TWI628890B - Synchronous control system architecture to improve energy efficiency - Google Patents

Synchronous control system architecture to improve energy efficiency Download PDF

Info

Publication number
TWI628890B
TWI628890B TW106111456A TW106111456A TWI628890B TW I628890 B TWI628890 B TW I628890B TW 106111456 A TW106111456 A TW 106111456A TW 106111456 A TW106111456 A TW 106111456A TW I628890 B TWI628890 B TW I628890B
Authority
TW
Taiwan
Prior art keywords
power supply
supply subsystem
power
signal
module
Prior art date
Application number
TW106111456A
Other languages
Chinese (zh)
Other versions
TW201838286A (en
Inventor
彭國光
廖書育
曾柏尹
連國閔
陳孟祺
Original Assignee
旭星電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭星電子股份有限公司 filed Critical 旭星電子股份有限公司
Priority to TW106111456A priority Critical patent/TWI628890B/en
Application granted granted Critical
Publication of TWI628890B publication Critical patent/TWI628890B/en
Publication of TW201838286A publication Critical patent/TW201838286A/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S40/00Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them
    • Y04S40/12Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment
    • Y04S40/126Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment using wireless data transmission

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本發明提供一種提升節能效率之同步控制系統架構,其包括:一主系統以及至少一供電子系統,主系統包含一用電分析模組;供電子系統經由一信號連斷裝置以有線或無線方式與該主系統之間通訊,該供電子系統包含:至少一電池模組以及一供電處理模組;供電處理模組係電性連接該電池模組且被配置為接收該電池模組的一偵測信號並根據該偵測信號確認該電池模組的電池狀態,然後傳送到主系統的用電分析模組進行分析;其中該主系統根據該電池狀態而發送一反饋信號傳送至該供電處理模組進行處理。藉此,主系統以遠端即時監測多個子系統的電池狀態,且各個子系統的電源開關權限由韌體掌控,以達到智慧能源管理。 The invention provides a synchronous control system architecture for improving energy-saving efficiency, comprising: a main system and at least one power supply subsystem, the main system includes a power analysis module; and the power supply subsystem is wired or wireless via a signal breaking device Communicating with the main system, the power supply subsystem includes: at least one battery module and a power processing module; the power processing module is electrically connected to the battery module and configured to receive the battery module Detecting the signal and confirming the battery state of the battery module according to the detection signal, and then transmitting the analysis to the power analysis module of the main system; wherein the main system sends a feedback signal to the power supply processing mode according to the battery state. The group is processed. Thereby, the main system monitors the battery status of multiple subsystems at a remote location, and the power switch permissions of each subsystem are controlled by the firmware to achieve smart energy management.

Description

提升節能效率之同步控制系統架構 Synchronous control system architecture to improve energy efficiency

本發明係涉及多系統串接的節能控制技術領域,尤指一種,不需要硬體開關,且主系統可透過韌體與多個子系統間通訊以取得電池資訊,以遠端同步控制多個次系統之同步控制系統架構。 The invention relates to the field of energy-saving control technology of multi-system serial connection, in particular, a hardware switch is not required, and the main system can communicate with the plurality of subsystems through the firmware to obtain battery information, and the remote synchronization is controlled multiple times. The system's synchronous control system architecture.

在科技不斷進步的今日,近年來能源需求快速上升,諸如核能、水力、太陽能、風力和生質能等能源方案逐漸為各界所廣泛討論。然而上述之再生能源多與氣候環境相關,供電不穩的難題尚待解決。因此,電力儲能系統不但可協助電廠解決再生能源電源穩定度的問題。從發電、輸配電到用戶端,可調節不均衡的電力負載系統、穩定電壓、可解決備載容量的儲能系統,將扮演再生能源應用發展的關鍵配角。 Today, with the continuous advancement of technology, energy demand has risen rapidly in recent years, and energy solutions such as nuclear energy, hydropower, solar energy, wind power and biomass energy have been widely discussed. However, the above-mentioned renewable energy sources are mostly related to the climatic environment, and the problem of unstable power supply has yet to be resolved. Therefore, the power storage system can not only help the power plant solve the problem of the stability of the renewable energy source. From power generation, transmission and distribution to the customer side, it can adjust the unbalanced power load system, stabilize the voltage, and the energy storage system that can solve the backup capacity, which will play a key supporting role in the development of renewable energy applications.

傳統之儲能系統,其系統中會接連接多個主從式架構系統,以作為一完整之儲能系統,當此儲能系統中,單一之主從式架構系統發生損壞時,可直接手動關閉損壞之主從式架構系統的硬體開關,藉此斷開損壞之主從式架構系統與整個儲能系統間之連接,避免其造成整個儲能系統癱瘓。而在關閉損壞之主從式架構系統後,其他正常之主從式架構系統仍可正常運作,使整個儲能系統完成儲能之工作。 In the traditional energy storage system, multiple master-slave architecture systems are connected to the system as a complete energy storage system. When the single master-slave architecture system is damaged in this energy storage system, it can be directly manual. The hardware switch of the damaged master-slave architecture system is turned off, thereby disconnecting the damaged master-slave architecture system from the entire energy storage system, thereby preventing the entire energy storage system from being paralyzed. After the damaged master-slave architecture system is shut down, other normal master-slave architecture systems can still operate normally, so that the entire energy storage system can complete the energy storage work.

請參照圖1,圖1為傳統無通訊功能之主從式架構系統示意圖。此主從式架構系統800包含一主系統802以及兩個供電子系統,分別為第一供電子系統804、第二供電子系統806。主系統802分別連接第一供電子系統804、第二供電子系統806。第一供電子系統804具有第一硬體開關 8042,第二供電子系統806具有第二硬體開關8062。由於此主從式架構系統800之主系統802與第一供電子系統804、第二供電子系統806之間不具有通訊功能,因此,主系統無法決定兩次系統之開啟與關閉,因此,當第一供電子系統804發生損壞時,僅能藉由關閉第一硬體開關8042而關閉第一供電子系統104,維持整個主從式架構系統800之正常運作。此情況下,主系統802與該等供電子系統間由於無通訊功能,因此,無法遠端控制關閉該供電子系統,無法即時監控次系統之狀態,且使用硬體開關的缺點是系統無法進入省電模式。 Please refer to FIG. 1. FIG. 1 is a schematic diagram of a conventional master-slave architecture system without communication function. The master-slave architecture system 800 includes a master system 802 and two power supply subsystems, a first power supply subsystem 804 and a second power supply subsystem 806, respectively. The main system 802 is connected to the first power supply subsystem 804 and the second power supply subsystem 806, respectively. The first power supply subsystem 804 has a first hardware switch 8042, the second power supply subsystem 806 has a second hardware switch 8062. Since the main system 802 of the master-slave architecture system 800 does not have a communication function between the first power supply subsystem 804 and the second power supply subsystem 806, the main system cannot determine the opening and closing of the system twice. When the first power supply subsystem 804 is damaged, the first power supply subsystem 104 can only be turned off by turning off the first hardware switch 8042 to maintain the normal operation of the entire master-slave architecture system 800. In this case, since there is no communication function between the main system 802 and the power supply subsystems, the power supply subsystem cannot be remotely controlled, and the state of the secondary system cannot be monitored immediately, and the disadvantage of using the hardware switch is that the system cannot enter. Power saving mode.

再者,上述之主系統802與兩供電子系統間以並聯連接,由於主系統802與兩供電子系統間無通訊功能,因此,主系統802無法即時監測到電壓差異,而無法將供電子系統關閉,將會有電壓差異的危險狀況產生,即過大的充放電電流發生。 Furthermore, the main system 802 and the two power supply subsystems are connected in parallel. Since there is no communication function between the main system 802 and the two power supply subsystems, the main system 802 cannot immediately detect the voltage difference, and cannot supply the power supply subsystem. When it is turned off, there will be a dangerous situation with a voltage difference, that is, an excessive charge and discharge current occurs.

請參考圖2,圖2為傳統具遠端控制功能之主從式架構系統示意圖。此主從式架構系統900包含一主系統902以及第一供電子系統904、第二供電子系統906。主系統902分別連接第一供電子系統904、第二供電子系統906。主系統902包含一硬體開關9022。主系統902之硬體開關9022可遠端傳送一控制訊號給第一供電子系統904以及第二供電子系統906。雖然主系統902可藉由開關9022遠端控制第一供電子系統904、第二供電子系統906之開啟或關閉,但,第一供電子系統904、第二供電子系統906需要長時間處於工作模式,以隨時等待接收主系統902所傳送之控制訊號,因此,無法進入省電模式。 Please refer to FIG. 2, which is a schematic diagram of a conventional master-slave architecture system with remote control functions. The master-slave architecture system 900 includes a host system 902 and a first power supply subsystem 904 and a second power supply subsystem 906. The main system 902 is connected to the first power supply subsystem 904 and the second power supply subsystem 906, respectively. Main system 902 includes a hardware switch 9022. The hardware switch 9022 of the main system 902 can remotely transmit a control signal to the first power supply subsystem 904 and the second power supply subsystem 906. Although the main system 902 can remotely control the opening or closing of the first power supply subsystem 904 and the second power supply subsystem 906 by the switch 9022, the first power supply subsystem 904 and the second power supply subsystem 906 need to be in operation for a long time. The mode waits to receive the control signal transmitted by the main system 902 at any time, and therefore cannot enter the power saving mode.

綜上可知,現有之主從式架構系統,特別在通訊以及即時監控上存在改進之空間,急需針對上述之缺點進行改進。 In summary, the existing master-slave architecture system, especially in communication and real-time monitoring, has room for improvement, and it is urgent to improve the above shortcomings.

有鑑於習知技術的缺失,本發明旨在提供一種提升節能效率之同步控制系統架構,藉由主系統以遠端即時監測多個子系統的電池狀態,並且各個子系統的電源開關權限由韌體掌控,以達到智慧能源能管理。 In view of the lack of the prior art, the present invention aims to provide a synchronous control system architecture that improves energy-saving efficiency. The main system remotely monitors the battery status of multiple subsystems at a remote location, and the power switching authority of each subsystem is controlled by the firmware. Take control to achieve smart energy management.

為達本發明之目的,本發明提出一種提升節能效率之同步控制系統架構,其包括:一主系統以及至少一供電子系統,主系統包含一用電分析模組;供電子系統經由一信號連斷裝置以有線或無線方式與該主系統之間通訊,該供電子系統包含:至少一電池模組以及一供電處理模組,電池模組被配置為供給與儲存電力;供電處理模組係電性連接該電池模組且被配置為接收該電池模組的一偵測信號,該供電處理模組根據該偵測信號確認該電池模組的電池狀態,並且經由該信號連斷裝置傳送該電池狀態至該主系統的該用電分析模組進行分析,該偵測信號係包含電壓信號、電流信號或溫度信號的至少其中一者;其中該主系統根據該電池狀態而發送一反饋信號且經由該信號連斷裝置傳送至該供電處理模組進行處理,以使該供電子系統與該主系統之間保持通訊,從而使該供電子系統進行放電程序或充電程序,或者控制該信號連斷裝置斷開該供電子系統與該主系統之間的通訊,以停用該供電子系統且使其進入一待機休眠狀態。 For the purpose of the present invention, the present invention provides a synchronous control system architecture for improving energy-saving efficiency, comprising: a main system and at least one power supply subsystem, the main system includes a power analysis module; and the power supply subsystem is connected via a signal The power supply subsystem communicates with the main system in a wired or wireless manner. The power supply subsystem includes: at least one battery module and a power processing module, the battery module is configured to supply and store power; and the power processing module is powered Connected to the battery module and configured to receive a detection signal of the battery module, the power processing module confirms the battery state of the battery module according to the detection signal, and transmits the battery via the signal breaking device The state is analyzed by the power analysis module of the main system, where the detection signal includes at least one of a voltage signal, a current signal, or a temperature signal; wherein the main system sends a feedback signal according to the battery state and The signal breaking device is transmitted to the power processing module for processing, so that the power supply subsystem and the main system maintain communication, The power supply subsystem for the charging or discharge process procedures, the control signal or disconnect the communication breaking device is connected between the power supply subsystem and the host system to disable the power supply subsystem and allowed to enter a standby hibernation.

於一實施例中,其中該信號連斷裝置係透過光耦合或磁耦合之電氣隔離方式,以使該供電子系統與該主系統以光、磁、射頻載波方式傳遞信號。 In an embodiment, the signal breaking device is electrically isolated by optical coupling or magnetic coupling, so that the power supply subsystem and the main system transmit signals in an optical, magnetic, and radio frequency carrier manner.

於一實施例中,其中該信號連斷裝置包含有一控制信號連斷模組以及一通訊信號連斷模組,該控制信號連斷模組以及該通訊信號連斷模組係以RS485、RS232、或其它的資料通訊介面與該主系統連接。 In one embodiment, the signal breaking device includes a control signal connection module and a communication signal connection module, the control signal connection module and the communication signal connection module are RS485, RS232, Or other data communication interface is connected to the main system.

於一實施例中,其中該通訊信號連斷模組更包含一低壓保護電路,該低壓保護電路係提供該通訊信號連斷模組判斷該供電子系統的電源電壓或電池模組的電壓是否低於一設定電壓值。 In an embodiment, the communication signal connection module further includes a low voltage protection circuit, and the low voltage protection circuit provides the communication signal connection module to determine whether the power supply voltage of the power supply subsystem or the voltage of the battery module is low. Set the voltage value at one.

於一實施例中,其中當該電池模組的電壓低於該設定電壓值,該供電處理模組控制該信號連斷裝置斷開該供電子系統與該主系統之間的通訊,以使該供電子系統進入該待機休眠狀態。 In an embodiment, wherein the voltage of the battery module is lower than the set voltage value, the power processing module controls the signal disconnecting device to disconnect communication between the power supply subsystem and the main system, so that the The power supply subsystem enters the standby sleep state.

於一實施例中,其中當處於該待機休眠狀態之該供電子系統中的該電池模組之電壓等於或高於該設定電壓值,該主系統發送信號喚醒處於該待機休眠狀態之該供電子系統,使該供電子系統與該主系統之間進行通訊,從而使該供電子系統進行放電程序或充電程序。 In an embodiment, wherein the voltage of the battery module in the power supply subsystem in the standby sleep state is equal to or higher than the set voltage value, the main system sends a signal to wake up the electronic supply in the standby sleep state. The system causes the power supply subsystem to communicate with the main system, thereby causing the power supply subsystem to perform a discharging process or a charging process.

於一實施例中,其中該主系統與該供電子系統之間未以共同通訊協定通訊時,該供電子系統進入該待機休眠狀態且由該主系統發出警告。 In an embodiment, when the main system and the power supply subsystem are not communicating by a common communication protocol, the power supply subsystem enters the standby sleep state and is issued a warning by the main system.

於一實施例中,其中該供電處理模組自該主系統所發出的該反饋信號中取得一電源開啟權限,以喚醒該處於待機休眠狀態的供電子系統,使該供電子系統與該主系統之間保持通訊,從而使該供電子系統進行放電程序或充電程序。 In an embodiment, the power processing module obtains a power-on permission from the feedback signal sent by the main system to wake up the power supply subsystem in the standby sleep state, so that the power supply subsystem and the main system Communication is maintained between the power supply subsystems for discharging or charging procedures.

於一實施例中,其中該供電處理模組更包括一容量狀態元件、一充電狀態元件以及一健康狀態元件;該些元件係用以計算該電池模組的狀態並且將該狀態傳送至該主系統之該用電分析模組進行分析,當該容量狀態元件、該充電狀態元件或該健康狀態元件中任一者計算該電池模組的狀態不符合該電池模組的狀態設定值或不處於設定值範圍內,該供電子系統進入該待機休眠狀態。 In an embodiment, the power processing module further includes a capacity state component, a state of charge component, and a health state component; the components are used to calculate a state of the battery module and transmit the state to the master The power analysis module of the system performs analysis, and when the capacity state component, the state of charge component, or the health state component calculates that the state of the battery module does not meet the state setting value of the battery module or is not at Within the set value range, the power supply subsystem enters the standby sleep state.

於一實施例中,其中當處於該待機休眠狀態之該供電子系統中的該電池模組的狀態滿足該電池模組的狀態設定值或處於設定值範圍內,該主系統發送信號喚醒處於該待機休眠狀態之該供電子系統,使該供電子系統與該主系統之間進行通訊,從而使該供電子系統進行放電程序或充電程序。 In an embodiment, when the state of the battery module in the power supply subsystem in the standby sleep state satisfies the state setting value of the battery module or is within a set value range, the main system sends a signal to wake up in the The power supply subsystem in the standby sleep state enables communication between the power supply subsystem and the host system, thereby causing the power supply subsystem to perform a discharge program or a charging procedure.

100‧‧‧同步控制系統架構 100‧‧‧Synchronous Control System Architecture

110‧‧‧供電子系統 110‧‧‧Power supply subsystem

111‧‧‧電池模組 111‧‧‧Battery module

112‧‧‧供電處理模組 112‧‧‧Power processing module

120‧‧‧主系統 120‧‧‧Main system

121‧‧‧用電分析模組 121‧‧‧Electric analysis module

130‧‧‧信號連斷裝置 130‧‧‧Signal breaking device

200‧‧‧應用端主機 200‧‧‧Application host

210‧‧‧應用端連接埠 210‧‧‧Application port埠

300‧‧‧同步控制系統(並聯架構) 300‧‧‧Synchronous control system (parallel architecture)

300”‧‧‧同步控制系統(串聯架構) 300”‧‧‧Synchronous Control System (Series Architecture)

302‧‧‧主系統 302‧‧‧Main system

304‧‧‧第一供電子系統 304‧‧‧First Power Supply Subsystem

314‧‧‧第一供電處理模組 314‧‧‧First power supply processing module

324‧‧‧第一電池組 324‧‧‧First battery pack

334‧‧‧第一控制信號連斷模組 334‧‧‧First control signal connection module

344‧‧‧第一通訊信號連斷模組 344‧‧‧First communication signal connection module

3440‧‧‧第一低壓保護電路 3440‧‧‧First low voltage protection circuit

306‧‧‧第二供電子系統 306‧‧‧second power supply subsystem

316‧‧‧第二供電處理模組 316‧‧‧second power supply processing module

326‧‧‧第二電池組 326‧‧‧Second battery pack

336‧‧‧第二控制信號連斷模組 336‧‧‧Second control signal connection module

346‧‧‧第二通訊信號連斷模組 346‧‧‧Second communication signal connection module

3460‧‧‧第二低壓保護電路 3460‧‧‧Second low voltage protection circuit

800‧‧‧主從式架構系統 800‧‧‧Master-slave architecture system

802‧‧‧主系統 802‧‧‧ main system

804‧‧‧第一供電子系統 804‧‧‧First Power Supply Subsystem

806‧‧‧第二供電子系統 806‧‧‧second power supply subsystem

8042‧‧‧第一硬體開關 8042‧‧‧First hardware switch

8062‧‧‧第二硬體開關 8062‧‧‧Second hardware switch

900‧‧‧主從式架構系統 900‧‧‧Master-slave architecture system

902‧‧‧主系統 902‧‧‧Main system

904‧‧‧第一供電子系統 904‧‧‧First Power Supply Subsystem

906‧‧‧第二供電子系統 906‧‧‧second power supply subsystem

9022‧‧‧開關 9022‧‧‧Switch

A1‧‧‧第一電源開啟權限信號 A1‧‧‧First power-on permission signal

A2‧‧‧第二電源開啟權限信號 A2‧‧‧Second power-on permission signal

C1‧‧‧第一控制信號 C1‧‧‧ first control signal

C2‧‧‧第二控制信號 C2‧‧‧second control signal

S1‧‧‧第一通訊信號 S1‧‧‧first communication signal

S2‧‧‧第二通訊信號 S2‧‧‧second communication signal

圖1係顯示傳統無通訊功能之主從式架構系統示意圖。 Figure 1 is a schematic diagram showing a master-slave architecture system with a traditional communication-free function.

圖2係顯示傳統具遠端控制功能之主從式架構系統示意圖。 Figure 2 is a schematic diagram showing a conventional master-slave architecture system with remote control functions.

圖3係顯示本發明之同步控制系統架構的示意圖。 Figure 3 is a schematic diagram showing the architecture of the synchronous control system of the present invention.

圖4係顯示根據本發明之同步系統架構的應用示意圖。 4 is a schematic diagram showing the application of the synchronization system architecture in accordance with the present invention.

圖5係顯示根據圖4之應用系統一實施例的簡易架構示意圖。 FIG. 5 is a schematic diagram showing a simplified architecture of an embodiment of the application system according to FIG.

圖6係顯示根據圖4之應用系統另一實施例的簡易架構示意圖。 6 is a simplified schematic diagram showing another embodiment of the application system according to FIG. 4.

現在將詳細地參照在本發明中所揭示的同步控制系統的優選實施例,在以下的描述中,還提供了同步控制系統的例子。在本發明中所揭示的同步控制系統的示例性實施例被詳細描述,但對於相關技術領域的人員來說很明顯,為清楚起見,對於理解同步控制系統不是特別重要的一些特徵可能沒有示出。 Referring now in detail to the preferred embodiment of the synchronous control system disclosed in the present invention, in the following description, an example of a synchronous control system is also provided. Exemplary embodiments of the synchronous control system disclosed in the present invention are described in detail, but it will be apparent to those skilled in the relevant art that some features that are not particularly important for understanding the synchronous control system may not be shown for clarity. Out.

此外,應該理解,在本發明中所揭示的同步控制系統不限於以下描述的詳細實施例,本領域技術人員可以對它們做出各種變化和修改,而不脫離同步控制與保護的精神或範圍。例如,不同的描述性實施例的裝置和/或特徵可以在本發明中所揭示的範圍內彼此組合和/或彼此替代。 In addition, it should be understood that the synchronous control system disclosed in the present invention is not limited to the detailed embodiments described below, and various changes and modifications may be made thereto without departing from the spirit or scope of the synchronous control and protection. For example, the devices and/or features of the different illustrative embodiments may be combined with each other and/or substituted for each other within the scope disclosed in the present disclosure.

請參閱圖3,其為本發明之提升節能效率之同步控制系統架構的示意圖,本實施例中的同步控制系統架構100,其包括一主系統120以及至少一供電子系統110,該主系統120中包含有一用電分析模組121以接收來自該供電子系統110的電池狀態資訊,並經由運算分析以對該供電子系統110發出命令進行控制;供電子系統110係經由一信號連斷裝置130以有 線或無線方式與該主系統120之間通訊,該供電子系統110包含至少一電池模組111以及一供電處理模組112,該電池模組係被配置為供給電力;該供電處理模組112,其電性連接該電池模組111且被配置為接收該電池模組111的一偵測信號,該偵測信號係包含電壓信號、電流信號或溫度信號的至少其中一者;而該供電處理模組112根據該偵測信號確認該電池模組111的電池狀態,並且經由該信號連斷裝置130傳送該電池狀態至該主系統120的該用電分析模組121進行分析;其中該主系統根據該電池狀態而發送一反饋信號且經由該信號連斷裝置130傳送至該供電處理模組112進行處理,以使該供電子系統與該主系統之間保持通訊,從而使該供電子系統進行放電程序或充電程序,或者控制該信號連斷裝置130斷開該供電子系統110與該主系統120之間的通訊,以停用該供電子系統110且使其進入一待機休眠狀態。 Please refer to FIG. 3 , which is a schematic diagram of the architecture of the synchronous control system for improving energy efficiency in the present invention. The synchronous control system architecture 100 in the embodiment includes a main system 120 and at least one power supply subsystem 110. The main system 120 The utility model includes a power analysis module 121 for receiving battery state information from the power supply subsystem 110, and controlling the power supply subsystem 110 to perform commands through operation analysis; the power supply subsystem 110 is connected to the power supply subsystem 110 via a signal. Have The power supply subsystem 110 includes at least one battery module 111 and a power processing module 112 configured to supply power; the power processing module 112 is configured to communicate with the main system 120. The battery module 111 is electrically connected to the battery module 111 and configured to receive a detection signal of the battery module 111, the detection signal comprising at least one of a voltage signal, a current signal or a temperature signal; and the power processing The module 112 confirms the battery state of the battery module 111 according to the detection signal, and transmits the battery state to the power analysis module 121 of the main system 120 via the signal breaking device 130 for analysis; wherein the main system Sending a feedback signal according to the state of the battery and transmitting to the power processing module 112 via the signal breaking device 130 for processing, so that the power supply subsystem and the main system maintain communication, thereby enabling the power supply subsystem to perform Discharging a program or charging program, or controlling the signal disconnecting device 130 to disconnect communication between the power supply subsystem 110 and the host system 120 to deactivate the power supply subsystem 110 and Enter a standby hibernation.

根據本發明一實施例,每個供電子系統110(為了簡化,“供電子系統”可稱為“子系統”)經由該信號連斷裝置130的通訊介面(圖未示),使其可拆卸地連接(connectable)到主系統120的模組介面(圖未示)以與該主系統120進行通訊,其中信號連斷裝置130的通訊介面可以是RS232、RS422、MODBUS、或RS485的資料連接埠;再者,可使各子系統110模組化,讓子系統(電池模組)可以串接,也可以並接,依系統規格需求來架構。這裡為了簡化描述,一個子系統110或更多子系統110可串聯或並聯組合,從而形成多個供電子系統。子系統110的數目和構型可根據所需的電壓和電池容量確定。主系統120通過一應用端連接埠210與系統應用端主機200進行通訊及電力傳輸,該應用端主機200可為太陽儲能系統、不斷電UPS系統、伺服器並聯系統、電動車電池串聯系統或電動車電池並聯系統,在此不限制。 According to an embodiment of the invention, each power supply subsystem 110 (for simplicity, the "power supply subsystem" may be referred to as a "subsystem") is detachable via the signal communication interface (not shown) of the device 130. The module interface (not shown) of the main system 120 is connected to communicate with the main system 120. The communication interface of the signal breaking device 130 can be a data connection of RS232, RS422, MODBUS, or RS485. Furthermore, each subsystem 110 can be modularized, so that the subsystems (battery modules) can be connected in series or in parallel, and are structured according to system specifications. Here, to simplify the description, one subsystem 110 or more subsystems 110 may be combined in series or in parallel to form a plurality of power supply subsystems. The number and configuration of subsystems 110 can be determined based on the required voltage and battery capacity. The main system 120 communicates with the system application host 200 through an application port 210, which can be a solar energy storage system, an uninterruptible UPS system, a server parallel system, and an electric vehicle battery series system. Or electric vehicle battery parallel system, here is not limited.

承上所述,資料、資訊或信號可通過該信號連斷裝置130的通訊介面在子系統110和主系統120之間傳遞,而電力傳輸係經由電源匯流排或電力線網路(圖未示)進行傳輸。資料線可與信號線分開,例如,當有多個子系統110或用於應用端主機200的規範制度要求目的時。資料可通過光學的、數位電子線路、資料匯流排、類比電子線路、無線等傳輸。相同地,資料和信號可在主系統120與應用端主機200之間傳遞。 As described above, data, information or signals can be transmitted between the subsystem 110 and the main system 120 through the communication interface of the signal breaking device 130, and the power transmission is via a power bus or power line network (not shown). Transfer. The data lines can be separated from the signal lines, for example, when there are multiple subsystems 110 or for the purpose of the specification system of the application host 200. Data can be transmitted via optical, digital electronic circuits, data busses, analog electronic circuits, wireless, and the like. Similarly, data and signals can be passed between the host system 120 and the application host 200.

根據本發明一實施例,子系統110可包括一個或多個電池模組111。電池模組111以串聯或並聯的方式連接從而形成具有足夠能量和電力的能量存儲單元,以執行子系統110的預期功能。該能量存儲單元可以是,例如,電化學電池、電容器、超/超級電容器、鋰離子電容器或其他能量記憶體件。電化學電池可以是,例如,鋰離子、鎳鎘、鉛酸或其他可變化學物質。電力可經電源匯流排(圖未示)流入電池模組111或流出電池模組111。電池模組111可經電源匯流排或電力線網路(圖未示)到達主系統120。 Subsystem 110 may include one or more battery modules 111, in accordance with an embodiment of the present invention. The battery modules 111 are connected in series or in parallel to form an energy storage unit with sufficient energy and power to perform the intended function of the subsystem 110. The energy storage unit can be, for example, an electrochemical cell, a capacitor, a super/supercapacitor, a lithium ion capacitor, or other energy storage device. The electrochemical cell can be, for example, lithium ion, nickel cadmium, lead acid or other variable chemical. The power can flow into the battery module 111 or out of the battery module 111 via a power bus (not shown). The battery module 111 can reach the main system 120 via a power bus or power line network (not shown).

根據本發明一實施例,子系統110更可包括有充電線路(圖未示),其對電池模組111執行再充電功能。充電線路可接收從該應用端主機200輸送的電力(例如,太陽儲能系統),或者充電線路可從主系統120接收再充電電力,並可輸送再充電電力到電池模組111。充電線路可將接收到的再充電電力轉換為如所用設備所確定的穩定受控的電源,從而安全或有效地對電池模組111充電。其中充電線路可根據充電演算法而受控。 According to an embodiment of the invention, the subsystem 110 further includes a charging circuit (not shown) that performs a recharging function on the battery module 111. The charging line can receive power delivered from the application host 200 (eg, a solar energy storage system), or the charging line can receive recharging power from the main system 120 and can deliver recharging power to the battery module 111. The charging circuit can convert the received recharging power into a stably controlled power source as determined by the device used to safely or efficiently charge the battery module 111. The charging line can be controlled according to the charging algorithm.

根據本發明一實施例,子系統110還可包括一個或更多電流感測器(圖未示)。每個電池模組111可配置有一個電流感測器,或者電流感測器可用於所有電池模組111或部分電池模組111。電流感測器可產生相應於流過電源匯流排的電流的幅值的信號。 According to an embodiment of the invention, subsystem 110 may also include one or more current sensors (not shown). Each battery module 111 can be configured with a current sensor, or the current sensor can be used for all of the battery modules 111 or a portion of the battery modules 111. The current sensor can generate a signal corresponding to the magnitude of the current flowing through the power bus.

根據本發明一實施例,子系統110還可包括電力開關元件(圖未示),電力開關元件能夠控制從子系統110輸送到主系統120或系統應用端 主機200的電力。電力開關元件係通過接收一個或更多來自控制邏輯模組(圖未示)的信號,根據這些信號的狀況,斷開邏輯模組可輸出信號到電力開關元件,從而通知其控制從子系統110流出的電力;其中在電氣斷開狀態下允許子系統110可併入連接或斷開分離主系統120。 According to an embodiment of the invention, subsystem 110 may further include a power switching element (not shown) that is capable of controlling delivery from subsystem 110 to host system 120 or system application The power of the host 200. The power switching element receives one or more signals from a control logic module (not shown). According to the condition of the signals, the disconnect logic module can output a signal to the power switching element to notify the control slave subsystem 110. The outgoing power; wherein the subsystem 110 is allowed to be incorporated into or disconnected from the primary system 120 in an electrically disconnected state.

根據本發明一實施例,子系統110還可包括過大電流警報器(圖未示),其接收來自上述電流感測器的信號,並確定電流是否超過給定值。過大電流警報器可與斷開邏輯模組通信,從而提供關於是否應斷開從子系統110流入主系統120的電力的資訊。 In accordance with an embodiment of the invention, subsystem 110 may also include an overcurrent alarm (not shown) that receives signals from the current sensors and determines if the current exceeds a given value. The overcurrent alarm can communicate with the disconnect logic module to provide information as to whether power to flow from subsystem 110 to main system 120 should be disconnected.

根據本發明一實施例,供電處理模組112可包括一個或更多微處理器(例如,CPU、DSP、MPU、MCU、微控制器、微處理器等等)以及相關的記憶體(例如,快閃記憶體、EEPROM、RAM等等)並且搭配可控整流器(例如,Active Front End,AFE)執行運作。供電處理模組112可執行存儲在一個或更多個電腦可讀介質如關聯記憶體上的軟體指令,並可接收電池模組111所產生的或與電池模組111關聯的信號,如溫度信號、電壓信號或電流信號且可將這些信號轉換為數位資料進一步處理。 According to an embodiment of the invention, the power processing module 112 may include one or more microprocessors (eg, CPU, DSP, MPU, MCU, microcontroller, microprocessor, etc.) and associated memory (eg, Flash memory, EEPROM, RAM, etc.) and operate with a controlled rectifier (eg Active Front End, AFE). The power processing module 112 can execute software instructions stored on one or more computer readable media, such as associated memory, and can receive signals generated by the battery module 111 or associated with the battery module 111, such as temperature signals. , voltage or current signals and convert these signals into digital data for further processing.

根據本發明一實施例,供電處理模組112還可包括測試元件(圖未示),其可運用子系統110中的一個或更多元件來測試內部電源電壓、測試電池模組111的健康狀態,以及啟動時執行、連續或依需求執行其他功能性檢測。這些測試的結果可經該信號連斷裝置130傳輸到主系統120,從而確定子系統110的整體健康狀況。 According to an embodiment of the invention, the power processing module 112 may further include a test component (not shown) that can apply one or more components of the subsystem 110 to test the internal power supply voltage and test the health status of the battery module 111. , and perform other functional tests at startup, continuously, or as needed. The results of these tests can be transmitted to the host system 120 via the signal disconnect device 130 to determine the overall health of the subsystem 110.

根據本發明一實施例,供電處理模組112還可包括容量狀態元件(圖未示)、充電狀態元件(圖未示)以及健康狀態元件(圖未示);該些元件的每一個都可計算電池模組111的不同狀態;其中容量狀態元件可計算電池模組111剩餘電容量狀態;進一步說明,電池模組111的容量狀態可用過去的和當前的性能參數(如電池模組111的放電速率、電池模組111隨時間 變化的電壓、回應負載變化的電池模組111的電壓、電池模組111的阻抗變化、或檢測電池容量損耗的其他技術)計算。 According to an embodiment of the invention, the power processing module 112 may further include a capacity status component (not shown), a charging state component (not shown), and a health state component (not shown); each of the components may be Calculating different states of the battery module 111; wherein the capacity state component can calculate the remaining capacity state of the battery module 111; further illustrating that the capacity state of the battery module 111 can be used for past and current performance parameters (such as the discharge of the battery module 111) Rate, battery module 111 over time The calculated voltage, the voltage of the battery module 111 in response to the load change, the impedance change of the battery module 111, or other techniques for detecting the battery capacity loss are calculated.

承上所述,充電狀態元件可計算電池模組111的自上述充電器進行充電的充電狀態(例如,當前存儲在電池模組111中的電荷量的百分比)。電池模組111的充電狀態可通過如下方式計算:測量電池模組111的電壓、在時間上對電池模組111的測量電流積分等等。 As described above, the state-of-charge component can calculate the state of charge of the battery module 111 from the above-described charger (eg, the percentage of the amount of charge currently stored in the battery module 111). The state of charge of the battery module 111 can be calculated by measuring the voltage of the battery module 111, integrating the measured current of the battery module 111 in time, and the like.

承上所述,健康狀態元件可計算電池模組111的健康狀況的狀態。健康狀態可以是資料參數或參數集合,其指示電池模組111的整體健康,並可用於根據即將到來的故障或功能喪失而因應未來計畫的更換;健康狀況可通過評估下列中的一個或更多個而計算:A.回應於負載的電池模組111的電壓;B.電池模組111的阻抗變化;C.子系統110中各個電池模組111之間的電壓不平衡性;D.電池模組111阻抗的變化速率;E.電池模組111的容量狀態的變化速率。 As described above, the health status component can calculate the status of the health of the battery module 111. The health status may be a data parameter or a set of parameters that indicate the overall health of the battery module 111 and may be used to respond to future plans based on an upcoming failure or loss of function; the health status may be assessed by one of the following or more Calculated by multiple: A. voltage of the battery module 111 in response to the load; B. impedance change of the battery module 111; C. voltage imbalance between the battery modules 111 in the subsystem 110; D. The rate of change of the impedance of the module 111; E. the rate of change of the capacity state of the battery module 111.

承上所述,通過上述容量狀態元件、充電狀態元件或健康狀態元件計算電池模組111的狀態可經該信號連斷裝置130傳輸到主系統120中的該用電分析模組121進行分析,而該主系統120根據該電池狀態而發送反饋信號(經該信號連斷裝置130)傳送至該供電處理模組121的微處理器進行資料處理。 As described above, the state of the battery module 111 is calculated by the capacity state component, the state of charge component, or the health state component, and can be transmitted to the power analysis module 121 in the main system 120 for analysis by the signal breaking device 130. The main system 120 transmits a feedback signal (via the signal breaking device 130) to the microprocessor of the power processing module 121 for data processing according to the battery state.

根據本發明一實施例,該信號連斷裝置130可包含一控制信號連斷模組(圖未示)以及一通訊信號連斷模組(圖未示),該控制信號連斷模組以及該通訊信號連斷模組係以RS232、RS422、MODBUS、RS485、或其它的資料通訊介面與該主系統120連接;該些信號連斷模組可透過光耦合或磁耦合之電氣隔離方式,以使該供電子系統110與該主系統120以光、 磁、射頻載波方式傳遞信號或者斷開信號。該通訊信號連斷模組更包含一低壓保護電路(圖未示),該低壓保護電路係提供該通訊信號連斷模組判斷該子系統110的電源電壓或電池模組111的電壓是否低於一設定電壓值,當該電池模組111的電壓低於該設定電壓值時,該供電處理模組112控制該信號連斷裝置斷開該供電子系統110與該主系統120之間的通訊,以使該供電子系統進入該待機休眠狀態。 According to an embodiment of the invention, the signal breaking device 130 can include a control signal breaking module (not shown) and a communication signal breaking module (not shown), the control signal connecting module and the The communication signal connection module is connected to the main system 120 by RS232, RS422, MODBUS, RS485, or other data communication interface; the signal connection module can be electrically isolated by optical coupling or magnetic coupling to enable The power supply subsystem 110 and the main system 120 are light, The magnetic or radio frequency carrier transmits or disconnects the signal. The communication signal connection module further comprises a low voltage protection circuit (not shown), wherein the low voltage protection circuit provides the communication signal connection module to determine whether the power voltage of the subsystem 110 or the voltage of the battery module 111 is lower than When the voltage of the battery module 111 is lower than the set voltage value, the power processing module 112 controls the signal disconnecting device to disconnect the communication between the power supply subsystem 110 and the main system 120. So that the power supply subsystem enters the standby sleep state.

承上所述,主系統120的用電分析模組121可與每個子系統110通信且包括一個或更多微處理器(例如,CPU、DSP、MPU、MCU、微控制器、微處理器等等)以及相關的記憶體(例如,快閃記憶體、EEPROM、RAM等等);當用電分析模組121接收上述容量狀態元件、充電狀態元件或健康狀態元件計算電池模組111的狀態符合電池模組111的狀態設定值或處於設定範圍內時,該子系統110的供電處理模組112係自反饋信號中接收一電源開啟權限,通過該通訊信號連斷模組以使該主系統120與子系統110保持通訊,從而使子系統110維持在工作模式以進行放電程序或充電程序。 As described above, the power analysis module 121 of the main system 120 can communicate with each subsystem 110 and include one or more microprocessors (eg, CPU, DSP, MPU, MCU, microcontroller, microprocessor, etc.) And the associated memory (eg, flash memory, EEPROM, RAM, etc.); when the power analysis module 121 receives the capacity state component, the state of charge component, or the health state component, the state of the battery module 111 is calculated. When the state setting value of the battery module 111 is within the set range, the power processing module 112 of the subsystem 110 receives a power-on permission from the feedback signal, and the module is connected by the communication signal to make the host system 120 Communication is maintained with subsystem 110 to maintain subsystem 110 in an operational mode for discharging or charging procedures.

承上所述,當用電分析模組121接收上述容量狀態元件、充電狀態元件或健康狀態元件計算電池模組111的狀態不符合電池模組111的狀態設定值或處於設定值範圍內,或者當該電池模組111的電壓低於該設定電壓值,又或者接收到該主系統與該供電子系統之間未以共同通訊協定通訊時,該子系統110的供電處理模組112所接收的反饋信號中則不包含該電源開啟權限,該通訊信號連斷模組則斷開該主系統120與子系統110之間的通訊,以使電池模組111斷開與該主系統120(或負載)之間的電力傳輸,該供電處理模組112係控制該子系統110準備進入該待機休眠狀態,而該主系統120因無法取得與異常狀態的該仔細通進行通訊,將會發出異常警告;透過該異常警告可指示維修人員去了解異常原因,並且進行維修或更換。 As described above, when the power analysis module 121 receives the capacity state component, the state of charge component, or the health state component, the state of the battery module 111 does not meet the state setting value of the battery module 111 or is within a set value range, or When the voltage of the battery module 111 is lower than the set voltage value, or when the main system and the power supply subsystem are not communicated by the common communication protocol, the power processing module 112 of the subsystem 110 receives The power signal is not included in the feedback signal, and the communication signal disconnect module disconnects the communication between the host system 120 and the subsystem 110 to disconnect the battery module 111 from the host system 120 (or load) The power transmission processing module 112 controls the subsystem 110 to prepare to enter the standby sleep state, and the main system 120 will issue an abnormal warning because it cannot obtain the careful communication with the abnormal state; Through this abnormal warning, the maintenance personnel can be instructed to understand the cause of the abnormality and repair or replace it.

承上所述,當完成異常原因排除後(例如,自該該信號連斷裝置130將子系統拆除更換新的子系統110),該子系統110中的供電處理模組112將即刻進行子系統的程式初始化、設定觸發脈衝、起始、邏輯狀態、結束之資料傳送計時長度等等,並且由上述容量狀態元件、充電狀態元件或健康狀態元件計算電池模組111的狀態,待完成後經該控制信號連動模組將資料傳送至該主系統120的用電分析模組121進行分析,用電分析模組121接收更換後電池模組111或排除異常狀態後,若符合電池模組111的狀態設定值或處於設定範圍內,該主系統120將傳送含有電源開啟權限的反饋信號,以喚醒該子系統110的供電處理模組112內的微處理器發出控制訊號以使該通訊信號連斷模組開啟,從而使該主系統120與子系統110進行通訊,從而使子系統110準備進入工作模式以進行放電程序或充電程序。 As described above, when the abnormal cause is removed (for example, the subsystem is removed from the signal disconnecting device 130 to replace the new subsystem 110), the power processing module 112 in the subsystem 110 will immediately perform the subsystem. Program initialization, setting trigger pulse, start, logic state, end data transfer timing length, etc., and calculating the state of the battery module 111 by the above-described capacity state component, charge state component or health state component, after completion The control signal linkage module transmits the data to the power analysis module 121 of the main system 120 for analysis, and the power analysis module 121 receives the replaced battery module 111 or removes the abnormal state, and if the state of the battery module 111 is met. If the set value is within the set range, the main system 120 will transmit a feedback signal containing the power-on authority to wake up the microprocessor in the power processing module 112 of the subsystem 110 to send a control signal to disconnect the communication signal. The group is turned on to cause the host system 120 to communicate with the subsystem 110 to prepare the subsystem 110 to enter an operational mode for discharging or charging. .

請參閱圖4且一併參考圖5所示,其分別為本發明同步系統架構的應用示意圖,以及同步控制系統的簡易架構示意圖。該同步控制系統300係可應用於太陽能供電系統架構(如圖4),其包括:主系統302、第一供電子系統304以及第二供電子系統306。第一供電子系統304連接主系統302。第二供電子系統306連接主系統302。第一供電子系統304與主系統302間之電氣連接,以及第二供電子系統306與主系統302間之電氣連接,為光耦合或磁耦合之電氣隔離方式。需說明的是,本實施例中,第一供電子系統302與第二供電子系統304係以並聯連接作說明,然,本發明之複數次系統之同步控制系統亦適用於主系統302與第一供電子系統302、第二供電子系統304作串聯連接之同步控制系統。 Please refer to FIG. 4 and refer to FIG. 5 together, which are respectively schematic diagrams of application of the synchronization system architecture of the present invention, and a simplified architecture diagram of the synchronous control system. The synchronous control system 300 is applicable to a solar power system architecture (as shown in FIG. 4), and includes a main system 302, a first power supply subsystem 304, and a second power supply subsystem 306. The first power supply subsystem 304 is coupled to the main system 302. The second power supply subsystem 306 is coupled to the primary system 302. The electrical connection between the first power supply subsystem 304 and the main system 302, and the electrical connection between the second power supply subsystem 306 and the main system 302 are electrically isolated by optical coupling or magnetic coupling. It should be noted that, in this embodiment, the first power supply subsystem 302 and the second power supply subsystem 304 are connected in parallel. However, the synchronous control system of the plurality of systems of the present invention is also applicable to the primary system 302 and the A power supply subsystem 302 and a second power supply subsystem 304 are connected in series to form a synchronous control system.

第一供電子系統304可拆卸地連接第一控制信號連斷模組334、第一通訊信號連斷模組344且包含第一供電處理模組314以及第一電池組324。主系統302分別連接第一控制信號連斷模組334以及第一通訊信號連斷模組344。第一供電處理模組314可控制第一電池組324之開啟或關 閉,在此說明,「關閉」係指停止進行放電或充電程序,「開啟」係指進行放電或充電程序。主系統302與第一控制信號連斷模組334、第一通訊信號連斷模組344、第二控制信號連斷模組336以及該第二通訊信號連斷模組346間係經由RS485通訊介面之來傳輸資料。 The first power supply subsystem 304 is detachably connected to the first control signal connection module 334, the first communication signal connection module 344, and includes a first power processing module 314 and a first battery unit 324. The main system 302 is connected to the first control signal connection module 334 and the first communication signal connection module 344, respectively. The first power processing module 314 can control the opening or closing of the first battery pack 324. Closed, here, "off" means stopping the discharge or charging process, and "on" means discharging or charging. The main system 302 is connected to the first control signal splicing module 334, the first communication signal splicing module 344, the second control signal splicing module 336, and the second communication signal splicing module 346 via the RS485 communication interface. To transfer data.

第二供電子系統306可拆卸地連接第二控制信號連斷模組336、第二通訊信號連斷模組346且包含第二供電處理模組316以及第二電池組326。主系統302分別連接第二控制信號連斷模組336以及第二通訊信號連斷模組346。第二供電處理模組316控制第二電池組326開啟或關閉。 The second power supply subsystem 306 is detachably connected to the second control signal connection module 336 and the second communication signal connection module 346 and includes a second power processing module 316 and a second battery unit 326. The main system 302 is connected to the second control signal breaking module 336 and the second communication signal breaking module 346, respectively. The second power processing module 316 controls the second battery pack 326 to be turned on or off.

主系統302與第一供電子系統304間之通訊,藉由主系統302傳送第一通訊信號S1至第一供電子系統304之第一通訊信號連斷模組344以喚醒第一供電子系統304。其中,主系統302藉由第一通訊信號S1喚醒第一供電子系統304,主系統302根據是否與第一供電子系統304進行通訊,而決定是否傳送第一控制信號S1。當主系統302與第一供電子系統304之間具有共同之通訊協定時,主系統302控制第一供電子系統304進行充電程序或放電程序,主系統302藉由傳送第一控制信號C1至第一控制信號連斷模組3044,主系統302可控制第一供電子系統304進行開啟或關閉之動作。 The main system 302 communicates with the first power supply subsystem 304, and the first communication signal S1 is transmitted from the main system 302 to the first communication signal connection module 344 of the first power supply subsystem 304 to wake up the first power supply subsystem 304. . The main system 302 wakes up the first power supply subsystem 304 by the first communication signal S1, and the main system 302 determines whether to transmit the first control signal S1 according to whether it communicates with the first power supply subsystem 304. When the main system 302 and the first power supply subsystem 304 have a common communication protocol, the main system 302 controls the first power supply subsystem 304 to perform a charging procedure or a discharging procedure, and the main system 302 transmits the first control signal C1 to the first A control signal is connected to the module 3044, and the main system 302 can control the first power supply subsystem 304 to perform an action of turning on or off.

當主系統302與第一供電子系統304間具有共同之通訊協定,並開始進行通訊時,主系統302係傳送第一電源開啟權限信號A1至第一供電子系統304之第一通訊信號連斷模組344,並同時傳送第一控制信號C1至第一控制信號連斷模組334。第一供電處理模組314係控制第一電池組324開啟。因此,第一電池組324則進行充電程序或放電程序。其中,充電程序係主系統302對第一供電子系統304中之第一電池組進行充電。 When the main system 302 and the first power supply subsystem 304 have a common communication protocol and start communication, the main system 302 transmits the first power-on authority signal A1 to the first power supply subsystem 304 to disconnect the first communication signal. The module 344 simultaneously transmits the first control signal C1 to the first control signal connection module 334. The first power processing module 314 controls the first battery pack 324 to be turned on. Therefore, the first battery pack 324 performs a charging process or a discharging process. The charging program main system 302 charges the first battery pack in the first power supply subsystem 304.

根據本發明一實施例,當主系統302與第一供電子系統304間之通訊未以共同通訊協定通訊時,主系統302則停止對第一供電子系統 304通訊,並發出一警告。第一供電處理模組314則控制第一電池組324關閉,第一供電子系統304準備進入待機休眠模式。 According to an embodiment of the invention, when communication between the primary system 302 and the first power supply subsystem 304 is not communicated by a common communication protocol, the primary system 302 stops the first power supply subsystem. 304 communication and issued a warning. The first power processing module 314 controls the first battery pack 324 to be turned off, and the first power supply subsystem 304 is ready to enter the standby sleep mode.

另外,主系統302藉由傳送第二通訊信號S2至第二通訊信號連斷模組346,主系統302與第二供電子系統306間進行通訊,主系統302藉由傳送第二控制信號C2至第二控制信號連斷模組336,以控制第二供電子系統306。其中,主系統302藉由第二通訊信號S2喚醒第二供電子系統306,主系統302根據是否與第二供電子系統306進行通訊,而決定是否傳送第二控制信號S2。當主系統302與第二供電子系統306之間具有共同之通訊協定時,主系統302控制第二供電子系統306進行充電程序或放電程序,主系統302藉由傳送第二控制信號C2至第二控制信號連斷模組336,主系統302可控制第二供電子系統306進行開啟或關閉之動作。主系統302藉由判斷與第一供電子系統304間是否有共同通訊協定以及喚醒機制,當判斷為「是」時,第一供電子系統304進入正常工作模式,當判斷為「否」時,第一供電子系統304進入關機省電模式,以達到智慧栓鎖機制之同步控制系統。 In addition, the main system 302 communicates between the main system 302 and the second power supply subsystem 306 by transmitting the second communication signal S2 to the second communication signal connection module 346, and the main system 302 transmits the second control signal C2 to The second control signal is coupled to the module 336 to control the second power supply subsystem 306. The main system 302 wakes up the second power supply subsystem 306 by the second communication signal S2, and the main system 302 determines whether to transmit the second control signal S2 according to whether it communicates with the second power supply subsystem 306. When the main system 302 and the second power supply subsystem 306 have a common communication protocol, the main system 302 controls the second power supply subsystem 306 to perform a charging procedure or a discharging procedure, and the main system 302 transmits the second control signal C2 to the first The second control signal is connected to the module 336, and the main system 302 can control the second power supply subsystem 306 to perform an action of turning on or off. The main system 302 determines whether there is a common communication protocol and a wake-up mechanism with the first power supply subsystem 304. When the determination is YES, the first power supply subsystem 304 enters the normal working mode. When the determination is No, The first power supply subsystem 304 enters a power-down mode to achieve a synchronous control system of the smart latch mechanism.

當主系統302與第二供電子系統306間具有共同之通訊協定,並開始進行通訊時,主系統302係傳送第二電源開啟權限信號A2至第二供電子系統306之第二通訊信號連斷模組346,並傳送第二控制信號C2至第二控制信號連斷模組336。第二供電處理模組316係控制第二電池組326開啟。因此,第二電池組326則進行充電程序或放電程序。其中,充電程序係主系統302對第二供電子系統306中之第二電池組326進行充電。主系統302藉由判斷與第二供電子系統306間是否有共同通訊協定以及喚醒機制,當判斷為「是」時,第二供電子系統306進入正常工作模式,當判斷為「否」時,第二供電子系統304進入關機省電模式,以達到智慧栓鎖機制之同步控制系統。 When the main system 302 and the second power supply subsystem 306 have a common communication protocol and start communication, the main system 302 transmits the second power-on permission signal A2 to the second communication signal of the second power supply subsystem 306. The module 346 transmits the second control signal C2 to the second control signal connection module 336. The second power processing module 316 controls the second battery pack 326 to be turned on. Therefore, the second battery pack 326 performs a charging process or a discharging process. The charging program main system 302 charges the second battery pack 326 of the second power supply subsystem 306. The main system 302 determines whether there is a common communication protocol and a wake-up mechanism with the second power supply subsystem 306. When the determination is YES, the second power supply subsystem 306 enters the normal working mode. When the determination is No, The second power supply subsystem 304 enters a power-down mode to achieve a synchronous control system of the smart latch mechanism.

根據本發明一實施例,主系統302與第二供電子系統304間之通訊未以共同通訊協定通訊時,則主系統302會停止對第二供電子系統306通訊,並發出警告。第二供電處理模組316控制第二電池組326關閉,第二供電子系統306進入待機休眠模式。 According to an embodiment of the invention, when the communication between the main system 302 and the second power supply subsystem 304 is not communicated by the common communication protocol, the main system 302 stops the communication with the second power supply subsystem 306 and issues a warning. The second power processing module 316 controls the second battery pack 326 to be turned off, and the second power supply subsystem 306 enters the standby sleep mode.

本實施例中,第一通訊信號連斷模組344可設有第一低壓保護電路3440。第二通訊信號連斷模組346可設有第二低壓保護電路3460。第一低壓保護電路3440用以偵測第一電池組324之電壓值,並判斷電壓值是否低於設定電壓值。第二低壓保護電路3460用以偵測第二電池組326之電壓值,並判斷電壓值是否低於設定電壓值。 In this embodiment, the first communication signal breaking module 344 can be provided with a first low voltage protection circuit 3440. The second communication signal breaking module 346 can be provided with a second low voltage protection circuit 3460. The first low voltage protection circuit 3440 is configured to detect the voltage value of the first battery pack 324 and determine whether the voltage value is lower than the set voltage value. The second low voltage protection circuit 3460 is configured to detect the voltage value of the second battery pack 326 and determine whether the voltage value is lower than the set voltage value.

承上所述,當第一低壓保護電路3440偵測到第一電池組324之電壓值低於設定電壓值時,第一通訊信號連斷模組344則停止傳送喚醒第一供電子系統304之第一通訊信號S1,第一供電處理模組314則控制第一電池組324關閉,第一供電子系統304準備進入待機休眠模式。又,當第二低壓保護電路3460偵測到第二電池組326之電壓值低於設定電壓值時,第二通訊信號連斷模組346則停止傳送喚醒第二供電子系統306之第二通訊信號S2,第二供電處理模組316則控制第二電池組326關閉,第二供電子系統306進入待機休眠模式。 As described above, when the first low voltage protection circuit 3440 detects that the voltage value of the first battery pack 324 is lower than the set voltage value, the first communication signal disconnection module 344 stops transmitting and wakes up the first power supply subsystem 304. The first communication signal S1, the first power processing module 314 controls the first battery pack 324 to be turned off, and the first power supply subsystem 304 is ready to enter the standby sleep mode. Moreover, when the second low voltage protection circuit 3460 detects that the voltage value of the second battery pack 326 is lower than the set voltage value, the second communication signal disconnection module 346 stops transmitting the second communication that wakes up the second power supply subsystem 306. Signal S2, the second power processing module 316 controls the second battery pack 326 to be turned off, and the second power supply subsystem 306 enters the standby sleep mode.

上述實施例係以並聯架構之同步控制系統300作說明,本發明的串聯架構之同步控制系統300”請參閱圖4且一併參考圖6,於本實施例中,同步控制系統300”之第一供電子系統302以及第二供電子系統304,與該主系統302間之連接方式亦可為串聯連接,在此串聯聯接架構之下,主系統302與第一供電子系統304以及第二供電子系統306間之操作,與並聯連接之實施例相同,在此不重複說明。 The above embodiment is described by the synchronous control system 300 of the parallel architecture. The synchronous control system 300 of the serial architecture of the present invention is described with reference to FIG. 4 and with reference to FIG. 6. In this embodiment, the synchronous control system 300" The connection between the power supply subsystem 302 and the second power supply subsystem 304 and the main system 302 may also be a serial connection. Under the serial connection architecture, the main system 302 and the first power supply subsystem 304 and the second supply The operation between the electronic systems 306 is the same as the embodiment in which the parallel connections are made, and the description thereof will not be repeated here.

綜所上述,本發明所述之同步控制系統架構,主系統端透過設定的規則計算出適當的能量切換控制,透過喚醒隔離信號喚醒各電池 組,此時子系統的各電池箱EMS/電池組BMS會立即被喚醒,此時MPU立即運作,並與主系統進行通訊取得電源開啟權限,只要持續通訊,符合主系統通訊格式,子系統即可持續工作,均可正常充電或放電,若無法通訊或取得權限,子系統會自行進入待機休眠模式以節電;故本發明相較於先前技藝有以下優點:1.可大幅減少硬體開關元件的配置,更符合經濟效益;2.具有即時偵測電池過低壓的保護機制;3.電池組被喚醒後,電源開關權限由韌體(信號連斷裝置)掌控;4.主系統可以同步控制多個電池換醒;5.主系統可以通訊取得電池容量,非轉換器系統估算,且利用通訊來確認電池模組,來達到智慧家電控制。 In the above, the synchronous control system architecture of the present invention, the main system end calculates appropriate energy switching control through the set rules, and wakes up the batteries through the wake-up isolation signal. Group, at this time, the battery compartment EMS/battery pack BMS of the subsystem will be immediately awakened. At this time, the MPU operates immediately and communicates with the main system to obtain the power-on permission. As long as the communication is continued, it conforms to the communication format of the main system, and the subsystem is For sustainable work, it can be charged or discharged normally. If communication or permission is obtained, the subsystem will enter the standby sleep mode to save power. Therefore, the present invention has the following advantages compared with the prior art: 1. The hardware switching element can be greatly reduced. The configuration is more economical; 2. It has the protection mechanism for detecting the battery over-voltage at the same time; 3. After the battery pack is awakened, the power switch authority is controlled by the firmware (signal disconnect device); 4. The main system can be controlled synchronously. Multiple batteries are awake; 5. The main system can communicate to obtain battery capacity, non-converter system estimation, and use communication to confirm the battery module to achieve smart home appliance control.

雖然已經特別參照了多個實施例對本發明進行了圖示和描述,但應該注意,可以做出各種其他的變化或修改,而不脫離本發明的範圍。 Although the present invention has been illustrated and described with reference to the embodiments of the present invention, it should be understood that various changes and modifications may be made without departing from the scope of the invention.

Claims (9)

一種提升節能效率之同步控制系統架構,其包括:一主系統,其包含一用電分析模組;至少一供電子系統,其經由一信號連斷裝置以有線或無線方式與該主系統之間通訊,該供電子系統包含:至少一電池模組,其被配置為供給電力;以及一供電處理模組,其電性連接該電池模組且被配置為接收該電池模組的一偵測信號,該供電處理模組根據該偵測信號確認該電池模組的電池狀態,並且經由該信號連斷裝置傳送該電池狀態至該主系統的該用電分析模組進行分析,該偵測信號係包含電壓信號、電流信號或溫度信號的至少其中一者;其中該主系統根據該電池狀態而發送一反饋信號且經由該信號連斷裝置傳送至該供電處理模組進行處理,以使該供電子系統與該主系統之間保持通訊,從而使該供電子系統進行放電程序或充電程序,或者使該信號連斷裝置斷開該供電子系統與該主系統之間的通訊,以停用該供電子系統且使其進入一待機休眠狀態,以及該信號連斷裝置包含有一控制信號連斷模組、及一通訊信號連斷模組,該控制信號連斷模組及該通訊信號連斷模組係以資料通訊介面與該主系統連接。 A synchronous control system architecture for improving energy efficiency includes: a main system including a power analysis module; and at least one power supply subsystem connected to the host system via a signal breaking device in a wired or wireless manner The power supply subsystem includes: at least one battery module configured to supply power; and a power processing module electrically connected to the battery module and configured to receive a detection signal of the battery module The power processing module confirms the battery state of the battery module according to the detection signal, and transmits the battery state to the power analysis module of the main system for analysis by the signal disconnecting device, and the detection signal system is Included in at least one of a voltage signal, a current signal, or a temperature signal; wherein the main system transmits a feedback signal according to the state of the battery and transmits the signal to the power processing module via the signal switching device for processing to enable the electronic supply The system maintains communication with the main system, thereby causing the power supply subsystem to perform a discharging process or a charging process, or disconnecting the signal disconnecting device Communication between the power supply subsystem and the main system to deactivate the power supply subsystem and put it into a standby sleep state, and the signal connection device includes a control signal connection module, and a communication signal connection mode The control signal connection module and the communication signal connection module are connected to the main system by a data communication interface. 如請求項1所述之提升節能效率之同步控制系統架構,其中該信號連裝置係透過光耦合或磁耦合之電氣隔離方式,以使該供電子系統與該主系統以光、磁、射頻載波方式傳遞信號。 The synchronous control system architecture for improving energy efficiency according to claim 1, wherein the signal connection device is electrically isolated by optical coupling or magnetic coupling, so that the power supply subsystem and the main system are optical, magnetic, and radio frequency carriers. Way to pass signals. 如請求項1所述之提升節能效率之同步控制系統架構,其中該通訊信號連斷模組更包含一低壓保護電路,該低壓保護電路係提供該通訊信號連斷模組判斷該供電子系統的電源電壓或電池模組的電壓是否低於一設定電壓值。 The synchronous control system architecture for improving energy efficiency according to claim 1, wherein the communication signal connection module further comprises a low voltage protection circuit, wherein the low voltage protection circuit provides the communication signal connection module to determine the power supply subsystem Whether the power supply voltage or the voltage of the battery module is lower than a set voltage value. 如請求項3所述之提升節能效率之同步控制系統架構,其中當該電池模組的電壓低於該設定電壓值,該供電處理模組控制該信號連斷裝置斷開該供電子系統與該主系統之間的通訊,以使該供電子系統進入該待機休眠狀態。 The synchronous control system architecture for improving energy efficiency according to claim 3, wherein when the voltage of the battery module is lower than the set voltage value, the power processing module controls the signal disconnecting device to disconnect the power supply subsystem and the Communication between the primary systems to cause the power subsystem to enter the standby sleep state. 如請求項4所述之提升節能效率之同步控制系統架構,其中當處於該待機休眠狀態之該供電子系統中的該電池模組之電壓等於或高於該設定電壓值,該主系統發送信號喚醒處於該待機休眠狀態之該供電子系統,使該供電子系統與該主系統之間進行通訊,從而使該供電子系統進行放電程序或充電程序。 The synchronous control system architecture for improving energy efficiency according to claim 4, wherein the main system sends a signal when the voltage of the battery module in the power supply subsystem in the standby sleep state is equal to or higher than the set voltage value The power supply subsystem in the standby sleep state is awakened to communicate between the power supply subsystem and the main system, thereby causing the power supply subsystem to perform a discharge procedure or a charging procedure. 如請求項1所述之提升節能效率之同步控制系統架構,其中該主系統與該供電子系統之間未以共同通訊協定通訊時,該供電子系統進入該待機休眠狀態且由該主系統發出警告。 The synchronous control system architecture for improving energy efficiency according to claim 1, wherein when the primary system and the power supply subsystem are not communicated by a common communication protocol, the power supply subsystem enters the standby sleep state and is issued by the primary system. caveat. 如請求項1所述之提升節能效率之同步控制系統架構,其中該供電處理模組自該主系統所發出的該反饋信號中取得一電源開啟權限,以喚醒該供電子系統以使該供電子系統與該主系統之間保持通訊,從而使該供電子系統進行放電程序或充電程序。 The synchronous control system architecture for improving energy efficiency according to claim 1, wherein the power processing module obtains a power-on authority from the feedback signal sent by the main system to wake up the power supply subsystem to enable the electronic supply The system maintains communication with the host system such that the power subsystem performs a discharge or charging procedure. 如請求項1所述之提升節能效率之同步控制系統架構,其中該供電處理模組更包括一容量狀態元件、一充電狀態元件以及一健康狀態元件;該些元件係用以計算該電池模組的狀態並且將該狀態傳送至該主系統之該用電分析模組進行分析,當該容量狀態元件、該充電狀態元件或該健康狀態元件中任一者計算該電池模組的狀態不符合該電池模組的狀態設定值或不處於設定值範圍內,該供電子系統進入該待機休眠狀態。 The synchronization control system architecture for improving energy efficiency according to claim 1, wherein the power processing module further includes a capacity state component, a state of charge component, and a health state component; the components are used to calculate the battery module And transmitting the state to the power analysis module of the primary system for analysis, when the state of the capacity state component, the state of charge component, or the health state component calculates that the state of the battery module does not comply with the state When the state setting value of the battery module is not within the set value range, the power supply subsystem enters the standby sleep state. 如請求項8所述之提升節能效率之同步控制系統架構,其中當處於該待機休眠狀態之該供電子系統中的該電池模組的狀態滿足該電池模組的狀態設定值或處於設定值範圍內,該主系統發送信號喚醒處於該待 機休眠狀態之該供電子系統,使該供電子系統與該主系統之間進行通訊,從而使該供電子系統進行放電程序或充電程序。 The synchronous control system architecture for improving energy efficiency according to claim 8, wherein the state of the battery module in the power supply subsystem in the standby sleep state satisfies a state setting value of the battery module or is in a set value range. Inside, the main system sends a signal to wake up at the waiting The power supply subsystem of the machine sleep state enables communication between the power supply subsystem and the host system, thereby causing the power supply subsystem to perform a discharge program or a charging procedure.
TW106111456A 2017-04-05 2017-04-05 Synchronous control system architecture to improve energy efficiency TWI628890B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW106111456A TWI628890B (en) 2017-04-05 2017-04-05 Synchronous control system architecture to improve energy efficiency

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW106111456A TWI628890B (en) 2017-04-05 2017-04-05 Synchronous control system architecture to improve energy efficiency

Publications (2)

Publication Number Publication Date
TWI628890B true TWI628890B (en) 2018-07-01
TW201838286A TW201838286A (en) 2018-10-16

Family

ID=63640592

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106111456A TWI628890B (en) 2017-04-05 2017-04-05 Synchronous control system architecture to improve energy efficiency

Country Status (1)

Country Link
TW (1) TWI628890B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI733469B (en) * 2019-05-28 2021-07-11 日商松下知識產權經營股份有限公司 Load control device, load control method and program
TWI734495B (en) * 2019-05-28 2021-07-21 日商松下知識產權經營股份有限公司 Load control device, load control method and program
TWI779846B (en) * 2021-09-24 2022-10-01 國立清華大學 Carriers synchronizing methed of parallel inverter and system thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWM434310U (en) * 2011-12-26 2012-07-21 Hon Hai Prec Ind Co Ltd Rechargeable battery and power system using the same
US20130042130A1 (en) * 2011-08-09 2013-02-14 Guoxing Li Circuits and methods for controlling battery management systems
TWM524587U (en) * 2016-02-03 2016-06-21 大連電子工業股份有限公司 Charging equipment with status indication
TWM531687U (en) * 2016-07-20 2016-11-01 Lighting Innovation Co Ltd Power supply device capable of transmitting information

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130042130A1 (en) * 2011-08-09 2013-02-14 Guoxing Li Circuits and methods for controlling battery management systems
TWM434310U (en) * 2011-12-26 2012-07-21 Hon Hai Prec Ind Co Ltd Rechargeable battery and power system using the same
TWM524587U (en) * 2016-02-03 2016-06-21 大連電子工業股份有限公司 Charging equipment with status indication
TWM531687U (en) * 2016-07-20 2016-11-01 Lighting Innovation Co Ltd Power supply device capable of transmitting information

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI733469B (en) * 2019-05-28 2021-07-11 日商松下知識產權經營股份有限公司 Load control device, load control method and program
TWI734495B (en) * 2019-05-28 2021-07-21 日商松下知識產權經營股份有限公司 Load control device, load control method and program
TWI779846B (en) * 2021-09-24 2022-10-01 國立清華大學 Carriers synchronizing methed of parallel inverter and system thereof
US11757301B2 (en) 2021-09-24 2023-09-12 National Tsing Hua University Carriers synchronizing method of hybrid frequency parallel inverter and system thereof

Also Published As

Publication number Publication date
TW201838286A (en) 2018-10-16

Similar Documents

Publication Publication Date Title
CN105591460A (en) Systems and methods for battery management
CN103825351A (en) Intelligent energy storage type emergency power supply system
KR101441761B1 (en) Battery Energy Storage System
TWI628890B (en) Synchronous control system architecture to improve energy efficiency
CN204030640U (en) Batteries novel maintenance monitoring intelligent device
CN103151790B (en) A kind of electric power system of intelligent peak load shifting
CN104333111B (en) DC uninterrupted system and device
CN202679060U (en) Uninterrupted power source management system of seabed observation network
CN112332528A (en) Uninterrupted power supply system using lithium battery
CN104467040A (en) Vehicle-mounted uninterruptible power supply (UPS) storage battery control and management device
CN209709744U (en) A kind of communication base station power supply system that retired power battery echelon utilizes
CN203434637U (en) Energy storage system
CN108695566B (en) Synchronous control system architecture for improving energy-saving efficiency
CN202721494U (en) Transformer station direct current power supply system
CN115514067B (en) Energy storage battery pack management system device
CN104052116A (en) Uninterrupted power system for lithium ion battery
CN208571667U (en) A kind of extension transformer substation communication equipment power-on time device
CN219513807U (en) High-voltage control box
CN110912260A (en) Master-slave-structured UPS lithium battery system
CN208369223U (en) Backup battery energy storage discharge control system
CN203562822U (en) A system for the butt joint and the configuration between a multi-module backup battery management system and a DC bus
CN105634110B (en) A kind of remote online formula industry UPS monitoring system
CN203135554U (en) Power equipment monitoring device
CN209088632U (en) Energy-storage system
CN206251117U (en) The things-internet gateway of continuous service under a kind of power failure state

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees