TWI627543B - Research method of mind map generation method - Google Patents
Research method of mind map generation method Download PDFInfo
- Publication number
- TWI627543B TWI627543B TW104128830A TW104128830A TWI627543B TW I627543 B TWI627543 B TW I627543B TW 104128830 A TW104128830 A TW 104128830A TW 104128830 A TW104128830 A TW 104128830A TW I627543 B TWI627543 B TW I627543B
- Authority
- TW
- Taiwan
- Prior art keywords
- research
- content
- reply
- file
- mind map
- Prior art date
Links
Landscapes
- Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
Abstract
一種研究主題的心智圖產生方法,藉由一處理模組來實施,並包含以下步驟:(A)自多筆分別對應於多個受訪者回覆的回覆資料中,選取出一筆具有最多資料量的回覆資料,其中每筆回覆資料包含多個分別對應於多個相關於一研究主題之不同研究項目的回覆內容,每一研究項目包含至少一問題,且每一回覆內容包含一相關於一對應的研究項目之該問題的回覆內容部分;(B)根據步驟(A)選取出的該筆回覆資料,利用一自然語言處理方式,獲得多個分別對應於該筆回覆資料之該等回覆內容之回覆內容部份的第一文件摘要;及(C)根據該等第一文件摘要,產生一心智圖。 A mental map generation method for research topics is implemented by a processing module, and includes the following steps: (A) selecting a maximum amount of data from multiple responses corresponding to multiple respondents Responsive information, wherein each reply data includes a plurality of reply content respectively corresponding to a plurality of different research items related to a research topic, each research item includes at least one question, and each reply content includes a related one-to-one correspondence The part of the reply to the question of the research project; (B) according to the reply data selected in step (A), using a natural language processing method to obtain a plurality of such reply contents respectively corresponding to the reply data Replying to the first summary of the content of the content section; and (C) generating a mental map based on the summary of the first document.
Description
本發明是有關於一種圖形產生方法,特別是指一種研究主題的心智圖產生方法。 The present invention relates to a method for generating graphics, and more particularly to a method for generating a mind map of a research subject.
近年來,國內技職院校將專題課程視為極重要的必修課程,學生在專題課程中可以培養確立主題、搜集資料、分析資料的能力,奠定未來從事進階研究的能力基礎。 In recent years, domestic vocational colleges have regarded thematic courses as a very important compulsory course. Students can develop the ability to establish themes, collect materials, and analyze materials in the special courses, and lay the foundation for future advanced research.
然而,學生在進行資料分析的過程中往往會感到困惑,甚至不知如何進行資料分析工作,如何引導學生從龐雜紛亂的資料中,有系統的歸納整理出研究重點及結果,乃當務之急。 However, students often feel confused during the process of data analysis. They don't even know how to conduct data analysis. How to guide students to systematically summarize the research priorities and results from the complicated data is a top priority.
Buzan於1976年提出心智圖法的構想,其透過放射性思考表徵方式呈現內在思維,有助分析與記憶。此外,心智圖法具有認知概念視覺化的功能,可幫助思維的整合,進而提供問題解決的策略。若能將心智圖法運用於資料分析上,應可幫助學生順利釐清研究重點及結果。 In 1976, Buzan proposed the idea of a mind map, which presents internal thinking through radiological thinking and representation, which helps analysis and memory. In addition, the mind mapping method has the function of visualizing the cognitive concept, which can help the integration of thinking and provide a solution to the problem solving. If the mental map can be applied to data analysis, it should help students to clarify the research focus and results.
因此,本發明之目的,即在提供一種研究主題的心智圖產生方法,以幫助學生歸納整理出研究重點及結果。 Accordingly, it is an object of the present invention to provide a mind map generation method for research topics to assist students in summarizing research priorities and results.
