TWI626072B - Image-based heart rate feedback control fitness device - Google Patents

Image-based heart rate feedback control fitness device Download PDF

Info

Publication number
TWI626072B
TWI626072B TW106110445A TW106110445A TWI626072B TW I626072 B TWI626072 B TW I626072B TW 106110445 A TW106110445 A TW 106110445A TW 106110445 A TW106110445 A TW 106110445A TW I626072 B TWI626072 B TW I626072B
Authority
TW
Taiwan
Prior art keywords
unit
user
image
signal
motion
Prior art date
Application number
TW106110445A
Other languages
Chinese (zh)
Other versions
TW201836679A (en
Inventor
林俊良
趙昶辰
吳翊仲
Original Assignee
國立中興大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立中興大學 filed Critical 國立中興大學
Priority to TW106110445A priority Critical patent/TWI626072B/en
Application granted granted Critical
Publication of TWI626072B publication Critical patent/TWI626072B/en
Publication of TW201836679A publication Critical patent/TW201836679A/en

Links

Abstract

本發明係包括一運動單元、一影像擷取單元、一溫度感測單元及一控制單元。影像擷取單元擷取使用者以運動單元運動之即時影像,並經運算得到即時心律訊號。溫度感測單元即時擷取溫度訊號;心律訊號和溫度訊號用以換算使用者之運動量。控制單元控制運動單元,讓使用者之運動量與預設之目標運動量吻合。當控制單元比對得到心律訊號大於一心律閥值、溫度訊號大於一溫度閥值其中至少一者時,即控制運動單元降低使用者之運動量,以減少運動過量造成之傷害。故,本案可提高運動效果與主動提高運動安全性,並具有安全防護機制減少二次傷害等優點。 The invention comprises a motion unit, an image capturing unit, a temperature sensing unit and a control unit. The image capturing unit captures an instant image of the user moving in the motion unit, and obtains an instant heart rhythm signal through operation. The temperature sensing unit instantly captures the temperature signal; the heart rate signal and the temperature signal are used to convert the amount of motion of the user. The control unit controls the motion unit to match the amount of motion of the user with the preset amount of target motion. When the control unit compares and obtains at least one of the heart rate signal greater than a heart rate threshold and the temperature signal greater than a temperature threshold, the control motion unit reduces the amount of motion of the user to reduce the damage caused by excessive exercise. Therefore, this case can improve the exercise effect and actively improve the safety of sports, and has the advantages of safety protection mechanism to reduce secondary injury.

Description

影像式心律操控運動訓練機 Imaging rhythm control exercise training machine

本發明係有關一種影像式心律操控運動訓練機,尤指一種兼具可提高運動效果與具有主動安全防護機制減少二次傷害之影像式心律操控運動訓練機。 The invention relates to an image rhythm control exercise training machine, in particular to an image rhythm control exercise training machine which can improve the exercise effect and has an active safety protection mechanism to reduce secondary injury.

2010年麻省理工學院率先發展出非接觸式心律偵測技術,透過攝影機擷取人臉的特定區域,找出“非運動”狀態下受測者的心律。但,該研究只能在靜態下進行偵測。主因係運動狀態下光線、生理狀況、運動產生的振動等因素影響,使得影像中的生理訊號取得更為複雜、困難。 In 2010, MIT pioneered the development of non-contact heart rate detection technology to capture the specific area of the face through the camera to find out the heart rate of the subject in the "non-sports" state. However, the study can only be detected under static conditions. The main cause is the influence of light, physiological condition, vibration caused by exercise, etc., which makes the physiological signal in the image more complicated and difficult.

目前,用於體能訓練機上的心律量測技術,是利用紅外線的透射或反射以感測出心律,大致上有兩種接觸式的測量工具。一種是使用者身上穿戴量測的手環或心跳帶,另一種為體能訓練機上附有金屬電極的握把,於跑步的同時,將手握於握把上藉電極傳導電流,來量測心跳頻率。上述兩種裝置皆對使用者造成身體負擔和不便利,須屈就於心律量測裝置,增加了對使用者之姿勢、節奏的限制,不符合實際運動時的人體工學。此外,傳統體能訓練機的安全防護機制均為被動式,欠缺對使用者生理狀況預測與即時主動安全防護的功能。 At present, the rhythm measurement technique used on the physical exercise machine utilizes the transmission or reflection of infrared rays to sense the heart rhythm, and there are roughly two types of contact measurement tools. One is a wristband or a heartbeat belt worn by the user, and the other is a grip with a metal electrode attached to the physical training machine. While running, the hand is held on the grip and the electrode conducts current to measure Heart rate. Both of the above devices cause physical burden and inconvenience to the user, and the flexion is limited to the heart rate measuring device, which increases the restriction on the posture and rhythm of the user, and does not conform to the ergonomics during actual exercise. In addition, the safety protection mechanism of the traditional physical exercise machine is passive, lacking the function of predicting the physiological condition of the user and real-time active safety protection.

有鑑於此,必需研發出可解決上述習用缺點之技術。 In view of this, it is necessary to develop a technique that can solve the above disadvantages.

本發明之目的,在於提供一種影像式心律操控運動訓練機,其兼具可提高運動的安全性,符合實際運動時的人體工學,與具有安全防護預測機制減少二次傷害等優點。特別是,本發明所欲解決之問題係在於傳統跑步機無法透過自 動控制以配合使用者自行設定之運動強度、無法偵測使用者體能即將耗盡而自動減低運動強度,以及,當使用者在離開或是身體瞬間不適而倒下時,傳統跑步機的安全機制缺乏自動偵測與主動防護的功能,造成使用者倒下後再被運轉中的跑步機傷害等問題。 The object of the present invention is to provide an image rhythm control exercise training machine, which can improve the safety of exercise, meet the ergonomics during actual exercise, and have the advantages of safety protection prediction mechanism to reduce secondary injury. In particular, the problem to be solved by the present invention is that the conventional treadmill cannot pass through Dynamic control to match the user's own set of exercise intensity, unable to detect that the user's physical fitness is about to run out and automatically reduce the exercise intensity, and the safety mechanism of the traditional treadmill when the user leaves or the body is uncomfortable and falls down. Lack of automatic detection and active protection, causing problems such as the user falling down and being injured by the running treadmill.

解決上述問題之技術手段係提供一種影像式心律操控運動訓練機,其包括:一運動單元,係供一使用者進行運動,該使用者具有一臉部;一影像擷取單元,係設於該運動單元上,用以對該臉部擷取一臉部影像;該臉部影像係具有一紅色像素訊號、一綠色像素訊號及一藍色像素訊號;一溫度感測單元,係設於該運動單元上,用以朝該臉部進行體表溫度感測,並得到一溫度訊號;一控制單元,係設於該運動單元上,並連結該影像擷取單元及該溫度感測單元,該控制單元內建一心律閥值及一溫度閥值;當接收該紅色像素訊號、該綠色像素訊號及該藍色像素訊號,係用以進行傅立葉轉換(Fourier Transform),而取得訊號當中能量頻譜最大者及其諧波,其為該使用者之心律訊號,該心律訊號和溫度訊號係用以換算該使用者之運動量,該控制單元係用以控制該運動單元,使該使用者之運動量與其預設之目標運動量吻合;而當該控制單元比對得到該心律訊號大於該心律閥值、該溫度訊號大於該溫度閥值其中至少一者時,係自動控制該運動單元降低該使用者之運動量,而可減少該使用者過量運動造成之傷害。 The technical means for solving the above problems is to provide an image-based rhythm-controlled exercise training machine, comprising: a motion unit for a user to exercise, the user has a face; an image capture unit is disposed in the The motion unit is configured to capture a facial image of the face; the facial image has a red pixel signal, a green pixel signal, and a blue pixel signal; and a temperature sensing unit is disposed in the motion The unit is configured to perform surface temperature sensing on the face and obtain a temperature signal; a control unit is disposed on the motion unit, and is coupled to the image capturing unit and the temperature sensing unit, the control The unit has a heart rate threshold and a temperature threshold; when the red pixel signal, the green pixel signal and the blue pixel signal are received, the Fourier transform is used to obtain the largest energy spectrum among the signals. And its harmonics, which are heart rhythm signals of the user, the heart rate signal and the temperature signal are used to convert the amount of exercise of the user, and the control unit is used to control the exercise ticket And the amount of movement of the user is matched with the preset target exercise amount; and when the control unit compares and obtains that the heart rhythm signal is greater than the heart rate threshold, and the temperature signal is greater than the temperature threshold, the system automatically controls The motion unit reduces the amount of exercise of the user and reduces the damage caused by excessive movement of the user.

本發明之上述目的與優點,不難從下述所選用實施例之詳細說明與附圖中,獲得深入瞭解。 The above objects and advantages of the present invention will be readily understood from the following detailed description of the preferred embodiments illustrated herein.

茲以下列實施例並配合圖式詳細說明本發明於後: The invention will be described in detail in the following examples in conjunction with the drawings:

10‧‧‧運動單元 10‧‧‧ sports unit

20‧‧‧影像擷取單元 20‧‧‧Image capture unit

30‧‧‧溫度感測單元 30‧‧‧Temperature sensing unit

40‧‧‧控制單元 40‧‧‧Control unit

40A‧‧‧心律閥值 40A‧‧‧heart rate threshold

40B‧‧‧溫度閥值 40B‧‧‧temperature threshold

41‧‧‧觸控顯示結構 41‧‧‧Touch display structure

71‧‧‧運動機參數控制單元 71‧‧‧Sports machine parameter control unit

72‧‧‧運動機 72‧‧‧sports machine

73‧‧‧運動者 73‧‧ ‧ athletes

74‧‧‧生理訊號感測器 74‧‧‧ Physiological signal sensor

81‧‧‧影像數據 81‧‧‧ image data

82‧‧‧面部區域偵測與跟蹤 82‧‧‧Face area detection and tracking

83‧‧‧RGB三通道顏色值取平均 83‧‧‧RGB three-channel color value average

84‧‧‧顏色空間投影 84‧‧‧Color space projection

85‧‧‧帶通濾波 85‧‧‧Bandpass filtering

86‧‧‧傅立葉轉換 86‧‧‧ Fourier transform

87‧‧‧提取峰值頻率與二次諧波頻率 87‧‧‧Extracting the peak frequency and the second harmonic frequency

88‧‧‧心律訊號重建 88‧‧‧Reconstruction of heart rate signals

90‧‧‧臉部 90‧‧‧Face

90A‧‧‧心律訊號 90A‧‧‧ heart rate signal

90B‧‧‧溫度訊號 90B‧‧‧temperature signal

90C‧‧‧能量消耗值 90C‧‧‧ energy consumption value

91‧‧‧臉部影像 91‧‧‧Face images

911‧‧‧面部區域 911‧‧‧Face area

912‧‧‧特徵點 912‧‧‧Feature points

91A‧‧‧紅色像素訊號 91A‧‧‧Red pixel signal

91B‧‧‧綠色像素訊號 91B‧‧‧Green pixel signal

91C‧‧‧藍色像素訊號 91C‧‧‧Blue pixel signal

92A‧‧‧峰值頻率 92A‧‧‧peak frequency

92B‧‧‧二次諧波頻率 92B‧‧‧second harmonic frequency

L1‧‧‧訓練初期曲線 L1‧‧‧ initial training curve

L2‧‧‧訓練後期曲線 L2‧‧‧ training late curve

第1圖係本發明之實施例之示意圖 Figure 1 is a schematic view of an embodiment of the present invention

第2圖係本發明之觸控顯示結構之示意圖 2 is a schematic view of a touch display structure of the present invention

第3A圖係本發明之臉部影像之實體照 Figure 3A is a physical photograph of the facial image of the present invention.

第3B圖係本發明之運動中之臉部影像變化之示意圖 Figure 3B is a schematic diagram of facial image changes in the motion of the present invention.

第4圖係本發明之心率運算過程之參考流程圖 Figure 4 is a reference flow chart of the heart rate calculation process of the present invention

第5圖係本發明之RGB三通道顏色值取平均之波形圖 Figure 5 is a waveform diagram of RGB three-channel color value averaging according to the present invention.

第6圖係本發明之心律訊號(傅立葉轉換)之示意圖 Figure 6 is a schematic diagram of the heart rhythm signal (Fourier transform) of the present invention

第7圖係本發明之閉迴路控制架構之方塊圖 Figure 7 is a block diagram of the closed loop control architecture of the present invention.

第8A圖係本發明之訓練初期之曲線圖 Figure 8A is a graph of the initial training of the present invention

第8B圖係本發明之訓練後期之曲線圖 Figure 8B is a graph of the training later in the present invention.

參閱第1及第2圖,本發明係為一影像式心律操控運動訓練機,其包括:一運動單元10,係供一使用者進行運動,該使用者具有一臉部90。 Referring to Figures 1 and 2, the present invention is an image-based rhythm-controlled exercise training machine comprising: a motion unit 10 for exercising by a user having a face 90.

一影像擷取單元20,係設於該運動單元10上,用以對該臉部90擷取一臉部影像91(參閱第3A及第3B圖);該臉部影像91係具有一紅色像素訊號91A、一綠色像素訊號91B及一藍色像素訊號91C(如第5圖所示)。 An image capturing unit 20 is disposed on the moving unit 10 for capturing a facial image 91 of the face 90 (see FIGS. 3A and 3B); the facial image 91 has a red pixel Signal 91A, a green pixel signal 91B and a blue pixel signal 91C (as shown in Figure 5).

一溫度感測單元30,係設於該運動單元10上,用以朝該臉部90進行體表溫度感測,並得到一溫度訊號90B。 A temperature sensing unit 30 is disposed on the motion unit 10 for performing body surface temperature sensing on the face 90 and obtaining a temperature signal 90B.

一控制單元40,係設於該運動單元10上,並連結該影像擷取單元20及該溫度感測單元30,該控制單元40內建一心律閥值40A及一溫度閥值40B。當接收該紅色像素訊號91A、該綠色像素訊號91B及該藍色像素訊號91C,係用以進行傅立葉轉換,而取得訊號當中能量頻譜最大者及其諧波,其為該使用者之心律訊號90A,該心律訊號90A和該溫度訊號90B係用以換算該使用者之運動量,該控制單元40係用以控制該運動單元10,使該使用者之運動量與其預設之目 標運動量吻合;而當該控制單元40比對得到該心律訊號90A大於該心律閥值40A、該溫度訊號90B大於該溫度閥值40B其中至少一者時,係自動控制該運動單元10降低該使用者之運動量,而可減少該使用者過量運動造成之傷害。 A control unit 40 is disposed on the motion unit 10 and coupled to the image capturing unit 20 and the temperature sensing unit 30. The control unit 40 has a heart rate threshold 40A and a temperature threshold 40B. When the red pixel signal 91A, the green pixel signal 91B, and the blue pixel signal 91C are received, the Fourier transform is used to obtain the largest energy spectrum and its harmonics in the signal, which is the user's heart rate signal 90A. The heart rate signal 90A and the temperature signal 90B are used to convert the amount of motion of the user, and the control unit 40 is used to control the motion unit 10 to make the movement amount of the user and its preset purpose. The target motion amount is consistent; and when the control unit 40 compares the heart rate signal 90A to be greater than the heart rate threshold 40A and the temperature signal 90B is greater than the temperature threshold 40B, the motion unit 10 is automatically controlled to reduce the usage. The amount of exercise, which can reduce the damage caused by excessive exercise of the user.

該運動單元10可為跑步機、健身器材、或其他運動訓練機其中至少一者。 The exercise unit 10 can be at least one of a treadmill, a fitness device, or other exercise trainer.

該影像擷取單元20可為感光耦合元件(Charge Coupled Device,簡稱CCD)、互補性氧化金屬半導體(Complementary Metal-Oxide Semiconductor,簡稱CMOS)其中至少一者。 The image capturing unit 20 can be at least one of a photosensitive coupled device (CCD) and a complementary metal-oxide semiconductor (CMOS).

該溫度感測單元30可為紅外線溫度感測裝置(公知技術)。 The temperature sensing unit 30 can be an infrared temperature sensing device (known in the art).

該控制單元40可再包括一觸控顯示結構41,係用以觸控操作該影像式心律操控運動訓練機,並用以顯示該臉部影像91、該心律訊號90A、該溫度訊號90B及一能量消耗值90C。 The control unit 40 can further include a touch display structure 41 for touch-operating the image rhythm-controlled exercise training machine, and for displaying the facial image 91, the heart rhythm signal 90A, the temperature signal 90B and an energy The consumption value is 90C.

該觸控顯示結構41進一步並可顯示虛擬實境(例如數人同時異地進行跑步運動比賽)之跑步影像,而可提高運動之變化性。 The touch display structure 41 further displays a running image of a virtual reality (for example, a plurality of people performing a running competition at the same time), and can improve the variability of the exercise.

本發明之重點在於影像式心律訊號擷取、體溫偵測以換算使用者能量消耗。 The focus of the present invention is on image heart rate signal acquisition and body temperature detection to convert user energy consumption.

該影像擷取單元20及該溫度感測單元30係設於該觸控顯示結構41上,該觸控顯示結構41係可依需求於該控制單元40轉動調整,使該影像擷取單元20呈較佳之影像擷取角度,並使該溫度感測單元30呈較佳之體溫感測角度。 The image capturing unit 20 and the temperature sensing unit 30 are disposed on the touch display structure 41. The touch display structure 41 can be rotated and adjusted by the control unit 40 according to requirements, so that the image capturing unit 20 is The preferred image capture angle and the temperature sensing unit 30 has a preferred body temperature sensing angle.

關於影像式心律訊號擷取:此演算法目的在於在運動中有效提取使用者的心律訊號。此演算法較先前技術的一大優勢在於可以非接觸的方式,從複雜的運動訊號中可靠提取心律。該使用者以該運動單元10進行運動的過程中,該影像擷取單元20係擷取(即第4圖所示之影像數據81)該使用者之該臉部90之該臉部影像91和溫度感測單元 30之溫度訊號90B,然後如第4圖所示的流程圖,進行演算,共分為7個主要步驟,下面逐一進行解釋。 About image heart rate signal acquisition: The purpose of this algorithm is to effectively extract the user's heart rate signal during exercise. A major advantage of this algorithm over prior art is the reliable extraction of heart rhythms from complex motion signals in a non-contact manner. During the movement of the motion unit 10, the image capturing unit 20 captures (ie, the image data 81 shown in FIG. 4) the facial image 91 of the face 90 of the user. Temperature sensing unit 30 temperature signal 90B, and then according to the flow chart shown in Figure 4, the calculation, divided into seven main steps, explained below one by one.

[1]面部區域偵測與跟蹤82。在視頻開始的初始幀,運用面部偵測器偵測使用者的面部區域911,在面部區域911中提取特徵點912(如第3A及第3B圖所示)。在接下來的該臉部影像91中,只提取複數個特徵點912,然後根據連續兩幀的特徵點912的坐標估計出一個坐標轉換矩陣,將此矩陣作用於前一幀的面部區域911的坐標,即可得到當前幀的面部區域坐標。 [1] Face Area Detection and Tracking 82. At the initial frame where the video starts, the face detector 911 is used to detect the face area 911 of the user, and the feature point 912 is extracted in the face area 911 (as shown in FIGS. 3A and 3B). In the next face image 91, only a plurality of feature points 912 are extracted, and then a coordinate transformation matrix is estimated based on the coordinates of the feature points 912 of two consecutive frames, and the matrix is applied to the face region 911 of the previous frame. The coordinates can be used to get the coordinates of the face area of the current frame.

舉例而言,解析度為800x600攝影機以每秒30幀進行時,0-4秒共會擷取30x4=120幀之影像資料,假設「面部區域911」之上、下、左與右邊緣係以雙眼之最上緣、嘴唇之上緣、雙眼之眼尾為界,即可定出此「面部區域911」之明確區域及坐標資料。當然,也可以其他類似之習知影像處理技術來完成。 For example, when the resolution is 800x600, the camera will capture 30x4=120 frames of image data in 0-4 seconds, assuming that the top, bottom, left and right edges of the "face area 911" are The uppermost edge of the eyes, the upper edge of the lips, and the end of the eyes of the eyes are bounded, and the clear area and coordinate data of the "face area 911" can be determined. Of course, it can also be done by other similar conventional image processing techniques.

更進一步來講,關於“面部區域偵測演算法”,係為常規技術。例如大部分相機在拍照時都會給出人臉的位置(通常以矩形框表示),本發明採用的算法為一近期提出的演算法(例如參考文獻:Bertinetto L,Valmadre J,Golodetz S,et al.Staple:Complementary learners for real-time tracking,Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2016:1401-1409.)。 Further, regarding the "face area detection algorithm", it is a conventional technique. For example, most cameras give the position of a face (usually represented by a rectangular box) when taking a picture. The algorithm used in the present invention is a recently proposed algorithm (eg, reference: Bertinetto L, Valmadre J, Golodetz S, et al) .Staple: Complementary learners for real-time tracking, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016: 1401-1409.).

前述之該每一特徵點912,係可為加速穩健特徵點(Speeded Up Robust Features,簡稱SURF),使用海森(Hessian matrix)矩陣的行列式值作特徵點偵測,並用積分圖加速運算,主要可供穩健的圖像識別和描述算法(2006年發表之公知技術恕不贅述)。 Each of the foregoing feature points 912 may be a Speeded Up Robust Feature (SURF), using a determinant value of a Hessian matrix for feature point detection, and accelerating the operation by using an integral graph. It is mainly used for robust image recognition and description algorithms (known techniques published in 2006 are not mentioned).

[2]RGB三通道顏色值取平均83。在每一幀的面部區域911中提取RGB三個通道的像素值(即該紅色像素訊號91A、該綠色像素訊號91B及該藍色像素訊號91C),並且對每一個通道的所有像素值取平均,得到一個三維向量。 [2] RGB three-channel color values take an average of 83. Extracting pixel values of three channels of RGB (ie, the red pixel signal 91A, the green pixel signal 91B, and the blue pixel signal 91C) in the face area 911 of each frame, and averaging all pixel values of each channel , get a three-dimensional vector.

[3]顏色空間投影84。將每一幀的三維向量映射到RGB空間中的一個點,在一個時間窗口內就會有連續的若干點。用主成分分析(Principal components analysis,簡稱PCA)。 [3] Color space projection 84. Mapping a three-dimensional vector of each frame to a point in RGB space will have several consecutive points within a time window. Principal components analysis (PCA) was used.

舉例而言,0-4秒間之R、G、B各有120點之資料,即可形成三條變化曲線圖,其實,由第5圖中的a點及b點也可推估出其時間差約=(1.5-0.75)=0.75秒,所以其心率約為=1.33Hz(即心率為80/分)。 For example, if there are 120 points of R, G, and B in 0-4 seconds, three curves can be formed. In fact, the time difference can be estimated from points a and b in Figure 5. = (1.5-0.75) = 0.75 seconds, so its heart rate is about 1.33 Hz (that is, the heart rate is 80 / min).

前述之主成分分析是一種分析、簡化數據集的技術。主成分分析經常用於減少數據集的維數,同時保持數據集中的對變異數貢獻最大的特徵。 The aforementioned principal component analysis is a technique for analyzing and simplifying data sets. Principal component analysis is often used to reduce the dimensionality of a data set while maintaining the features that contribute the most to the variance in the data set.

主成分分析是以特徵量分析多元統計分布的最簡單方法。這種運算可被看作是揭露數據的內部結構,從而解釋數據之變量的更好方法。若一多元數據集能夠在一個高維數據空間座標系中被顯現出來,那麼主成分分析就能提供一幅較低維度的圖像,這幅圖像即為在訊息最多的點上原對象的一個『投影』。這樣就可以利用少量的主成分降低數據的維度。 Principal component analysis is the easiest way to analyze multivariate statistical distributions by feature quantities. This kind of operation can be seen as a better way to expose the internal structure of the data and thus explain the variables of the data. If a multivariate data set can be visualized in a high dimensional data space coordinate system, principal component analysis can provide a lower dimensional image, which is the original object at the point where the message is most A "projection". This allows you to reduce the dimensions of your data with a small amount of principal components.

主成分分析計算這些點在空間的第一主成分,將每個點的坐標投影到這個第一主成分,於是形成一個隨時間變化的波形。 Principal component analysis calculates the first principal component of these points in space, projecting the coordinates of each point to this first principal component, thus forming a waveform that changes over time.

[4]帶通濾波85。將此波形進行帶通濾波,去除與心律無關的雜訊的干擾。 [4] Bandpass filtering 85. This waveform is bandpass filtered to remove noise from noise that is not related to heart rhythm.

舉例而言,由於一般正常人平時之心率約在70/分至90/分,所以可以將高於180/分及低於35/分的雜訊先濾除。 For example, since the normal heart rate of a normal person is about 70/min to 90/min, noises higher than 180/min and below 35/min can be filtered first.

[5]傅立葉轉換86。對帶通濾波後的訊號進行傅立葉變換。 [5] Fourier transform 86. Perform a Fourier transform on the bandpass filtered signal.

[6]提取峰值頻率與二次諧波頻率87。據研究表明,心律訊號包含兩個能量較大的頻率訊號,一個是對應於心律的主頻率(即峰值頻率92A),另一個是主頻率的2倍,稱為二次諧波(即二次諧波頻率92B)。我們根據傅立葉轉換後的訊號確定能量最大的頻率為心律主頻率,其2倍頻率為二次諧波頻率。 [6] Extract the peak frequency and the second harmonic frequency 87. According to research, the heart rhythm signal contains two high-frequency signals, one is the main frequency corresponding to the heart rhythm (ie, the peak frequency is 92A), and the other is twice the main frequency, called the second harmonic (ie, the second time). Harmonic frequency 92B). We determine the frequency with the largest energy as the main frequency of the heart rhythm according to the signal after the Fourier transform, and the frequency of the second harmonic is the second harmonic frequency.

舉例而言,如第6圖所示,其主頻率(即峰值頻率92A)為1.38Hz,亦即心率=82.8/分。當然也可再由二次諧波頻率92B之計算:2.7/2(倍)=1.35來驗證,十分接近1.38。 For example, as shown in Fig. 6, its main frequency (i.e., peak frequency 92A) is 1.38 Hz, that is, heart rate = 82.8 / min. Of course, it can be verified by the calculation of the second harmonic frequency 92B: 2.7/2 (times) = 1.35, which is very close to 1.38.

[7]心律訊號重建88。根據主頻率和二次諧波頻率,通過傅立葉逆變換即可得到該心律訊號90A。 [7] Heart Rhythm Signal Reconstruction 88. According to the main frequency and the second harmonic frequency, the heart rate signal 90A can be obtained by inverse Fourier transform.

亦即,心率=82.8/分。 That is, the heart rate = 82.8 / min.

同理,在0-4秒之例子中共有120幀,即可推估出心率=82.8/分。當然,也可視情況將時間拉長或縮短。 Similarly, in the case of 0-4 seconds, there are 120 frames, and the heart rate can be estimated to be 82.8/min. Of course, the time can be lengthened or shortened depending on the situation.

關於體溫偵測:以該溫度感測單元30對該面部區域911進行溫度感測,經該控制單元40運算而得到該溫度訊號90B。關於體表溫度的計算公式如下:T=T s +T c ;其中:T s 為該溫度感測單元30測得的溫度;T c 為環境補償溫度,其計算公式如下:T c =α×D -1+β;其中:αβ為與該溫度感測單元30有關的常數,D為目標與鏡頭的距離。 Regarding the body temperature detection, the temperature sensing unit 30 performs temperature sensing on the face area 911, and the temperature signal 90B is obtained by the control unit 40. The formula for calculating the body surface temperature is as follows: T = T s + T c ; where: T s is the temperature measured by the temperature sensing unit 30; T c is the environmental compensation temperature, and the calculation formula is as follows: T c = α × D -1 + β ; wherein: α and β are constants associated with the temperature sensing unit 30, and D is the distance of the target from the lens.

關於該能量消耗值90C之計算公式如下(以下參數可依實際情況調整):男:(1+sign(T-T μ )(-55.0969+0.6309×f(HR '<HR μ )+0.1988×W+0.2017×A)/4.184×60(1) The calculation formula for the energy consumption value 90C is as follows (the following parameters can be adjusted according to actual conditions): Male: (1+sign( T - T μ )(-55.0969+0.6309× f ( HR ' < HR μ )+0.1988× W +0.2017× A )/4.184×60(1)

女:(1+sign(T-T μ )(-20.4022+0.4472×f(HR '<HR μ )-0.1263×W+0.074×A)/4184×60(2) Female: (1+sign( T - T μ )(-20.4022+0.4472× f ( HR ' < HR μ )-0.1263× W +0.074× A )/4184×60(2)

其中W=體重(公斤),A=年齡(歲)。 Where W = weight (kg), A = age (years).

; 其中:為心律隨時間的變化率;T 0為取樣周期;HR μ 為心律變化率上限;HR m =HR((k-1)T)為前一時刻心律值;sign( )為開關函數;T μ 為預設的運動時體溫常數。 and ; among them: Is the rate of change of heart rhythm with time; T 0 is the sampling period; HR μ is the upper limit of heart rate change rate; HR m = HR (( k -1) T ) is the heart rate value of the previous moment; sign( ) is the switching function; T μ The body temperature constant for the preset movement.

公式(1)和(2)中,原有的心律被替換成一個函數,當心律變化率小於一定的閾(閥)值時,使用當前的心律;當心律變化率大於這個閾(閥)值時,使用前一時刻的心律。由於正常情況下人體心律的變化率很緩慢,當心律劇烈變化時,很可能是由於外部刺激引起,並非代表運動量增加。為了避免此種情況造成的運動能量消耗運算的誤差,我們使用前數個心律平均值來計算。此外,研究發現,體表溫度每上升攝氏1度,能量消耗會提升10%,因此我們設計(1+sign(T-T μ )這一項來將體表溫度考慮在內。上述兩公式為即時運動能量消耗,運動期程總能量消耗可由上述公式對時間積分而得到。 In equations (1) and (2), the original heart rhythm is replaced by a function that uses the current heart rhythm when the rate of heart rate change is less than a certain threshold (valve) value; when the rate of heart rate change is greater than this threshold (valve) value When using the heart rate of the previous moment. Since the rate of change of the human heart rhythm is very slow under normal conditions, when the heart rate changes drastically, it is likely to be caused by external stimuli and does not represent an increase in the amount of exercise. In order to avoid the error of the exercise energy consumption calculation caused by this situation, we use the first few heart rate averages to calculate. In addition, the study found that for every 1 degree Celsius temperature increase, the energy consumption will increase by 10%, so we design (1+sign( T - T μ This item takes into account the body surface temperature. The above two formulas are instantaneous sports energy consumption, and the total energy consumption of the exercise period can be obtained by integrating the above formula with time.

進一步來講,參閱第7圖,係為本發明之閉迴路控制架構,其包括一運動機參數控制單元71(設於該控制單元40內)、一運動機72(例如該運動單元10)、一運動者73(例如本案之使用者)及一生理訊號感測器74(例如該影像擷取單元20及該溫度感測單元30),其中,該運動機72與該運動者73為控制對象。該生理訊號感測器74為可觸控顯示螢幕中的攝影鏡頭,包括普通攝影機鏡頭和紅外感測鏡頭。此閉迴路控制系統的核心為運動參數控制單元71。其至少包括一集成電路之硬體結構,用以與可觸控顯示螢幕組合成獨立設備,也可內嵌於該運動 機72的計算單元中。該生理訊號感測器74提取該運動者73的心律、體溫等體能消耗信息,與選定之運動模式參考輸入進行對比,作為該運動機參數控制單元71的輸入。產生用於控制該運動機72的電壓、電流等控制變量。從而操控該運動機72產生理想的坡度、皮帶轉速、運行時間等參數,形成目標的運動訓練模式。該運動者73在此種運動訓練模式下,會產生生理訊號發生改變,這些信號再由該生理訊號感測器74傳回該控制單元40,由該控制單元40根據參考輸入進行調整,再產生相應的輸出以控制該運動機72。形成閉迴路控制架構,達到主動控制該運動機72,產生特定的訓練效果。 Further, referring to FIG. 7, the closed loop control architecture of the present invention includes a motion machine parameter control unit 71 (provided in the control unit 40), a motion machine 72 (eg, the motion unit 10), An exerciser 73 (such as a user of the present invention) and a physiological signal sensor 74 (for example, the image capturing unit 20 and the temperature sensing unit 30), wherein the exercise machine 72 and the athlete 73 are controlled objects . The physiological signal sensor 74 is a photographic lens in a touch-sensitive display screen, including a normal camera lens and an infrared sensing lens. The core of this closed loop control system is the motion parameter control unit 71. The at least one integrated circuit hardware structure is combined with the touchable display screen to form a separate device, or embedded in the motion In the calculation unit of machine 72. The physiological signal sensor 74 extracts the body energy consumption information of the heart rate, body temperature, and the like of the athlete 73, and compares it with the selected motion mode reference input as an input of the exercise machine parameter control unit 71. A control variable for controlling the voltage, current, and the like of the exercise machine 72 is generated. Thus, the exercise machine 72 is manipulated to generate ideal slope, belt speed, running time and other parameters to form a target exercise training mode. In the exercise training mode, the athlete 73 generates a physiological signal change, and the signals are transmitted back to the control unit 40 by the physiological signal sensor 74, and the control unit 40 adjusts according to the reference input, and then generates A corresponding output is used to control the exercise machine 72. A closed loop control architecture is formed to actively control the motion machine 72 to produce a specific training effect.

本發明將心律曲線換成能量消耗曲線,因此可以設計基於能量消耗控制的訓練模式。參閱第8A圖,其中的訓練初期曲線L1代表目標心律,運動初期,心律間歇式上升,逐步提升運動強度。運動後期(如第8B圖所示的訓練後期曲線L2),心律逐步下降,逐步恢復到平穩狀態。透過測量使用者的實際心律,再由閉迴路控制架構控制運動機的運動強度,讓使用者心律達到目標,達到訓練目的。通過心律的回授使得運動機知道何時進入下一個階段。相比於預設程式,此種方式可以更加靈活的控制每個階段的時間。在有教練指導的情況下,通常每個階段的訓練時間由教練的經驗決定,或是通過教練與使用者的交流來反饋決定。所提方法是一種直接反饋,無需教練與使用者交流。也可以把教練的經驗設計在心律曲線中,這樣就可以達到有教練指導下的訓練效果。此外,所提方法更加靈活,更加適合使用者個體的特殊狀況。因為每個人體能不同,心律上升與恢復的速度不一樣,預設一個固定的時間並不能適合每個使用者。例如:有些人還沒有完全恢復就進入了下一個階段,這樣會減弱訓練效果;有些人在預設時間內已經完全恢復,這樣會降低訓練效率。所提出的演算法完全克服這些缺點,達到對每個人量身定製的目的。 The present invention replaces the heart rate curve with an energy consumption curve, so that a training mode based on energy consumption control can be designed. Referring to Fig. 8A, the initial curve L1 of the training represents the target heart rhythm. At the beginning of the exercise, the heart rhythm is intermittently increased, and the exercise intensity is gradually increased. In the later stage of exercise (such as the training curve L2 shown in Figure 8B), the heart rate gradually decreases and gradually returns to a stable state. By measuring the actual heart rhythm of the user, the closed loop control architecture controls the exercise intensity of the exercise machine, so that the user's heart rate reaches the goal and achieves the training purpose. Through the feedback of the heart rhythm, the exercise machine knows when to enter the next stage. Compared with the preset program, this method can control the time of each stage more flexibly. In the case of coaching, the training time at each stage is usually determined by the coach's experience, or through feedback from the coach and the user. The proposed method is a direct feedback that does not require the coach to communicate with the user. It is also possible to design the coach's experience in the rhythm curve so that the training effect under the guidance of the coach can be achieved. In addition, the proposed method is more flexible and more suitable for the special situation of the individual user. Because each human body can be different, the rate of rise and recovery of heart rhythm is not the same, and a fixed time is not suitable for each user. For example, some people have entered the next stage without fully recovering, which will weaken the training effect; some people have fully recovered within the preset time, which will reduce the training efficiency. The proposed algorithm completely overcomes these shortcomings and achieves the goal of tailoring for each person.

本發明設置安全防護機制如下:該影像擷取單元20之該臉部影像91為畫面的連續拍攝,幀數依設備品質可能是每秒30幀數或60幀數,而在人臉辨識的處理過程中,若該影像擷取單元20在第n幀時有拍攝到人臉目標(即該臉部影像91),而第n+1幀之後卻無拍攝到人臉,經該控制單元40運算處理後,於第n+1幀無法偵測到人臉目標(即該臉部影像91)的存在時,表示使用者可能跌倒或離開該運動單元10,才消失於觀測畫面中,此時該控制單元40將會在極短的時間內停止該運動單元10的運作,防止使用者受到二次傷害。 The security protection mechanism of the present invention is as follows: the facial image 91 of the image capturing unit 20 is continuous shooting of the image, and the number of frames may be 30 frames per second or 60 frames, and the processing of the face recognition is performed. In the process, if the image capturing unit 20 captures a face target (ie, the face image 91) at the nth frame, and no face is captured after the n+1th frame, the control unit 40 operates. After processing, when the presence of the face target (ie, the face image 91) cannot be detected in the n+1th frame, it indicates that the user may fall or leave the motion unit 10, and then disappears in the observation screen. The control unit 40 will stop the operation of the motion unit 10 in a very short time, preventing the user from being injured twice.

另外,由體溫訊號與心律訊號的取得,建立體溫和心律之間相互影響的關聯性,用以判斷是有否異常的心律變化: In addition, the correlation between the body temperature and the heart rhythm is established by the acquisition of the body temperature signal and the heart rate signal to determine whether there is abnormal heart rhythm change:

[a]例如當該運動單元10正在增加強度、該心律訊號90A反呈往下降、心悸,並搭配該溫度訊號90B判斷為異常的心律飄移上升現象時。 [a] For example, when the exercise unit 10 is increasing the intensity, the heart rate signal 90A is declining, and the heart is swaying, and the temperature signal 90B is judged to be an abnormal heart rhythm drifting phenomenon.

[b]又例如當該運動單元10降低運動強度、該心律訊號90A反呈往上增加或心悸。 [b] Further, for example, when the exercise unit 10 reduces the exercise intensity, the heart rate signal 90A is increased upward or palpitations.

[c]再例如當感測使用者之該溫度訊號90B超過40度(人體中心溫度於一般運動下不超過40度,否則有熱衰竭的可能)時。 [c] For example, when the temperature signal 90B of the user is sensed to exceed 40 degrees (the body center temperature does not exceed 40 degrees under normal exercise, otherwise there is a possibility of heat exhaustion).

當上述[a]、[b]與[c]各類情況發生時,利用該控制單元40發送警示命令(可為文字、圖案、任意可達成警示之組合),提示於該觸控顯示結構41之中,並同時發送控制命令調降該運動單元10的轉速或調整相關設定,以緩和使用者的生理狀況。 When the above various conditions [a], [b], and [c] occur, the control unit 40 is used to send an alert command (which may be a combination of text, a pattern, and any alert that can be reached), and the touch display structure 41 is presented. And simultaneously sending a control command to lower the rotational speed of the motion unit 10 or adjust related settings to alleviate the physiological condition of the user.

當該運動單元10為跑步機時,啟動跑步機後可先定訓練模式(先讓跑步機記錄此位使用者在正常體能下的生理數據),然後將該影像擷取單元20及該溫度感測單元30調整至可偵測到該臉部90的位置,該觸控顯示結構41可呈現出各種生理訊息、跑步機資訊以及功能選單。 When the exercise unit 10 is a treadmill, the training mode can be determined after the treadmill is started (the treadmill first records the physiological data of the user under normal physical fitness), and then the image capturing unit 20 and the temperature sense are obtained. The measuring unit 30 is adjusted to detect the position of the face 90. The touch display structure 41 can present various physiological messages, treadmill information and function menus.

接著,該控制單元40執行追蹤該面部區域911中之複數個特徵點912,取得紅色、綠色、藍色三種不同的像素訊號做影像分析,並將取得的三種像素訊號平滑化處理,接著運用帶通濾波器去除雜訊,剩餘下來的訊號經快速傅立葉轉換(Fast Fourier Transform),擷取訊號當中能量頻譜最大者及其諧波,此即為所偵測之心律訊號。而在體溫偵測上,該溫度感測單元30轉換人臉特定區域(即該面部區域911)之紅外線所對應的顏色,再估算出其顏色所接近的溫度,此即為所偵測之溫度訊號90B。將心律、體溫以及運動時間,把運動的強度透過相關生理資料綜合交叉分析出對應的該能量消耗值90C。 Then, the control unit 40 performs tracking of the plurality of feature points 912 in the face area 911, and obtains three different pixel signals of red, green, and blue for image analysis, and smoothes the obtained three kinds of pixel signals, and then applies the tape. The pass filter removes the noise, and the remaining signal is subjected to Fast Fourier Transform to extract the largest energy spectrum and its harmonics in the signal, which is the detected heart rate signal. On the body temperature detection, the temperature sensing unit 30 converts the color corresponding to the infrared light of the specific area of the face (ie, the face area 911), and then estimates the temperature to which the color is close, which is the detected temperature. Signal 90B. The heart rate, body temperature and exercise time are combined to analyze the corresponding energy consumption value 90C through the relevant physiological data.

以往的跑步機,使用者運動前選定訓練模式後,機器就按照訓練模式依序控制馬達轉速和坡度,其運作與使用者本身的即時生理狀況完全無關。 In the past treadmills, after the user selected the training mode before the exercise, the machine sequentially controlled the motor speed and the slope according to the training mode, and its operation was completely independent of the user's own immediate physiological state.

不同於以往的跑步機,本發明之特別處,在於使用者選擇完訓練模式後,該控制單元40(透過閉迴路控制機制)依心律控制訓練演算法,對不同使用者的生理狀況作循環訓練,先設定出運動中的心律上限和下限,例如心律上限設定每分鐘180次,心律下限設定每分鐘90次,而跑步機剛起步時,因為偵測到使用者的心律仍不到下限值,就會由控制單元40發送控制命令至跑步機,提升跑步機轉速或坡度而增加運動強度,將使用者的心律提昇至近上限,而當偵測到心律已達上限,控制單元40控制跑步機開始降低轉速或跑道坡度,藉高、低強度的循環變化,達成有效的訓練。 Different from the conventional treadmill, the special feature of the present invention is that after the user selects the training mode, the control unit 40 (through the closed loop control mechanism) controls the training algorithm according to the heart rhythm, and performs cyclic training on the physiological conditions of different users. First, set the upper and lower limits of the heart rhythm in motion. For example, the upper limit of the rhythm is set 180 times per minute, and the lower limit of the heart rhythm is set 90 times per minute. When the treadmill is just starting, the heart rhythm of the user is still less than the lower limit. Then, the control unit 40 sends a control command to the treadmill, increases the treadmill rotation speed or the gradient to increase the exercise intensity, raises the user's heart rhythm to the upper limit, and when the detected heart rate has reached the upper limit, the control unit 40 controls the treadmill. Start to reduce the speed or the slope of the runway, and use the high and low intensity cycle changes to achieve effective training.

安全偵測上,在人臉辨識的處理過程中,若系統無法偵測到使用者臉部,即可能表示使用者跌倒或者離開跑步機,控制單元立即停止跑步機的運作,防止使用者受到二次傷害,亦可在心律偵測上,藉由體溫與心律的綜合資料比對,判斷是否有異常生理狀況,例如當跑步機正在增加強度時,心律數值(訊號)反而往下降,或者當跑步機降低強度時,心律數值(訊號)卻往上增加,此時控制單元會發送警示命令,提示在螢幕顯示單元建議使用者緩和運動強度,或由主 動調整機制(可由使用者設定控制器的主動介入權限)發送控制命令調降跑步機的轉速等,緩和使用者的生理狀況。 In the security detection process, if the system cannot detect the user's face during the process of face recognition, it may indicate that the user falls or leaves the treadmill, and the control unit immediately stops the operation of the treadmill to prevent the user from being subjected to the second The secondary injury can also be compared with the comprehensive data of body temperature and heart rhythm to determine whether there is abnormal physiological condition. For example, when the treadmill is increasing the intensity, the heart rate value (signal) is decreased, or when running When the machine reduces the intensity, the heart rate value (signal) increases, and the control unit sends a warning command to prompt the user to ease the exercise intensity on the screen display unit, or by the main The dynamic adjustment mechanism (which can be set by the user to set the active intervention authority of the controller) sends a control command to lower the rotation speed of the treadmill, etc., to alleviate the physiological condition of the user.

本發明之優點及功效係如下所述: The advantages and functions of the present invention are as follows:

[1]可提高運動的安全性。本發明於運動過程中,即時綜合運算心律及體表溫度,一旦數據超過訓練模式的閥值,即降低跑步機的強度,讓使用者的生理機能得到緩和,以免造成運動傷害。故,可提高運動的安全性。 [1] can improve the safety of exercise. The invention integrates the heart rhythm and the body surface temperature in the course of exercise, and once the data exceeds the threshold of the training mode, the strength of the treadmill is reduced, and the physiological function of the user is alleviated, so as to avoid sports injury. Therefore, the safety of exercise can be improved.

[2]可提高運動效果。本發明於運動過程中,即時綜合運算心律及體表溫度,當數據未超過訓練模式的閥值,即提高跑步機產生的運動強度,自動讓使用者的運動量增加。故,可提高運動效果。 [2] can improve the exercise effect. In the process of the invention, the heart rhythm and the body surface temperature are integrated in real time, and when the data does not exceed the threshold of the training mode, the exercise intensity generated by the treadmill is increased, and the amount of exercise of the user is automatically increased. Therefore, the exercise effect can be improved.

[3]具有安全防護機制減少二次傷害。本發明之影像擷取單元係對臉部進行即時連續拍攝,幀數依設備品質可能是每秒30幀數或60幀數,而在人臉辨識的處理過程中,若影像擷取單元在第n幀時有拍攝到臉部,而第n+1幀之後卻無拍攝到臉部,表示使用者可能跌倒或離開該運動單元,則該控制單元會在極短的時間內停止該運動單元的運作,防止使用者受到二次傷害。 [3] It has a safety protection mechanism to reduce secondary damage. The image capturing unit of the present invention performs instant continuous shooting on the face, and the number of frames may be 30 frames per second or 60 frames per second, and in the process of face recognition, if the image capturing unit is in the first When the n frame is photographed to the face, and after the n+1th frame, no face is photographed, indicating that the user may fall or leave the motion unit, the control unit stops the motion unit in a very short time. Operate to prevent users from being harmed twice.

以上僅是藉由較佳實施例詳細說明本發明,對於該實施例所做的任何簡單修改與變化,皆不脫離本發明之精神與範圍。 The present invention has been described in detail with reference to the preferred embodiments of the present invention, without departing from the spirit and scope of the invention.

Claims (7)

一種影像式心律操控運動訓練機,係包括:一運動單元,係供一使用者進行運動,該使用者具有一臉部;一影像擷取單元,係設於該運動單元上,用以對該臉部擷取一臉部影像;該臉部影像係具有一紅色像素訊號、一綠色像素訊號及一藍色像素訊號;一溫度感測單元,係設於該運動單元上,用以朝該臉部進行體表溫度感測,並得到一溫度訊號;一控制單元,係設於該運動單元上,並連結該影像擷取單元及該溫度感測單元,該控制單元內建一心律閥值及一溫度閥值;當接收該紅色像素訊號、該綠色像素訊號及該藍色像素訊號,係用以進行傅立葉轉換,而取得訊號當中能量頻譜最大者及其諧波,其為該使用者之心律訊號,該心律訊號和溫度訊號係用以換算該使用者之運動量,該控制單元係用以控制該運動單元,使該使用者之運動量與其預設之目標運動量吻合;而當該控制單元比對得到該心律訊號大於該心律閥值、該溫度訊號大於該溫度閥值其中至少一者時,係自動控制該運動單元降低該使用者之運動量,而可減少該使用者過量運動造成之傷害。 An image-based rhythm-controlled exercise training machine includes: a motion unit for a user to move, the user has a face; an image capture unit is disposed on the motion unit for The face captures a face image; the face image has a red pixel signal, a green pixel signal, and a blue pixel signal; a temperature sensing unit is disposed on the motion unit for facing the face The part performs temperature sensing on the body surface and obtains a temperature signal; a control unit is disposed on the motion unit, and is coupled to the image capturing unit and the temperature sensing unit, wherein the control unit has a built-in heart rate threshold and a temperature threshold; when the red pixel signal, the green pixel signal, and the blue pixel signal are received, the Fourier transform is used to obtain the largest energy spectrum and its harmonics in the signal, which is the user's heart rhythm The heartbeat signal and the temperature signal are used to convert the amount of exercise of the user, and the control unit is configured to control the motion unit to move the user's movement amount with the preset target motion. When the control unit compares and obtains that the heart rhythm signal is greater than the heart rate threshold, and the temperature signal is greater than the temperature threshold, automatically controlling the motion unit to reduce the amount of motion of the user, and reducing the The damage caused by excessive exercise by the user. 如申請專利範圍第1項所述之影像式心律操控運動訓練機,其中,該運動單元係為跑步機、健身器材其中至少一者。 The image-based rhythm-controlled exercise training machine according to claim 1, wherein the exercise unit is at least one of a treadmill and a fitness equipment. 如申請專利範圍第1項所述之影像式心律操控運動訓練機,其中,該影像擷取單元係為感光耦合元件、互補性氧化金屬半導體其中至少一者。 The image-based rhythm-controlled exercise training machine according to claim 1, wherein the image capturing unit is at least one of a photosensitive coupling element and a complementary metal oxide semiconductor. 如申請專利範圍第1項所述之影像式心律操控運動訓練機,其中,該溫度感測單元係為紅外線溫度感測裝置。 The image-based rhythm-controlled exercise training machine according to claim 1, wherein the temperature sensing unit is an infrared temperature sensing device. 如申請專利範圍第1項所述之影像式心律操控運動訓練機,其中,該控制單元又包括:一觸控顯示結構,係用以觸控操作該影像式心律操控運動訓練機,並用以顯示該臉部影像、該心律訊號、該溫度訊號及一能量消耗值。 The image-based rhythm-controlled exercise training machine of claim 1, wherein the control unit further comprises: a touch display structure for touching and operating the image-based rhythm-controlled exercise training machine, and for displaying The facial image, the heart rhythm signal, the temperature signal, and an energy consumption value. 如申請專利範圍第5項所述之影像式心律操控運動訓練機,其中,該觸控顯示結構係用以顯示虛擬實境之跑步影像,而可提高運動之變化性。 The image-based rhythm-controlled exercise training machine according to claim 5, wherein the touch display structure is used to display a running image of a virtual reality, and the variability of the exercise can be improved. 如申請專利範圍第5項所述之影像式心律操控運動訓練機,其中:當該運動單元增加該使用者之運動強度,且該心律訊號係呈下降、心悸其中一者,並配合該溫度訊號判斷為異常的心律飄移上升現象時,該控制單元係用以發送一警示命令,其係顯示於該觸控顯示結構,且該控制單元並自動控制該運動單元降低該使用者之運動量,達成安全防護機制者;並當該運動單元降低該使用者之運動強度,且該心律訊號係呈上升、心悸其中一者時,該控制單元係用以發送一警示命令,其係顯示於該觸控顯示結構,且該控制單元並自動控制該運動單元降低該使用者之運動量,達成安全防護機制者。 The image-based rhythm-controlled exercise training machine according to claim 5, wherein: the exercise unit increases the exercise intensity of the user, and the heart rate signal is decreased, one of the heartbeats, and the temperature signal is matched When it is determined that the abnormal heart rhythm drifts, the control unit is configured to send a warning command, which is displayed on the touch display structure, and the control unit automatically controls the motion unit to reduce the amount of movement of the user to achieve safety. a protection mechanism; and when the motion unit reduces the exercise intensity of the user, and the heart rate signal is rising or one of the heart, the control unit is configured to send a warning command, which is displayed on the touch display The structure, and the control unit automatically controls the motion unit to reduce the amount of movement of the user and achieve a safety protection mechanism.
TW106110445A 2017-03-29 2017-03-29 Image-based heart rate feedback control fitness device TWI626072B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW106110445A TWI626072B (en) 2017-03-29 2017-03-29 Image-based heart rate feedback control fitness device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW106110445A TWI626072B (en) 2017-03-29 2017-03-29 Image-based heart rate feedback control fitness device

Publications (2)

Publication Number Publication Date
TWI626072B true TWI626072B (en) 2018-06-11
TW201836679A TW201836679A (en) 2018-10-16

Family

ID=63256007

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106110445A TWI626072B (en) 2017-03-29 2017-03-29 Image-based heart rate feedback control fitness device

Country Status (1)

Country Link
TW (1) TWI626072B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010264095A (en) * 2009-05-15 2010-11-25 Nissan Motor Co Ltd Heart rate measuring apparatus and heart rate measuring method
US9292935B2 (en) * 2014-01-14 2016-03-22 Zsolutionz, LLC Sensor-based evaluation and feedback of exercise performance
CN205585991U (en) * 2016-02-26 2016-09-21 严定远 Measure device of human heartbeat breathing and body temperature
CN106267703A (en) * 2016-08-04 2017-01-04 山东省体育科学研究中心 A kind of based on the compound running machine under altitude environment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010264095A (en) * 2009-05-15 2010-11-25 Nissan Motor Co Ltd Heart rate measuring apparatus and heart rate measuring method
US9292935B2 (en) * 2014-01-14 2016-03-22 Zsolutionz, LLC Sensor-based evaluation and feedback of exercise performance
CN205585991U (en) * 2016-02-26 2016-09-21 严定远 Measure device of human heartbeat breathing and body temperature
CN106267703A (en) * 2016-08-04 2017-01-04 山东省体育科学研究中心 A kind of based on the compound running machine under altitude environment

Also Published As

Publication number Publication date
TW201836679A (en) 2018-10-16

Similar Documents

Publication Publication Date Title
JP6308161B2 (en) Pulse wave detection device and pulse wave detection program
US11744475B2 (en) Remote heart rate monitoring based on imaging for moving subjects
JP5446443B2 (en) Heart rate measuring apparatus and heart rate measuring method
CN105184246B (en) Living body detection method and living body detection system
JP6547160B2 (en) Pulse wave detection device and pulse wave detection program
US9875664B2 (en) Virtual trainer optimizer method and system
KR101118654B1 (en) rehabilitation device using motion analysis based on motion capture and method thereof
CN105868574B (en) A kind of optimization method of camera track human faces and wisdom health monitor system based on video
KR101738278B1 (en) Emotion recognition method based on image
Datcu et al. Noncontact automatic heart rate analysis in visible spectrum by specific face regions
KR102215557B1 (en) Heart rate estimation based on facial color variance and micro-movement
Chauvin et al. Contact-free respiration rate monitoring using a pan–tilt thermal camera for stationary bike telerehabilitation sessions
WO2018078857A1 (en) Line-of-sight estimation device, line-of-sight estimation method, and program recording medium
KR101754152B1 (en) Thermal Patient Monitering System by Using Multiple Band Camera and Method thereof
JP6455761B2 (en) Pulse wave detection device and pulse wave detection program
Wiede et al. Remote respiration rate determination in video data-vital parameter extraction based on optical flow and principal component analysis
CN104063041B (en) A kind of information processing method and electronic equipment
TWI626072B (en) Image-based heart rate feedback control fitness device
KR20140057867A (en) System for mearsuring stress using thermal image
CN109492585A (en) A kind of biopsy method and electronic equipment
JP7259313B2 (en) Attribute determination device, attribute determination system, attribute determination method, program and recording medium
CN105453533B (en) A kind of method and electronic equipment saving shooting image
CN116963807A (en) Motion data display method and system
Wuerich et al. Contactless Optical Respiration Rate Measurement for a Fast Triage of SARS-CoV-2 Patients in Hospitals.
Corkery et al. A Smartphone Tool for Evaluating Cardiopulmonary Resuscitation (CPR) Delivery.

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees