TWI628935B - Request traffic grouping method - Google Patents

Request traffic grouping method Download PDF

Info

Publication number
TWI628935B
TWI628935B TW106109857A TW106109857A TWI628935B TW I628935 B TWI628935 B TW I628935B TW 106109857 A TW106109857 A TW 106109857A TW 106109857 A TW106109857 A TW 106109857A TW I628935 B TWI628935 B TW I628935B
Authority
TW
Taiwan
Prior art keywords
request
cluster
voucher
traffic
request traffic
Prior art date
Application number
TW106109857A
Other languages
English (en)
Other versions
TW201728133A (zh
Inventor
陳志華
童韋豪
林邦曄
江彬榮
張保忠
Original Assignee
中華電信股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中華電信股份有限公司 filed Critical 中華電信股份有限公司
Priority to TW106109857A priority Critical patent/TWI628935B/zh
Publication of TW201728133A publication Critical patent/TW201728133A/zh
Application granted granted Critical
Publication of TWI628935B publication Critical patent/TWI628935B/zh

Links

Landscapes

  • Data Exchanges In Wide-Area Networks (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本發明有關於一種請求流量分群方法,其中,將紀錄分群後來訓練各該類神經網路,或是直接使用紀錄資料來訓練各該類神經網路,以保留其中預測準確度較高者;該請求流量預測子系統更可通過分析各該憑證被請求之紀錄以找出被請求流量較高的憑證,以對這些需求量較高之憑證進行預測。

Description

一種請求流量分群方法
本發明有關於一種請求流量分群方法。
目前,線上憑證狀態通訊協定方法在運作上仍主要係採用即時線上查詢憑證和回覆憑證等方式,但因目前之回覆簽章系統在進行簽章時會花費較多處理時間,將會進一步造成回覆客戶端設備時的延宕,另外,請求流量因時段增加也會對憑證伺服器和回覆簽章系統造成無法預期的負擔,在無法負荷時最嚴重將導致系統當機。
而為了避免上述狀況,目前已有些網路流量預測方法實行於現行技術中,目前的網路流量預測方法主要採用統計方法和灰色理論來進行預估,然而該些技術皆需要進行大量統計,並且因為用戶之請求流量變異很大,該些技術很可能得到較大的請求流量估計誤差,導致預測不準確。
關於流量預測之技術,可參照中華民國專利號第I234974號「植基於灰預測來預測分散式阻斷服務攻擊之機制」之技術,其主要係以數據收集分類模組,並結合灰色理論與防範策略進行網路流量模式之分析與預測,以藉此判斷及防禦分散式阻斷服務攻擊;然而,此方法雖然可以進行網路流量預測和防範網路攻擊在實施過程中,其運用灰色理論且需 要進行大量統計,和承受網路流量變異過大之可能性,實證出其網路流量估計值實非相當準確。
且就算系統已預測出特定時段之可能流量值,該如何紓解高峰時段的負載量,先前技術中仍未見有配合之處理模式。
綜上所述,故提出一種有效率且系統性的預測憑證請求流量系統或方法,並據其預先處理特定時段的憑證可能高負載量,實為本發明所屬領域極其需要的一個課題。
本發明係包含一種預測請求流量之憑證預簽系統,其係由下列系統與資料庫所組成:其中,本發明預測請求流量之憑證預簽系統包含有一憑證資料庫,該憑證資料庫係通過網路與系統外部的一憑證狀態通訊協定伺服器連結,該憑證資料庫之功能為儲存複數憑證被請求之紀錄,前述各該憑證被請求之紀錄係為系統外部的複數終端設備向前述該憑證狀態通訊協定伺服器請求憑證的時間點之紀錄,亦即該憑證資料庫會將所有時段中終端設備請求某一憑證的時間資料儲存於其中。
其中,本發明預測請求流量之憑證預簽系統包含有一請求流量預測子系統,該請求流量預測子系統係取得前述該憑證資料庫中各該憑證被請求之紀錄,通過請求流量分群方法將紀錄分群,或是直接使用紀錄資料,進行分析紀錄後建立複數類神經網路來預測各該憑證在特定時段的被請求流量,以產生一請求流量預測值;該請求流量預測子系統可通過一種請求流量分群方法將紀錄分群後來訓練各該類神經 網路,或是直接使用紀錄資料來訓練各該類神經網路,以保留其中預測準確度較高者;該請求流量預測子系統更可通過分析各該憑證被請求之紀錄以找出被請求流量較高的憑證,以對這些需求量較高之憑證進行預測。
其中,該請求流量預測值將被傳輸至一回覆簽章子系統,該回覆簽章子系統則依據該請求流量預測值對相應數量的各該憑證預簽章以產生複數預簽章憑證狀態,亦即該回覆簽章子系統即為對某一憑證在特定時段會被請求的數量預先對憑證作簽章,以應對該時段到來時之憑證需求;而該回覆簽章子系統會將各該預簽章憑證狀態儲存至該憑證資料庫,該憑證資料庫則將各該預簽章憑證狀態提供至該憑證狀態通訊協定伺服器以供外部各該終端設備請求憑證時使用。
而本發明亦包含了一種依據前述預測請求流量之憑證預簽系統產生之方法,其步驟主要包含:1.該請求流量預測子系統自該憑證資料庫中取得各該憑證被請求之紀錄;2.該請求流量預測子系統分別依據各該憑證對各該憑證被請求之紀錄依據時段統計出各該憑證的各時段流量,以依據憑證的各時段流量排序以挑選出高請求流量的各該憑證;3.該請求流量預測子系統分別依據挑選出的各該憑證隨機建立各該類神經網路以進行預測各該憑證的被請求流量;4.該請求流量預測子系統依據各該憑證被請求之紀錄訓練各該類神經網路,該請求流量預測子系統並分析各該類神經網路的預測準確度以保留高準確度的各該類 神經網路;5.該請求流量預測子系統依據各該類神經網路之預測產生該請求流量預測值並傳輸至該回覆簽章子系統;6.該回覆簽章子系統接收該請求流量預測值,並依據該請求流量預測值對相應數量的各該憑證預簽章以產生各該預簽章憑證狀態;以及7.該回覆簽章子系統將各該預簽章憑證狀態儲存至該憑證資料庫以備外部終端設備取用。
而該請求流量預測子系統為了進一步訓練各該類神經網路,該請求流量預測子系統可進行請求流量分群方法以將歷史的請求流量資料分群再輸入訓練,該請求流量分群係為該請求流量預測子系統將依據時段統計後的各該憑證的各時段流量數據化為群集,並計算且逐步將群集合併,所述請求流量分群方法主要包含下列步驟:1.設定初始群集步驟,係將各該憑證請求和查詢之紀錄中任一憑證的每個時點之請求流量紀錄視為一請求流量集合,並以單一時段中之所有集合作為一群集;2.計算標準差步驟,係計算前述群集內部各請求流量集合之標準差;3.計算距離步驟,係計算前述群集之間的請求流量集合之距離;4.計算距離標準差步驟,係計算前述群集之間的請求流量集合之距離的標準差;5.相似群集合併步驟,係在前述群集中有一群集符合內部標準差大於該群集與另一群集之間距離的標準差之狀況下,將該群集與該另一群集合併,並計算群集合 併後之群集中心;以及6.重複合併步驟,係重複前述相似群集合併步驟直至無有群集符合可合併之狀況。
如前所述,該請求流量預測子系統用以產生該請求流量預測值之請求流量預測方法,更可分列詳述如下:首先,可以將請求流量預測方法分為兩階段,分別為訓練階段以及實施階段,其中,訓練階段可以包含兩個步驟:1.隨機產生複數個類神經網路:主要係通過設定隨機類神經網路群演算法參數值,並向憑證資料庫讀取憑證狀態請求查詢紀錄之歷史資料,以隨機建立r個類神經網路模型;2.保留複數個預測正確率高的類神經網路:將隨機產生之r個類神經網路模型的預測準確度與一準確度門檻值進行比對,以排除低於準確度門檻值之類神經網路模型,保留g個正確率的類神經網路;而若無任何類神經網路模型之正確率高於準確度門檻值時,將回到第1個步驟,重新設定門檻值,並重新訓練隨機類神經網路。
其中,實施階段亦可以包含兩個步驟:1.輸入即時資料至訓練階段中所保留之預測正確率高的類神經網路:取得即時的憑證狀態請求查詢紀錄,並且依此輸入至訓練階段所保留的g個類神經網路模型,進行預測計算;2.加權平均以產生預測值:最後,該請求流量預測子系統將保留下的各該類神經網路各自產生之預測值,運用訓練階段時所得到之正確率作為權重,進行權重平 均後以產生該請求流量預測值。
如上述的預測請求流量之憑證預簽系統及方法,其中,該回覆簽章子系統是實施了憑證狀態預簽章方法以進行預簽章,其主要也可分為四個步驟:
1.接收等待預簽章之憑證資訊:回覆簽章子系統可接收憑證資訊和前述的請求流量預測值。
2.偵測離峰時段:為了節省系統資源並降低高峰時段的負載,該回覆簽章子系統向該憑證資料庫取得各該憑證被請求之紀錄以統計分析出各該憑證被請求次數較少的離峰時段,並可以於離峰時段時對憑證狀態進行預簽章,以達到分流之效果。
3.對憑證狀態產製簽章值:對該請求流量預測值所預測出之複數憑證預簽章相應數量的各該憑證以產生複數預簽章憑證狀態。
4.儲存預簽章憑證狀態:將預簽章憑證狀態之資料儲存至憑證資料庫,供後續客戶端設備查詢使用。
如前所述,可知本發明詳細為一種根據歷史資料預測請求流量,並進行憑證預簽的系統以及其方法,當可預先對使用量大之憑證進行預簽處理,並一再訓練進化預測之準確率,係為高效率憑證管理系統之重要一環。
100‧‧‧客戶端設備
101‧‧‧線上憑證狀態通訊協定伺服器
102‧‧‧請求流量預測子系統
103‧‧‧憑證資料庫
104‧‧‧回覆簽章子系統
S201~S205‧‧‧步驟流程
S301~S307‧‧‧步驟流程
S401~S402‧‧‧步驟流程
S4011~S4012‧‧‧步驟流程
S4021~S4022‧‧‧步驟流程
S601~S602‧‧‧步驟流程
S701~S704‧‧‧步驟流程
圖1為本發明預測請求流量之憑證預簽系統之整體系統 架構示意圖。
圖2為本發明預測請求流量之憑證預簽方法之步驟流程示意圖。
圖3為本發明中請求流量分群方法之步驟流程示意圖。
圖4為本發明中請求流量預測方法之步驟流程示意圖。
圖5為本發明中請求流量預測方法以類神經網路模型1為實例之示意圖。
圖6為本發明中請求流量預測方法之實施階段舉一實例的步驟流程示意圖。
圖7為本發明中請求流量預測方法中憑證狀態預簽章方法之步驟流程示意圖。
以下將以實施例結合圖式對本發明進行進一步說明。
本發明詳細來說是一種根據請求流量預測的線上憑證狀態通訊協定(Online Certificate Status Protocol,OCSP)預簽方法與系統;有鑒於習知技術中憑證狀態通訊協定的方法運作上仍主要採用即時線上查詢以及回覆的方式,但由於回覆簽章子系統在簽章時將可能花費許多處理時間,故習知技術之方法將造成回覆客戶端設備時有所延宕,另外,隨著請求流量增加,將逐漸對憑證狀態通訊協定伺服器和回覆簽章子系統造成負擔,接著在系統無法負荷時即會發生當機情事。
此外目前習知技術中,網路流量預測方法一般需要經過大量統計過程後得出,而由於用戶的請求流量變異程 度較大,故利用習知技術所得出的請求流量估計誤差將可能較大。
故本發明主要係收集和分析各個憑證在一日的每個時段的被請求流量之集合,再運用將請求流量分群方法將相似時段的請求流量結合為一群,將資料分為複數個群組,後續再各別依不同的群組運用將請求流量預測方法進行預測,最後再按照請求流量預測值對該憑證狀態簽章,以取得較準確的預簽章憑證狀態數量,並達成回覆簽章子系統之負載平衡。
首先,請參照圖1所示,本發明之系統包含至少一個客戶端設備100、一線上憑證狀態通訊協定(OCSP)伺服器101、一回覆簽章子系統104、一憑證資料庫103、以及一請求流量預測子系統102,其相互運作之模式及步驟將在後段中詳細敘述;再請同時參照下列表一,表一係為以一實施例舉出2014/07/01到2014/07/28之期間的憑證請求查詢紀錄,若配合圖1以舉例,其中,當複數個客戶端設備100中之一客戶端設備D1於2014/07/01日的00:00:29時欲確認憑證C1狀態時,發出請求至線上憑證狀態通訊協定伺服器101,並由線上憑證狀態通訊協定伺服器101向憑證資料庫103查詢和取得憑證C1狀態,且在憑證資料庫103中留下請求查詢紀錄,即如表一之中的第一行所示之資料,而該線上憑證狀態通訊協定伺服器101後續再將憑證C1狀態傳送至回覆簽章子系統104進行簽章,以及將簽章後的憑證C1狀態回覆給客戶端設備100中的客戶端設備D1,以完成整個憑證要求及簽章之動作;依此類推下,每個客戶端設備將針對本身所需求的憑證進行查詢,並且其每筆請求查詢紀錄在憑證資料庫中將分別 被儲存。
本發明之方法可將請求查詢紀錄集合依週期和時段分別統計,即請求流量預測子系統102將表一所示整體2014/07/01~2014/07/28期間之憑證被請求查詢紀錄為例之集合再進行統計計算,以計算出須預簽章之憑證狀態數量並傳輸至回覆簽章子系統104,並由回覆簽章子系統104進行預簽章憑證狀態儲存至憑證資料庫103;而當客戶端設備100查詢之憑證已經具備預簽章憑證狀態時,直接由線上憑證狀態通訊協定伺服器101向憑證資料庫103查詢和取得經過本發明之方法預簽章的憑證狀態,再將預簽章憑證狀態回覆予客戶端設備100,憑證資料庫103並將已被取走的預簽章憑證狀態銷毀。
下表為表一:
本發明之方法流程如圖2所示,此方法可包含有五個步驟,分別為:步驟S201憑證之請求流量收集與統計、 步驟S202取得高度請求流量的憑證、步驟S203實施請求流量分群方法、步驟S204實施請求流量預測方法、以及步驟S205實施憑證狀態預簽章方法。本方法包含上述步驟之主要目的是於進行請求流量預測方法之前,取得高度請求流量的憑證,並各別對高度請求流量憑證進行統計和預簽章的處理,本方法並可結合請求流量分群方法以針對每個憑證之請求流量記錄依時段進行分群,用於訓練以增加預測正確率,以下,將配合實施例詳細分述各步驟。
首先係為第一步驟S201,憑證之請求流量收集與統計步驟:本發明之請求流量預測子系統向憑證資料庫取得憑證的請求查詢紀錄,如表一所示之2014/07/01~2014/07/28期間之請求查詢紀錄,請求流量預測子系統依週期(在本實施例中係以週作為週期單位)、時段(在本實施例中係以日作為時段單位)、時點(在本實施例中以小時為時點單位)分別統計每個時點請求查詢紀錄的數量,將可得到複數個週期、複數個時段、複數個時點之請求查詢紀錄集合,如下列表二,是以如表一所舉之紀錄資料整理後所示。
下表為表二:
再來,係為第二步驟S202,係取得高度請求流量的憑證之步驟:如表二所示,取得每個憑證依各個時段的請求查詢紀錄數量後,本發明之請求流量預測子系統將依請求查詢紀錄數量進行由高至低地排序,即可取得排名較前的高度請求流量的憑證,即為較常被請求之憑證,亦可被解釋為本發明可選擇性地針對較需紓解延宕情形之憑證。
以前述表一之2014/07/01~2014/07/28期間為例,請求流量預測子系統可得到每個憑證的請求流量總數,再依其請求流量由高到低排序,整理結果可如下列表三所示;即可取出複數個高度請求流量的憑證之資訊以進行後續分析,在此實施例中由於係以憑證C1其請求流量總數為208728次,為最高度請求流量的憑證,故在此實施例中將對憑證C1為例,請求流量預測子系統將進行後續的請求流量分群方法、請求流量預測方法、憑證狀態預簽章方法。
表三如下所示:
再來,係為第三步驟S203,係為實施請求流量分群方法步驟:請求流量預測子系統取得欲分析之憑證各個時段的請求流量集合,初始時將每個時段的請求流量集合視為一個群集,分別計算群內請求流量集合標準差、群間請求流量集合距離、以及群間請求流量集合標準差,再將相似請求流量集合的群集進行合併和重新計算群中心,直至無群集可再合併。
而第四步驟S204係為實施請求流量預測方法步驟:即請求流量預測子系統取得欲分析之憑證各個時段的請求流量集合,並於訓練階段隨機建立複數個類神經網路,再以歷史資料進行訓練和分析各個類神經網路的請求流量預測準確度,並保留複數個準確度高的類神經網路;而在實施階段中,請求流量預測子系統將即時的請求流量集合輸入至訓練階段所保留之複數個準確度高的類神經網路,分別得到請求流量預測值後,再進行加權平均得到最後的請求流量預測值,並將請求流量預測值傳送予一回覆簽章子系統。
最後,第五步驟S205為實施憑證狀態預簽章方法步驟:回覆簽章子系統接收請求流量預測值,由回覆簽章子系統針對請求流量預測值所預測之待預簽章的憑證資訊產製簽章值,並將預簽章憑證狀態儲存至憑證資料庫;另外,該回覆簽章子系統為了減少流量負載,其可於預簽章前向憑 證資料庫查詢請求流量之時段分佈,以分析出離峰時段,再於負載較小的離峰時間進行預簽章的流程。
而本發明的預測請求流量之憑證預簽方法流程中,包含有前述的請求流量分群方法,其方法之步驟流程圖如圖3所示;主要包含六個步驟,分列如下:步驟S301設定初始群集、步驟S302計算群內請求流量集合之標準差、步驟S303計算群間請求流量集合之距離、步驟S304計算群間請求流量集合距離之標準差計算、步驟S305相似群集合併,並計算群集中心之請求流量集合、以及步驟S306確認是否有群集未計算合併,以重覆計算至無群集可合併,若無則進入步驟S307結束,上述各該步驟將詳細在以下段落中作出解釋。
請求流量分群方法之步驟一S301為設定初始群集:以請求流量預測子系統所被設定之時段單位,請求流量預測子系統將每一個時段單位內每個時點的請求流量集合分別作為一個群集,或是可以將每個週期中同時段之請求流量集合作為一個群集,以計算每個群集的中心。以表三的2014/07/01~2014/07/28期間之請求流量為例,統計後憑證C1之請求流量集合可整理如下列表四所示,其中,憑證C1第1個週期第1個時段(即2014/07/01星期二)第1個時點(即凌晨0時)的請求流量為0,本實施例中表示該請求流量值之邏輯為q 憑證編號,週期編號,時段編號,時點編號,而以同樣之表示方式,憑證C1第4個週期第7個時段(即2014/07/28星期一)第24個時點(即晚上23時)的請求流量為82,而本實施例中更以同一個時段的時點請求流量集合表示為Q 憑證編號,週期編號,時段編號,時點編號,如憑證C1第1個週期第1個時段的請求流量為
表四如下所示:
在此實施例中,本發明之請求流量預測子系統所被設定之時段單位共有n個週期、m個時段、o個時點,系統可以將每個週期中同一時段之請求流量集合群聚成一個群集,若以星期二為例,可將第1週星期二07/01、第2週星期二07/08、第3週星期二07/15、第4週星期二07/22之請求流量集合群聚成一個群集,即將聚為一個群集,並且運用下列公式(1)舉例之方式計算群中心,計算結果舉例如公式(2)所示;依此類推逐一計算,可得以每個週期中同時段為基礎的群中心,分別表示為,結果如下表五所示。
公式(1)如下所示,其係舉例計算C1憑證第j個週期內之群中心;其中,係代表C1憑證第j個週期第1個時段的群中心,以下相同型式之表示,其邏輯則以此類推:
而據上述公式(1)之舉例計算,計算C1憑證第1個週期之群中心的結果之公式(2)如下所示: 其中,每個值係代表第1週期內各時段的群中心,以下將以此類推。
表五如下所示:
請求流量分群方法之步驟二S302為計算群內請求流量集合之標準差:請求流量預測子系統計算每個群集內請求流量集合的標準差值;在本實施例中將以下列的公式(3)舉例,以此類推分別計算群集內部請求流量集合的標準差值,計算之結果如下列表六所示。
公式(3)如下所示,其中σ表示標準差,μ表示平均數,本公式係計算C1憑證第1個週期群集內集合之標準差: ,其中,
表六如下所示:
請求流量分群方法之步驟三S303為計算群集間請求流量集合之距離:請求流量預測子系統計算以前述週期或時段等分類的各個群集與其他的群集間之請求流量集合的距離值或相似度值;在本實施例中,係運用下列公式(4)分別計算群集間請求流量集合每個時點向量值的距離值;而如表七所示,係以群中心與其他群集間距離計算結果為例。
公式(4)如下所示,公式之意義在計算C1憑證第j個週期群集群中心與C1憑證第a個週期群集群中心的距離值:
表七如下所示,係計算群中心與其他群集間之間距離的結果:
請求流量分群方法之步驟四S304為群間請求流量集合距離之標準差計算:請求流量預測子系統計算每個群集與其他群集間請求流量集合距離之標準差值;在本實施例中將以下列公式(5)分別計算群集間請求流量集合距離的標準 差值,如表八所示,係以群中心與其他群集間 距離之計算結果為例來計算標準差。
公式(5)如下所示: 其中,
表八如下所示,係計算群中心與其他群集間之間距離的標準差值的結果:
請求流量分群方法之步驟五S305為相似群集合併並計算群集中心之請求流量集合:請求流量預測子系統判斷前述群集內部請求流量集合的標準差值以及該群集與另一個群集間請求流量集合距離的標準差值,若群集內部請求流量集合的標準差值大於該群集與另一個群集間請求流量集合距離的標準差值,此時,判斷該群集與另一個群集係為相似之群集,故將該兩群集進行合併且計算合併後群集之中心。在本實施例中,可以觀察到群中心為與群中心為之群集間的標準差值相對最小(標準差值為40.74),且群中心之 群集的標準差值<,故可判斷群中心之群集 與群中心為為相似群集,將進行合併把群中心之群集併入至群中心為之群集,且運用下列公式(6)之範例計算合併後群集之中心,以得到新的群中心,作,並將被合併的 群中心之群集刪除,其結果如下列表九所示。
公式(6)如下所示,係為將群中心為之群集合併入群中心為之群集之計算方式,其中,為表示第1週期群中心計算前後間的差異,在下列公式及表中係以代表合併後之第1週期群中心:
表九如下所示,係計算2014/07/01~2014/07/28期間統計後之憑證C1請求流量經第一回合合併後群中心,其中各欄表示在第一欄為群中心之群集,其各時段之群中心:
請求流量分群方法之步驟六S306為確認是否有群集未計算合併,以重覆計算至無群集可合併:請求流量預測子系統將重複計算每個群集其群集內請求流量集合之標準差、群集間請求流量集合之距離、以及群集間請求流量集合 距離之標準差,以進行相似群集的合併,且計算新群集中心之請求流量集合,直至沒有相似群集可以被合併時即停止,即為進入步驟S307結束。
在本實施例中,在發生如前列表九中,群中心為 群集與群中心之群集合併後,將再依標準差值 之大小順序,依序的對群中心群集與群中心為群集合併(此時之係代表經合併過之原第1暨第7週期群中心,未免經過多次合併運算後出現過於複雜難辨之符號表示,爾後經每步驟合併後之第1暨第X週期群中心皆表示為,唯其所代表之意義不同);合併後,再進行新群中心群集與群中心群集合併、以及新群中心群集與群中心群集合併;經上述合併步驟後,由於群中心之群集與群中心之群集與其他群集之距離皆過大(距離並未小於其內部標準差值),所以可判對斷各該群集各自為獨立之一群,最後,完成全部的合併運算後,可將原本的7個群集合併分為3群。其為:週期內星期一至五可分為一群集,星期六為一獨立群集,且星期日亦為一獨立群集。
另外,本發明之請求流量分群方法亦得使用在以每個時段同時點為基礎之群中心方式上進行分群,在本實施例中,將可得出凌晨0時至6時可分為一群集,而6時至24時則為另一群集,接著,本發明之請求流量預測子系統將可依分群之後的結果資料,用以訓練請求流量預測方法之複數個類神經網路模型,以提升系統的預測正確率。
至此,進入步驟S307結束後,本發明的請求流量分群方法步驟實施過程即結束。
而本發明的預測請求流量之憑證預簽方法流程中,包含有前述的請求流量預測方法,其方法之步驟流程圖如圖4所示,主要將包含兩個階段,分別為訓練階段S401和實施階段S402,將詳細分述如下。
在訓練階段S401主要可包含兩個步驟:步驟S4011隨機產生複數個類神經網路、步驟S4012保留複數個預測正確率高的類神經網路。
其中,訓練階段S401中之步驟S4011隨機產生複數個類神經網路係為:請求流量預測子系統可被設定隨機類神經網路群演算法之參數值,且請求流量預測子系統向憑證資料庫讀取憑證被請求查詢紀錄的歷史資料,以隨機建立r個類神經網路模型。
首先,由開發人員設定請求流量預測子系統中之隨機類神經網路群演算法的相關參數值,包含有建立類神經網路模型之數量(以r個為例)、類神經網路模型中隱藏層最大數量(以h max 個為例)、類神經網路模型中每個隱藏層最大神經元數量(以c max 個為例)、訓練類神經網路模型的訓練資料數佔總訓練階段資料數的比例(後續說明將以ρ%為例)、以及正確率門檻值(以w threshold 為例);在本實施例中,將設定共建立10個類神經網路模型(即r=10)、類神經網路模型中隱藏層最大數量為5(即h max =5)、類神經網路模型中每個隱藏層最大神經元數量為7(即c max =7)、訓練類神經網路模型的訓練資料數佔總訓練階段資料數的比例為60%(即ρ%=60%)、以及正確率門檻值為0.945(即w threshold =0.945,即為94.5%),本實施例將依 前述參數值以產生10個類神經網路模型以進行請求流量預測。
本實施例中,將以憑證C1被請求流量為例來進行說明;首先,請求流量預測子系統向憑證資料庫讀取憑證狀態請求查詢紀錄之歷史資料(即表四所示之資料),如第1個週期第1個時段(即2014/07/01星期二)的請求流量集合為。且在此資料集合的下一個時段之請求流量集合的總和為10537,故開發人員將設定輸入值為時段請求流量集合,而目標輸出值則應為該輸入時段之下一個時段的請求流量集合的總和值10537。另外,若在此之前有進行過請求流量分群方法,則依群集各別進行隨機類神經網路群演算法之訓練和計算。
依據前述被設定之隨機類神經網路群演算法參數值,請求流量預測子系統應隨機產生10個類神經網路模型,且因為被設定之類神經網路模型中隱藏層最大數量為5且類神經網路模型中每個隱藏層最大神經元數量為7,意即每個類神經網路模型之隱藏層數量必須要介於0至5層,且每個隱藏層的神經元數量將介於0至7個,本實施例根據設定所產生之結果如下表十所示。
表十如下所示:
另外,見表十時請同時參考圖5,其為以類神經網路模型1為例之一示意圖,類神經網路模型1之隱藏層為1層(第二欄位之隱藏層數),該層隱藏層之神經元數為2個(第三欄位之神經元數集合{2});類神經網路模型2之隱藏層有2層,其中第1層隱藏層之神經元數為3個,而第2層隱藏層之神經元數有4個(第三欄位之神經元數集合{3,4});依此類推,以得出全部共10個類神經網路模型。並且,由於設定的訓練類神經網路模型的訓練資料數佔訓練階段資料總筆數的60%,若以表四為例來說,訓練階段資料數之總筆數為20筆,所以每一個類神經網路模型將隨機取出12筆資料作為訓練類神經網路模型學習使用,而剩餘之8筆訓練階段中的測試資料(Testing Data in Training Stage,TDTRS)將分別作為本訓練階段時每個類神經網路模型以驗證使用;在本步驟中,每個類神經網路模型所取得的12筆資料之集合皆各自隨機產生,每一個類神經網路模型都將取得不同的資料集合以反覆進行訓練和學習。
當完成前述所有類神經網路模型的訓練後,請求流量預測子系統可運用剩餘之8筆資料來進行每個類神經網路模型的驗證,用以計算平均正確率來作為每個類神經網路模型之權重;以類神經網路模型1為例,將訓練階段中的測試資料全部輸入至訓練後的類神經網路模型1中以計算出正確率。例如:請求流量集合輸入時,將得出預測值為10911,接著以下式計算出正確率,式子為1-(|正確值-預測值|/正確值),結果為1-(|10537-10911|/10537)=96.45%;依此方 法類推計算,可得出8筆訓練階段中的測試資料(TDTRS)之正確率,進而計算出平均正確率,在本實施例中類神經網路模型1平均正確率為93.23%。而全部10個類神經網路模型所對應之平均正確率分列如下,如表十一所示。
表十一所示如下:
其中,訓練階段S401中之步驟S4012保留複數個預測正確率高的類神經網路係為:請求流量預測子系統將隨機產生之r個類神經網路模型的正確率與正確率門檻值w threshold 進行比對,排除低於此門檻值的類神經網路模型(即正確率過低的模型),餘下g個類神經網路模型;若無任何類神經網路模型之正確率高於門檻值時,將回到前一個S4011步驟,再重新設定門檻值以重新訓練隨機類神經網路群。在本實施例中,請求流量預測子系統將分析每個類神經網路模型的平均正確率,並將低於正確率門檻值w threshold (即本實施例所設定的94.5%)過濾掉,請參考表十一,其中類神經網路模型1、類神經網路模型3、類神經網路模型4、類神經網路模型6、類神經網路模型9、類神經網路模型10等6個將被過濾掉,剩下其餘4個類神經網路模型(即g值為4)及其分別之權重值留待實施階段使用。
在前述請求流量預測方法中,實施階段S402主要亦可包含兩個步驟:步驟S4021輸入即時資料至訓練階段 中所保留之複數個預測正確率高的類神經網路、步驟S4022將複數個類神經網路產生之預測值進行加權平均得到最後的預測值。
其中,實施階段S402中,步驟S4021輸入即時資料至訓練階段中所保留之複數個預測正確率高的類神經網路步驟為:請求流量預測子系統取得即時的憑證請求查詢紀錄,用以輸入至訓練階段所保留的g個類神經網路模型以進行預測計算。請參考圖6所示,例如,憑證C1在2014/07/28該日期的請求流量集合為={1,2,...,82},將其作為隨機類神經網路群的輸入資料,進行步驟S601輸入即時請求流量集合,將其分別輸入至在訓練階段所剩下的4個類神經網路模型(類神經網路模型2、類神經網路模型5、類神經網路模型7、類神經網路模型8),以分別得出目標2014/07/29日期憑證C1請求流量預測值。
其中,實施階段S402中,步驟S4022將複數個類神經網路產生之預測值進行加權平均得到最後的預測值之步驟為:由該g個類神經網路模型所產生出來之預測值,運用訓練階段時所得到之正確率作為權重,進行加權平均,以得到最終的請求流量預測值。請求流量預測子系統經過將資料輸入每個餘下的類神經網路模型(即類神經網路模型2、類神經網路模型5、類神經網路模型7、類神經網路模型8,如表十所示)的步驟S601後,可見圖6中,由類神經網路模型2、類神經網路模型5、類神經網路模型7、類神經網路模型8得出之憑證C1請求流量預測值分別為12716、12582、12565、12401,亦如下列表十二所示;最後,進行步驟S602,依每個類神經網路模型的權重對各預測值進行加權平均(類神經網路 模型2為94.90%、類神經網路模型5為94.61%、類神經網路模型7為94.93%、類神經網路模型8為95.21%)以得到最終的憑證C1之請求流量預測值12566。
表十二所示如下:
而本發明的預測請求流量之憑證預簽方法流程中,包含有前述的回覆簽章子系統進行的憑證狀態預簽章方法,其方法之步驟流程圖如圖7所示,主要將包含四個步驟,分別為:步驟S701接收待預簽章之憑證資訊、步驟S702偵測離峰時段、步驟S703對憑證狀態產製簽章值、步驟S704儲存預簽章憑證狀態;此憑證狀態預簽章方法可於離峰時間進行憑證狀態產製,以平衡負載。
其中,該步驟S701接收待預簽章之憑證資訊的步驟為:回覆簽章子系統接收憑證資訊和該憑證狀態請求流量預測值,以本實施例中的2014/07/29日期為例,請求流量預測子系統通過請求流量預測方法預測得出憑證C1狀態的請求流量預測值為12566,回覆簽章子系統接收此值為12566之請求流量預測值。
其中,該步驟S702偵測離峰時段之步驟為:回覆簽章子系統可向憑證資料庫取得歷史之憑證被請求查詢紀錄,以統計和分析離峰時段;以本實施例中2014/07/01~2014/07/28期間之憑證被請求查詢紀錄中,離峰時段為凌晨0時至6時。
其中,該步驟S703對憑證狀態產製簽章值之步驟為:回覆簽章子系統依請求流量預測值對特定憑證狀態進行預簽章,產生預簽章憑證狀態之資料;在本實施例中,因被預測之憑證C1狀態的請求流量預測值為12566,故將由回覆簽章子系統對憑證C1狀態進行預簽章,以產生12566筆預簽章憑證狀態;本預簽章步驟端看前述步驟S702是否有執行,若步驟S702有執行並得出離峰時段,回覆簽章子系統可於離峰時間進行憑證狀態產製,以進行負載平衡。
其中,該步驟S704儲存預簽章憑證狀態之步驟為:在本實施例中,回覆簽章子系統將把12566筆預簽章憑證狀態之資料儲存至憑證資料庫,以供客戶端設備查詢及使用;且在客戶端設備查詢並取得預簽章憑證狀態之後,憑證資料庫將銷毀被取用之預簽章憑證狀態,即當被客戶端設備取走1筆後,憑證資料庫將剩餘12565筆預簽章憑證狀態,直至該預簽章憑證狀態被取完,憑證資料庫再無剩餘之預簽章憑證狀態。
至此,本發明的預測請求流量之憑證預簽方法流程已結合實施例、圖式以及列表完畢。而該些詳細說明乃針對本發明之最佳實施例進行具體說明,惟該些實施例並非用以限制本發明之專利範圍,凡是未脫離本發明技藝精神所為之等效實施或變更,均應被包含於本案之專利範圍中。
綜上所述,本發明於技術思想上確屬創新,充分符合新穎性及進步性等法定發明專利要件,爰依法提出專利申請,懇請 貴局核准本件發明專利申請案以勵發明,至感德便。

Claims (1)

  1. 一種請求流量分群方法,包含下列步驟:紀錄取得步驟,係為一請求流量預測子系統自一憑證資料庫中取得複數憑證被請求之紀錄;設定初始群集步驟,係為該請求流量預測子系統將各該憑證請求之紀錄中任一憑證的每個時點之請求流量紀錄視為一請求流量集合,並以單一時段中之所有集合作為一群集;計算標準差步驟,係為該請求流量預測子系統計算前述群集內部各請求流量集合之標準差;計算距離步驟,係為該請求流量預測子系統計算前述群集之間的請求流量集合之距離;計算距離標準差步驟,係為該請求流量預測子系統計算前述群集之間的請求流量集合之距離的標準差;相似群集合併步驟,係為該請求流量預測子系統在前述群集中有一群集符合內部標準差大於該群集與另一群集之間距離的標準差之狀況下,將該群集與該另一群集合併,並計算群集合併後之群集中心;以及重複合併步驟,係為該請求流量預測子系統重複前述相似群集合併步驟直至沒有群集符合可合併之狀況。
TW106109857A 2016-01-29 2016-01-29 Request traffic grouping method TWI628935B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW106109857A TWI628935B (zh) 2016-01-29 2016-01-29 Request traffic grouping method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW106109857A TWI628935B (zh) 2016-01-29 2016-01-29 Request traffic grouping method

Publications (2)

Publication Number Publication Date
TW201728133A TW201728133A (zh) 2017-08-01
TWI628935B true TWI628935B (zh) 2018-07-01

Family

ID=60186690

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106109857A TWI628935B (zh) 2016-01-29 2016-01-29 Request traffic grouping method

Country Status (1)

Country Link
TW (1) TWI628935B (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI234974B (en) * 2003-12-22 2005-06-21 Inst Information Industry Methodology of predicting distributed denial of service based on gray theory
US7966487B2 (en) * 2004-01-09 2011-06-21 Corestreet, Ltd. Communication-efficient real time credentials for OCSP and distributed OCSP
CN103177180A (zh) * 2011-12-20 2013-06-26 郑芳田 预测模型的建模样本的筛选方法
TWI439952B (zh) * 2011-11-03 2014-06-01 Univ Ishou 模糊類神經系統建構方法
CN104200032A (zh) * 2014-09-05 2014-12-10 山东大学 广义负荷建模中基于时段性的横向时间轴聚类方法
TWI474702B (zh) * 2010-11-09 2015-02-21
TW201511515A (zh) * 2013-09-06 2015-03-16 Chunghwa Telecom Co Ltd 動態調整雲端憑證狀態驗證之方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI234974B (en) * 2003-12-22 2005-06-21 Inst Information Industry Methodology of predicting distributed denial of service based on gray theory
US7966487B2 (en) * 2004-01-09 2011-06-21 Corestreet, Ltd. Communication-efficient real time credentials for OCSP and distributed OCSP
TWI474702B (zh) * 2010-11-09 2015-02-21
TWI439952B (zh) * 2011-11-03 2014-06-01 Univ Ishou 模糊類神經系統建構方法
CN103177180A (zh) * 2011-12-20 2013-06-26 郑芳田 预测模型的建模样本的筛选方法
TW201511515A (zh) * 2013-09-06 2015-03-16 Chunghwa Telecom Co Ltd 動態調整雲端憑證狀態驗證之方法
CN104200032A (zh) * 2014-09-05 2014-12-10 山东大学 广义负荷建模中基于时段性的横向时间轴聚类方法

Also Published As

Publication number Publication date
TW201728133A (zh) 2017-08-01

Similar Documents

Publication Publication Date Title
Wang et al. Sustainable transportation network design with stochastic demands and chance constraints
Mitzenmacher Analyzing distributed join-idle-queue: A fluid limit approach
CN102567391A (zh) 一种分类预测混合模型的建立方法及装置
CN108052387B (zh) 一种移动云计算中的资源分配预测方法及系统
CN104601586B (zh) 一种公开可验证的外包统计方法
CN104574141A (zh) 一种业务影响度分析方法
CN109508807A (zh) 彩票用户活跃度预测方法、系统及终端设备、存储介质
CN111784204A (zh) 一种基于用户用电行为画像的优质用户挖掘方法及系统
CN106961441B (zh) 一种用于Hadoop云平台的用户动态访问控制方法
CN112183899A (zh) 确定安全度预测模型的方法、装置、设备和存储介质
Adepeju et al. Anchored k-medoids: a novel adaptation of k-medoids further refined to measure long-term instability in the exposure to crime
CN112769951A (zh) 结合区块链和在线业务的支付网络状态处理方法及服务器
Cowdrey et al. Applying queueing theory for the optimization of a banking model
Cooper et al. On the use of buy up as a model of customer choice in revenue management
CN109977131A (zh) 一种房型匹配系统
CN114462683A (zh) 基于联邦学习的云边协同多居民区负荷预测方法
TWI591991B (zh) System and method for pre-signing vouchers for forecasting requests for traffic
CN111325255B (zh) 特定人群圈定方法、装置、电子设备及存储介质
CN116170162B (zh) 选择性的共识方法和计算机存储介质、终端设备
TWI628935B (zh) Request traffic grouping method
TWI646808B (zh) Request traffic prediction method
Mayer et al. Simulation-based autonomous algorithm selection for dynamic vehicle routing problems with the help of supervised learning methods
TWI644542B (zh) Pre-signature method
Choi et al. A simulation budget allocation procedure for finding both extreme designs simultaneously in discrete-event simulation
Zhang et al. Dynamic time warp-based clustering: Application of machine learning algorithms to simulation input modelling