於是,本發明研究主題的心智圖產生方法,藉由一處理模組來實施,並包含以下步驟:(A)自多筆分別對應於多個受訪者回覆的回覆資料中,選取出一筆具有最多資料量的回覆資料,其中每筆回覆資料包含多個分別對應於多個相關於一研究主題之不同研究項目的回覆內容,每一研究項目包含至少一問題,且每一回覆內容包含一相關於一對應的研究項目之該問題的回覆內容部分;(B)根據步驟(A)選取出的該筆回覆資料,利用一自然語言處理方式,獲得多個分別對應於該筆回覆資料之該等回覆內容之回覆內容部份的第一文件摘要;及(C)根據步驟(B)所獲得的該等第一文件摘要,產生一相關於該研究主題的該等研究項目的心智圖,其中,該心智圖指示出該研究主題、該等研究項目、及該等第一文件摘要的內容、該研究主題與該等研究項目之關係、及每一第一文件摘要與其對應的研究項目之關係。 Therefore, the mind map generation method of the research subject of the present invention is implemented by a processing module, and includes the following steps: (A) selecting multiple responses from multiple responses corresponding to multiple respondents The reply data of the maximum amount of data, wherein each reply data includes a plurality of reply contents respectively corresponding to a plurality of different research items related to a research topic, each research item includes at least one question, and each reply content includes a related The part of the reply to the question in a corresponding research project; (B) the reply data selected in step (A), using a natural language processing method to obtain a plurality of such corresponding responses to the reply data Replying to a first document summary of the reply content portion of the content; and (C) generating, according to the first document summary obtained in step (B), a mental map of the research items related to the research subject, wherein The mind map indicates the subject of the study, the research items, and the contents of the first document abstract, the relationship between the research topic and the research projects, and each of the first articles Summary relationship of corresponding research projects.
本發明之功效在於,藉由該處理模組自動獲得分別對應於該等回覆內容之回覆內容部分的該等第一文件摘要,並根據該等第一文件摘要,產生可指示出該研究主題、該等研究項目、及該 等第一文件摘要的內容、該研究主題與該等研究項目之關係、及每一第一文件摘要與其對應的研究項目之關係的該心智圖,以幫助學生歸納整理出研究重點及結果。 The effect of the present invention is that the first file summary corresponding to the reply content portion of the reply content is automatically obtained by the processing module, and according to the first file summary, the research subject is indicated, These research projects, and The mental map of the content of the first document abstract, the relationship between the research topic and the research projects, and the relationship between each first document abstract and its corresponding research project to help students summarize the research priorities and results.
11~21‧‧‧步驟 11~21‧‧‧Steps
121~125‧‧‧子步驟 121~125‧‧‧Substeps
151~153‧‧‧子步驟 151~153‧‧‧ substeps
本發明之其他的特徵及功效,將於參照圖式的實施方式中清楚地呈現,其中:圖1是一流程圖,說明本發明研究主題的心智圖產生方法的實施例;圖2是一流程圖,說明一處理模組如何獲得每一回覆內容之一回覆內容部份對應的一第一文件摘要;圖3是一流程圖,說明該處理模組如何計算該第一文件摘要及一第二文件摘要間之一摘要相似度;圖4是一示意圖,說明本發明所產生的一心智圖;及圖5是一示意圖,說明該心智圖加入該第二文件摘要及至少一研究文章後之結果。 Other features and effects of the present invention will be apparent from the embodiments of the present invention, wherein: FIG. 1 is a flowchart illustrating an embodiment of a mind map generating method of the subject matter of the present invention; FIG. 2 is a flow FIG. 3 is a flow chart showing how the processing module calculates the first file summary and the second file. A summary of similarity between document summaries; FIG. 4 is a schematic diagram illustrating a mind map generated by the present invention; and FIG. 5 is a schematic diagram illustrating the result of adding the mind map to the second document abstract and at least one research article .
參閱圖1,本發明研究主題的心智圖產生方法之實施例,可藉由一處理模組(圖未示)來實施,並包含以下步驟。在本 實施例中,該處理模組可為如包含於個人電腦或伺服器等中具有運算能力的處理器,可將本發明研究主題的心智圖產生方法之步驟以一軟體形式如一包含多個指令之應用程式來實現,並由該處理模組執行該應用程式以實施本發明研究主題的心智圖產生方法。 Referring to FIG. 1, an embodiment of a method for generating a mind map of a subject of the present invention can be implemented by a processing module (not shown) and includes the following steps. In this In an embodiment, the processing module may be a processor having computing power included in a personal computer or a server, and the steps of the mind mapping generating method of the research subject of the present invention may be in a software form such as including a plurality of instructions. The application implements and executes the application by the processing module to implement a mind map generation method of the subject matter of the present invention.
在步驟11中,該處理模組自多筆分別對應於多個受訪者回覆的回覆資料中,選取出一筆具有最多資料量的回覆資料,其中每一回覆資料包含多個分別對應於多個相關於一研究主題之不同研究項目的回覆內容,每一研究項目包含至少一問題,且每一回覆內容包含一相關於一對應的研究項目之該問題的回覆內容部分。表1是一示例的問卷,表2是一示例的回覆資料。 In step 11, the processing module selects a response data having the largest amount of data from multiple response data corresponding to multiple respondents, wherein each of the response data includes multiple corresponding to multiple The response content of different research projects related to a research topic, each research project contains at least one question, and each reply content includes a reply content portion of the question related to a corresponding research project. Table 1 is an example questionnaire, and Table 2 is an example of the reply material.
在步驟12中,該處理模組根據步驟11選取出的該筆回覆資料,利用一自然語言處理方式,獲得多個分別對應於該筆回覆資料之該等回覆內容之回覆內容部份的第一文件摘要。 In step 12, the processing module obtains the first part of the reply content portion of the reply content corresponding to the reply data by using a natural language processing method according to the reply data selected in step 11. Summary of the file.
值得一提的是,該處理模組係藉由執行以下子步驟121~125(見圖2),以獲得該回覆資料之每一回覆內容之該回覆內容部份對應的一第一文件摘要。 It is worth mentioning that the processing module obtains a first file summary corresponding to the reply content portion of each reply content of the reply data by performing the following sub-steps 121-125 (see FIG. 2).
在子步驟121中,該處理模組根據該筆回覆資料之該等回覆內容的回覆內容部分,將每一回覆內容部分分割為多個內容字詞。在本實施例中,該處理模組係利用一相關於中文知識資訊處理(Chinese Knowledge Information Processing,簡稱CKIP)的斷詞方法分割每一回覆內容部分。 In sub-step 121, the processing module divides each of the reply content portions into a plurality of content words according to the reply content portion of the reply content of the pen reply data. In this embodiment, the processing module segments each of the replies by using a word-breaking method related to Chinese Knowledge Information Processing (CKIP).
在子步驟122中,該處理模組根據該回覆內容部分的該等內容字詞,利用一潛在語意分析(Latent semantic analysis,簡稱LSA)方法,獲得該回覆內容部分的多個內容關鍵字與多個內容語句的一語意矩陣。 In sub-step 122, the processing module obtains a plurality of content keywords and portions of the reply content portion by using a latent semantic analysis (LSA) method according to the content words of the reply content portion. A semantic matrix of content statements.
在子步驟123中,該處理模組根據該語意矩陣,計算每一內容語句相對於其它所有內容語句之每一者間之一語意相似度。 In sub-step 123, the processing module calculates a semantic similarity between each content statement relative to each of all other content statements based on the semantic matrix.
在子步驟124中,該處理模組根據每一內容語句對應的所有語意相似度及一語意門檻值,計算每一內容語句對應的所有語意相似度中其相似度大於該語意門檻值的一關聯數量。 In sub-step 124, the processing module calculates, according to all semantic similarities and a semantic threshold corresponding to each content statement, an association in which all similarities in the semantic similarities of each content statement are greater than the semantic threshold. Quantity.
在子步驟125中,該處理模組根據該等內容語句分別對應的該等關聯數量,獲得關聯數量前N高的內容語句,以作為該回覆內容部份對應的該第一文件摘要。在本實施例中,N值可視該回覆內容部分之內容語句的多寡而調整,例如,當內容語句越多則N值也隨之越大;當內容語句越少則N值也隨之越小。 In sub-step 125, the processing module obtains the content statement with the associated number of top N high according to the number of associations corresponding to the content sentences, respectively, as the first file digest corresponding to the reply content portion. In this embodiment, the value of N can be adjusted according to the number of content sentences of the content part of the reply. For example, the more the content statement, the larger the value of N; the smaller the content statement, the smaller the value of N. .
表3示例出根據表2所示之回覆資料而獲得之對應於每一回覆內容之該回覆內容部份的一第一文件摘要。 Table 3 illustrates a first file summary of the portion of the reply content corresponding to each reply content obtained according to the reply data shown in Table 2.
在步驟13中,該處理模組根據步驟12所獲得的該等第一文件摘要,產生一相關於該研究主題的該等研究項目的心智圖(見圖4),其中,該心智圖指示出該研究主題、該等研究項目、及該等第一文件摘要的內容、該研究主題與該等研究項目之關係、及每一第一文件摘要與其對應的研究項目之關係,且還在每一回覆內容部份對應的該第一文件摘要上指示出與第一文件摘要相關之一受訪者所對應之一受訪者識別碼。 In step 13, the processing module generates a mental map (see FIG. 4) of the research items related to the research subject according to the first file digests obtained in step 12, wherein the mental map indicates The research subject, the research items, and the contents of the first document abstract, the relationship between the research topic and the research projects, and the relationship between each first document summary and its corresponding research project, and still in each The first file summary corresponding to the reply content portion indicates one of the respondent identification codes corresponding to one of the respondents associated with the first file summary.
值得一提的是,該處理模組係先繪製出對應於該研究主題的內容、該等研究項目的內容,及與該等研究項目相關的該等第一文件摘要的內容的多個節點,接著,繪製出該研究主題與每一研究項目之連結,及每一第一文件摘要與其對應之研究項目的連結。詳言之,每一研究項目對應有包含至少一回覆內容部分的該回覆內容,且該回覆內容部份對應於一第一文件摘要,故藉由每一研究項目與該回覆內容部分之對應關係及該回覆內容部份與該第一文件摘要之對應關係,可獲得每一第一文件摘要與每一研究項目之對應關係,進而根據每一研究項目與每一第一文件摘要之對應關係繪製出該第一文件摘要與其對應之研究項目的連結。此外,該處理 模組還將與第一文件摘要相關之受訪者識別碼加入該第一文件摘要所對應之節點上。 It is worth mentioning that the processing module first draws the content corresponding to the research topic, the content of the research projects, and the plurality of nodes of the contents of the first file summary related to the research projects, Next, draw a link between the research topic and each research project, and a link between each first document abstract and its corresponding research project. In detail, each research item corresponds to the reply content including at least one reply content part, and the reply content part corresponds to a first file abstract, so the correspondence between each research item and the reply content part is And the corresponding relationship between the reply content part and the first file summary, the corresponding relationship between each first file summary and each research item is obtained, and then the corresponding relationship between each research item and each first file summary is drawn. A link to the first document summary and its corresponding research project. In addition, the process The module also adds the respondent identification code associated with the first file summary to the node corresponding to the first file summary.
在步驟14中,該處理模組根據其餘具有非最多資料量的回覆資料,獲得每筆其餘的回覆資料對應的該等回覆內容之回覆內容部份之每一者的一第二文件摘要。 In step 14, the processing module obtains a second file summary of each of the reply content portions of the reply content corresponding to each of the remaining reply data according to the remaining reply data having the non-maximum data amount.
在步驟15中,該處理模組根據相關於每一研究項目之該問題的該第一文件摘要及該第二文件摘要,計算該第一文件摘要及該第二文件摘要間之一摘要相似度。 In step 15, the processing module calculates a summary similarity between the first file summary and the second file summary according to the first file summary and the second file summary related to the problem of each research item. .
值得一提的是,該處理模組係藉由執行以下子步驟151~153(見圖3),以計算該第一文件摘要及該第二文件摘要間之該摘要相似度。 It is worth mentioning that the processing module calculates the similarity between the first file summary and the second file summary by performing the following sub-steps 151-153 (see FIG. 3).
在子步驟151中,該處理模組根據相關於每一研究項目之該問題的該第一文件摘要及該第二文件摘要,將該第一文件摘要分割為多個第一字詞,並將該第二文件摘要分割為對應的多個第二字詞。在本實施例中,該處理模組係利用相關於中文知識資訊處理的該斷詞方法分割該第一文件摘要及該第二文件摘要。 In sub-step 151, the processing module divides the first file digest into a plurality of first words according to the first file digest and the second file digest related to the question of each research item, and The second file digest is divided into a corresponding plurality of second words. In this embodiment, the processing module divides the first file digest and the second file digest by using the word segmentation method related to Chinese knowledge information processing.
在子步驟152中,該處理模組獲得該第一文件摘要的多個第一關鍵字及該第二文件摘要的多個第二關鍵字。在本實施例中,該處理模組係利用一詞頻反向文件頻率方法來獲得該等第一關鍵字及該等第二關鍵字。 In sub-step 152, the processing module obtains a plurality of first keywords of the first file summary and a plurality of second keywords of the second file summary. In this embodiment, the processing module uses a word frequency reverse file frequency method to obtain the first keywords and the second keywords.
在子步驟153中,該處理模組根據該等第一關鍵字及該等第二關鍵字,計算該第一文件摘要及該第二文件摘要間之該摘要相似度。在本實施例中,該處理模組係利用一餘弦相似度公式來計算該摘要相似度。 In sub-step 153, the processing module calculates the digest similarity between the first file digest and the second file digest according to the first keyword and the second keywords. In this embodiment, the processing module calculates the digest similarity using a cosine similarity formula.
在步驟16中,該處理模組判定該第一文件摘要及該第二文件摘要間之該摘要相似度是否小於一摘要門檻值。當判定結果為是時,進行步驟17;否則,進行步驟18。 In step 16, the processing module determines whether the digest similarity between the first file digest and the second file digest is less than a digest threshold. When the determination result is YES, proceed to step 17; otherwise, proceed to step 18.
在步驟17中,該處理模組將該第二文件摘要之內容加入該心智圖中,且該心智圖還指示出該第二文件摘要與其對應的研究項目之關係,並在該二文件摘要上指示出與該第二文件摘要相關之一受訪者所對應之一受訪者識別碼。 In step 17, the processing module adds the content of the second file summary to the mind map, and the mind map further indicates the relationship between the second file summary and its corresponding research item, and on the two file abstracts. Indicates one of the respondent identification codes corresponding to one of the respondents associated with the second file summary.
在步驟18中,該處理模組將與該第二文件摘要相關之一受訪者所對應之一受訪者識別碼加入該第一文件摘要上。 In step 18, the processing module adds one of the respondent identification codes corresponding to one of the respondents associated with the second file summary to the first file summary.
舉例來說,若受訪者B針對「使用者對逃難包的了解」此研究項目的第二文件摘要為「急救包就是逃難包,裡面可放一些急救用品及藥品。」,其與受訪者A之「逃難包就是裡面有一些吃的,像餅乾、高熱量的糧食,用的,像收音機、手電筒。」第一文件摘要的摘要相似度小於該摘要門檻值,則該第二文件摘要「急救包就是逃難包,裡面可放一些急救用品及藥品。」會被加入該心智圖中(見圖5),若受訪者B針對「逃難背心的功能」此研究項目 的該等第二文件摘要與受訪者A針對「逃難背心的功能」此研究項目所對應的該等第一文件摘要的摘要相似度皆大於該摘要門檻值,則「逃難背心的功能」此研究項目所對應的該等第一文件摘要皆被加入受訪者B所對應之一受訪者識別碼“B”(見圖5)。若受訪者B針對「建議改進的地方」此研究項目無回覆,則心智圖上對應於「建議改進的地方」此研究項目的第一文件摘要亦不會有受訪者B所對應之一受訪者識別碼“B”。 For example, if respondent B is concerned with "users' understanding of escape packages", the second summary of the research project is "First aid kits are escape kits, which can contain some first-aid supplies and medicines." A's "Escape bag is something that is eaten inside, like cookies, high-calorie food, used, like a radio, a flashlight." The summary of the abstract of the first document is less than the summary threshold, then the second file summary. The first aid kit is the escape kit, which can be used to put some first-aid supplies and medicines. It will be added to the mind map (see Figure 5). If the respondent B is concerned with the function of the escape vest, this research project The summary of the second document and the respondent A's summary of the summary of the first document corresponding to the function of the escape vest are larger than the summary threshold, and the function of the escape vest is The first document summaries corresponding to the research project are added to one of the respondent identification codes "B" corresponding to the respondent B (see FIG. 5). If Respondent B has no response to the "Recommended Improvements" project, the first summary of the research project on the mental map corresponding to the "Recommended Improvements" will not be one of the respondents' B Respondent identification code "B".
在步驟19中,該處理模組根據相關於每一研究項目之該問題的該第一文件摘要的該等第一關鍵字、該第二文件摘要的該等第二關鍵字,及一儲存有多篇相關於該研究主題之研究文章的資料庫,判定是否存在至少一研究文章包含該等第一關鍵字及該等第二關鍵字之其中一者。當判定結果為是時,進行步驟20;否則,進行步驟21。 In step 19, the processing module stores the first keywords of the first file summary, the second keywords of the second file summary, and one of the second keywords according to the problem related to each research item. A plurality of databases related to the research articles of the research subject determine whether at least one research article includes one of the first keywords and the second keywords. When the determination result is YES, proceed to step 20; otherwise, proceed to step 21.
在步驟20中,該處理模組將包含該等第一關鍵字及該等第二關鍵字之其中一者的該研究文章的一識別資料加入該心智圖中,且該心智圖還指示出該識別資料與其對應的該第一文件摘要及該第二文件摘要之其中一者之關係。在本實施例中,該識別資料包含該研究文章的作者及發表日期(見圖5)。藉由將與該第一文件摘要及該第二文件摘要之其中一者有關的該研究文章標記於該心智圖上,可進一步驗證研究結果與文獻探討之相關性。 In step 20, the processing module adds an identification data of the research article including one of the first keywords and the second keywords to the mind map, and the mind map also indicates the Identifying the relationship between the data and one of the first file summary and the second file summary corresponding thereto. In this embodiment, the identification material contains the author of the research article and the date of publication (see Figure 5). By correlating the research article related to one of the first document abstract and the second document abstract on the mind map, the correlation between the research result and the literature discussion can be further verified.
在步驟21中,該處理模組不加入任何識別資料於該心智圖中。 In step 21, the processing module does not add any identification data to the mind map.
綜上所述,本發明研究主題的心智圖產生方法係藉由該處理模組自動獲得每一回覆內容之該回覆內容部份對應的該第一文件摘要,並根據該研究主題、該等第一文件摘要自動產生可指示出該研究主題與該等研究項目之關係,及每一研究項目與其對應的該第一文件摘要之關係的該心智圖,藉此,有效幫助學生歸納整理出研究重點及結果,並可節省學生分析資料的時間。此外,藉由將與該第一文件摘要或該第二文件摘要有關的該研究文章的識別資料標記於該心智圖上,還可方便學生於研究過程中參照與該第一文件摘要或該第二文件摘要有關的該研究文章,再者,在該第一文件摘要及該第二文件摘要上標示出相關的受訪者識別碼,亦可一目了然地指示出該第一文件摘要及該第二文件摘要與該等受訪者之關係,故確實能達成本發明之目的。 In summary, the mind map generation method of the research subject of the present invention automatically obtains the first file summary corresponding to the reply content portion of each reply content by the processing module, and according to the research topic, the first A document abstract automatically generates the mental map indicating the relationship between the research subject and the research project, and the relationship between each research project and the corresponding first document abstract, thereby effectively assisting the student to summarize the research focus And results, and can save students time to analyze data. In addition, by marking the identification data of the research article related to the first document abstract or the second document abstract on the mind map, it is also convenient for the student to refer to the first document abstract or the first in the research process. The research article related to the second document summary, and further, the related interviewee identification code is marked on the first document abstract and the second document abstract, and the first document abstract and the second may also be indicated at a glance The summary of the document and the relationship of the respondents, indeed, can achieve the object of the present invention.
惟以上所述者,僅為本發明之實施例而已,當不能以此限定本發明實施之範圍,凡是依本發明申請專利範圍及專利說明書內容所作之簡單的等效變化與修飾,皆仍屬本發明專利涵蓋之範圍內。 However, the above is only the embodiment of the present invention, and the scope of the invention is not limited thereto, and all the equivalent equivalent changes and modifications according to the scope of the patent application and the patent specification of the present invention are still The scope of the invention is covered.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW104128830A TWI627543B (en) | 2015-09-01 | 2015-09-01 | Research method of mind map generation method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW104128830A TWI627543B (en) | 2015-09-01 | 2015-09-01 | Research method of mind map generation method |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201710926A TW201710926A (en) | 2017-03-16 |
TWI627543B true TWI627543B (en) | 2018-06-21 |
Family
ID=58774284
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW104128830A TWI627543B (en) | 2015-09-01 | 2015-09-01 | Research method of mind map generation method |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI627543B (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201502812A (en) * | 2013-07-01 | 2015-01-16 | Univ Nat Yunlin Sci & Tech | Text abstract editing system, text abstract scoring system and method thereof |
-
2015
- 2015-09-01 TW TW104128830A patent/TWI627543B/en not_active IP Right Cessation
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201502812A (en) * | 2013-07-01 | 2015-01-16 | Univ Nat Yunlin Sci & Tech | Text abstract editing system, text abstract scoring system and method thereof |
Non-Patent Citations (4)
Title |
---|
「文件自動化摘要方法之研究及其在中文文件的應用」碩士論文、國立交通大學、出版日期2002年 * |
「文件自動化摘要方法之研究及其在中文文件的應用」碩士論文、國立交通大學、出版日期2002年。 |
1、「七合一多功能親子逃難背心創新與應用之研究」網路文章、公開日期:2015年5月27日、網址:http://project.cgust.edu.tw/files/13-1023-9558-1.php * |
1、「七合一多功能親子逃難背心創新與應用之研究」網路文章、公開日期:2015年5月27日、網址:http://project.cgust.edu.tw/files/13-1023-9558-1.php。 |
Also Published As
Publication number | Publication date |
---|---|
TW201710926A (en) | 2017-03-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9558264B2 (en) | Identifying and displaying relationships between candidate answers | |
Goeuriot et al. | ShARe/CLEF eHealth Evaluation Lab 2013, Task 3: Information retrieval to address patients' questions when reading clinical reports | |
JP5074378B2 (en) | Fact Query Engine user interface with snippets from information sources including query terms and response terms | |
Yang et al. | TREC 2016 Dynamic Domain Track Overview. | |
JP4878624B2 (en) | Document processing apparatus and document processing method | |
RU2008145584A (en) | SEARCH ANNOTATION | |
US20090074306A1 (en) | Estimating Word Correlations from Images | |
US20110202533A1 (en) | Dynamic Search Interaction | |
US20120016863A1 (en) | Enriching metadata of categorized documents for search | |
Aletras et al. | Computing similarity between items in a digital library of cultural heritage | |
Osipov et al. | Exactus expert—search and analytical engine for research and development support | |
US20120179709A1 (en) | Apparatus, method and program product for searching document | |
Chuklin et al. | Good abandonments in factoid queries | |
Teufel | An overview of evaluation methods in TREC ad hoc information retrieval and TREC question answering | |
Cruz et al. | Automatic expansion of feature-level opinion lexicons | |
Li et al. | Infographics retrieval: A new methodology | |
Faisal et al. | A novel framework for social web forums’ thread ranking based on semantics and post quality features | |
España-Bonet et al. | Tailoring and evaluating the Wikipedia for in-domain comparable corpora extraction | |
JP2006099753A (en) | Grouping method of names and keywords, and program, storage medium and device therefor | |
Chawla et al. | Performance evaluation of vsm and lsi models to determine bug reports similarity | |
TWI627543B (en) | Research method of mind map generation method | |
Chen et al. | Identifying opinion leaders from online comments | |
Cha et al. | Topic model based approach for improved indexing in content based document retrieval | |
Morstatter et al. | Text, topics, and turkers: A consensus measure for statistical topics | |
Wilson et al. | Keyword clouds: having very little effect on sensemaking in web search engines |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |