TWI625865B - Solar cell structure and method for manufacturing the same - Google Patents

Solar cell structure and method for manufacturing the same Download PDF

Info

Publication number
TWI625865B
TWI625865B TW106119517A TW106119517A TWI625865B TW I625865 B TWI625865 B TW I625865B TW 106119517 A TW106119517 A TW 106119517A TW 106119517 A TW106119517 A TW 106119517A TW I625865 B TWI625865 B TW I625865B
Authority
TW
Taiwan
Prior art keywords
passivation layer
germanium
passivation
amorphous
layer
Prior art date
Application number
TW106119517A
Other languages
Chinese (zh)
Other versions
TW201904082A (en
Inventor
田偉辰
葉昌鑫
吳春森
Original Assignee
財團法人金屬工業研究發展中心
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財團法人金屬工業研究發展中心 filed Critical 財團法人金屬工業研究發展中心
Priority to TW106119517A priority Critical patent/TWI625865B/en
Application granted granted Critical
Publication of TWI625865B publication Critical patent/TWI625865B/en
Publication of TW201904082A publication Critical patent/TW201904082A/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

一種太陽能電池結構及其製造方法。此太陽能電池結構包含矽基板、第一鈍化結構、以及第二鈍化結構。矽基板具有相對之第一表面與第二表面。第一鈍化結構覆蓋在矽基板之第一表面上,其中第一鈍化結構包含依序堆疊在第一表面上之第一非晶二氧化矽鈍化層以及第一本質型非晶矽鈍化層。第二鈍化結構覆蓋在矽基板之第二表面上,其中第二鈍化結構包含依序堆疊在第二表面上之第二非晶二氧化矽鈍化層以及第二本質型非晶矽鈍化層。 A solar cell structure and a method of manufacturing the same. The solar cell structure includes a germanium substrate, a first passivation structure, and a second passivation structure. The crucible substrate has opposing first and second surfaces. The first passivation structure is overlying the first surface of the germanium substrate, wherein the first passivation structure comprises a first amorphous germanium dioxide passivation layer and a first intrinsic amorphous germanium passivation layer sequentially stacked on the first surface. The second passivation structure is overlying the second surface of the germanium substrate, wherein the second passivation structure comprises a second amorphous ceria passivation layer and a second intrinsic amorphous germanium passivation layer sequentially stacked on the second surface.

Description

太陽能電池結構及其製造方法 Solar cell structure and manufacturing method thereof

本發明是有關於一種光電轉換裝置,且特別是有關於一種太陽能電池結構及其製造方法。 The present invention relates to a photoelectric conversion device, and more particularly to a solar cell structure and a method of fabricating the same.

在太陽能電池中,鈍化結構與製程是不可或缺的重要結構與製程。無論是傳統背電場(Back Surface Field,BSF)太陽能電池,或者是射極與背電極鈍化(Passivated Emitter and Rear Cell,PERC)太陽能電池、與異質接面薄本質層(Heterojunction with Intrinsic Thin layer,HIT)太陽能電池,都具備鈍化層。以製作這些太陽能電池之鈍化層時多採低壓化學氣相沉積(LPCVD)製程,低壓化學氣相沉積製程的設備為真空設備,因此設備較為昂貴,且材料的選定也不盡理想。 In solar cells, passivation structures and processes are indispensable for important structures and processes. Whether it is a traditional Back Surface Field (BSF) solar cell, or a Passiveated Emitter and Rear Cell (PERC) solar cell, or a Heterojunction with Intrinsic Thin Layer (HIT) ) Solar cells, all with a passivation layer. In order to make the passivation layer of these solar cells, a low pressure chemical vapor deposition (LPCVD) process is adopted, and the equipment of the low pressure chemical vapor deposition process is a vacuum device, so the equipment is expensive and the material selection is not satisfactory.

故,目前之鈍化層的製程與材料仍有相當的改善空間。 Therefore, the current process and materials of the passivation layer still have considerable room for improvement.

因此,本發明之一目的就是在提供一種太陽能電池結構及其製造方法,其在矽基板之相對二表面上分別設置由非晶二氧化矽鈍化層與本質型非晶矽鈍化層所構成之雙層鈍化層結構。由於非晶二氧化矽鈍化層可有效鈍化矽基板之表面,而可解決矽基板介面缺陷的問題,再搭配能隙較小且阻抗較低的本質型非晶矽鈍化層,可提升雙層鈍化層結構的載子傳導效率,故可有效提升太陽能電池之開路電壓,進而可提高太陽能電池的光電轉換效率。 SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide a solar cell structure and a method of fabricating the same that are provided with an amorphous ceria passivation layer and an intrinsic amorphous germanium passivation layer on opposite surfaces of the germanium substrate. Layer passivation layer structure. Since the amorphous ceria passivation layer can effectively passivate the surface of the ruthenium substrate, the problem of the ruthenium substrate interface defect can be solved, and the intrinsic amorphous ruthenium passivation layer with small energy gap and low impedance can be used to enhance the double passivation. The carrier conduction efficiency of the layer structure can effectively increase the open circuit voltage of the solar cell, thereby improving the photoelectric conversion efficiency of the solar cell.

本發明之另一目的是在提供一種太陽能電池結構之製造方法,其可透過將矽基板浸泡於具有硝酸成分的溶液中的溼式製程,於矽基板之表面上形成非晶二氧化矽鈍化層。由於形成非晶二氧化矽鈍化層的溼式製程可緊接在矽基板之其它溼式製程與溼式清洗處理後在同一機台中進行,因此可避免矽基板遭到外界環境的汙染。此外,溼式製程可使非晶二氧化矽鈍化層全面性地成長在矽基板之表面上。故,本方法的運用可大幅提升矽基板之表面的鈍化效果。 Another object of the present invention is to provide a method for fabricating a solar cell structure which can form an amorphous ceria passivation layer on the surface of a tantalum substrate by a wet process in which a tantalum substrate is immersed in a solution having a nitric acid component. . Since the wet process for forming the amorphous ceria passivation layer can be performed in the same machine immediately after the other wet process and the wet cleaning process of the ruthenium substrate, the ruthenium substrate can be prevented from being contaminated by the external environment. In addition, the wet process allows the amorphous ceria passivation layer to be fully grown on the surface of the tantalum substrate. Therefore, the application of the method can greatly improve the passivation effect of the surface of the substrate.

根據本發明之上述目的,提出一種太陽能電池結構。此太陽能電池結構包含矽基板、第一鈍化結構、以及第二鈍化結構。矽基板具有相對之第一表面與第二表面。第一鈍化結構覆蓋在矽基板之第一表面上,其中第一鈍化結構包含依序堆疊在第一表面上之第一非晶二氧化矽鈍化層以及第一本質型非晶矽鈍化層。第二鈍化結構覆蓋在矽基板之第二表面上,其中第二鈍化結構包含依序堆疊在第二表面上之第二非晶二氧化矽鈍化層以及第二本質型非晶矽鈍化層。 According to the above object of the present invention, a solar cell structure is proposed. The solar cell structure includes a germanium substrate, a first passivation structure, and a second passivation structure. The crucible substrate has opposing first and second surfaces. The first passivation structure is overlying the first surface of the germanium substrate, wherein the first passivation structure comprises a first amorphous germanium dioxide passivation layer and a first intrinsic amorphous germanium passivation layer sequentially stacked on the first surface. The second passivation structure is overlying the second surface of the germanium substrate, wherein the second passivation structure comprises a second amorphous ceria passivation layer and a second intrinsic amorphous germanium passivation layer sequentially stacked on the second surface.

依據本發明之一實施例,上述之矽基板之材料為單晶矽或多晶矽。 According to an embodiment of the invention, the material of the germanium substrate is a single crystal germanium or a polycrystalline germanium.

依據本發明之一實施例,上述每個第一非晶二氧化矽鈍化層與第二非晶二氧化矽鈍化層之厚度從約0.5nm至約3nm。 According to an embodiment of the invention, each of the first amorphous ceria passivation layer and the second amorphous ceria passivation layer has a thickness of from about 0.5 nm to about 3 nm.

依據本發明之一實施例,上述每個第一本質型非晶矽鈍化層與第二本質型非晶矽鈍化層之厚度從約0.5nm至約10nm。 According to an embodiment of the invention, each of the first intrinsic amorphous germanium passivation layer and the second intrinsic amorphous germanium passivation layer has a thickness of from about 0.5 nm to about 10 nm.

依據本發明之一實施例,上述每個第一非晶二氧化矽鈍化層與第二非晶二氧化矽鈍化層於波長500nm下之折射率從約1.40至約1.55。 According to an embodiment of the invention, the refractive index of each of the first amorphous ceria passivation layer and the second amorphous ceria passivation layer at a wavelength of 500 nm is from about 1.40 to about 1.55.

依據本發明之一實施例,上述之太陽能電池結構更包含第一摻雜型矽層、透明導電層、第一電極、第二摻雜型矽層、以及第二電極。第一摻雜型矽層設於第一本質型非晶矽鈍化層上。透明導電層設於第一摻雜型矽層上第一電極設於部分之透明導電層上。第二摻雜型矽層設於第二本質型非晶矽鈍化層上。第二電極覆蓋第二摻雜型矽層上。 According to an embodiment of the invention, the solar cell structure further includes a first doped germanium layer, a transparent conductive layer, a first electrode, a second doped germanium layer, and a second electrode. The first doped germanium layer is disposed on the first intrinsic amorphous germanium passivation layer. The transparent conductive layer is disposed on the first doped germanium layer, and the first electrode is disposed on a portion of the transparent conductive layer. The second doped germanium layer is disposed on the second intrinsic amorphous germanium passivation layer. The second electrode covers the second doped germanium layer.

依據本發明之一實施例,上述之矽基板包含第一摻雜區鄰設於矽基板之第一表面、以及第二摻雜區鄰設於矽基板之第二表面。而且,上述之太陽能電池結構更包含第一電極、以及第二電極。第一電極設於第一鈍化結構上且穿過部分之第一鈍化結構與第一摻雜區接觸。第二電極設於第二鈍化結構上且穿過部分之第二鈍化結構與第二摻雜區接觸。 According to an embodiment of the invention, the germanium substrate comprises a first doped region disposed adjacent to the first surface of the germanium substrate, and a second doped region disposed adjacent to the second surface of the germanium substrate. Moreover, the solar cell structure described above further includes a first electrode and a second electrode. The first electrode is disposed on the first passivation structure and the first passivation structure passing through the portion is in contact with the first doped region. The second electrode is disposed on the second passivation structure and the second passivation structure passing through the portion is in contact with the second doped region.

根據本發明之上述目的,另提出一種太陽能電池結構之製造方法。在此方法中,提供矽基板,其中此矽基板具有相對之第一表面與第二表面。形成第一鈍化結構覆蓋在矽基板之第一表面上,其中形成第一鈍化結構包含依序形成第一非晶二氧化矽鈍化層以及第一本質型非晶矽鈍化層於第一表面上。形成第二鈍化結構覆蓋在矽基板之第二表面上,其中形成第二鈍化結構包含依序形成第二非晶二氧化矽鈍化層以及第二本質型非晶矽鈍化層於第二表面上。 According to the above object of the present invention, a method of manufacturing a solar cell structure is further proposed. In this method, a germanium substrate is provided, wherein the germanium substrate has opposing first and second surfaces. Forming a first passivation structure overlying the first surface of the germanium substrate, wherein forming the first passivation structure comprises sequentially forming a first amorphous germanium passivation layer and a first intrinsic amorphous germanium passivation layer on the first surface. Forming a second passivation structure overlying the second surface of the germanium substrate, wherein forming the second passivation structure comprises sequentially forming a second amorphous germanium passivation layer and a second intrinsic amorphous germanium passivation layer on the second surface.

依據本發明之一實施例,上述每個第一非晶二氧化矽鈍化層與第二非晶二氧化矽鈍化層之厚度從約0.5nm至約3nm。 According to an embodiment of the invention, each of the first amorphous ceria passivation layer and the second amorphous ceria passivation layer has a thickness of from about 0.5 nm to about 3 nm.

依據本發明之一實施例,上述每個第一本質型非晶矽鈍化層與第二本質型非晶矽鈍化層之厚度從約0.5nm至約10nm。 According to an embodiment of the invention, each of the first intrinsic amorphous germanium passivation layer and the second intrinsic amorphous germanium passivation layer has a thickness of from about 0.5 nm to about 10 nm.

依據本發明之一實施例,上述之太陽能電池結構之製造方法更包含下列步驟。形成第一摻雜型矽層於第一本質型非晶矽鈍化層上。形成透明導電層於第一摻雜型矽層上。形成第一電極於部分之透明導電層上。形成第二摻雜型矽層於第二本質型非晶矽鈍化層上。形成第二電極覆蓋第二摻雜型矽層上。 According to an embodiment of the invention, the method for fabricating the solar cell structure described above further comprises the following steps. A first doped germanium layer is formed on the first intrinsic amorphous germanium passivation layer. A transparent conductive layer is formed on the first doped germanium layer. The first electrode is formed on a portion of the transparent conductive layer. Forming a second doped germanium layer on the second intrinsic amorphous germanium passivation layer. Forming a second electrode overlying the second doped germanium layer.

依據本發明之一實施例,上述形成每個第一非晶二氧化矽鈍化層與第二非晶二氧化矽鈍化層包含將矽基板浸泡於具硝酸成分之溶液中。 According to an embodiment of the invention, forming each of the first amorphous ceria passivation layer and the second amorphous ceria passivation layer comprises immersing the ruthenium substrate in a solution having a nitric acid component.

依據本發明之一實施例,上述形成每個第一非晶二氧化矽鈍化層與第二非晶二氧化矽鈍化層係利用化學氣相沉積方式或退火方式。 According to an embodiment of the invention, each of the first amorphous ceria passivation layer and the second amorphous ceria passivation layer are formed by chemical vapor deposition or annealing.

100‧‧‧太陽能電池結構 100‧‧‧Solar cell structure

110‧‧‧矽基板 110‧‧‧矽 substrate

112‧‧‧第一表面 112‧‧‧ first surface

112a‧‧‧粗糙結構 112a‧‧‧Rough structure

114‧‧‧第二表面 114‧‧‧ second surface

114a‧‧‧粗糙結構 114a‧‧‧Rough structure

120‧‧‧第一鈍化結構 120‧‧‧First passivation structure

122‧‧‧第一非晶二氧化矽鈍化層 122‧‧‧First amorphous cerium oxide passivation layer

124‧‧‧第一本質型非晶矽鈍化層 124‧‧‧First essential amorphous passivation layer

130‧‧‧第二鈍化結構 130‧‧‧Second passivation structure

132‧‧‧第二非晶二氧化矽鈍化層 132‧‧‧Second amorphous yttria passivation layer

134‧‧‧第二本質型非晶矽鈍化層 134‧‧‧Second essential amorphous passivation layer

140‧‧‧第一摻雜型矽層 140‧‧‧First doped layer

150‧‧‧第二摻雜型矽層 150‧‧‧Second doped layer

160‧‧‧第一電極 160‧‧‧First electrode

170‧‧‧第二電極 170‧‧‧second electrode

180‧‧‧透明導電層 180‧‧‧Transparent conductive layer

200‧‧‧太陽能電池結構 200‧‧‧ solar cell structure

210‧‧‧矽基板 210‧‧‧矽 substrate

212‧‧‧第一表面 212‧‧‧ first surface

212a‧‧‧粗糙結構 212a‧‧‧Rough structure

214‧‧‧第二表面 214‧‧‧ second surface

216‧‧‧第一摻雜區 216‧‧‧First doped area

218‧‧‧第二摻雜區 218‧‧‧Second doped area

220‧‧‧第一鈍化結構 220‧‧‧First passivation structure

222‧‧‧第一非晶二氧化矽鈍化層 222‧‧‧First amorphous cerium oxide passivation layer

224‧‧‧第一本質型非晶矽鈍化層 224‧‧‧First essential amorphous passivation layer

230‧‧‧第二鈍化結構 230‧‧‧Second passivation structure

232‧‧‧第二非晶二氧化矽鈍化層 232‧‧‧Second amorphous yttria passivation layer

234‧‧‧第二本質型非晶矽鈍化層 234‧‧‧Second essential amorphous passivation layer

240‧‧‧第一電極 240‧‧‧first electrode

250‧‧‧第二電極 250‧‧‧second electrode

為讓本發明之上述和其他目的、特徵、優點與實施例能更明顯易懂,所附圖式之說明如下:〔圖1〕係繪示依照本發明之一實施方式的一種太陽能電池結構之剖面示意圖;〔圖2〕係繪示依照本發明之一實施方式的一種太陽能電池結構之剖面示意圖;以及〔圖3A〕至〔圖3D〕係繪示依照本發明之一實施方式的一種太陽能電池結構之製程剖面示意圖。 The above and other objects, features, advantages and embodiments of the present invention will become more <RTIgt; <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; FIG. 2 is a schematic cross-sectional view showing a solar cell structure according to an embodiment of the present invention; and FIG. 3A to FIG. 3D are diagrams showing a solar cell according to an embodiment of the present invention. Schematic diagram of the process profile of the structure.

請參照圖1,其係繪示依照本發明之一實施方式的一種太陽能電池結構之剖面示意圖。在本實施方式中,太陽能電池結構100為異質接面薄本質層太陽能電池結構。在一些實施例中,太陽能電池結構100主要可包含矽基板110、第一鈍化結構120、以及第二鈍化結構130。矽基板110之材料可例如為單晶矽或多晶矽。矽基板110具有第一表面112與第二表面114,其中第一表面112與第二表面114分別位於矽基板110之相對二側。在一些示範例子中,矽基 板110之第一表面112與第二表面114分別具有粗糙結構112a與114a。舉例而言,這些粗糙結構112a與114a可為金字塔型結構。 Please refer to FIG. 1 , which is a cross-sectional view showing a structure of a solar cell according to an embodiment of the present invention. In the present embodiment, the solar cell structure 100 is a heterojunction thin intrinsic layer solar cell structure. In some embodiments, the solar cell structure 100 can primarily include a germanium substrate 110, a first passivation structure 120, and a second passivation structure 130. The material of the germanium substrate 110 may be, for example, a single crystal germanium or a polycrystalline germanium. The 矽 substrate 110 has a first surface 112 and a second surface 114, wherein the first surface 112 and the second surface 114 are respectively located on opposite sides of the 矽 substrate 110. In some demonstration examples, 矽基 The first surface 112 and the second surface 114 of the plate 110 have rough structures 112a and 114a, respectively. For example, the roughness structures 112a and 114a can be pyramidal structures.

第一鈍化結構120覆蓋在矽基板110之第一表面112上,以鈍化第一表面112。在本實施方式中,第一鈍化結構120係一雙層堆疊結構。在一些實施例中,第一鈍化結構120包含第一非晶二氧化矽鈍化層122以及第一本質型非晶矽鈍化層124,其中第一非晶二氧化矽鈍化層122覆蓋在矽基板110之第一表面112上,第一本質型非晶矽鈍化層124則堆疊在第一非晶二氧化矽鈍化層122上。因此,第一非晶二氧化矽鈍化層122夾設於矽基板110之第一表面112與第一本質型非晶矽鈍化層124之間。 The first passivation structure 120 overlies the first surface 112 of the germanium substrate 110 to passivate the first surface 112. In the present embodiment, the first passivation structure 120 is a two-layer stacked structure. In some embodiments, the first passivation structure 120 includes a first amorphous ceria passivation layer 122 and a first intrinsic amorphous germanium passivation layer 124, wherein the first amorphous ceria passivation layer 122 covers the germanium substrate 110 On the first surface 112, a first intrinsic amorphous germanium passivation layer 124 is stacked on the first amorphous ceria passivation layer 122. Therefore, the first amorphous ceria passivation layer 122 is interposed between the first surface 112 of the germanium substrate 110 and the first intrinsic amorphous germanium passivation layer 124.

矽基板110之第一表面112可能具有許多的懸浮鍵,而第一非晶二氧化矽鈍化層122可提供氧離子來與第一表面112的懸浮鍵鍵結,達到鈍化第一表面112的效果。考量第一非晶二氧化矽鈍化層122之能隙與阻抗,第一非晶二氧化矽鈍化層122的厚度不能太厚,以免電子與電洞無法傳遞或傳遞效率不佳。另一方面,由於第一非晶二氧化矽鈍化層122因電性考量而不能太厚,為確保矽基板110之第一表面112的鈍化效果,本實施方式在第一非晶二氧化矽鈍化層122上額外覆蓋第一本質型非晶矽鈍化層124,以利用雙層鈍化層結構來達到有效鈍化第一表面112以及延長載子生命週期的效果。故,可有效提升太陽能電池結構100之開路電壓與轉換效率。在一些示範例子中,第一非晶二氧化矽 鈍化層122之厚度可從約0.5nm至約3nm,第一本質型非晶矽鈍化層124之厚度可從約0.5nm至約10nm。此外,第一非晶二氧化矽鈍化層122於波長500nm下之折射率從約1.40至約1.55。 The first surface 112 of the germanium substrate 110 may have a plurality of floating bonds, and the first amorphous germanium passivation layer 122 may provide oxygen ions to bond with the floating bonds of the first surface 112 to achieve the effect of passivating the first surface 112. . Considering the energy gap and impedance of the first amorphous ceria passivation layer 122, the thickness of the first amorphous ceria passivation layer 122 should not be too thick, so that electrons and holes cannot be transmitted or the transfer efficiency is not good. On the other hand, since the first amorphous ceria passivation layer 122 cannot be too thick due to electrical considerations, in order to ensure the passivation effect of the first surface 112 of the tantalum substrate 110, the present embodiment is passivated in the first amorphous ceria. The first intrinsic amorphous germanium passivation layer 124 is additionally overlying the layer 122 to utilize the double passivation layer structure to achieve the effect of effectively passivating the first surface 112 and extending the life cycle of the carrier. Therefore, the open circuit voltage and conversion efficiency of the solar cell structure 100 can be effectively improved. In some exemplary examples, the first amorphous cerium oxide The passivation layer 122 may have a thickness of from about 0.5 nm to about 3 nm, and the first intrinsic amorphous germanium passivation layer 124 may have a thickness of from about 0.5 nm to about 10 nm. In addition, the refractive index of the first amorphous ceria passivation layer 122 at a wavelength of 500 nm is from about 1.40 to about 1.55.

如圖1所示,第二鈍化結構130覆蓋在矽基板110之第二表面114上,以鈍化第二表面114。在本實施方式中,第二鈍化結構130同樣為雙層堆疊結構。在一些實施例中,第二鈍化結構130包含第二非晶二氧化矽鈍化層132以及第二本質型非晶矽鈍化層134,其中第二非晶二氧化矽鈍化層132覆蓋在矽基板110之第二表面114上,第二本質型非晶矽鈍化層134則堆疊在第二非晶二氧化矽鈍化層132上。因此,第二非晶二氧化矽鈍化層132夾設於矽基板110之第二表面114與第二本質型非晶矽鈍化層134之間。 As shown in FIG. 1, a second passivation structure 130 overlies the second surface 114 of the germanium substrate 110 to passivate the second surface 114. In the present embodiment, the second passivation structure 130 is also a two-layer stacked structure. In some embodiments, the second passivation structure 130 includes a second amorphous ceria passivation layer 132 and a second intrinsic amorphous passivation layer 134, wherein the second amorphous ceria passivation layer 132 covers the germanium substrate 110 On the second surface 114, a second intrinsic amorphous germanium passivation layer 134 is stacked on the second amorphous ceria passivation layer 132. Therefore, the second amorphous ceria passivation layer 132 is interposed between the second surface 114 of the tantalum substrate 110 and the second intrinsic amorphous passivation layer 134.

矽基板110之第二表面114也可能有許多的懸浮鍵,而第二非晶二氧化矽鈍化層132可提供氧來與第二表面114的懸浮鍵鍵結,以鈍化第二表面114。同樣地,考量第二非晶二氧化矽鈍化層132之能隙與阻抗,第二非晶二氧化矽鈍化層132的厚度不能太厚,以免影響電子與電洞的傳遞。由於第二非晶二氧化矽鈍化層132因電性考量而不能太厚,為確保矽基板110之第二表面114的鈍化效果,本實施方式在第二非晶二氧化矽鈍化層132上也覆蓋一層第二本質型非晶矽鈍化層134,以利用雙層本質型鈍化層結構來有效鈍化第二表面114,並延長載子生命週期。在一些示範例子中,第二非晶二氧化矽鈍化層132之厚度可從約0.5nm至 約3nm,第二本質型非晶矽鈍化層134之厚度可從約0.5nm至約10nm。此外,第二非晶二氧化矽鈍化層132於波長500nm下之折射率從約1.40至約1.55。 The second surface 114 of the germanium substrate 110 may also have a plurality of floating bonds, and the second amorphous germanium passivation layer 132 may provide oxygen to bond with the second surface 114 to passivate the second surface 114. Similarly, considering the energy gap and impedance of the second amorphous ceria passivation layer 132, the thickness of the second amorphous ceria passivation layer 132 should not be too thick to affect the transfer of electrons and holes. Since the second amorphous ceria passivation layer 132 cannot be too thick due to electrical considerations, in order to ensure the passivation effect of the second surface 114 of the germanium substrate 110, the present embodiment is also on the second amorphous ceria passivation layer 132. A second intrinsic amorphous germanium passivation layer 134 is overlying to utilize the dual layer intrinsic passivation layer structure to effectively passivate the second surface 114 and extend the carrier lifetime. In some exemplary examples, the thickness of the second amorphous ceria passivation layer 132 may range from about 0.5 nm to The thickness of the second intrinsic amorphous germanium passivation layer 134 may be from about 0.5 nm to about 10 nm, about 3 nm. In addition, the second amorphous ceria passivation layer 132 has a refractive index at a wavelength of 500 nm of from about 1.40 to about 1.55.

二氧化矽比常見的鈍化材料非晶矽氫化矽(a-Si:H)穩定,並不像非晶矽氫化矽中的氫易因溫度上升或日曬而脫離。因此,第一非晶二氧化矽鈍化層122與第二非晶二氧化矽鈍化層132可提供矽基板110之第一表面112與第二表面114較佳的鈍化效果。 Cerium oxide is more stable than the common passivation material amorphous germanium hydride (a-Si:H), and unlike hydrogen in amorphous hydrazine hydride, it is easily removed due to temperature rise or sun exposure. Therefore, the first amorphous ceria passivation layer 122 and the second amorphous ceria passivation layer 132 can provide a better passivation effect of the first surface 112 and the second surface 114 of the germanium substrate 110.

請再次參照圖1,在一些實施例中,太陽能電池結構100更可包含第一摻雜型矽層140、第二摻雜型矽層150、第一電極160、以及第二電極170。第一摻雜型矽層140覆蓋在第一本質型非晶矽鈍化層122上。第二摻雜型矽層150覆蓋在第二本質型非晶矽鈍化層132上,而與第一摻雜型矽層140分別位於矽基板110之相對二側。第一摻雜型矽層140與第二摻雜型矽層150的導電型不同。第一摻雜型矽層140與第二摻雜型矽層150其中一者的導電型為n型或n+型,另一者為p型或p+型。在一些示範例子中,矽基板110為p型,第一摻雜型矽層140為n型,第二摻雜型矽層150為p+型。 Referring to FIG. 1 again, in some embodiments, the solar cell structure 100 further includes a first doped germanium layer 140, a second doped germanium layer 150, a first electrode 160, and a second electrode 170. The first doped germanium layer 140 is overlaid on the first intrinsic amorphous germanium passivation layer 122. The second doped germanium layer 150 is overlying the second intrinsic amorphous germanium passivation layer 132, and the first doped germanium layer 140 is located on opposite sides of the germanium substrate 110, respectively. The first doped germanium layer 140 is different from the second doped germanium layer 150 in conductivity type. The first type doped silicon layer 140 and 150 wherein one of the second conductivity type doping type is n-type silicon layer or n + type, and the other p-type or p + type. In some exemplary examples, the germanium substrate 110 is p-type, the first doped germanium layer 140 is n-type, and the second doped germanium layer 150 is p + -type.

第一電極160設於部分之第一摻雜型矽層140上。在一些實施例中,太陽能電池結構100更可選擇性地包含透明導電層180,其中透明導電層180先覆蓋在第一摻雜型矽層140上,第一電極160則設於部分之透明導電層180上,因而第一電極160可經由透明導電層180與第一摻雜型 矽層140電性連接。透明導電層180的設置可增加電流傳遞效率,進而可提升太陽能電池結構100的效能。透明導電層180之材料可例如為氧化銦錫(ITO)與氧化銦鋅(IZO)等透明導電材料。如圖1所示,第二電極170覆蓋在第二摻雜型矽層150上。 The first electrode 160 is disposed on a portion of the first doped germanium layer 140. In some embodiments, the solar cell structure 100 further selectively includes a transparent conductive layer 180, wherein the transparent conductive layer 180 is first covered on the first doped germanium layer 140, and the first electrode 160 is disposed on a portion of the transparent conductive layer. On the layer 180, the first electrode 160 can be connected to the first doping type via the transparent conductive layer 180. The germanium layer 140 is electrically connected. The arrangement of the transparent conductive layer 180 can increase the current transfer efficiency, thereby improving the performance of the solar cell structure 100. The material of the transparent conductive layer 180 may be, for example, a transparent conductive material such as indium tin oxide (ITO) or indium zinc oxide (IZO). As shown in FIG. 1, the second electrode 170 is overlaid on the second doped germanium layer 150.

請參照圖2,其係繪示依照本發明之一實施方式的一種太陽能電池結構之剖面示意圖。在本實施方式中,太陽能電池結構200為射極與背電極鈍化太陽能電池結構。在一些實施例中,太陽能電池結構200主要可包含矽基板210、第一鈍化結構220、以及第二鈍化結構230。矽基板210之材料可例如為單晶矽或多晶矽。矽基板210具有彼此相對之第一表面212與第二表面214。在一些示範例子中,矽基板210之第一表面212具有粗糙結構212a,以增加光射入矽基板210的量。粗糙結構212a可例如為金字塔型結構。 Referring to FIG. 2, a cross-sectional view of a solar cell structure in accordance with an embodiment of the present invention is shown. In the present embodiment, the solar cell structure 200 is an emitter and back electrode passivated solar cell structure. In some embodiments, solar cell structure 200 can primarily include germanium substrate 210, first passivation structure 220, and second passivation structure 230. The material of the germanium substrate 210 may be, for example, a single crystal germanium or a polycrystalline germanium. The germanium substrate 210 has a first surface 212 and a second surface 214 that are opposite each other. In some exemplary examples, the first surface 212 of the germanium substrate 210 has a roughness 212a to increase the amount of light incident on the germanium substrate 210. The roughness 212a can be, for example, a pyramid structure.

第一鈍化結構220覆蓋在矽基板210之第一表面212上,藉以鈍化第一表面212。第一鈍化結構220係一雙層堆疊結構。在一些實施例中,第一鈍化結構220包含第一非晶二氧化矽鈍化層222以及第一本質型非晶矽鈍化層224。第一非晶二氧化矽鈍化層222覆蓋在矽基板210之第一表面212上,第一本質型非晶矽鈍化層224則堆疊在第一非晶二氧化矽鈍化層222上,即第一非晶二氧化矽鈍化層222介於第一表面212與第一本質型非晶矽鈍化層224之間。 The first passivation structure 220 overlies the first surface 212 of the germanium substrate 210 to passivate the first surface 212. The first passivation structure 220 is a two-layer stacked structure. In some embodiments, the first passivation structure 220 includes a first amorphous ceria passivation layer 222 and a first intrinsic amorphous passivation layer 224. The first amorphous germanium passivation layer 222 is overlying the first surface 212 of the germanium substrate 210, and the first intrinsic amorphous germanium passivation layer 224 is stacked on the first amorphous germanium passivation layer 222, ie, first. The amorphous ceria passivation layer 222 is interposed between the first surface 212 and the first intrinsic amorphous passivation layer 224.

矽基板210之第一表面212可能具有許多的懸浮鍵,而第一非晶二氧化矽鈍化層222中的氧可與第一表面212的懸浮鍵鍵結,進而可達到鈍化第一表面212的效果。由於第一非晶二氧化矽鈍化層222之能隙較大,阻抗也較大,因此第一非晶二氧化矽鈍化層222的厚度不能太厚,以免電子與電洞無法傳遞或傳遞效率不佳。由於第一非晶二氧化矽鈍化層222不能太厚,因此本實施方式於第一非晶二氧化矽鈍化層222上再覆蓋一層第一本質型非晶矽鈍化層224,來強化對矽基板210之第一表面212的鈍化效果。故,利用這樣的雙層本質型鈍化層結構,不僅可強化對第一表面212的鈍化效果,更可延長載子生命週期。在一些示範例子中,第一非晶二氧化矽鈍化層222之厚度可從約0.5nm至約3nm,第一本質型非晶矽鈍化層224之厚度可從約0.5nm至約10nm。此外,第一非晶二氧化矽鈍化層222於波長500nm下之折射率從約1.40至約1.55。 The first surface 212 of the germanium substrate 210 may have a plurality of floating bonds, and the oxygen in the first amorphous germanium dioxide passivation layer 222 may be bonded to the floating bonds of the first surface 212, thereby achieving passivation of the first surface 212. effect. Since the first amorphous ceria passivation layer 222 has a large energy gap and a large impedance, the thickness of the first amorphous ceria passivation layer 222 cannot be too thick, so that electrons and holes cannot be transmitted or the transfer efficiency is not high. good. Since the first amorphous ceria passivation layer 222 is not too thick, the first amorphous ceria passivation layer 222 is further coated on the first amorphous ceria passivation layer 222 to strengthen the counter substrate. The passivation effect of the first surface 212 of 210. Therefore, with such a two-layer intrinsic passivation layer structure, not only the passivation effect on the first surface 212 but also the carrier life cycle can be enhanced. In some exemplary examples, the first amorphous ceria passivation layer 222 may have a thickness of from about 0.5 nm to about 3 nm, and the first intrinsic amorphous germanium passivation layer 224 may have a thickness of from about 0.5 nm to about 10 nm. In addition, the refractive index of the first amorphous ceria passivation layer 222 at a wavelength of 500 nm is from about 1.40 to about 1.55.

第二鈍化結構230覆蓋在矽基板210之第二表面214上,以鈍化第二表面214。第二鈍化結構230同樣為雙層堆疊結構。在一些實施例中,第二鈍化結構230包含第二非晶二氧化矽鈍化層232以及第二本質型非晶矽鈍化層234。第二非晶二氧化矽鈍化層232覆蓋在矽基板210之第二表面214上,第二本質型非晶矽鈍化層234則堆疊在第二非晶二氧化矽鈍化層232上。因而,第二非晶二氧化矽鈍化層232介於矽基板210之第二表面214與第二本質型非晶矽鈍化層234之間。 A second passivation structure 230 overlies the second surface 214 of the germanium substrate 210 to passivate the second surface 214. The second passivation structure 230 is also a two-layer stacked structure. In some embodiments, the second passivation structure 230 includes a second amorphous ceria passivation layer 232 and a second intrinsic amorphous passivation layer 234. The second amorphous germanium passivation layer 232 is overlying the second surface 214 of the germanium substrate 210, and the second intrinsic amorphous germanium passivation layer 234 is stacked on the second amorphous germanium passivation layer 232. Thus, the second amorphous ceria passivation layer 232 is interposed between the second surface 214 of the tantalum substrate 210 and the second intrinsic amorphous passivation layer 234.

矽基板210之第二表面214也會有許多的懸浮鍵,第二非晶二氧化矽鈍化層232中的氧可與第二表面214的懸浮鍵鍵結,而鈍化第二表面214。因第二非晶二氧化矽鈍化層232之能隙較大,阻抗也較大,因此第二非晶二氧化矽鈍化層232的厚度不能太厚,以免影響載子的傳遞。本實施方式覆蓋一層第二本質型非晶矽鈍化層234在第二非晶二氧化矽鈍化層232上。利用雙層本質型鈍化層結構,可兼顧第二表面214的鈍化品質與載子生命週期的延長。在一些示範例子中,第二非晶二氧化矽鈍化層232之厚度可從約0.5nm至約3nm,第二本質型非晶矽鈍化層234之厚度可從約0.5nm至約10nm。此外,第二非晶二氧化矽鈍化層232於波長500nm下之折射率從約1.40至約1.55。 The second surface 214 of the tantalum substrate 210 also has a plurality of floating bonds. The oxygen in the second amorphous ceria passivation layer 232 can be bonded to the floating bonds of the second surface 214 to passivate the second surface 214. Since the second amorphous ceria passivation layer 232 has a large energy gap and a large impedance, the thickness of the second amorphous ceria passivation layer 232 cannot be too thick to affect the transfer of carriers. The present embodiment covers a second intrinsic amorphous germanium passivation layer 234 on the second amorphous ceria passivation layer 232. By utilizing the two-layer intrinsic passivation layer structure, both the passivation quality of the second surface 214 and the extension of the carrier life cycle can be achieved. In some exemplary examples, the second amorphous ceria passivation layer 232 may have a thickness of from about 0.5 nm to about 3 nm, and the second intrinsic amorphous germanium passivation layer 234 may have a thickness of from about 0.5 nm to about 10 nm. In addition, the second amorphous ceria passivation layer 232 has a refractive index at a wavelength of 500 nm of from about 1.40 to about 1.55.

請再次參照圖2,在一些實施例中,矽基板210包含第一摻雜區216以及第二摻雜區218。第一摻雜區216以及第二摻雜區218均設於矽基板210中,其中第一摻雜區216鄰設於第一表面212,第二摻雜區218則鄰設於第二表面214。第一摻雜區216與摻雜區218的導電型不同。第一摻雜區216與第二摻雜區218其中一者的導電型為n型或n+型,另一者為p型或p+型。在一些示範例子中,矽基板210為p型,第一摻雜區216為n型,第二摻雜區218為p+型。 Referring again to FIG. 2 , in some embodiments, the germanium substrate 210 includes a first doped region 216 and a second doped region 218 . The first doped region 216 and the second doped region 218 are both disposed in the germanium substrate 210, wherein the first doped region 216 is adjacent to the first surface 212, and the second doped region 218 is adjacent to the second surface 214. . The first doped region 216 is different from the doped region 218 in conductivity type. The first doped region 216 and 218 wherein one of the second conductivity type region is doped n-type or n + type, and the other p-type or p + type. In some exemplary examples, the germanium substrate 210 is p-type, the first doped region 216 is n-type, and the second doped region 218 is p + -type.

太陽能電池結構200更可包含第一電極240以及第二電極250。第一電極240設於部分之第一鈍化結構220之第一本質型非晶矽鈍化層224上,且依序穿過部分之第一本質型非晶矽鈍化層224及部分之第一非晶二氧化矽 鈍化層222,而與第一摻雜區216接觸,形成電性連接。第二電極250設於第二鈍化結構230之第二本質型非晶矽鈍化層234上,且依序穿過部分之第二本質型非晶矽鈍化層234及部分之第二非晶二氧化矽鈍化層232,而與第二摻雜區218接觸,形成電性連接。 The solar cell structure 200 may further include a first electrode 240 and a second electrode 250. The first electrode 240 is disposed on the first intrinsic amorphous passivation layer 224 of the first passivation structure 220, and sequentially passes through a portion of the first intrinsic amorphous passivation layer 224 and a portion of the first amorphous Cerium oxide The passivation layer 222 is in contact with the first doped region 216 to form an electrical connection. The second electrode 250 is disposed on the second intrinsic amorphous germanium passivation layer 234 of the second passivation structure 230, and sequentially passes through a portion of the second intrinsic amorphous germanium passivation layer 234 and a portion of the second amorphous dioxide. The passivation layer 232 is in contact with the second doped region 218 to form an electrical connection.

以下利用圖1之太陽能電池結構100的製造過程為例子來說明本發明之太陽能電池結構之鈍化結構的製作。 The fabrication of the passivation structure of the solar cell structure of the present invention will be described below by taking the manufacturing process of the solar cell structure 100 of FIG. 1 as an example.

請參照圖3A至圖3D,其係繪示依照本發明之一實施方式的一種太陽能電池結構之製程剖面示意圖。在一些實施例中,製作如圖1所示之太陽能電池結構100時,可先提供矽基板110。矽基板110具有彼此相對之第一表面112與第二表面114。接著,如圖3A所示,可選擇性地利用例如溼式蝕刻方式,蝕刻移除部分之矽基板110,藉以分別在矽基板110之第一表面112與第二表面114形成粗糙結構112a與114a。 Please refer to FIG. 3A to FIG. 3D , which are schematic cross-sectional views showing a process of a solar cell structure according to an embodiment of the present invention. In some embodiments, when the solar cell structure 100 shown in FIG. 1 is fabricated, the germanium substrate 110 may be provided first. The crucible substrate 110 has a first surface 112 and a second surface 114 opposite to each other. Next, as shown in FIG. 3A, a portion of the germanium substrate 110 may be selectively etched using, for example, a wet etching method, thereby forming rough structures 112a and 114a on the first surface 112 and the second surface 114 of the germanium substrate 110, respectively. .

由於粗糙結構112a與114a的製作採溼式製程,因此完成粗糙結構112a與114a後,可在原處(in-situ)對矽基板110進行溼式清洗,以除去矽基板110上的殘留蝕刻劑。接著,如圖3B所示,可形成第一鈍化結構120以及第二鈍化結構130分別覆蓋矽基板110之第一表面112與第二表面114上。在一些實施例中,形成第一鈍化結構120時,可先形成第一非晶二氧化矽鈍化層122於矽基板110之第一表面112上,再利用例如化學氣相沉積方式形成第一本質型非晶矽鈍化層124於第一非晶二氧化矽鈍化層122上。同樣 地,形成第二鈍化結構130時,可先形成第二非晶二氧化矽鈍化層132於矽基板110之第二表面114上,再利用例如化學氣相沉積方式形成第二本質型非晶矽鈍化層134於第二非晶二氧化矽鈍化層132上。 Since the rough structures 112a and 114a are fabricated in a wet process, after the rough structures 112a and 114a are completed, the germanium substrate 110 can be wet-cleaned in-situ to remove residual etchant on the germanium substrate 110. Next, as shown in FIG. 3B, the first passivation structure 120 and the second passivation structure 130 may be formed to cover the first surface 112 and the second surface 114 of the germanium substrate 110, respectively. In some embodiments, when the first passivation structure 120 is formed, the first amorphous ceria passivation layer 122 may be formed on the first surface 112 of the germanium substrate 110, and then the first essence is formed by, for example, chemical vapor deposition. The amorphous passivation passivation layer 124 is on the first amorphous ceria passivation layer 122. same When the second passivation structure 130 is formed, the second amorphous ceria passivation layer 132 may be formed on the second surface 114 of the germanium substrate 110, and then the second intrinsic amorphous germanium is formed by, for example, chemical vapor deposition. The passivation layer 134 is on the second amorphous ceria passivation layer 132.

在一些示範例子中,第一非晶二氧化矽鈍化層122與第二非晶二氧化矽鈍化層132之厚度可均從約0.5nm至約3nm。而第一本質型非晶矽鈍化層124與第二本質型非晶矽鈍化層134之厚度可均從約0.5nm至約10nm。 In some exemplary examples, the first amorphous ceria passivation layer 122 and the second amorphous ceria passivation layer 132 may each have a thickness of from about 0.5 nm to about 3 nm. The thickness of the first intrinsic amorphous germanium passivation layer 124 and the second intrinsic amorphous germanium passivation layer 134 may each be from about 0.5 nm to about 10 nm.

在一些實施例中,製作第一非晶二氧化矽鈍化層122與第二非晶二氧化矽鈍化層132時,可將矽基板110浸泡於具硝酸成分之溶液中。利用溶液中的硝酸成分來氧化矽基板110的表面部分,而於矽基板110之表面上形成二氧化矽,藉此可同時在矽基板110之第一表面112與第二表面114上分別形成第一非晶二氧化矽鈍化層122與第二非晶二氧化矽鈍化層132。 In some embodiments, when the first amorphous ceria passivation layer 122 and the second amorphous ceria passivation layer 132 are formed, the tantalum substrate 110 may be immersed in a solution having a nitric acid component. The surface portion of the ruthenium substrate 110 is oxidized by the nitric acid component in the solution, and ruthenium dioxide is formed on the surface of the ruthenium substrate 110, whereby the first surface 112 and the second surface 114 of the ruthenium substrate 110 can be simultaneously formed. An amorphous ceria passivation layer 122 and a second amorphous ceria passivation layer 132.

在這樣的實施例中,由於將矽基板110浸泡於具有硝酸成分之溶液中的製程屬於溼式製程,因此可在矽基板110之溼式蝕刻與溼式清洗後,在原處進行矽基板的浸泡製程,無需轉換至其它的製程機台。故,在矽基板110接觸到外界環境之前,矽基板110之第一表面112與第二表面114已分別先覆蓋有第一非晶二氧化矽鈍化層122與第二非晶二氧化矽鈍化層132,如此一來,可避免矽基板110在轉換製程機台期間受到汙染。此外,以浸泡具有硝酸成分的溶液來成長二氧化矽時,溶液可輕易進入矽基板110之粗糙結構112a與114.a的凹陷中,因此可使矽基板110之第一表面 112與第二表面114受到全面性的氧化,進而使第一非晶二氧化矽鈍化層122與第二非晶二氧化矽鈍化層132分別全面性地成長在第一表面112與第二表面114上。故,可大幅提升第一非晶二氧化矽鈍化層122與第二非晶二氧化矽鈍化層132的鈍化品質。 In such an embodiment, since the process of immersing the ruthenium substrate 110 in the solution having the nitric acid component is a wet process, the immersion of the ruthenium substrate can be performed in the original place after the wet etching and the wet cleaning of the ruthenium substrate 110. Process, no need to switch to other process machines. Therefore, before the germanium substrate 110 contacts the external environment, the first surface 112 and the second surface 114 of the germanium substrate 110 are respectively covered with the first amorphous germanium dioxide passivation layer 122 and the second amorphous germanium dioxide passivation layer, respectively. 132. In this way, the ruthenium substrate 110 can be prevented from being contaminated during the conversion process. Further, when the cerium oxide is grown by soaking the solution having the nitric acid component, the solution can easily enter the recesses of the rough structures 112a and 114.a of the ruthenium substrate 110, so that the first surface of the ruthenium substrate 110 can be made. 112 and the second surface 114 are subjected to comprehensive oxidation, thereby further growing the first amorphous ceria passivation layer 122 and the second amorphous ceria passivation layer 132 on the first surface 112 and the second surface 114, respectively. on. Therefore, the passivation quality of the first amorphous ceria passivation layer 122 and the second amorphous ceria passivation layer 132 can be greatly improved.

在另一些例子中,亦可利用化學氣相沉積(CVD)方式或退火方式,來製作第一非晶二氧化矽鈍化層122與第二非晶二氧化矽鈍化層132。在採化學氣相沉積方式的例子中,第一非晶二氧化矽鈍化層122與第二非晶二氧化矽鈍化層132並非同時形成,二者形成的次序可根據製程需求調整。在採退火方式的例子中,第一非晶二氧化矽鈍化層122與第二非晶二氧化矽鈍化層132可同時形成。 In other examples, the first amorphous ceria passivation layer 122 and the second amorphous ceria passivation layer 132 may also be formed by chemical vapor deposition (CVD) or annealing. In the example of the chemical vapor deposition method, the first amorphous ceria passivation layer 122 and the second amorphous ceria passivation layer 132 are not formed at the same time, and the order in which they are formed may be adjusted according to process requirements. In the example of the annealing mode, the first amorphous ceria passivation layer 122 and the second amorphous ceria passivation layer 132 may be simultaneously formed.

如圖3C所示,於第一鈍化結構120與第二鈍化結構130完成後,利用例如化學氣相沉積方式形成第一摻雜型矽層140於第一本質型非晶矽鈍化層124上。並且,同樣利用例如化學氣相沉積方式形成第二摻雜型矽層150於第二本質型非晶矽鈍化層134上。 As shown in FIG. 3C, after the first passivation structure 120 and the second passivation structure 130 are completed, the first doped germanium layer 140 is formed on the first intrinsic amorphous germanium passivation layer 124 by, for example, chemical vapor deposition. Also, the second doped germanium layer 150 is formed on the second intrinsic amorphous germanium passivation layer 134 by, for example, chemical vapor deposition.

如圖3D所示,在一些實施例中,可選擇性地利用物理氣相沉積(PVD)方式形成透明導電層180覆蓋在第一摻雜型矽層140。再利用例如網印方式形成第一電極160於部分之透明導電層180上。另外,利用例如物理氣相沉積方式形成第二電極170覆蓋第二摻雜型矽層150上,而大致完成太陽能電池結構100的製作。 As shown in FIG. 3D, in some embodiments, a transparent conductive layer 180 may be selectively formed by physical vapor deposition (PVD) to cover the first doped germanium layer 140. The first electrode 160 is formed on the portion of the transparent conductive layer 180 by, for example, a screen printing method. In addition, the second electrode 170 is formed on the second doped germanium layer 150 by, for example, physical vapor deposition, and the fabrication of the solar cell structure 100 is substantially completed.

由上述之實施方式可知,本發明之一優點就是因為本發明在矽基板之相對二表面上分別設置由非晶二氧化矽鈍化層與本質型非晶矽鈍化層所構成之雙層鈍化層結構。由於非晶二氧化矽鈍化層可有效鈍化矽基板之表面,而可解決矽基板介面缺陷的問題,再搭配能隙較小且阻抗較低的本質型非晶矽鈍化層,可提升雙層鈍化層結構的導電性,故可有效提升太陽能電池之開路電壓,進而可提高太陽能電池的光電轉換效率。 It can be seen from the above embodiments that one of the advantages of the present invention is that the present invention provides a double passivation layer structure composed of an amorphous ceria passivation layer and an intrinsic amorphous germanium passivation layer on opposite surfaces of the germanium substrate. . Since the amorphous ceria passivation layer can effectively passivate the surface of the ruthenium substrate, the problem of the ruthenium substrate interface defect can be solved, and the intrinsic amorphous ruthenium passivation layer with small energy gap and low impedance can be used to enhance the double passivation. The conductivity of the layer structure can effectively increase the open circuit voltage of the solar cell, thereby improving the photoelectric conversion efficiency of the solar cell.

由上述之實施方式可知,本發明之另一優點就是因為本發明可透過將矽基板浸泡於具有硝酸成分的溶液中的溼式製程,於矽基板之表面上形成非晶二氧化矽鈍化層。由於形成非晶二氧化矽鈍化層的溼式製程可緊接在矽基板之其它溼式製程與溼式清洗處理後在同一機台中進行,因此可避免矽基板遭到外界環境的汙染。此外,溼式製程可使非晶二氧化矽鈍化層全面性地成長在矽基板之表面上。故,本方法的運用可大幅提升矽基板之表面的鈍化效果。 From the above embodiments, another advantage of the present invention is that the present invention can form an amorphous ceria passivation layer on the surface of the tantalum substrate by a wet process in which the tantalum substrate is immersed in a solution having a nitric acid component. Since the wet process for forming the amorphous ceria passivation layer can be performed in the same machine immediately after the other wet process and the wet cleaning process of the ruthenium substrate, the ruthenium substrate can be prevented from being contaminated by the external environment. In addition, the wet process allows the amorphous ceria passivation layer to be fully grown on the surface of the tantalum substrate. Therefore, the application of the method can greatly improve the passivation effect of the surface of the substrate.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何在此技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。 While the present invention has been described above by way of example, it is not intended to be construed as a limitation of the scope of the invention. Therefore, the scope of the invention is defined by the scope of the appended claims.

Claims (4)

一種太陽能電池結構之製造方法,包含:提供一矽基板,其中該矽基板具有相對之一第一表面與一第二表面;形成一第一鈍化結構覆蓋在該第一表面上,其中形成該第一鈍化結構包含依序形成一第一非晶二氧化矽鈍化層以及一第一本質型非晶矽鈍化層於該第一表面上;以及形成一第二鈍化結構覆蓋在該第二表面上,其中形成該第二鈍化結構包含依序形成一第二非晶二氧化矽鈍化層以及一第二本質型非晶矽鈍化層於該第二表面上,其中形成每一該第一非晶二氧化矽鈍化層與該第二非晶二氧化矽鈍化層包含將該矽基板浸泡於具硝酸成分之溶液中。 A method of fabricating a solar cell structure, comprising: providing a germanium substrate, wherein the germanium substrate has a first surface and a second surface; forming a first passivation structure overlying the first surface, wherein the first surface is formed a passivation structure includes sequentially forming a first amorphous germanium dioxide passivation layer and a first intrinsic amorphous germanium passivation layer on the first surface; and forming a second passivation structure overlying the second surface, Forming the second passivation structure includes sequentially forming a second amorphous ceria passivation layer and a second intrinsic amorphous passivation layer on the second surface, wherein each of the first amorphous dioxide is formed The tantalum passivation layer and the second amorphous ceria passivation layer comprise immersing the tantalum substrate in a solution having a nitric acid component. 如申請專利範圍第1項之太陽能電池結構之製造方法,其中每一該第一非晶二氧化矽鈍化層與該第二非晶二氧化矽鈍化層之厚度從0.5nm至3nm。 The method of manufacturing a solar cell structure according to claim 1, wherein each of the first amorphous ceria passivation layer and the second amorphous ceria passivation layer has a thickness of from 0.5 nm to 3 nm. 如申請專利範圍第1項之太陽能電池結構之製造方法,其中每一該第一本質型非晶矽鈍化層與該第二本質型非晶矽鈍化層之厚度從0.5nm至10nm。 The method of manufacturing a solar cell structure according to claim 1, wherein each of the first intrinsic amorphous passivation layer and the second intrinsic amorphous passivation layer has a thickness of from 0.5 nm to 10 nm. 如申請專利範圍第1項之太陽能電池結構之製造方法,更包含: 形成一第一摻雜型矽層於該第一本質型非晶矽鈍化層上;形成一透明導電層於該第一摻雜型矽層上;形成一第一電極於部分之該透明導電層上;形成一第二摻雜型矽層於該第二本質型非晶矽鈍化層上;以及形成一第二電極覆蓋該第二摻雜型矽層上。 The method for manufacturing a solar cell structure according to claim 1 of the patent scope further includes: Forming a first doped germanium layer on the first intrinsic amorphous germanium passivation layer; forming a transparent conductive layer on the first doped germanium layer; forming a first electrode in the portion of the transparent conductive layer Forming a second doped germanium layer on the second intrinsic amorphous germanium passivation layer; and forming a second electrode overlying the second doped germanium layer.
TW106119517A 2017-06-12 2017-06-12 Solar cell structure and method for manufacturing the same TWI625865B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW106119517A TWI625865B (en) 2017-06-12 2017-06-12 Solar cell structure and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW106119517A TWI625865B (en) 2017-06-12 2017-06-12 Solar cell structure and method for manufacturing the same

Publications (2)

Publication Number Publication Date
TWI625865B true TWI625865B (en) 2018-06-01
TW201904082A TW201904082A (en) 2019-01-16

Family

ID=63255718

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106119517A TWI625865B (en) 2017-06-12 2017-06-12 Solar cell structure and method for manufacturing the same

Country Status (1)

Country Link
TW (1) TWI625865B (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040112426A1 (en) * 2002-12-11 2004-06-17 Sharp Kabushiki Kaisha Solar cell and method of manufacturing the same
CN105990470A (en) * 2015-03-06 2016-10-05 新日光能源科技股份有限公司 Heterojunction solar cell and manufacturing method thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040112426A1 (en) * 2002-12-11 2004-06-17 Sharp Kabushiki Kaisha Solar cell and method of manufacturing the same
CN105990470A (en) * 2015-03-06 2016-10-05 新日光能源科技股份有限公司 Heterojunction solar cell and manufacturing method thereof

Also Published As

Publication number Publication date
TW201904082A (en) 2019-01-16

Similar Documents

Publication Publication Date Title
JP5908095B2 (en) Photovoltaic element and manufacturing method thereof
CN102623517B (en) Back contact type crystalline silicon solar cell and production method thereof
JP6106403B2 (en) Photoelectric conversion element and method for producing photoelectric conversion element
CN105932080B (en) Heterojunction solar cells and methods of making the same
JP5421701B2 (en) Crystalline silicon solar cell and manufacturing method thereof
TWI455342B (en) Solar cell with selective emitter structure and manufacturing method thereof
JP6815532B2 (en) PERC solar cell capable of improving photoelectric conversion efficiency and its manufacturing method
JP2015029126A (en) Solar cell and method for manufacturing the same
JP2014075526A (en) Photoelectric conversion element and photoelectric conversion element manufacturing method
CN113471337B (en) Preparation method of heterojunction solar cells
CN106972079B (en) The cleaning method at the PERC silicon chip of solar cell back side
TWM527159U (en) Heterojunction solar cell
KR101886818B1 (en) Method for manufacturing of heterojunction silicon solar cell
JP3201880U (en) Solar cell structure with locally deactivated heterojunction
JP2013008960A (en) Photoelectric conversion device
JPWO2015064354A1 (en) Solar cell
CN116207167A (en) Solar cell and manufacturing method thereof
JP6042679B2 (en) Photoelectric conversion element and method for producing photoelectric conversion element
CN110073498B (en) High photoelectric conversion efficiency solar cell and method for manufacturing high photoelectric conversion efficiency solar cell
CN103746006A (en) Passivating layer of crystalline silicon solar cell and passivating process thereof
CN109119491A (en) Solar cell structure and manufacturing method thereof
TWI625865B (en) Solar cell structure and method for manufacturing the same
CN113921649A (en) Preparation method of silicon-based heterojunction solar cell
JP2014183073A (en) Photoelectric conversion element and method of manufacturing photoelectric conversion element
US20120270365A1 (en) Method for manufacturing solar cell