientation. This step forms a buried space in the optically transparent matrix with the same oriented components.
A special embodiment of the method for manufacturing a birefringent body of the present invention has at least two of the following three steps:
-Mixing matrix-base materials with optically anisotropic components;
-Orientation of optically anisotropic birefringent materials;
-Parallel to time or at least part of time under the influence of components with the same orientation in space and using matrix curing. Usually this involves the orientation of the birefringent components, which will not maintain their orientation until the optically transparent matrix is cured.
Depending on the selected matrix base material, a special embodiment of the method for manufacturing a birefringent body of the present invention is that a conversion reaction occurs during the curing of the matrix base material. It is therefore possible to polymerize monomers or oligomers. There are many other reactions that can produce a cured optically transparent matrix upon input of energy and / or in the corresponding environment. Such as fully oxidized silicon or zinc.
According to an embodiment of the method for manufacturing a birefringent body of the present invention, the optical anisotropy can be determined by the steps of mixing a matrix-base material with an optically anisotropic component and / or orienting the optically anisotropic birefringent material. The profile of the composition of the heterogeneous material in the cured matrix. As mentioned earlier, it is common practice to try to achieve a uniform distribution of birefringent components. But if necessary, another possible way is to achieve a non-uniform distribution profile to improve the birefringence characteristics in the birefringence body. Compared to the use of quartz plates and calcite plates as birefringent bodies, the method of the present invention provides one more option in this respect.
There are different possibilities to achieve the orientation of the optically anisotropic birefringent material and / or the curing of the matrix base material.
One embodiment of the method for manufacturing a birefringent body of the present invention is to use laser and / or an electric field and / or a magnetic field to achieve the orientation of the optically anisotropic material and / or the curing of the matrix. The method of generating such an electric and / or magnetic field is to place a magnet or an electrode outside the mixture composed of the matrix base material and the birefringence, and close to the mixture, so that the mixture is within the range of the electric and / or magnetic field. If the laser is used to achieve the orientation of the components of the optically anisotropic material and / or the curing of the substrate, the method is to irradiate the material with a large area of the laser, or according to a specific pattern determined by the internal structure of the substrate to be achieved. Laser irradiation material.
Another embodiment of the method for manufacturing a birefringent body of the present invention is to realize the orientation of the components of the optically anisotropic material and / or the curing of the matrix using flood light exposure. The so-called flood exposure refers to irradiating all mixtures uniformly and at the same time without using a mask device, because using a mask device will only irradiate a specific range, and / or form interference planes in space and the material to be irradiated.
Another embodiment of the method for manufacturing a birefringent body of the present invention is to use two-beam interference exposure or multi-beam interference exposure to orient the components of the optically anisotropic material and / or cure the matrix. This can also be done through two different exposures, where a coherent beam is used in the same exposure, but the two exposures are incoherent beams between each other. So there will be a periodic structure in each direction,
Spatial interference pattern Two-beam interference or multi-beam interference can generate a spatial interference pattern. For example, this spatial interference pattern will trigger a polymerization reaction at a place where a high dose is input. Gratings that form a periodic structure enable the birefringent component to be oriented.
The spatial interference pattern can also directly cause separation of the components dissolved in the mixture. This separation can then be immobilized, for example, using planar non-coherent UV exposure. Due to the interaction with the radiation field of light, the metal nano-particles will be moved to the low-dose input range, which is the darker range in the interference pattern. Inductive and permanent bipolar are also spatially oriented in the interference pattern.
According to a special embodiment of the method of the present invention, when using this exposure method, the exposure step is performed with the assistance of a graphic, that is, with the assistance of a "copy model". This is a volume grating used as a mask and has the same grating period as the volume grating to be generated. This volume grating to be determined determines at which position the energy should be input into the matrix base material and a mixture of birefringent components through exposure. . For example, if a pattern grating is illuminated with a plane wave, and the diffraction rate of this plane wave is about 50%, the 0th and 1st diffraction orders will produce a high-contrast interference pattern after the pattern grating. The initial mixture is exposed.
A special embodiment of the method for manufacturing a birefringent body of the present invention includes the following steps:
-Mix the components of a (uniform) volume grating material with an optically anisotropic material. The choice of volume grating material has nothing to do with the way the grating diffracts light, but should prevent diffraction from occurring. The corresponding volume grating matrix can be manufactured using known materials and known methods as the spatial orientation and buried orientation and filling framework and / or alignment matrix of the birefringent component.
-Two-beam interference exposure or three-beam interference exposure of a volume grating that is optically inactive (does not cause diffraction) through its period at all wavelengths of the light used, making optical anisotropy in a time-parallel manner The components of the material form the same spatial orientation and the volume grating material is cured, wherein the components of the optically anisotropic material are oriented and fixed in the same manner in the formed optically inactive volume grating matrix. In other words, the above-listed known materials should be used in a manner that does not cause diffraction: although the volume grating is exposed by a general method, due to the selected grating period, the wavelength relative to the light to be used and / Or the relationship between the exposure direction of all wavelengths of visible light and the incident angle of light, so no diffraction occurs. Under no circumstances will the Bragg diffraction conditions be met. The volume grating produced in this way is inactive in diffraction and is therefore an artificial dielectric, but contains birefringent components distributed in the grating and having the same spatial orientation, and these birefringent components will birefringently The properties imparted to the formed birefringent body.
The optically inactive volume grating matrix can account for approximately 50% of the total volume. If the embedded components are aligned with each other, the proportion of the optically inactive volume grating matrix as the alignment matrix to the total volume can be reduced to less than 25%.
A special embodiment of the method for manufacturing a birefringent body of the present invention is to expose and polymerize a volume grating material containing a polymerizable asymmetric monomer and / or oligomer by two-beam interference or three-beam interference.
In addition, in one embodiment of the method of the present invention, a liquid crystal is used as a component of the optically anisotropic material. Liquid crystal has a function of birefringence. In addition, if the birefringence characteristic is to be changed through the control element and / or the adjustment element, it is relatively easy to affect the liquid crystal to change the birefringence characteristic.
Another advantage of this embodiment is that in addition to orienting the liquid crystal monomer / liquid crystal oligomer / liquid crystal polymer on a molecule inclined to the surface, and / or the liquid crystal monomer / liquid crystal oligomer / liquid crystal polymer In addition to directing on the ultraviolet radiation electric field, it also provides a way to orient a thicker layer with a very high directional polarization.
Another embodiment of the method for producing a birefringent body of the present invention is to polymerize the liquid crystal contained in the birefringent component through energy input. By doing so, the spatial orientation of these components can be better fixed, especially relative to the position of the optical axis that has a direct influence on the birefringence properties of the birefringent body to be manufactured.
There are a number of different possibilities. The theory of the invention can be implemented and improved in an advantageous way, and / or the previously described embodiments can be combined with each other. These possibilities are described in the patent application items 1, 8 and 18 of the scope of patent application, as well as in the following description of advantageous embodiments of the present invention in conjunction with the drawings.
P1、P2...光柵平面P1, P2. . . Raster plane
SP、SP1、SP2...雙折射平板SP, SP1, SP2. . . Birefringent plate
Pi1、Pi2、PK...像素Pi1, Pi2, PK. . . Pixel
HWP...結構化半波長板HWP. . . Structured half-wavelength plate
SLM...光調制器SLM. . . Light modulator
LC...液晶LC. . . liquid crystal
BC...光學光束組合裝置BC. . . Optical beam combination device
WGP...45度偏振元件WGP. . . 45 degree polarizer
VG...光學非活性體積光柵VG. . . Optical inactive volume grating
E1、E2...雙光束干涉曝光E1, E2. . . Two-beam interference exposure
F...正前方F. . . In front of
S...側面S. . . side
SP1T1、SP1T2、SP2T1、SP2T2...雙折射體及子平板SP1T1, SP1T2, SP2T1, SP2T2. . . Birefringent body and daughter plate
CNT...金屬奈米微粒及/或碳奈米管CNT. . . Metal Nanoparticles and / or Carbon Nanotubes
以下除了配合圖式說明的本發明的有利的實施例外,也有關於本發明之理論的有利的實施方式及改良方式的說明。
各圖式的內容為:
第1圖:利用連續曝光形成兩個定向結構,以製造本發明的雙折射體的立體透視圖。
第2a,2b及2c圖:利用連續曝光形成兩個定向結構的俯視圖。
第3圖:本發明的光學光束組合裝置的側面圖,其中光學光束組合裝置包含一個具有本發明之雙折射體的平板。
第4a及4b圖:本發明的能夠以無光程差的方式組合光束的光學光束組合裝置的俯視圖及側面圖。
第5a,5b及5c圖:以示意方式顯示,使用本發明之光學光束組合裝置時,不同定向的兩個待結合的相位像素之光束組合的三種可能的變化方式的成像(投影在一個平面上及俯視圖)。
第6a及6b圖:本發明的能夠以無光程差及無色散/低色散的方式將不同波長的光束(例如紅光-綠光-藍光)組合在一起的光學光束組合裝置的俯視圖及側面圖。
第7圖:本發明之偏振元件的原理及作用方式。In the following, in addition to the advantageous embodiments of the present invention described in conjunction with the drawings, there are also descriptions of advantageous embodiments and improvements of the theory of the present invention.
The contents of the drawings are:
Figure 1: A perspective view of two directional structures formed by continuous exposure to make a birefringent body of the present invention.
Figures 2a, 2b, and 2c: Top views of two directional structures formed by continuous exposure.
FIG. 3 is a side view of the optical beam combining device of the present invention, wherein the optical beam combining device includes a flat plate having the birefringent body of the present invention.
4a and 4b: a plan view and a side view of an optical beam combining device capable of combining light beams in a manner without optical path difference according to the present invention.
Figures 5a, 5b, and 5c: Schematic diagrams showing the imaging of three possible variations of the beam combination of two phase pixels to be combined in different orientations when using the optical beam combining device of the present invention (projected on a plane And top view).
Figures 6a and 6b: Top and side views of an optical beam combination device capable of combining light beams of different wavelengths (such as red light-green light-blue light) in a manner that has no optical path difference and no dispersion / low dispersion in the present invention Illustration.
Figure 7: Principle and mode of operation of the polarizing element of the present invention.
為了製造雙折射體,將一種全像體積光柵材料作為基質材料(例如,一種液態光聚合混合物(例如以下產品的前級產物DuPont:HRF, Omnidx:Bayer Material Science:HX),一種以 PMMA、PVA或聚氨酯丙烯酸為基的光聚合混合物,或是初前聚合物PN393(Merk)及1,1,1,3,3,3,3-六氟化異丙醇(Sigma-Aldrich)的混合物)與光學各向異性的雙折射材料的成分(含有液晶(LC),例如E7,E8,E49,TL205(Nerck))均勻的混合。WO 2011/054792 A1有詳細描述所使用之全像體積光柵材料(也就是一種光聚合混合物)的組成成分。
接著透過兩個彼此獨立且彼此不相干的雙光束干涉曝光E1及E2,其中E1及E2的方向及週期對使其對所使用之光線的所有波長均會產生光學非活性(不會造成繞射)的體積光柵,以時間並行的方式使含有液晶(LC)的成分形成相同的空間定向,以及使體積光柵材料固化,其中光學各向異性材料的成分在所形成的光學非活性的體積光柵基質以相同的方式被定向固定。
第1圖顯示的第一曝光在所觀察的體積中形成一個週期性結構。第一曝光引發的聚合形成的平面以元件符號P1表示。週期會隨曝光波長的變短及接成像光束之間的角度變大而變短。平面P1的傾斜位置是由成像光束的二等分線決定。第二曝光在所觀察的體積中形成另一個週期性結構。第二曝光引發的聚合形成的平面以元件符號P2表示。兩個曝光E1及E2可以同時進行,例如使用兩個彼此不相干的雷射進行曝光。
第2圖顯示以前後連續的曝光E1及E2形成兩個定向結構的平面P1及P2的俯視圖,其中第一曝光E1形成第2a圖中的平面P1,第二曝光形成第2b圖中的平面P2,最後再結合成第2c圖中的總定向結構,也就是產生一種光學非活性(不會造成繞射)的體積光柵VG。
由於對這種產生光學非活性(不會造成繞射)的體積光柵的曝光的要求要小很多,因此要實現這種曝光比要實現產生光學活性(會造成繞射)的體積光柵的曝光容易很多。經過曝光後,含有液晶LC的雙折射成分會在體積光柵基質VG中被定向,同時體積光柵基質VG也作為填充構架,含有液晶LC的雙折射成分在這個填充構架中被長期固定這個所希望的定向。因此本發明的這種雙折射體可以實現較大的尺寸,尤其是較大的厚度d。
以這種方式產生的體積光柵VG是光學非活性(不會造成繞射)的透明的體積光柵,也就是一種人工介電質。但是含有分布在光柵中且具有相同空間定向的含有雙折射液晶LC的成分,同時這些雙折射成分會將其雙折射特性賦予所形成的雙折射體。
含有以這種方法製造的本發明的雙折射體的雙折射平板SP被應用於本發明的光學光束組合裝置BC中,以產生複數像素,其中本發明的雙折射體含有具有相同空間定性的雙折射液晶LC的成分,而且這些成分被穩固的埋在光學非活性(不會造成繞射)的透明的體積光柵VG中。第3圖顯示這種光學光束組合裝置BC的側面圖。光學光束組合裝置BC具有一個包含像素Pi2及Pi2配置的光調制器SLM、結構化半波長板HWP(其作用為改變光調制器SLM的一部分像素Pi的光線的偏振方向)、一個雙折射平板(SP)及一個作為分析用的45度偏振元件WGP。結構化半波長板HWP的結構主要是由光調制器SLM的含有像素Pi的列及行的尺寸決定。
垂直於第3圖中的投影面的含有雙折射體的雙折射平板SP之光柵平面P1的光柵傾斜角γ為43度,其中光柵傾斜角γ是光柵對雙折射平板SP之基部的傾斜角。平行於這個投影面的光柵平面P2的光柵傾斜角為90度。在兩個方向上,所選擇的光柵週期要使可見光的所有波長都不會被繞射。所選擇的含有雙折射體的平板SP的厚度d要使不同偏振的兩個像素Pi1,Pi2的波場在通過雙折射平板SP後,能夠結合成一個複數像素PK,其中非規則光束TM(平行偏振光)在通過雙折射平板SP時,會被橫向偏移一個像素寬度,因此在離開雙折射平板SP後,能夠與規則光束TE(垂直偏振光)互相干涉。互相干涉的光束的傳播方向基本上是相同的。
對某些應用而言,對稱的光程是有利或甚至是必要的。使光程對稱的目的是,透過光學介質避免兩個光程出現光學光程差OPD,尤其是在兩個光程通過將其橫向偏移的光學介質後,應在一個特定的位置互相干涉。這對於可以及/或應該以時間相干性較小的光線或與光程的橫向偏移不匹配的空間相干性運轉的裝置而言是很重要的。可以在調制單元之前,例如空間光調制器SLM的像素之前,也就是在入射照明單元或透光照明單元(前光照明或背光照明)中,形成這種避免光學光程差的對稱性。
但是也可以在這種光調制器SLM的平面之後形成這種對稱性,例如在遠場形成這種對稱性。光學光束組合裝置BC規律的使用這種方式。
第4a圖及第4b圖以示意方式顯示這種裝置的一個可能的變化方式,這種裝置的作用是使不同定向的兩個待結合的相位像素Pi1,Pi2形成基本上無光程差的光束組合,其中這種裝置包含兩個彼此繞對方轉動90度並具有雙折射體的雙折射平板SP1,SP2,其中雙折射平板SP1,SP2各有一個與平面法線夾大約45度角的光學軸。第4a圖顯示一個俯視圖,第4b圖顯示一個側面圖。第4a圖及第4b圖顯示,第一個雙折射平板SP1將第一個波場橫向偏移的方式及第二個雙折射平板SP2將第二個波場橫向偏移的方式,使波場在裝置的出射面結合,其中波場較佳是彼此對中心,並在一個共同的方向上傳播。使兩個正交偏振且彼此對中心及在同一個方向上傳播的波場具有干涉能力,在裝置輸出端設有一個偏振濾光鏡WGP。
例如,如果是以一個TE偏振及一個TM偏振作為輸入偏振,同時TM偏振光束對第一個雙折射平板SP1而言是非規則光束,TE偏振光束對第一個雙折射平板SP1而言是規則光束,則TM偏振光束的Pointing向量會被橫向偏移,但是TE偏振光束的Pointing向量不會被橫向偏移。設置第二個相同的雙折射平板SP2,其中第二個雙折射平板SP2相對於第一個雙折射平板SP1繞光束入射面的平面法線轉動90度,因此對雙折射材料之光學軸的定向會出現TE偏振及TM偏振交換的情況。這表示在通過第一個雙折射平板SP1時未被偏移的光束會在第二個雙折射平板SP2中被偏移,同時未在第一個雙折射平板SP1中被偏移的光束在過第二個雙折射平板SP2後,不會被橫向偏移。第二個雙折射平板SP2相對於第一個雙折射平板SP1轉動90度使應用在TE偏振光束及TM偏振光束上的操作互相交換,也就是說是在正交方向上進行偏移。
使第二個雙折射平板SP2相對於第一個雙折射平板SP1轉動180度,也可以達到交換偏移的作用,其中在兩個的通同的雙折射平板SP1,SP2之間有設置一個未結構化的半波長板。此時兩個偏移(各等於總偏移量的一半)會發生在同一個平面上,但彼此方向相反。為了減少使用的構件數量,一種有利的作法是使用不需要另外設置一個半波長板的配置方式。因此此處沒有繪出這種配置方式。
第5a圖至第5c圖示意方式顯示,使用本發明之光學光束組合裝置BC時,從正前方F及側面S看過去,在光束的傳播方向上的投視圖中,不同定向的兩個待結合的相位像素Pi1,Pi2之光束組合的三種可能的變化方式的成像。光束組合裝置BC具有一個或兩個含有本發明之雙折射體且相於對方轉動的雙折射平板SP1及/或P2,其中雙折射平板SP1及/或P2係設置在含有待結合之相位像素Pi1及Pi2的光調制SLM之後,其中雙折射平板SP1及/或SP2各有一個繞平面法線轉動約45度的光學軸。一個偏振濾光鏡WGP設置在相對於兩個輸出偏振轉動45度的位置。第5a圖至第5c圖在像素Pi1及Pi2的旁邊有顯示位於分析器之前的單一及結合的像素PK,也就是說在(未繪出的)偏振濾光鏡之前的平一及結合的像素PK。
在第5a圖的情況中,光學光束組合裝置BC僅具有一個雙折射平板SP。此裝置相當於第3圖中的光束組合裝置BC。第一個像素Pi1的波前在通過雙折射平板SP時不會被偏轉,但是垂直於像素Pi1被偏振的像素Pi2的波前在通過雙折射平板SP時會被偏轉。在為雙折射平板SP選擇適當的厚度d的情況下,像素Pi1及Pi2的波前在通過光束組合裝置BC之後會結合成一個複數像素PK,而且這個複數像素PK在正前方投影中位於第一個像素Pi1的位置。但是光學光束組合裝置的這種變化方式會有光學光程差。
在第5b圖的情況中,光學光束組合裝置BC具有兩個彼此繞其平面法線轉動180度的雙折射平板SP1及SP2,而且在兩個雙折射平板SP1及SP2之間有設置一個未結構化的半波長板。
因此兩個像素Pi1及Pi2的波前會如前面所述被偏轉,同時所產生的複數像素PK在正前投影中位於兩個像素Pi1及Pi2的中間。由於兩個像素經過的距離相同,因此在這種變化方式的光束組合基本上是無光程差的。
在第5c圖的情況中,兩個雙折射平板SP1及SP2彼此繞其平面法線轉動90度。這相當於第4a及4b圖的光學光束組合裝置BC。兩個雙折射平板SP1及SP2各引進一個橫向偏移∣sx∣=∣sy∣=∣s1∣,其中兩個平板引入的偏移sx及sy互相垂直。相對偏移量為:
E1 and E2 are then exposed through two mutually independent and irrelevant two-beam interference, where the direction and period of E1 and E2 will cause them to be optically inactive at all wavelengths of the light used (without causing diffraction) ) Volume grating, in a time-parallel manner, the components containing liquid crystal (LC) form the same spatial orientation, and the volume grating material is cured, wherein the components of the optically anisotropic material are in the optically inactive volume grating matrix formed Oriented and fixed in the same way.
The first exposure shown in Figure 1 forms a periodic structure in the observed volume. The plane formed by the first exposure-induced polymerization is represented by the element symbol P1. The period becomes shorter as the exposure wavelength becomes shorter and the angle between the imaging beam becomes larger. The tilt position of the plane P1 is determined by the bisector of the imaging beam. The second exposure forms another periodic structure in the observed volume. The plane formed by the second exposure-induced polymerization is represented by the element symbol P2. The two exposures E1 and E2 can be performed simultaneously, for example, using two lasers that are irrelevant to each other.
Figure 2 shows a plan view of the planes P1 and P2 of the two directional structures formed by successive exposures E1 and E2. The first exposure E1 forms the plane P1 in Figure 2a and the second exposure forms the plane P2 in Figure 2b. , And finally combined into the overall directional structure in Fig. 2c, that is, an optically inactive volume grating (VG) is not generated.
Since the requirements for exposure of such volume gratings that are optically inactive (do not cause diffraction) are much smaller, it is easier to achieve such exposures than to achieve exposure of volume gratings that are optically active (that cause diffraction). a lot of. After exposure, the birefringent component containing liquid crystal LC will be oriented in the volume grating matrix VG. At the same time, the volume grating matrix VG also serves as the filling frame. The birefringent component containing liquid crystal LC is fixed in this filling frame for a long time. Directional. Therefore, the birefringent body of the present invention can achieve a larger size, especially a larger thickness d.
The volume grating VG produced in this way is an optically inactive (does not cause diffraction) transparent volume grating, that is, an artificial dielectric. However, the birefringent liquid crystal LC-containing components that are distributed in the grating and have the same spatial orientation are included. At the same time, these birefringent components will impart their birefringent properties to the formed birefringent body.
The birefringent flat plate SP containing the birefringent body of the present invention manufactured in this way is applied to the optical beam combining device BC of the present invention to generate a plurality of pixels, wherein the birefringent body of the present invention contains birefringents having the same spatial qualitative properties. The components of the liquid crystal LC are refracted, and these components are firmly buried in a transparent volume grating VG that is optically inactive (does not cause diffraction). Fig. 3 shows a side view of such an optical beam combining device BC. The optical beam combination device BC has a light modulator SLM including pixels Pi2 and Pi2 configuration, a structured half-wavelength plate HWP (which functions to change the polarization direction of light of a pixel Pi of a part of the light modulator SLM), and a birefringent plate ( SP) and a 45-degree polarizing element WGP for analysis. The structure of the structured half-wavelength plate HWP is mainly determined by the size of the columns and rows containing the pixels Pi of the light modulator SLM.
The grating tilt angle γ of the grating plane P1 of the birefringent plate SP containing the birefringent body perpendicular to the projection plane in FIG. 3 is 43 degrees, where the grating tilt angle γ is the tilt angle of the grating to the base of the birefringent plate SP. The grating tilt angle of the grating plane P2 parallel to this projection plane is 90 degrees. In both directions, the grating period is selected so that all wavelengths of visible light are not diffracted. The thickness d of the selected flat plate SP containing the birefringent body is such that two pixels Pi1 and Pi2 of different polarizations can pass through the birefringent flat plate SP to combine into a plurality of pixels PK, where the irregular light beam TM (parallel When passing through the birefringent plate SP, it will be laterally shifted by one pixel width, so after leaving the birefringent plate SP, it can interfere with the regular beam TE (vertically polarized light). The directions of propagation of mutually interfering beams are essentially the same.
For some applications, a symmetric optical path is advantageous or even necessary. The purpose of making the optical path symmetrical is to prevent the optical path difference OPD from appearing between the two optical paths through the optical medium, especially after the two optical paths pass through the optical medium that shifts them laterally, they should interfere with each other at a specific position. This is important for devices that can and / or should operate with light with less time coherence or spatial coherence that does not match the lateral offset of the optical path. This symmetry can be formed before the modulation unit, for example, the pixels of the spatial light modulator SLM, that is, in the incident illumination unit or the light transmission illumination unit (front light illumination or backlight illumination) to avoid the optical path difference.
However, it is also possible to form this symmetry behind the plane of such a light modulator SLM, for example in the far field. The optical beam combining device BC regularly uses this method.
Figures 4a and 4b show a possible variation of this device in a schematic way. The function of this device is to make the two phase pixels Pi1 and Pi2 of different orientations to form a beam with substantially no optical path difference. Combination, where this device includes two birefringent plates SP1, SP2 with birefringent bodies that rotate 90 degrees around each other, and the birefringent plates SP1, SP2 each have an optical axis at an angle of about 45 degrees to the plane normal . Figure 4a shows a top view and Figure 4b shows a side view. Figures 4a and 4b show that the first birefringent plate SP1 shifts the first wave field laterally and the second birefringent plate SP2 shifts the second wave field laterally, so that the wave field Combined at the exit surface of the device, where the wave fields are preferably centered on each other and propagate in a common direction. The two orthogonally polarized wave fields that are centered on each other and propagate in the same direction have interference ability, and a polarization filter WGP is provided at the output end of the device.
For example, if one TE polarization and one TM polarization are used as the input polarization, the TM polarized beam is an irregular beam to the first birefringent plate SP1, and the TE polarized beam is a regular beam to the first birefringent plate SP1. , The Pointing vector of the TM polarized beam will be laterally shifted, but the Pointing vector of the TE polarized beam will not be laterally shifted. A second identical birefringent plate SP2 is set, in which the second birefringent plate SP2 is rotated 90 degrees about the plane normal of the incident surface of the beam with respect to the first birefringent plate SP1, so the orientation of the optical axis of the birefringent material TE polarization and TM polarization exchange may occur. This means that the beam that was not shifted when passing through the first birefringent plate SP1 will be shifted in the second birefringent plate SP2, and the beam that is not shifted in the first birefringent plate SP1 will be shifted. After the second birefringent plate SP2, it will not be laterally shifted. The second birefringent plate SP2 is rotated 90 degrees relative to the first birefringent plate SP1 to exchange the operations applied to the TE polarized beam and the TM polarized beam, that is, to shift in the orthogonal direction.
Rotating the second birefringent plate SP2 180 degrees relative to the first birefringent plate SP1 can also achieve the effect of exchanging offsets. One of the two birefringent plates SP1 and SP2 is placed between the two Structured half-wave plate. At this point, two offsets (each equal to half of the total offset) will occur on the same plane, but in opposite directions to each other. In order to reduce the number of components used, an advantageous approach is to use a configuration that does not require an additional half-wave plate. Therefore, this configuration is not shown here.
Figures 5a to 5c schematically show that when using the optical beam combination device BC of the present invention, looking from the front F and the side S, two projections in different directions in the projection direction of the beam are viewed. The imaging of three possible variations of the combined beams of the phase pixels Pi1 and Pi2. The beam combining device BC has one or two birefringent plates SP1 and / or P2 containing the birefringent body of the present invention and rotating relative to each other, wherein the birefringent plates SP1 and / or P2 are arranged on the phase pixel Pi1 containing the phase pixels to be combined. After Pi2's light modulation SLM, each of the birefringent plates SP1 and / or SP2 has an optical axis that rotates about 45 degrees around the plane normal. One polarization filter WGP is set at a position rotated 45 degrees with respect to the two output polarizations. Figures 5a to 5c show a single and combined pixel PK before the analyzer next to pixels Pi1 and Pi2, that is, a flat and combined pixel PK before the (unillustrated) polarization filter .
In the case of Fig. 5a, the optical beam combining device BC has only one birefringent plate SP. This device corresponds to the beam combining device BC in FIG. 3. The wavefront of the first pixel Pi1 will not be deflected when passing through the birefringent plate SP, but the wavefront of the pixel Pi2 polarized perpendicular to the pixel Pi1 will be deflected when passing through the birefringent plate SP. When an appropriate thickness d is selected for the birefringent flat plate SP, the wavefronts of the pixels Pi1 and Pi2 are combined into a complex pixel PK after passing through the beam combining device BC, and this complex pixel PK is located first in the front projection The position of pixel Pi1. However, this variation of the optical beam combining device may have an optical path difference.
In the case of FIG. 5b, the optical beam combining device BC has two birefringent plates SP1 and SP2 rotated 180 degrees from each other about their plane normal, and an unstructured structure is provided between the two birefringent plates SP1 and SP2. Half-wave plate.
Therefore, the wavefronts of the two pixels Pi1 and Pi2 are deflected as described above, and the generated complex pixel PK is located in the middle of the two pixels Pi1 and Pi2 in the forward projection. Because the two pixels travel the same distance, the beam combination in this variation is basically free of optical path difference.
In the case of Fig. 5c, the two birefringent plates SP1 and SP2 are rotated 90 degrees from each other about their plane normals. This corresponds to the optical beam combining device BC of FIGS. 4a and 4b. The two birefringent plates SP1 and SP2 each introduce a lateral offset ∣s x ∣ = ∣s y ∣ = ∣s 1 ∣, where the offsets s x and s y introduced by the two plates are perpendicular to each other. The relative offset is:
兩個雙折射平板SP1,SP2的這種裝置可作為光學光束組合裝置BC,以便將兩個像Pi1,Pi2的相位值結合成一個複數像素PK的複數值z。其中複數像素PK的相位及強度是可以由選擇的。待結合的像素Pi1及Pi2不再像一般方式彼此相鄰,而是在兩個方向x及y上分別偏移∣sx∣=∣sy∣=∣s1∣因此總偏移量(對角線)
在光線的入射角與垂直於s2的方向略為傾斜的情況下,以及在雙折射平板SP1及SP2的構造相同且
∣sx∣=∣sy∣=∣s1∣的條件下,這種裝置會產生對兩個光程的長度保持不變的相對光程,因此兩個光束的光學光程差保持為零。因此垂直於光束組合之方向的輕微的角度誤差會被兩個待結合之相位像素之間的相對相位抵消。
第6a圖及第6b圖以示意方式顯示一種能夠以無光程差及無色散/低色散的方式將不同定向的兩個待結合的像素Pi1,Pi2的不同波長的光束(例如紅光-綠光-藍光)組合在一起的光學光束組合裝置的一種可能的變化方式的俯視圖(第6a圖)及側面圖(第6b圖),其中此裝置具有兩個彼此轉動90度且含有本發明之雙折射體及子平板SP1T1,SP1T2,SP2T1,SP2T2的雙折射平板SP1,SP2,其中雙折射平板SP1,SP2各具有一個與平面法線大約夾45度角的光學軸。
本發明的光束組合裝置的這種有利的實施方式具有兩個雙折射平板SP1,SP2,而且這兩個平板各具有一個由含有本發明之雙折射體的兩個雙折射子平板SP1T1,SP1T2及SP2T1,SP2T2構成的堆疊,而且其中至少各有一個子平板SP1T1及SP2T1能夠實現負色散,以及至少各有一個子平板SP1T2及SP2T2能夠實現正色散。如前面所述,在通過這種光束組合裝置BC時,三個不同波長的波場的橫向偏移在第一個半步驟中會在一個本發明的雙折射子平板SP1T1中產生負色散,以及在第二個半步驟中會在一個本發明的雙折射子平板SP1T2中產生正色散。因此為三種顏色引進的偏移彼此供有很小的差異。如果第二個雙折射平板SP2還含有另一個具有產生負色散的子平板SP2T1及產生正色散的子平板SP2T2的堆疊,但這兩個子平板的位置均相對於第一個具有由雙折射子平板SP1T1,SP1T2構成之堆疊的雙折射平板轉動90度。這樣在通過兩個子平板SP2T1,SP2T2後,就可以完或至少是接近完全去除原本不同波長會出現的不同色散。這樣就可以利用這種光束組合裝置BC使不同偏振的兩個相鄰像素Pi2,Pi2的三種顏色(紅-綠-藍)的波場在通過兩個雙折射平板SP1,SP2後,以基本上無色散/低色散及無光程差的方式結合成一個複數像素PK。
此外,在前面所述的情況下,本發明的雙折射體可以作為偏振元件WGP使用。但是這種偏振元件在本發明的光學光束組合裝置中也可以單獨使用。第7圖說明本發明的偏振元件WGP的原理及作用方式,這種元件具有一個含有金屬奈米微粒及/或碳奈米管CNT的雙折射體。在電荷載體在金屬奈米微粒及/或碳奈米管CNT內具有足夠多向異性的可移動性。因此TM波場受到很強的交互作用,並被反射,其中TM波場內的電子的振動與金屬奈米微粒及/或碳奈米管內的電荷載體的移動性方向平行。TE波場只受到輕微的交互作用,並能夠通過WGP,其中TE波場內的電子的振動與金屬奈米微粒及/或碳奈米管內的電荷載體的移動方向垂直。
此處要特別指出的是,以上提及的實施例僅是用來說明本發明的理論,但是本發明的範圍並不受這些實施例的任何限制。尤其是以上提及的實施例可以彼此組合。This device of two birefringent plates SP1, SP2 can be used as an optical beam combination device BC, so as to combine the phase values of two images Pi1, Pi2 into a complex value z of a complex pixel PK. Among them, the phase and intensity of the plurality of pixels PK can be selected. The pixels Pi1 and Pi2 to be combined are no longer adjacent to each other as usual, but are shifted in two directions x and y respectively ∣s x ∣ = ∣s y ∣ = ∣s 1 ∣ Therefore the total offset (for (Corner)
In the case where the incident angle of the light is slightly inclined from the direction perpendicular to s2, and under the condition that the birefringent plates SP1 and SP2 have the same structure and ∣s x ∣ = ∣s y ∣ = ∣s 1 ∣, this device A relative optical path that is constant over the length of the two optical paths is produced, so the optical path difference between the two beams remains zero. Therefore, a slight angular error perpendicular to the direction of the beam combination will be offset by the relative phase between the two phase pixels to be combined.
Figures 6a and 6b schematically show a beam of different wavelengths (for example, red-green) capable of aligning two pixels to be combined Pi1 and Pi2 with different orientations in a non-optical path difference and no dispersion / low dispersion manner. Light-blue light) a top view (Fig. 6a) and a side view (Fig. 6b) of a possible variation of the optical beam combination device combined, wherein the device has two pairs that are rotated 90 degrees from each other and contain a pair of the invention The refractors and the sub-plates SP1T1, SP1T2, SP2T1, SP2T2 are birefringent plates SP1, SP2. The birefringent plates SP1, SP2 each have an optical axis at an angle of about 45 degrees to the plane normal.
This advantageous embodiment of the beam combining device of the present invention has two birefringent plates SP1, SP2, and each of the two plates has one birefringent sub-plate SP1T1, SP1T2 and A stack composed of SP2T1 and SP2T2, and at least one of the sub-plates SP1T1 and SP2T1 can achieve negative dispersion, and at least one of the sub-plates SP1T2 and SP2T2 can achieve positive dispersion. As described above, when passing through this beam combination device BC, the lateral shift of the wave fields of three different wavelengths will produce negative dispersion in a birefringent sub-plate SP1T1 of the present invention in the first half step, and In the second half step, positive dispersion is generated in a birefringent sub-plate SP1T2 of the present invention. The offsets introduced for the three colors are therefore slightly different from each other. If the second birefringent plate SP2 also contains a stack of another sub-plate SP2T1 that generates negative dispersion and a sub-plate SP2T2 that generates positive dispersion, but both sub-plates are positioned relative to the first one with birefringence The stacked birefringent plates SP1T1, SP1T2 are rotated 90 degrees. In this way, after passing through the two sub-plates SP2T1, SP2T2, the different dispersions that would originally occur at different wavelengths can be completely or at least nearly completely removed. In this way, the beam combination device BC can be used to make two adjacent pixels Pi2 of different polarizations, and the wave fields of the three colors (red-green-blue) of Pi2 pass through the two birefringent plates SP1 and SP2 to basically The non-dispersion / low-dispersion and non-optical path difference methods are combined into a complex pixel PK.
In addition, in the foregoing case, the birefringent body of the present invention can be used as a polarizing element WGP. However, such a polarizing element may be used alone in the optical beam combining device of the present invention. FIG. 7 illustrates the principle and mode of operation of the polarizing element WGP of the present invention. This element has a birefringent body containing metal nanoparticle and / or carbon nanotube CNT. The charge carrier has sufficient anisotropy mobility within the metal nanoparticle and / or carbon nanotube CNT. Therefore, the TM wave field is strongly interacted and reflected, and the vibration of the electrons in the TM wave field is parallel to the direction of mobility of the metal nanoparticle and / or the charge carrier in the carbon nanotube. The TE wave field is only subject to slight interactions and can pass through WGP, where the vibration of the electrons in the TE wave field is perpendicular to the direction of movement of the metal nanoparticle and / or the charge carrier in the carbon nanotube.
It should be particularly pointed out here that the above-mentioned embodiments are only used to illustrate the theory of the present invention, but the scope of the present invention is not limited by these embodiments in any way. In particular, the above-mentioned embodiments can be combined with each other.
Claims (36)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102012101183A DE102012101183A1 (en) | 2012-02-14 | 2012-02-14 | Birefringent body, beam combining assembly and method of making a birefringent body |
??102012101183.4 | 2012-02-14 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201337330A TW201337330A (en) | 2013-09-16 |
TWI629512B true TWI629512B (en) | 2018-07-11 |
Family
ID=47739243
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW102105532A TWI629512B (en) | 2012-02-14 | 2013-02-18 | Birefringent body, beam combination device and method for manufacturing birefringent body |
Country Status (4)
Country | Link |
---|---|
KR (1) | KR102057353B1 (en) |
DE (1) | DE102012101183A1 (en) |
TW (1) | TWI629512B (en) |
WO (1) | WO2013120904A1 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104884862B (en) | 2012-10-24 | 2019-11-19 | 视瑞尔技术公司 | Lighting apparatus |
KR102188077B1 (en) * | 2013-12-11 | 2020-12-07 | 삼성전자주식회사 | Beam combine/split modulator, display apparatus using the same, and method for modulating spatial light |
WO2023148493A1 (en) * | 2022-02-04 | 2023-08-10 | University Of Southampton | Nanostructured birefrigent optical elements and microscopes with nanostructured birefringent optical elements |
CN115903275A (en) * | 2022-08-30 | 2023-04-04 | 苏州大学 | Flexible double-optical anti-counterfeiting and display device |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20010033400A1 (en) * | 1996-07-12 | 2001-10-25 | Sutherland Richard L. | Switchable polymer-dispersed liquid crystal optical elements |
US20030117707A1 (en) * | 2001-03-13 | 2003-06-26 | Tatsuo Uchida | Light-scattering film and liquid crystal device using the film |
EP2012173A2 (en) * | 2007-07-03 | 2009-01-07 | JDS Uniphase Corporation | Non-etched flat polarization-selective diffractive optical elements |
TW201107791A (en) * | 2009-06-23 | 2011-03-01 | Seereal Technologies Sa | Three-dimensional light modulation arrangement for modulating a wave field having complex information |
CN201903664U (en) * | 2010-12-06 | 2011-07-20 | 深圳超多维光电子有限公司 | Manufacturing device for birefringence lenticulation |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5956113A (en) * | 1997-01-31 | 1999-09-21 | Xerox Corporation | Bistable reflective display and methods of forming the same |
JP4483763B2 (en) * | 2005-10-19 | 2010-06-16 | セイコーエプソン株式会社 | Illumination device and image display device |
GB0718706D0 (en) * | 2007-09-25 | 2007-11-07 | Creative Physics Ltd | Method and apparatus for reducing laser speckle |
US8808946B2 (en) | 2009-11-03 | 2014-08-19 | Bayer Materialscience Ag | Urethane acrylate having a high refractive index and reduced double bond density |
-
2012
- 2012-02-14 DE DE102012101183A patent/DE102012101183A1/en not_active Ceased
-
2013
- 2013-02-13 WO PCT/EP2013/052883 patent/WO2013120904A1/en active Application Filing
- 2013-02-13 KR KR1020147024280A patent/KR102057353B1/en active IP Right Grant
- 2013-02-18 TW TW102105532A patent/TWI629512B/en not_active IP Right Cessation
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20010033400A1 (en) * | 1996-07-12 | 2001-10-25 | Sutherland Richard L. | Switchable polymer-dispersed liquid crystal optical elements |
US20030117707A1 (en) * | 2001-03-13 | 2003-06-26 | Tatsuo Uchida | Light-scattering film and liquid crystal device using the film |
EP2012173A2 (en) * | 2007-07-03 | 2009-01-07 | JDS Uniphase Corporation | Non-etched flat polarization-selective diffractive optical elements |
TW201107791A (en) * | 2009-06-23 | 2011-03-01 | Seereal Technologies Sa | Three-dimensional light modulation arrangement for modulating a wave field having complex information |
CN201903664U (en) * | 2010-12-06 | 2011-07-20 | 深圳超多维光电子有限公司 | Manufacturing device for birefringence lenticulation |
Also Published As
Publication number | Publication date |
---|---|
KR20140133531A (en) | 2014-11-19 |
TW201337330A (en) | 2013-09-16 |
KR102057353B1 (en) | 2019-12-18 |
DE102012101183A1 (en) | 2013-08-14 |
WO2013120904A1 (en) | 2013-08-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Xu et al. | Spin-decoupled multifunctional metasurface for asymmetric polarization generation | |
Arbabi et al. | Vectorial holograms with a dielectric metasurface: ultimate polarization pattern generation | |
Javed et al. | Broad-band polarization-insensitive metasurface holography with a single-phase map | |
Chen et al. | Liquid‐crystal‐mediated geometric phase: from transmissive to broadband reflective planar optics | |
Deng et al. | Malus-metasurface-assisted polarization multiplexing | |
Chen et al. | Digitalized geometric phases for parallel optical spin and orbital angular momentum encoding | |
Deng et al. | Metasurface optical holography | |
Wang et al. | Rochon-prism-like planar circularly polarized beam splitters based on dielectric metasurfaces | |
Guo et al. | Polarization multiplexing for double images display | |
Song et al. | Bandwidth-unlimited polarization-maintaining metasurfaces | |
CN110488589B (en) | Super surface capable of realizing amplitude type holography and phase type holography simultaneously | |
Ren et al. | Non-orthogonal polarization multiplexed metasurfaces for tri-channel polychromatic image displays and information encryption | |
Gao et al. | Efficient all-dielectric diatomic metasurface for linear polarization generation and 1-bit phase control | |
US20150177688A1 (en) | Apparatus for copying a hologram | |
Hu et al. | Multidimensional image and beam splitter based on hyperbolic metamaterials | |
US11003028B2 (en) | Photo-alignment apparatus that realizes desirable distribution through single exposure and method of manufacturing an optical element | |
Zhang et al. | Dynamic display of full-Stokes vectorial holography based on metasurfaces | |
Tang et al. | Flat multifunctional liquid crystal elements through multi-dimensional information multiplexing | |
TWI629512B (en) | Birefringent body, beam combination device and method for manufacturing birefringent body | |
US9829717B1 (en) | Pancharatnam-berry optical element/diffractive waveplate angular momentum sorter | |
Li et al. | Independent light field manipulation in diffraction orders of metasurface holography | |
Wang et al. | Programmable jigsaw puzzles of soft materials enabled by pixelated holographic surface reliefs | |
Ke et al. | Meta-holography: from concept to realization | |
Chen et al. | Design, fabrication, and applications of liquid crystal microlenses | |
Dai et al. | Multifunctional metasurfaces enabled by multifold geometric phase interference |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |