TWI628816B - Apparatus and method for enhancing figure of merit in composite thermoelectric materials with aerogel - Google Patents

Apparatus and method for enhancing figure of merit in composite thermoelectric materials with aerogel Download PDF

Info

Publication number
TWI628816B
TWI628816B TW106101687A TW106101687A TWI628816B TW I628816 B TWI628816 B TW I628816B TW 106101687 A TW106101687 A TW 106101687A TW 106101687 A TW106101687 A TW 106101687A TW I628816 B TWI628816 B TW I628816B
Authority
TW
Taiwan
Prior art keywords
aerogel
type
thermoelectric material
thermoelectric
composite thermoelectric
Prior art date
Application number
TW106101687A
Other languages
Chinese (zh)
Other versions
TW201828511A (en
Inventor
吳茂昆
孟真 吳
陳洋元
張忠傑
魏百駿
藍天蔚
吳育叡
Original Assignee
中央研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中央研究院 filed Critical 中央研究院
Priority to TW106101687A priority Critical patent/TWI628816B/en
Application granted granted Critical
Publication of TWI628816B publication Critical patent/TWI628816B/en
Publication of TW201828511A publication Critical patent/TW201828511A/en

Links

Landscapes

  • Silicon Compounds (AREA)

Abstract

一種藉由氣凝膠增強優值係數之複合熱電材料之裝置和方法,具體來說,係在兩種常用的p型和n型熱電材料中添加氣凝膠,從而增強熱電優值係數。A device and method for enhancing a composite thermoelectric material with an optimum value coefficient by aerogel, specifically, adding aerogel to two commonly used p-type and n-type thermoelectric materials, thereby enhancing the thermoelectric figure of merit.

Description

藉由氣凝膠增強優值係數之複合熱電材料之裝置和方法Apparatus and method for enhancing composite value thermoelectric material by aerogel

本案大體上涉及藉由氣凝膠增強優值係數(figure of merit,以下簡稱 zT)之複合熱電材料(thermoelectric materials)之裝置和方法。具體地,本案提供在兩種常用的p型和n型熱電材料中添加氣凝膠之示例裝置和方法,從而增強熱電的優值係數至較高水準。The present invention generally relates to apparatus and methods for enhancing thermoelectric materials of a figure of merit (hereinafter referred to as zT) by aerogel. In particular, the present invention provides exemplary apparatus and methods for adding aerogels to two commonly used p-type and n-type thermoelectric materials to enhance the thermoelectric figure of merit to a higher level.

此段旨在介紹讀者技術的各個方面,其可能涉及到下面所描述本案的各個方面以及/或申請專利範圍。本討論被認為是有助於提供讀者背景資訊,便於更好地理解。因此,應當理解用此角度來閱讀這些描述,而不是作為對現有技術的認同。This paragraph is intended to introduce various aspects of the reader's technology, which may relate to various aspects of the present invention and/or claims. This discussion is believed to help provide readers with background information for a better understanding. Therefore, it should be understood that the description is read in this light, and not as an admission of the prior art.

能量通常以熱的形式浪費。熱電技術(thermoelectric technology)有望回收餘熱轉化為可利用的能量。但是,廣泛使用的熱電裝置因目前採用之熱電材料的轉換效率低而被受限。熱電材料的轉換效率一般以無單位的優值係數zT來量測。亦即,一個已知的材料有效地產生熱電功率的能力,以下列優質係數計算之:Energy is usually wasted in the form of heat. Thermoelectric technology is expected to convert waste heat into usable energy. However, widely used thermoelectric devices are limited due to the low conversion efficiency of currently used thermoelectric materials. The conversion efficiency of thermoelectric materials is generally measured in units of the figure of merit zT. That is, the ability of a known material to efficiently generate thermoelectric power is calculated using the following quality factors:

zT= S 2σT/κ zT = S 2 σT

其中S=席貝克係數(Seebeck coefficient), σ =電導率,κ=熱導率,且T=絕對溫度。Where S = Seebeck coefficient, σ = conductivity, κ = thermal conductivity, and T = absolute temperature.

此外,高效率的熱電發電設備需結合均具有高 zT的電子(n型)和電洞(p型)載體之材料。 In addition, high-efficiency thermoelectric power plants are required to combine materials of electrons (n-type) and hole-hole (p-type) carriers each having a high zT .

氣凝膠(aerogel)是一種衍生自凝膠的合成多孔超輕材料,其中液體成分已被氣體替換。如二氧化矽氣凝膠是由矽膠製作得到的氣凝膠。由於模糊的外觀,二氧化矽氣凝膠被稱為「冷凍煙霧」(frozen smoke)。通常來說,如果一光源通過,二氧化矽氣凝膠將出現微黃,並在陽光下出現淺藍色。Aerogel is a synthetic porous ultra-light material derived from a gel in which the liquid component has been replaced by a gas. For example, cerium oxide aerogel is an aerogel made of tannin. Due to the ambiguous appearance, the cerium oxide aerogel is called "frozen smoke". In general, if a light source passes, the cerium oxide aerogel will appear yellowish and appear light blue in the sun.

本案原理係利用添加氣凝膠,諸如:矽系氣凝膠、碳系氣凝膠、硫系氣凝膠、金屬氧化物氣凝膠或前述組合,以增加兩種常用的p型和n型熱電材料的 zT,至較高水準。舉例來說,如本案在425 K時,n型的Cu 0.01-Bi 2Te 2.7Se 0.3可以達到 zT= 1.12,如在300K至350 K時,p型Bi 0.5Sb 1.5Te 3可以達到 zT=1.9。發明人還確定,加入氣凝膠的樣品之 zT的增加主要來自於晶格熱導率的降低,以及p型材料的功率因子(power factor)的增加。氣凝膠還充當優先的載子散射中心,以散射n型載子為主,而非p型載體。 The principle of the case is to add an aerogel, such as: anthraquinone aerogel, carbon aerogel, sulfur aerogel, metal oxide aerogel or the combination of the foregoing to increase two commonly used p-type and n-type The zT of the thermoelectric material is at a higher level. For example, if the case is at 425 K, the n-type Cu 0.01 -Bi 2 Te 2.7 Se 0.3 can reach zT = 1.12. For example, at 300K to 350 K, p-type Bi 0.5 Sb 1.5 Te 3 can reach zT = 1.9. . The inventors have also determined that the increase in zT of the sample added to the aerogel is primarily due to a decrease in lattice thermal conductivity and an increase in the power factor of the p-type material. The aerogel also acts as a preferred carrier scattering center, dominated by scattering n-type carriers rather than p-type carriers.

因此,在一個示例的實施例中,一種增加複合熱電材料之優值係數 zT的方法被提出,以產生具有提升優值係數 zT的複合熱電材料,該方法包括混合氣凝膠和複合熱電材料。 Accordingly, in an exemplary embodiment, a method of increasing the figure of merit of the thermoelectric material composite zT methods have been proposed to produce a composite material having a thermoelectric figure of merit zT lift, the method comprising mixing and airgel composite thermoelectric material.

根據本案原理的另一實施方式,提供具有優值係數 zT比普通複合熱電材料更高的增強型複合熱電材料,其中該增強複合熱電材料係藉由氣凝膠與複合熱電材料混合而得。 According to another embodiment of the present principles, a reinforced composite thermoelectric material having a superior value coefficient zT higher than that of a conventional composite thermoelectric material is provided, wherein the reinforced composite thermoelectric material is obtained by mixing an aerogel with a composite thermoelectric material.

熱電製程(thermoelectric processes)係指藉由電子或電洞能量載體直接轉換電能和熱能。該製程在微電子和生物系統之熱管理中的餘熱回收,及在有電之固態冷卻和致冷中的潛力被看好(見下文參考文獻1-4)。這些基本的能量交換能存在於所有的材料中,但具有不同的效率,以優值係數 zT= σS 2/κ量化。就一個典型使用情況下的高效熱電轉換效率而言, zT> 2的值是令人滿意的。然而,在當前材料中,σ(電導率),S(席貝克係數)和κ(熱導率)的大多數組合中,電洞載子系統中的 zT值僅接近2,且在電子系統中的 zT值大約為1。 Thermoelectric processes are those that directly convert electrical energy and thermal energy by means of an electron or hole energy carrier. The process is promising for waste heat recovery in thermal management of microelectronics and biological systems, and its potential for solid state cooling and refrigeration (see references 1-4 below). These basic energy exchanges can exist in all materials, but with different efficiencies, quantified by the figure of merit zT = σS 2 /κ. The value of zT > 2 is satisfactory in terms of efficient thermoelectric conversion efficiency under typical use conditions. However, in most materials, in most combinations of σ (conductivity), S (Sibbeck coefficient) and κ (thermal conductivity), the zT value in the hole-carrying subsystem is only close to 2, and in the electronic system. The zT value is approximately 1.

現存的 zT值乃是由新的奈米複合材料結構化(texturing)和晶界工程成長技術(見參考文獻5-7)來降低晶格熱導率之巨大發展的結果。特別是,最近發現使用晶界工程額外將碲混於Bi 0.5Sb 1.5Te 3中降低熱導率,而得到在320 K, zT= 1.86的結果(見參考文獻8)。該材料群組的拓撲曲面特徵也很出名(見參考文獻9-11)。研究還顯示額外的奈米複合材料結構化也可能使熱電效能提高(見參考文獻12-14)。 The existing zT values are the result of a significant development in the reduction of lattice thermal conductivity from the new nanocomposite texturing and grain boundary engineering growth techniques (see references 5-7). In particular, it has recently been found that the grain boundary engineering is additionally used to reduce the thermal conductivity in Bi 0.5 Sb 1.5 Te 3 to obtain a result at 320 K, zT = 1.86 (see Reference 8). Topological surface features of this material group are also well known (see references 9-11). Studies have also shown that additional nanocomposite structuring may also improve thermoelectric performance (see references 12-14).

然而,為獲得充分運作的熱電發電機(generation device),需要n型材料和p型材料相結合,且兩種類型的材料效能匹配越接近越好。一種匹配p型BiSbTe的最佳n型材料是銅摻雜的BiTeSe,目前其在373 K時的 zT= 1(見參考文獻15)。為更佳的發電設備,這一系統的 zT進一步增強將是很重要的。雖然降低熱導率已相當成功,但目前許多研究警告將會同時降低電導率,其對於高 zT並不利。為達到對σ和κ的獨立優化,仔細的材料工程是必需的。 However, in order to obtain a fully operational thermoelectric generator, an n-type material and a p-type material are required to be combined, and the closer the two types of materials are matched, the better. One of the best n-type materials for matching p-type BiSbTe is copper-doped BiTeSe, which currently has zT = 1 at 373 K (see Reference 15). For better power generation equipment, further enhancement of the zT of this system will be important. Although the reduction in thermal conductivity has been quite successful, many current studies warn that conductivity will be reduced at the same time, which is not beneficial for high zT . Careful material engineering is required to achieve independent optimization of σ and κ.

發明人在此提出添加氣凝膠的複合材料,係包括混合複合熱電材料和氣凝膠,其中該氣凝膠擇自於矽系氣凝膠、碳系氣凝膠、硫系氣凝膠和金屬氧化物氣凝膠所組成之群組。如Bi 0.5Sb 1.5Te 3和Cu 0.01-Bi 2Te 2.7Se 0.3具有較高水平的增強 zT值,在300 至350 K,p型的Bi 0.5Sb 1.5Te 3zT= 1.9;而在寬溫度範圍內,n型Cu 0.01-Bi 2Te 2.7Se 0.3zT> 1.1,在425 K,具有最高的 zT= 1.12。 zT主要的增加來自於氣凝膠混合樣品的熱導率降低。一個重要的發現是,加入氣凝膠的p型系統的整體電阻率降低,而加入氣凝膠的n型材料的電阻率則增強。這表示氣凝膠在兩種材料的電子載體的定位(localizing)是有效的(見參考文獻16)。在最佳調整的p型中,具有氣凝膠樣品的功率因子明顯增強,而在n型中功率因數沒有顯著的變化。因此在熱電材料中混合氣凝膠是降低熱導率和增強 zT而不讓電導率典型大幅減少的一個可期待的途徑。 The inventors hereby propose an aerogel-added composite comprising a hybrid composite thermoelectric material and an aerogel selected from the group consisting of anthraquinone aerogels, carbon aerogels, sulfur-based aerogels and metals. A group of oxide aerogels. For example, Bi 0.5 Sb 1.5 Te 3 and Cu 0.01 -Bi 2 Te 2.7 Se 0.3 have higher levels of enhanced zT values, from 300 to 350 K, p-type Bi 0.5 Sb 1.5 Te 3 , zT = 1.9; In the range, n-type Cu 0.01 -Bi 2 Te 2.7 Se 0.3 , zT > 1.1, at 425 K, has the highest zT = 1.12. The main increase in zT is due to the reduced thermal conductivity of the aerogel mixed sample. An important finding is that the overall resistivity of the p-type system incorporating the aerogel is reduced, while the resistivity of the n-type material incorporating the aerogel is enhanced. This means that the aerogel is effective in localizing the electron carriers of the two materials (see reference 16). In the optimally adjusted p-type, the power factor with the aerogel sample was significantly enhanced, while there was no significant change in the power factor in the n-type. Therefore, mixing aerogels in thermoelectric materials is one of the desirable ways to reduce thermal conductivity and enhance zT without a significant reduction in conductivity.

因此,示例的樣品製備程式與樣品的結構參數根據本案原理而提出。圖1顯示本製備過程的示例製程。製備過程中,先將高品質的熱電材料及氣凝膠製備完成後,分別研磨至適當顆粒大小。秤取對應的重量比例之後,放入混合機進行混合。混合完成後,取出混合粉末再進行熱壓使其成為複合熱電材料。示例的p型材料,Bi 0.5Sb 1.5Te 3,具有六方晶格對稱,空間群為R3m,群碼為166。所使用示例的n型和p型材料的細節列在表1中,其加入氣凝膠的X射線繞射光譜(x-ray diffraction,XRD)顯示於圖2,例如,加入25%碲於起始粉末中將產生碲(100)的波峰,其可以明顯地在2θ約23°的紅色曲線中觀察到,且側峰為27.7°。此雜質峰已不再存在於樣品中,該樣品已進一步以火花電漿燒結法(spark plasma sintering)處理,且隨後添加氣凝膠,分別顯示為綠色和藍色的曲線。 Therefore, the exemplary sample preparation program and the structural parameters of the sample are presented in accordance with the principles of the present invention. Figure 1 shows an exemplary process of the present preparation process. In the preparation process, high-quality thermoelectric materials and aerogels are prepared and ground to the appropriate particle size. After weighing the corresponding weight ratio, put it into the mixer for mixing. After the mixing is completed, the mixed powder is taken out and then hot pressed to become a composite thermoelectric material. An exemplary p-type material, Bi 0.5 Sb 1.5 Te 3 , has hexagonal lattice symmetry, a space group of R3m, and a group code of 166. The details of the n-type and p-type materials used in the examples are listed in Table 1, and the x-ray diffraction (XRD) of the aerogel added is shown in Fig. 2, for example, adding 25% 碲A peak of cerium (100) will be produced in the starting powder, which can be clearly observed in the red curve of 2θ of about 23°, and the side peak is 27.7°. This impurity peak is no longer present in the sample, which has been further treated with spark plasma sintering, and then aerogels are added, showing a green and blue curve, respectively.

Cu 0.01-Bi 2Te 2.7Se 0.3的空間群也是R3m,但具有菱形結晶對稱性,如表1和圖3的X射線繞射光譜的黑色曲線所示,具有氣凝膠的樣品分別以紅色和藍色顯示。 The space group of Cu 0.01 -Bi 2 Te 2.7 Se 0.3 is also R3m, but has rhombohedral crystal symmetry, as shown by the black curves of the X-ray diffraction spectrum of Table 1 and Figure 3, and the samples with aerogel are respectively red and Blue display.

表1 <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> 名稱 </td><td> 結晶對稱性 </td><td> 空 間群 </td><td> 空 間群<sup>#</sup></td><td> a </td><td> b </td><td> c </td><td> α </td><td> β </td><td> γ </td></tr><tr><td> Bi<sub>0.5</sub>Sb<sub>1.5</sub>Te<sub>3</sub></td><td> 六角 </td><td> R3m </td><td> 166 </td><td> 4.3 Å </td><td> 4.3 Å </td><td> 30.28 Å </td><td> 90<sup>°</sup></td><td> 90<sup>°</sup></td><td> 120<sup>°</sup></td></tr><tr><td> Cu<sub>0.01</sub>-Bi<sub>2</sub>Te<sub>2.7</sub>Se<sub>0.3</sub></td><td> 六角 </td><td> R3m </td><td> 166 </td><td> 4.3052 Å </td><td> 4.3052 Å </td><td> 30.583 Å </td><td> 90<sup>°</sup></td><td> 90<sup>°</sup></td><td> 120<sup>°</sup></td></tr></TBODY></TABLE>Table 1  <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> name</td><td> crystal symmetry</td><td> space group< /td><td> Space Group<sup>#</sup></td><td> a </td><td> b </td><td> c </td><td> α </ Td><td> β </td><td> γ </td></tr><tr><td> Bi<sub>0.5</sub>Sb<sub>1.5</sub>Te<sub> 3</sub></td><td> Hexagonal</td><td> R3m </td><td> 166 </td><td> 4.3 Å </td><td> 4.3 Å </td ><td> 30.28 Å </td><td> 90<sup>°</sup></td><td> 90<sup>°</sup></td><td> 120<sup>° </sup></td></tr><tr><td> Cu<sub>0.01</sub>-Bi<sub>2</sub>Te<sub>2.7</sub>Se<sub> 0.3</sub></td><td> Hexagonal</td><td> R3m </td><td> 166 </td><td> 4.3052 Å </td><td> 4.3052 Å </td ><td> 30.583 Å </td><td> 90<sup>°</sup></td><td> 90<sup>°</sup></td><td> 120<sup>° </sup></td></tr></TBODY></TABLE>

在圖4(a)中,顯示p型Bi 0.5Sb 1.5Te 3熱電材料的 zT。從300 K至400 K,黑色虛線所表示起始原料的 zT略大於1。在大於400 ℃的溫度,所有樣品的 zT開始下降。根據參考文獻8的技術,我們加入25%額外的碲於起始原料Bi 0.5Sb 1.5Te 3中,而在300 K至400 K範圍的初次操作中, zT顯著提高;在330 K(綠色虛線曲線)時,其 zT的峰值為1.5。利用我們的技術將氣凝膠(AG)加入此化合物(紅色曲線),在300 K至350 K之間, zT顯著地提升為1.9。在400 K時, zT也開始減少,但仍高於無氣凝膠的樣品,其在330 K時的 zT= 1.5。和現有文獻相比,我們的樣本Bi 0.5Sb 1.5Te 3顯示出色的表現。 In Fig. 4(a), the zT of the p-type Bi 0.5 Sb 1.5 Te 3 thermoelectric material is shown . From 300 K to 400 K, the black line indicates that the starting material has a zT slightly greater than one. At temperatures above 400 °C, the zT of all samples began to decrease. According to the technique of Reference 8, we add 25% additional hydrazine to the starting material Bi 0.5 Sb 1.5 Te 3 , while in the initial operation in the range of 300 K to 400 K, zT is significantly increased; at 330 K (green dotted curve) When the zT has a peak value of 1.5. An aerogel (AG) was added to this compound (red curve) using our technique, and between 300 K and 350 K, zT was significantly increased to 1.9. At 400 K, zT also began to decrease, but was still higher than the sample without aerogel, which had a zT of 1.5 at 330 K. Compared to the existing literature, our sample Bi 0.5 Sb 1.5 Te 3 shows excellent performance.

圖4(b)的黑色方塊顯示n型Cu 0.01-Bi 2Te 2.7Se 0.3樣品的 zT。雖然我們的原料還沒有達到參考文獻中在373 K時 zT= 1的記錄值,但是添加氣凝膠可將 zT提升至接近歷史記錄的水準。在350 K至450 K時, zT被發現約為1.1,而峰值在425 K, zT= 1.12。 FIG. 4 (b), black squares show zT n-type Cu 0.01 -Bi 2 Te 2.7 Se 0.3 sample. Although our raw materials have not yet reached the record value of zT = 1 at 373 K in the reference, the addition of aerogel can raise zT to a level close to the historical record. At 350 K to 450 K, zT was found to be approximately 1.1 with a peak at 425 K and zT = 1.12.

參照圖4(c),氣凝膠的光學影像顯示其為一種輕質的半透明材料,在圖4(d),氣凝膠的掃描電子顯微鏡(scanning electron microscope,SEM)影像提供氣凝膠的表面形貌,可見其顆粒狀。為更深入理解當氣凝膠混入p型和n型熱電材料時的作用,我們詳細比較能測定 zT的傳輸參數,σ = 1 /ρ、S和κ。我們發現,氣凝膠提供兩個用途:1)優先載子類型散射中心;2)較低的樣品熱導率。結合這兩種效應,來提高材料的 zTReferring to Figure 4(c), the optical image of the aerogel shows that it is a lightweight translucent material. In Figure 4(d), aerogels are provided by a scanning electron microscope (SEM) image. The surface topography is visible in its granular form. To better understand the role of aerogels when mixed with p-type and n-type thermoelectric materials, we can compare the transmission parameters of zT in detail, σ = 1 /ρ, S and κ. We have found that aerogels offer two uses: 1) preferential carrier type scattering centers; 2) lower sample thermal conductivity. Combine these two effects to increase the zT of the material.

圖5(a)和圖5(b)分別為p型和n型熱電材料的電阻率,在圖5(a)中,額外的25%碲增加電阻率(降低電導率),其結果與參考文獻8一致。然而,當添加氣凝膠至Bi 0.5Sb 1.5Te 3+ 25% Te,電阻率顯示為實質下降(電導率增強),在高溫時的最大下降超過2次方。在圖5(b)中,顯示Cu 0.01-Bi 2Te 2.7Se 0.3的電阻率趨勢。雖然變化不如在p型材料顯著,有朝含氣凝膠樣品的電阻率較大(電導率較低)的趨勢。我們注意到,p型Bi 0.5Sb 1.5Te 3的功率因子已被報告是和結晶方向有關(參考文獻17)。 額外的電子可能來自於合成過程中(更細的晶粒)引入額外的碲空位(參考文獻18)。在氣凝膠樣品中,我們在空位並沒觀察到顯著影響,即使存在,氣凝膠散射仍然主導電阻行為,比較n型和p型氣凝膠樣品中的電阻率的趨勢,顯示添氣凝膠將優先散射n型載體。 Figure 5 (a) and Figure 5 (b) are the resistivity of p-type and n-type thermoelectric materials, respectively, in Figure 5 (a), the additional 25% 碲 increase the resistivity (reduced conductivity), the results and references Document 8 is consistent. However, when an aerogel was added to Bi 0.5 Sb 1.5 Te 3 + 25% Te, the resistivity showed a substantial decrease (enhanced conductivity), and the maximum drop at high temperatures exceeded 2 powers. In Fig. 5(b), the resistivity tendency of Cu 0.01 -Bi 2 Te 2.7 Se 0.3 is shown. Although the change is not as significant as in the p-type material, there is a tendency for the resistivity of the sample containing the aerogel to be larger (lower conductivity). We note that the power factor of p-type Bi 0.5 Sb 1.5 Te 3 has been reported to be related to the direction of crystallization (Ref. 17). Additional electrons may come from the introduction of additional open spaces during the synthesis process (finer grains) (Reference 18). In the aerogel samples, we did not observe significant effects in the vacancies, even if present, aerogel scattering still dominated the resistance behavior, comparing the trend of resistivity in n-type and p-type aerogel samples, showing the addition of gas condensation The glue will preferentially scatter the n-type carrier.

除了優先電子載體類型散射外,氣凝膠無論在p型或n型材料中並未影響席貝克系數的變化,如圖6(a)(d)所顯示,因此功率因子的計算可以觀察到有效的提昇,如圖6(c)(e)所顯示。而氣凝膠做為載子散射中心,因此在降低熱電材料的熱導率有著顯著的效果,總熱傳導率降低高達20%至25%,如圖6(b)(d)所顯示。而降低熱傳導率是有助於提高 zT的首要因素。 Except for the preferential electron carrier type scattering, the aerogel does not affect the change of the Schiebeck coefficient in the p-type or n-type material, as shown in Fig. 6(a)(d), so the calculation of the power factor can be observed to be effective. The improvement is shown in Figure 6(c)(e). The aerogel acts as a carrier scattering center, so it has a significant effect in reducing the thermal conductivity of the thermoelectric material, and the total thermal conductivity is reduced by as much as 20% to 25%, as shown in Fig. 6(b)(d). Reducing thermal conductivity is the primary factor contributing to the increase in zT .

圖7顯示具有氣凝膠的各種熱電材料樣品表面的原子力顯微鏡(atomic force microscopy,AFM)影像,圖7(a)和圖7(c)顯示p型+AG(矽氣凝膠),而圖7(b)和圖7(d)顯示n型+AG(矽氣凝膠)的原子力顯微鏡影像。樣品中有類條紋狀的晶粒,其中氣凝膠相對於一般熱電樣品顯現更精細的整體特徵。Figure 7 shows an atomic force microscopy (AFM) image of the surface of various thermoelectric material samples with aerogels, and Figures 7(a) and 7(c) show p-type + AG (helium gel), while 7(b) and 7(d) show atomic force microscope images of n-type + AG (helium gel). There are streak-like grains in the sample, with aerogel exhibiting finer overall characteristics relative to typical thermoelectric samples.

因此,本案演示添加氣凝膠如何能增強兩種最常用的n型和p型熱電材料至 zT的較高水平。在n型Cu 0.01-Bi 2Te 2.7Se 0.3中,我們發現從350 K至450 K的100 K溫度範圍內, zT> 1,在425 K時的 zT= 1.12,而P型Bi 0.5Sb 1.5Te 3從300 K至350 K的溫度範圍內,發現具有更高的 zT= 1.9。這些結果顯示具有氣凝膠的複合熱電材料對於更高效率的性能極具潛力。具有氣凝膠樣品的增強 zT主要得自晶格熱導率的降低,以及p型材料增強功率因數的結果。我們發現,氣凝膠還作為材料的優先載體類型散射中心,在Bi 0.5Sb 1.5Te 3和Cu 0.01-Bi 2Te 2.7Se 0.3中,主要是散射n型載體,而不是p型載體。我們相信,這些製程也可以適用於其他的材料,這表明在熱電材料中混合氣凝膠提供一種新穎和前所未有的方式,來同時優化材料的熱導率和功率因子。 Therefore, this case demonstrates how adding an aerogel can enhance the higher levels of the two most commonly used n-type and p-type thermoelectric materials to zT . In n-type Cu 0.01 -Bi 2 Te 2.7 Se 0.3 , we found zT > 1, from 350 K to 450 K in the temperature range of 100 K, and zT = 1.12 at 425 K, while P-type Bi 0.5 Sb 1.5 Te 3 From a temperature range of 300 K to 350 K, it was found to have a higher zT = 1.9. These results show that composite thermoelectric materials with aerogels have great potential for higher efficiency performance. The enhanced zT with aerogel samples is primarily a result of a decrease in lattice thermal conductivity and a result of the p-type material enhancing power factor. We have found that aerogels also serve as a preferred carrier type scattering center for materials. In Bi 0.5 Sb 1.5 Te 3 and Cu 0.01 -Bi 2 Te 2.7 Se 0.3 , mainly n-type carriers are scattered, rather than p-type carriers. We believe that these processes can also be applied to other materials, which suggests that mixing aerogels in thermoelectric materials provides a novel and unprecedented way to simultaneously optimize the thermal conductivity and power factor of the material.

奈米材料的製備:為了製備多晶奈米材料樣品,適量的元素鉍(99.99%,購自阿法埃莎公司(Alfa Aesar),200目)、銻(99.99%,200目)、碲(99.99%,200目)、硒(99.99%,200目)和銅(99.99%,購自阿法埃莎公司(Alfa Aesar),200目)以準確化學計量比的Bi 0.5Sb 1.5Te 3和 Cu 0.01-Bi 2Te 2.7Se 0.3混合,裝入石英管(直徑為10毫米,1毫米壁厚),然後在真空(10 -6torr)下密封。之後將石英管放入立式高溫爐中,以10小時的時間加熱至973 K,然後持溫120小時。然後將高溫爐以8小時緩慢冷卻至573K,然後在空氣中驟冷(quench)至室溫。將這樣獲得的Bi 0.5Sb 1.5Te 3和Cu 0.01-Bi 2Te 2.7Se 0.3多晶錠磨成微米級粉末,然後藉由火花電漿燒結法(SPS-515S)緻密化,在真空中保持50 MPa的單軸壓力並升溫至673K維持5分鐘(參考文獻5-6)。 Preparation of nanomaterials: In order to prepare samples of polycrystalline nanomaterials, an appropriate amount of elemental bismuth (99.99%, purchased from Alfa Aesar, 200 mesh), enamel (99.99%, 200 mesh), enamel (99.99) %, 200 mesh), selenium (99.99%, 200 mesh) and copper (99.99%, purchased from Alfa Aesar, 200 mesh) with accurate stoichiometric ratios of Bi 0.5 Sb 1.5 Te 3 and Cu 0.01 - Bi 2 Te 2.7 Se 0.3 was mixed and placed in a quartz tube (10 mm in diameter, 1 mm wall thickness) and then sealed under vacuum (10 -6 torr). The quartz tube was then placed in a vertical high temperature furnace and heated to 973 K over a period of 10 hours and then held for 120 hours. The furnace was then slowly cooled to 573 K over 8 hours and then quenched to room temperature in air. The Bi 0.5 Sb 1.5 Te 3 and Cu 0.01 -Bi 2 Te 2.7 Se 0.3 polycrystalline ingot thus obtained were ground into a micron-sized powder and then densified by spark plasma sintering (SPS-515S) to maintain 50 in a vacuum. The uniaxial pressure of MPa was raised to 673 K for 5 minutes (Ref. 5-6).

材料特徵和分析:我們分別使用場發射掃描式電子顯微鏡(FESEM)、X射線繞射儀(PANalytical X’Pert Powder)及能量散射光譜儀(EDS),研究球磨過Bi 0.5Sb 1.5Te 3和Cu 0.01-Bi 2Te 2.7Se 0.3粉末的微組織、結晶相和組成。我們還採用Rietveld 結構精算(refinement)來計算樣品的晶格常數。我們使用標準四點探針技術,以ZEM-3(尖端真空技術公司(ULVAC))系統來測量棒型樣品(2毫米×2毫米×8毫米)的電導率和席貝克係數。藉由關係式Κ=DC pd 計算熱導率,其中D是熱擴散率;C p 是比熱; d是密度。熱擴散率測量係藉由雷射閃光法(LFA457,耐馳公司(Netzsch)),使雷射閃光通過10毫米直徑和約2毫米厚度盤形試片進行之。並使用差示掃描熱分析儀(DSC-Q100, TA)測定從300 K至500 K溫度的比熱C p 。樣品密度係採用阿基米德法測定。在物理性能的測量系統(PPMS,量子設計(Quantum Design))中進行10 K至400K的霍爾測量(Hall measurement)並在9 T的可逆磁場下,藉由範德堡法(Van der Pauw technique)獲得霍爾係數(Hall coefficient)。測定 zT的所有量測的合併誤差約10-15%。 Material Characteristics and Analysis: We used a field emission scanning electron microscope (FESEM), an X-ray diffraction instrument (PANalytical X'Pert Powder) and an energy scatter spectrometer (EDS) to study ball milling over Bi 0.5 Sb 1.5 Te 3 and Cu 0.01. Microstructure, crystalline phase and composition of the -Bi 2 Te 2.7 Se 0.3 powder. We also use the Rietveld structure refinement to calculate the lattice constant of the sample. We used a standard four-point probe technique to measure the conductivity and the Sibeck coefficient of a rod sample (2 mm x 2 mm x 8 mm) using a ZEM-3 (ULVAC) system. The thermal conductivity is calculated by the relationship Κ = DC p d , where D is the thermal diffusivity; C p is the specific heat; d is the density. The thermal diffusivity measurement was carried out by a laser flash method (LFA457, Netzsch) to pass the laser flash through a disc of 10 mm diameter and a thickness of about 2 mm. The specific heat C p from 300 K to 500 K was measured using a differential scanning calorimeter (DSC-Q100, TA). The sample density was determined by the Archimedes method. Hall measurement of 10 K to 400 K in a physical property measurement system (PPMS, Quantum Design) and a Vanderberg method (Van der Pauw technique) under a reversible magnetic field of 9 T ) Obtain a Hall coefficient. The combined error for all measurements of zT was determined to be about 10-15%.

本描述用於說明本案原理。因此,將理解的是,此領域之熟悉技藝者將能夠設計各種不同的安排,雖然在此沒有明確地描述或顯示,但本案原理的各種不同體現均包括在本發明的精義及申請專利範圍內。This description is intended to illustrate the principles of the present invention. It will be appreciated that those skilled in the art will be able to devise various arrangements, which are not specifically described or illustrated herein, but various embodiments of the present principles are included within the scope of the invention .

本文中列舉的所有舉例和條件語言旨在用於教導的目的,以幫助讀者理解本案以及由發明人所貢獻促進現有技術的概念,可被解釋為不局限於這種具體敘述的舉例和條件。All of the examples and conditional language recited herein are intended to be used for the purpose of teaching, and to help the reader understand the present invention and the concept of the prior art as contributed by the inventor, and can be construed as being not limited to the specific examples and conditions.

此外,所有陳述原理、面向和本案原理的實施方式,以及其具體舉例,目的是包含其結構和功能的等效物。再者,希望如此等效物包括當前已知的等效物以及未來所開發而用於執行相同功能的等效物,例如,不論結構如何的任何功能相同的元件。Moreover, all statements of principles, aspects, and embodiments of the present invention, as well as specific examples thereof, are intended to include equivalents of the structure and function. Furthermore, it is intended that such equivalents include the presently known equivalents, and equivalents that are developed in the future to perform the same function, such as any functionally identical element regardless of the structure.

在說明書中參考文獻對「一個實施方式」、「一實施方式」、本案的「一示例」、「一種典型性實施方式」或它們的其它變化,是指所描述的一特定特徵、結構、特性等係關聯於包括在本案至少一實施例的實施例中。因此,在整個說明書中,「在一個實施例中」、「在一實施例中」,「在一示例實施例中」或任何其他變化,出現在不同地方不一定都指同一實施例。In the specification, reference to "one embodiment", "an embodiment", "an example", "a typical embodiment" or other variations thereof refers to a particular feature, structure, or characteristic described. The system is associated with an embodiment included in at least one embodiment of the present invention. Thus, the appearances of the "in the embodiment", "in an embodiment", "in an embodiment", or any other variation, may not necessarily refer to the same embodiment.

應該理解的是,使用任何後列的「/」、「和/或」以及「之至少一個」,例如,「A / B」、「A和/或B」和「A和B之至少一個」,意在只包括第一個列出的選項(A),或僅包括第二個列出的選項(B),或者包括(A和B)的兩個選項。作為進一步的例子,在「A、B和/或C」和「A、B和C中的至少一個」的情況下,這種措辭意欲只包括第一個列出的選項(A)或只包括第二個列出的選項(B)或僅包括第三個列出的選項(C),或僅包括第一和第二列出的選項(A和B),或者僅包括第一和第三個列出的選項(A和C),或者僅包括第二和第三個列出的選項(B和C),或者包括所有三個選項(A和B和C)。所屬技術領域中具有通常知識者可瞭解其可擴張至許多的項目。It should be understood that any of the following "/", "and/or" and "at least one of", for example, "A / B", "A and / or B" and "at least one of A and B", It is intended to include only the first listed option (A), or only the second listed option (B), or two options (A and B). As a further example, in the case of "A, B, and/or C" and "at least one of A, B, and C," the phrase is intended to include only the first listed option (A) or only The second listed option (B) or only the third listed option (C), or only the first and second listed options (A and B), or only the first and third The listed options (A and C), or only the second and third listed options (B and C), or all three options (A and B and C). Those of ordinary skill in the art will appreciate that they can scale to many projects.

雖然幾個實施例已在此被描述和說明,所屬技術領域中具有通常知識者將容易想到多種其他手段和/或結構用於執行這些功能和/或獲得所述結果和/或一或多種本文中所描述的優點,且每個這樣的改變和/或修改被認為是在本實施例的範圍之內。更概括地說,本領域的技術人員將容易理解,在此所描述所有參數、尺寸、材料和配置僅為舉例,實際的參數、尺寸、材料和/或配置將取決於特定的應用和/或本文所教導的應用。那些本領域的技術人員透過不超過常規的實驗來理解或能確定在此描述的具體實施例之許多等效物。因此,可以理解的是,前述實施方案僅為舉例之目的,且在所附申請專利範圍及其等效物之範圍內,所揭示的實施例可以以不同於所具體描述及所申請專利範圍的方式實施之。本實施方式是針對本文中所描述的每個個別的特徵、系統、製品、材料和/或方法。此外,如果這種特徵、系統、製品、材料和/或方法不相互矛盾,本實施方式的範圍可包括兩個或以上這種特徵、系統、製品、材料和/或方法的任何組合。Although a few embodiments have been described and illustrated herein, it will be readily apparent to those of ordinary skill in the art that various other means and/or structures are used to perform these functions and/or obtain the results and/or one or more The advantages described herein, and each such change and/or modification are considered to be within the scope of the embodiments. More generally, it will be readily understood by those skilled in the art that all parameters, dimensions, materials, and configurations described herein are merely examples, and actual parameters, dimensions, materials, and/or configurations will depend on the particular application and/or The application taught herein. Many equivalents to the specific embodiments described herein will be understood or appreciated by those skilled in the art. Therefore, it is to be understood that the foregoing embodiments are intended for purposes of example only, and the scope of the The way to implement it. This embodiment is directed to each individual feature, system, article, material, and/or method described herein. In addition, the scope of the present embodiments may include any combination of two or more such features, systems, articles, materials, and/or methods if the features, systems, articles, materials, and/or methods are not inconsistent.

參考文獻: 1. F. J. DiSalvo, Thermoelectric Cooling and Power Generation. Science 285, 703-706 (1999). 2. G. J. Snyder, E. S. Toberer, Complex thermoelectric materials. Nature Materials 7, 105-114 (2008). 3. L. E. Bell, Cooling, Heating, Generating Power, and Recovering Waste Heat with Thermoelectric Systems. Science 321, 1457-1461 (2008). 4. K. Nielsch, J. Bachmann, J. Kimling, H. Bottner, Thermoelectric Nanostructures: From Physical Model Systems towards Nanograined Composites. Adv. Energy Mater. 1, 713-731 (2011). 5. M. S. Dresselhaus et al., New directions for low-dimensional thermoelectric materials. Advanced Materials 19, 1043-1053 (2007). 6. Y. Pei et al., Convergence of electronic bands for high performance bulk thermoelectrics. Nature 473, 66-69 (2011). 7. J. P. Heremans, M. S. Dresselhaus, L. E. Bell, D. T. Morelli, When thermoelectrics reached the nanoscale. Nat Nano 8, 471-473 (2013). 8. S. I. Kim et al., Thermoelectrics. Dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectrics. Science 348, 109-114 (2015). 9. P. Ghaemi, R. S. Mong, J. E. Moore, In-plane transport and enhanced thermoelectric performance in thin films of the topological insulators Bi(2)Te(3) and Bi(2)Se(3). Phys Rev Lett 105, 166603 (2010). 10. B. Hamdou et al., The influence of a Te-depleted surface on the thermoelectric transport properties of Bi(2)Te(3) nanowires. Nanotechnology 25, 365401 (2014). 11. T. C. Hsiung, C. Y. Mou, T. K. Lee, Y. Y. Chen, Surface-dominated transport and enhanced thermoelectric figure of merit in topological insulator Bi(1.5)Sb(0.5)Te(1.7)Se(1.3). Nanoscale 7, 518-523 (2015). 12. K. Biswas et al., Strained endotaxial nanostructures with high thermoelectric figure of merit. Nat Chem 3, 160-166 (2011). 13. K. Biswas et al., High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature 489, 414-418 (2012). 14. J. Li et al., BiSbTe-Based Nanocomposites with High zT: The Effect of SiC Nanodispersion on Thermoelectric Properties. Adv. Funct. Mater. 23, 4317-4323 (2013). 15. W.-S. Liu et al., Thermoelectric Property Studies on Cu-Doped n-type Cu_xBi_2Te_2.7Se_0.3 Nanocomposites. Adv. Energy Mater. 1, 577-587 (2011). 16. P. M. Wu et al., Large thermoelectric power factor enhancement observed in InAs nanowires. Nano Lett 13, 4080-4086 (2013). 17. H. Scherrer, S. Scherrer, CRC Handbook of Thermoelectrics. D. M. Rowe, Ed., (CRC Press: Boca Raton, FL, 1995). 18. J. Jiang, L. Chen, S. Bai, Q. Yao, Q. Wang, Fabrication and thermoelectric performance of textured n-type Bi_2(Te,Se)_3 by spar°K plasma sintering. Materials Science and Engineering B 117, 334-338 (2005). References: 1. FJ DiSalvo, Thermoelectric Cooling and Power Generation. Science 285, 703-706 (1999). 2. GJ Snyder, ES Toberer, Complex thermoelectric materials. Nature Materials 7, 105-114 (2008). 3. LE Bell, Cooling, Heating, Generating Power, and Recovering Waste Heat with Thermoelectric Systems. Science 321, 1457-1461 (2008). 4. K. Nielsch, J. Bachmann, J. Kimling, H. Bottner, Thermoelectric Nanostructures: From Physical Model Systems towards Nanograined Composites. Adv. Energy Mater. 1, 713-731 (2011). 5. MS Dresselhaus et al., New directions for low-dimensional thermoelectric materials. Advanced Materials 19, 1043-1053 (2007). Y. Pei et al., Convergence of electronic bands for high performance bulk thermoelectrics. Nature 473, 66-69 (2011). 7. JP Heremans, MS Dresselhaus, LE Bell, DT Morelli, When thermoelectrics reached the nanoscale. Nat Nano 8 , 471-473 (2013). 8. SI Kim et al., Thermoelectrics. Dense dislocation arrays embedded in grain boundaries for high-performance bu Lk thermoelectrics. Science 348, 109-114 (2015). 9. P. Ghaemi, RS Mong, JE Moore, In-plane transport and enhanced thermoelectric performance in thin films of the topological insulators Bi(2)Te(3) and Bi (2) Se(3). Phys Rev Lett 105, 166603 (2010). 10. B. Hamdou et al., The influence of a Te-depleted surface on the thermoelectric transport properties of Bi(2)Te(3) nanowires Nanotechnology 25, 365401 (2014). 11. TC Hsiung, CY Mou, TK Lee, YY Chen, Surface-dominated transport and enhanced thermoelectric figure of merit in topological insulator Bi(1.5)Sb(0.5)Te(1.7)Se( 1.3). Nanoscale 7, 518-523 (2015). 12. K. Biswas et al., Strained endotaxial nanostructures with high thermoelectric figure of merit. Nat Chem 3, 160-166 (2011). 13. K. Biswas et al High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature 489, 414-418 (2012). 14. J. Li et al., BiSbTe-Based Nanocomposites with High zT : The Effect of SiC Nanodispersion on Thermoelectric Properties. Adv. Funct. M Ater. 23, 4317-4323 (2013). 15. W.-S. Liu et al., Thermoelectric Property Studies on Cu-Doped n-type Cu_xBi_2Te_2.7Se_0.3 Nanocomposites. Adv. Energy Mater. 1, 577-587 (2011). 16. PM Wu et al., Large thermoelectric power factor enhancement observed in InAs nanowires. Nano Lett 13, 4080-4086 (2013). 17. H. Scherrer, S. Scherrer, CRC Handbook of Thermoelectrics. DM Rowe , Ed., (CRC Press: Boca Raton, FL, 1995). 18. J. Jiang, L. Chen, S. Bai, Q. Yao, Q. Wang, Fabrication and thermoelectric performance of textured n-type Bi_2(Te , Se)_3 by spar°K plasma sintering. Materials Science and Engineering B 117, 334-338 (2005).

無。no.

『圖1』,為本發明一實例的製造方法流程示意圖。 『圖2』,為本發明一實例中,Bi 0.5Sb 1.5Te 3熱電材料的X射線繞射光譜。 『圖3』,為本發明一實例中,Cu 0.01-Bi 2Te 2.7Se 0.3熱電材料的X射線繞射光譜。 『圖4(a)』,有氣凝膠與無氣凝膠Bi 0.5Sb 1.5Te 3熱電材料在不同溫度下的 zT。 『圖4(b)』,有氣凝膠與無氣凝膠Cu 0.01-Bi 2Te 2.7Se 0.3熱電材料在不同溫度下的 zT。 『圖4(c)』,矽氣凝膠的光學影像。 『圖4(d)』,矽氣凝膠的掃描電子顯微鏡影像。 『圖5(a)』,有氣凝膠與無氣凝膠Bi 0.5Sb 1.5Te 3熱電材料在不同溫度下的電阻率。 『圖5(b)』,有氣凝膠與無氣凝膠Cu 0.01-Bi 2Te 2.7Se 0.3熱電材料在不同溫度下的電阻率。 『圖6(a)』,有氣凝膠與無氣凝膠Bi 0.5Sb 1.5Te 3熱電材料在不同溫度下的席貝克係數。 『圖6(b)』,有氣凝膠與無氣凝膠Bi 0.5Sb 1.5Te 3熱電材料在不同溫度下的熱傳導率。 『圖6(c)』,有氣凝膠與無氣凝膠Bi 0.5Sb 1.5Te 3熱電材料在不同溫度下的功率係數。 『圖6(d)』,有氣凝膠與無氣凝膠Cu 0.01-Bi 2Te 2.7Se 0.3熱電材料在不同溫度下的席貝克係數。 『圖6(e)』,有氣凝膠與無氣凝膠Cu 0.01-Bi 2Te 2.7Se 0.3熱電材料在不同溫度下的熱傳導率。 『圖6(f)』,有氣凝膠與無氣凝膠Cu 0.01-Bi 2Te 2.7Se 0.3熱電材料在不同溫度下的功率因子。 『圖7(a)』, p型+AG(矽氣凝膠)的原子力顯微鏡影像。 『圖7(b)』,n型+AG(矽氣凝膠)的原子力顯微鏡影像。 『圖7(c)』,p型+AG(矽氣凝膠)的原子力顯微鏡影像。 『圖7(d)』,n型+AG(矽氣凝膠)的原子力顯微鏡影像。 FIG. 1 is a schematic flow chart of a manufacturing method according to an example of the present invention. Fig. 2 is an X-ray diffraction spectrum of a Bi 0.5 Sb 1.5 Te 3 thermoelectric material in an example of the present invention. 3 is an X-ray diffraction spectrum of a Cu 0.01 -Bi 2 Te 2.7 Se 0.3 thermoelectric material in an example of the present invention. 『Fig. 4(a)』, there is a zT of aerogel and aerogel-free Bi 0.5 Sb 1.5 Te 3 thermoelectric material at different temperatures. "FIG. 4 (b)", has zT 0.01 -Bi 2 Te 2.7 Se 0.3 thermoelectric material aerogels without aerogels Cu at different temperatures. 『Fig. 4(c)』, an optical image of a hernia gel. "Fig. 4(d)", a scanning electron microscope image of a hernia gel. Figure 5(a) shows the resistivity of aerogel and aerogel-free Bi 0.5 Sb 1.5 Te 3 thermoelectric materials at different temperatures. Figure 5(b) shows the resistivity of aerogel and aerogel-free Cu 0.01 -Bi 2 Te 2.7 Se 0.3 thermoelectric materials at different temperatures. 『Fig. 6(a)』, the Schiebeck coefficient of aerogel and aerogel-free Bi 0.5 Sb 1.5 Te 3 thermoelectric material at different temperatures. Figure 6(b) shows the thermal conductivity of aerogel and aerogel-free Bi 0.5 Sb 1.5 Te 3 thermoelectric materials at different temperatures. Figure 6(c) shows the power factor of aerogel and aerogel-free Bi 0.5 Sb 1.5 Te 3 thermoelectric materials at different temperatures. 『Fig. 6(d)』, the Schiebeck coefficient of aerogel and aerogel-free Cu 0.01 -Bi 2 Te 2.7 Se 0.3 thermoelectric material at different temperatures. "Fig. 6(e)" shows the thermal conductivity of aerogel and aerogel-free Cu 0.01 -Bi 2 Te 2.7 Se 0.3 thermoelectric materials at different temperatures. Figure 6(f) shows the power factor of aerogel and aerogel-free Cu 0.01 -Bi 2 Te 2.7 Se 0.3 thermoelectric materials at different temperatures. "Figure 7 (a)", atomic force microscope image of p type + AG (helium gel). "Fig. 7 (b)", atomic force microscope image of n type + AG (helium gel). "Figure 7 (c)", atomic force microscope image of p type + AG (helium gel). "Fig. 7 (d)", atomic force microscope image of n type + AG (helium gel).

Claims (8)

一種製造增加優質係數zT之複合熱電材料的方法,用於製造一具有增加zT的增強型複合熱電材料,該方法包括混合一複合熱電材料和一氣凝膠,且該複合熱電材料呈n型。 A method of fabricating a composite thermoelectric material having a high quality coefficient zT for producing a reinforced composite thermoelectric material having an increased zT , the method comprising mixing a composite thermoelectric material and an aerogel, and the composite thermoelectric material is n-type. 如申請專利範圍第1項所述之方法,其中該氣凝膠擇自於矽系氣凝膠、碳系氣凝膠、硫系氣凝膠和金屬氧化物氣凝膠所組成之群組。 The method of claim 1, wherein the aerogel is selected from the group consisting of an anthraquinone aerogel, a carbon aerogel, a sulfur aerogel, and a metal oxide aerogel. 如申請專利範圍第1項所述之方法,其中該複合熱電材料是Cu0.01-Bi2Te2.7Se0.3The method of claim 1, wherein the composite thermoelectric material is Cu 0.01 -Bi 2 Te 2.7 Se 0.3 . 如申請專利範圍第1項所述之方法,其中該混合進一步包括對該氣凝膠與該複合熱電材料進行球磨。 The method of claim 1, wherein the mixing further comprises ball milling the aerogel and the composite thermoelectric material. 一種較複合熱電材料具有更高品質因數zT的增強複合熱電材料,其中該增強複合材料熱電材料係藉由混合一複合熱電材料和一氣凝膠製造之,且該複合熱電材料呈n型。 A reinforced composite thermoelectric material having a higher quality factor zT than a composite thermoelectric material, wherein the reinforced composite thermoelectric material is produced by mixing a composite thermoelectric material and an aerogel, and the composite thermoelectric material is n-type. 如申請專利範圍第5項所述增強複合熱電材料,其中該氣凝膠擇自於矽系氣凝膠、碳系氣凝膠、硫系氣凝膠和金屬氧化物氣凝膠所組成之群組。 The reinforced composite thermoelectric material according to claim 5, wherein the aerogel is selected from the group consisting of anthraquinone aerogel, carbon aerogel, sulfur aerogel and metal oxide aerogel. group. 如申請專利範圍第5項所述之增強複合熱電材料,其中該奈米複合熱電材料是Cu0.01-Bi2Te2.7Se0.3The reinforced composite thermoelectric material according to claim 5, wherein the nanocomposite thermoelectric material is Cu 0.01 -Bi 2 Te 2.7 Se 0.3 . 如申請專利範圍第5項所述之增強複合熱電材料,其中該混合進一步包括以球磨研磨該氣凝膠與該複合熱電材料。 The reinforced composite thermoelectric material of claim 5, wherein the mixing further comprises grinding the aerogel and the composite thermoelectric material by ball milling.
TW106101687A 2017-01-18 2017-01-18 Apparatus and method for enhancing figure of merit in composite thermoelectric materials with aerogel TWI628816B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW106101687A TWI628816B (en) 2017-01-18 2017-01-18 Apparatus and method for enhancing figure of merit in composite thermoelectric materials with aerogel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW106101687A TWI628816B (en) 2017-01-18 2017-01-18 Apparatus and method for enhancing figure of merit in composite thermoelectric materials with aerogel

Publications (2)

Publication Number Publication Date
TWI628816B true TWI628816B (en) 2018-07-01
TW201828511A TW201828511A (en) 2018-08-01

Family

ID=63640343

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106101687A TWI628816B (en) 2017-01-18 2017-01-18 Apparatus and method for enhancing figure of merit in composite thermoelectric materials with aerogel

Country Status (1)

Country Link
TW (1) TWI628816B (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150093850A1 (en) * 2013-10-01 2015-04-02 The Pen Practical method of producing an aerogel composite continuous thin film thermoelectric semiconductor material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150093850A1 (en) * 2013-10-01 2015-04-02 The Pen Practical method of producing an aerogel composite continuous thin film thermoelectric semiconductor material

Also Published As

Publication number Publication date
TW201828511A (en) 2018-08-01

Similar Documents

Publication Publication Date Title
Wei et al. Review of current high-ZT thermoelectric materials
Shi et al. Rational structural design and manipulation advance SnSe thermoelectrics
Yao et al. Thermoelectric performance enhancement of Cu 2 S by Se doping leading to a simultaneous power factor increase and thermal conductivity reduction
Yu et al. Thermoelectric properties of Ag-doped bismuth sulfide polycrystals prepared by mechanical alloying and spark plasma sintering
Wang et al. High performance n-type (Bi, Sb) 2 (Te, Se) 3 for low temperature thermoelectric generator
Wang et al. Simultaneous enhancement of thermoelectric and mechanical performance for SnTe by nano SiC compositing
Li et al. Thermal stability and oxidation resistance of BiCuSeO based thermoelectric ceramics
Chen et al. Hydrothermal synthesized nanostructure Bi–Sb–Te thermoelectric materials
Zhang et al. Solution-processed n-type Bi2Te3− xSex nanocomposites with enhanced thermoelectric performance via liquid-phase sintering
TWI656667B (en) Thermoelectric materials and their manufacturing method
Wu et al. Realizing tremendous electrical transport properties of polycrystalline SnSe2 by Cl-doped and anisotropy
Zhang et al. Fabrication and properties of Bi2S3− xSex thermoelectric polycrystals
Wang et al. Synergistically optimizing the thermoelectric properties of polycrystalline Ag 8 SnSe 6 by introducing additional Sn
Li et al. Comparison of thermoelectric performance of AgPbxSbTe20 (x= 20–22.5) polycrystals fabricated by different methods
Wang et al. Improvement of thermoelectric properties of Cu3SbSe4 hierarchical with in-situ second phase synthesized by microwave-assisted solvothermal method
Liu et al. Excellent dispersion effects of carbon nanodots on the thermoelectric properties of Bi2Te2. 7Se0. 3 with excessive Te
Wang et al. Attaining reduced lattice thermal conductivity and enhanced electrical conductivity in as-sintered pure n-type Bi2Te3 alloy
Amin Bhuiyan et al. A review on performance evaluation of Bi2Te3-based and some other thermoelectric nanostructured materials
Fan et al. In-situ growth of carbon nanotubes on ZnO to enhance thermoelectric and mechanical properties
Zou et al. Comparing the role of annealing on the transport properties of polymorphous AgBiSe 2 and monophase AgSbSe 2
Chen et al. Simultaneously optimized thermoelectric performance of n-type Cu2Se alloyed Bi2Te3
KR20120050905A (en) Doped bi2te3-based thermoelectric material and preparing method of the same
Wang et al. Enhanced thermoelectric properties of Cu3SbSe4 via compositing with nano-SnTe
Zhang et al. Preparation and Thermoelectric Properties of Nanoporous Bi 2 Te 3-Based Alloys
Wang et al. Achieving high power factor of p-type BiSbTe thermoelectric materials via adjusting hot-pressing temperature