TWI624168B - An intelligent deployment cascade control device based on an fdd-ofdma indoor small cell in multi-user and interference environments - Google Patents

An intelligent deployment cascade control device based on an fdd-ofdma indoor small cell in multi-user and interference environments Download PDF

Info

Publication number
TWI624168B
TWI624168B TW105134160A TW105134160A TWI624168B TW I624168 B TWI624168 B TW I624168B TW 105134160 A TW105134160 A TW 105134160A TW 105134160 A TW105134160 A TW 105134160A TW I624168 B TWI624168 B TW I624168B
Authority
TW
Taiwan
Prior art keywords
user
transmit power
cqi
optimized
interference
Prior art date
Application number
TW105134160A
Other languages
Chinese (zh)
Other versions
TW201817192A (en
Inventor
馬杰
劉冠毅
Original Assignee
元智大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 元智大學 filed Critical 元智大學
Priority to TW105134160A priority Critical patent/TWI624168B/en
Publication of TW201817192A publication Critical patent/TW201817192A/en
Application granted granted Critical
Publication of TWI624168B publication Critical patent/TWI624168B/en

Links

Abstract

本發明揭示一分頻全雙工(frequency division duplexing,FDD)-正交分頻多工接取(orthogonal frequency division multiplexing accessing,OFDMA)之室內小細胞基地台智慧型佈署串接控制(intelligent deployment cascade control,IDCC)方法與裝置,使一個室內小細胞可滿足多用戶(multi-user,MU)服務可靠度、最佳化通達率、與細胞半徑需求,並可因應干擾環境變化自我優化發射最小功率,達到容易安裝操作、節省能源、並避免對室外其他用戶造成干擾之目的。智慧型佈署控制裝置建構於適應性網路模糊推論系統(adaptive network-based fuzzy inference system,ANFIS),包含資源配置器、最小通達率/邊緣CQI轉換器、初始發射功率配置(initial transmit power setting control,ITPSC)(ANFIS控制器#1)、最佳化通道品質指標(channel quality index,CQI)決策器(CQIDC)(ANFIS控制器#2)與自我優化功率控制(SOPC)五個單元。其中,自我優化功率控制單元包含發射功率調整量估測器(transmit power adjustment estimator,TPAE)(ANFIS控制器#3)、功率調整配置器與自我優化功率控制保護機制三部分。由用戶設備端(user equipment,UE)輸入服務可靠度、室內涵蓋半徑與最小通達率設定,在多用戶干擾環境中自我優化室內小細胞基地佈署。正交分頻多工接取-分頻全雙工之室內小細胞基地台自我優化佈署控制裝置藉由用戶設備端(user equipment,UE)回傳之參考信號接收功率(Reference Signal Received Power,RSRP)資訊,估測傳接機間路徑損(path loss,PL)與傳接機訊干雜比(signal-to-interference-plus-noise ratio,SINR),適應性控制傳接機的發射功率,使室內小細胞基地台的用戶可自我優化產生滿足多用戶服務可靠度設定、最佳化通達率、最小發射功率與干擾的傳接機性能。 The present invention discloses a frequency division duplexing (FDD)-orthogonal frequency division multiplexing access (OFDMA) indoor small cell base station intelligent deployment serial control (intelligent deployment) Cascade control, IDCC) method and device, which enables an indoor small cell to meet multi-user (MU) service reliability, optimized access rate, and cell radius demand, and self-optimized emission minimum in response to environmental changes. Power, easy to install, save energy, and avoid interference with other users outside. The intelligent deployment control device is constructed in an adaptive network-based fuzzy inference system (ANFIS), including a resource configurator, a minimum access rate/edge CQI converter, and an initial transmit power configuration (initial transmit power setting). Control, ITPSC) (ANFIS controller #1), optimized channel quality index (CQI) decision maker (CQIDC) (ANFIS controller #2) and self-optimized power control (SOPC) five units. Wherein, the self-optimizing power control unit includes a transmit power adjustment estimator (transmit power adjustment) Estimator, TPAE) (ANFIS controller #3), power adjustment configurator and self-optimized power control protection mechanism. The service reliability, the indoor coverage radius and the minimum access rate setting are input by the user equipment (UE), and the indoor small cell base deployment is self-optimized in the multi-user interference environment. Orthogonal frequency division multiplexing access-divided full-duplex indoor small cell base station self-optimized deployment control device by user equipment (UE) backhaul reference signal received power (Reference Signal Received Power, RSRP) information, estimate the path loss (PL) and the signal-to-interference-plus-noise ratio (SINR) of the inter-connector, and adaptively control the transmit power of the transceiver The user of the indoor small cell base station can self-optimize to produce the performance of the transmitter that satisfies the multi-user service reliability setting, the optimized access rate, the minimum transmission power and the interference.

實施例假設三個用戶經過資源配置後,資源塊數各為33個,最小通達率需求分別為2.76Mbps、7.44Mbps與14.13Mbps。實施例模擬結果顯示應用本發明於FDD-OFDMA室內小細胞基地台部署時,可使室內小細胞基地台具備高服務可靠度、低功率消耗與對鄰近細胞用戶間低同頻干擾功率之優點。 The embodiment assumes that after three users are configured by resources, the number of resource blocks is 33, and the minimum access rate requirements are 2.76 Mbps, 7.44 Mbps, and 14.13 Mbps, respectively. The simulation results of the embodiment show that when the invention is deployed in the FDD-OFDMA indoor small cell base station, the indoor small cell base station can have the advantages of high service reliability, low power consumption and low co-channel interference power to neighboring cell users.

Description

多用戶干擾環境中建構於分頻全雙工-正交分頻多工接取之室內小 細胞智慧型佈署串接控制裝置 Built in a multi-user interference environment built in a frequency division full-duplex-orthogonal frequency division multiplexing Cell intelligent deployment cascade control device

本發明係有關一種建構於適應性網路模糊推論系統(adaptive network-based fuzzy inference system,ANFIS)之分頻全雙工-正交分頻多工接取室內小細胞基地台智慧型佈署串接控制(intelligent deployment cascade control,IDCC)軟體與裝置,尤指一種可適應性控制小細胞傳接機多用戶(multi-user,MU)服務可靠度、發射功率與干擾之自我優化佈署控制器。 The invention relates to a frequency division full-duplex-orthogonal frequency division multiplexing accessing indoor small cell base station intelligent deployment string constructed in an adaptive network-based fuzzy inference system (ANFIS) Incentive deployment cascade control (IDCC) software and devices, especially a self-optimizing deployment controller that can control the multi-user (MU) service reliability, transmission power and interference of small cell transfer machines .

隨著無線通訊需求與應用的蓬勃發展,社會多媒體訊息流通量的急遽增加,高傳輸率、高可靠度之鏈路要求與日日增,尤其巨大的多媒體通訊量與全球無縫隙通訊覆蓋需求,已確立無線寬頻通訊系統運用的主流地位,寬頻通訊系統對頻譜資源的需求也相對增大,因而導致頻譜資源變得日益擁擠而不敷使用,更可能成為限制無線寬頻通訊發展之瓶頸。短距離毫微小細胞(femtocell)之服務區小,與大細胞(microcell)系統比較,具有低成本、低功耗、高頻譜效率和高容量的優點,是一種非常有市場潛力的無線網路技術[註1]。[註2]研究報告預測,全球小細胞市場將從2014年690百萬美元,增長至2019年48億美元,每年均增長率41.7 %。因此,短距離毫微小細胞技術在未來新一代無線通訊網路發展與應用中,將扮演非常重要的角色。 With the rapid development of wireless communication requirements and applications, the flow of social multimedia messages has increased rapidly, and the requirements for links with high transmission rates and high reliability have increased day by day, especially for multimedia communication and global seamless communication coverage. The mainstream status of wireless broadband communication systems has been established, and the demand for spectrum resources in broadband communication systems has also increased. As a result, spectrum resources have become increasingly crowded and useless, and it is likely to become a bottleneck restricting the development of wireless broadband communication. The short-range femtocell has a small service area and has the advantages of low cost, low power consumption, high spectral efficiency and high capacity compared with the microcell system. It is a very marketable wireless network technology. [Note 1]. [Note 2] The research report predicts that the global small cell market will grow from 690 million US dollars in 2014 to 4.8 billion US dollars in 2019, with an average annual growth rate of 41.7. %. Therefore, short-range nanocell technology will play a very important role in the development and application of next-generation wireless communication networks.

[註1]Jie Zhang,Guillaume de la Roche,et al.Femtocells-Technologies and Deployment,Wiley,Jan.2010.[註2]Small Cells Market and Femtocell Industry 2019 Forecasts in New Research Reports,DALLAS,October 7,2014/PRNewswire/. [Note 1] Jie Zhang, Guillaume de la Roche, et al. Femtocells - Technologies and Deployment, Wiley, Jan. 2010. [Note 2] Small Cells Market and Femtocell Industry 2019 Forecasts in New Research Reports, DALLAS, October 7, 2014 /PRNewswire/.

毫微小細胞基地台數遠多於大細胞數,為了節省成本,一般細胞部署方法,將不適用於毫微小細胞基地台部署。因此毫微小細胞基地台必須由用戶自行部署,而必須設計一具備容易操作之智慧型佈署控制(intelligent deployment cascade control,IDCC)軟體與裝置,使毫微小細胞基地台可以在最少人為輔助下,僅需插件和播放(plug-and-play),即可自動配置系統參數,在干擾環境中自我優化基地台發射功率,達到節省能源、降低同頻干擾之目標,且能滿足多用戶服務可靠度、對應室內小細胞傳接機細胞邊緣CQI之最小通達率、及匹配房間大小之細胞半徑覆蓋範圍之用戶輸入設定。本發明主要考慮一個分頻全雙工-正交分頻多工接取(frequency division duplexing-orthogonal frequency division multiple access,FDD-OFDMA)之毫微小細胞基地台在單一室內干擾環境中,對均勻分佈室內多用戶,設計建構於適應性網路模糊推論系統之自我優化基地台部署裝置。 The number of nanocell base stations is much larger than that of large cells. In order to save costs, the general cell deployment method will not be applicable to the deployment of nanocell base stations. Therefore, the microcell base station must be deployed by the user, and an intelligent deployment cascade control (IDCC) software and device must be designed so that the nano cell base station can be assisted with minimal human assistance. Only need plug-and-play, you can automatically configure system parameters, self-optimize the base station transmit power in the interference environment, achieve the goal of saving energy, reducing co-channel interference, and can meet multi-user service reliability. Corresponding to the user's input setting of the minimum access rate of the cell edge CQI of the indoor small cell transfer machine and the cell radius coverage of the matching room size. The present invention mainly considers a frequency division duplexing-orthogonal frequency division multiple access (FDD-OFDMA) nanocell base station in a single indoor interference environment, and uniformly distributes Indoor multi-user, designed self-optimized base station deployment device built on adaptive network fuzzy inference system.

[註3]提出毫微小細胞適應性覆蓋範圍部署方法,以減少核心網路的移動性信號增加。毫微小細胞基地台使用移動經過毫微小細胞覆蓋區之大細胞用戶和室內用戶的資料,進行毫微小細胞覆蓋範圍自我優化部署。 [Note 3] A method for deploying adaptive coverage of nanocells is proposed to reduce the increase in mobility signals of the core network. The nanocell base station uses self-optimized deployment of nanocell coverage using data from large cell users and indoor users moving through the cell-cell coverage area.

[註4]提出一種建構於遺傳演算法(genetic algorithm)的自優化毫微小細胞網路基地台群組覆蓋方法,基於話務量統計數據和毫微小細胞網路相鄰基地台間干擾水平,集中式動態更新毫微小細胞網路中各基地台下行鏈路導頻功率,有效地優化企業環境中毫微小細胞網路基地台群組部署的覆蓋範圍。 [Note 4] A self-optimized nanocell network base station group coverage method based on genetic algorithm is proposed, based on traffic statistics and interference level between adjacent base stations of a nanocell network. The centralized dynamic update of the downlink pilot power of each base station in the nanocell network effectively optimizes the coverage of the deployment of the nanocell network base station group in the enterprise environment.

[註3]Holger Claussen et al., Self-optimization of Coverage for Femtocell Deployments, Bell Labs Technical Journal - Core and Wireless Networks, Volume 14 Issue 2, August 2009, Pages 155-183. [Note 3] Holger Claussen et al., Self-optimization of Coverage for Femtocell Deployments, Bell Labs Technical Journal - Core and Wireless Networks, Volume 14 Issue 2, August 2009, Pages 155-183.

[註4]Lina S. Mohjazi et al., Self-Optimization of Pilot Power in Enterprise Femtocells Using Multi objective Heuristic, Journal of Computer Networks and Communications, Volume2012. [Note 4] Lina S. Mohjazi et al., Self-Optimization of Pilot Power in Enterprise Femtocells Using Multi Objective Heuristic, Journal of Computer Networks and Communications, Volume2012.

一般無線多媒體通訊網路頻譜與資源管理,主要包含頻道與發射功率指配。[註5]應用ANFIS方法控制直接序列分碼多工多媒體通訊系統之功率,可估測並補償衰減通道之影響,藉以達到高成功傳輸率與高資料傳輸率之目標。ANFIS功率控制機制之兩個輸入變數分別為訊干雜比(signal-to-interference-plus-noise ratio,SINR)error(e)和SINR error change(△e),並且各使用7個高斯函數做為模糊歸屬函數,因此有49條模糊推論規則。ANFIS功率控制機制可調整訊干雜比設定點,並利用兩個輸入變數,SINR error e(n)和SINR error change △e(n)來追蹤自標的SINR設置點。本技術固定將目標SINR調整值設定為1.5dB,反而讓功率控制的過程不夠彈性,且ANFIS輸入參數僅依賴SINR控制,無法有效率的配合當下通道環境之變化進行功率控制。本技術亦未考慮網路多用戶(multi-user,MU)服務與服務可靠度(service reliability,SR)性能。 General wireless multimedia communication network spectrum and resource management, mainly including channel and transmit power assignment. [Note 5] The application of the ANFIS method to control the power of the direct sequence code division multiplex multimedia communication system can estimate and compensate the influence of the attenuation channel, thereby achieving the goal of high successful transmission rate and high data transmission rate. The two input variables of the ANFIS power control mechanism are signal-to-interference-plus-noise ratio (SINR) error( e ) and SINR error change(△ e ), respectively, and each uses 7 Gaussian functions. To blur the attribution function, there are 49 fuzzy inference rules. The ANFIS power control mechanism adjusts the signal-to-interference ratio setpoint and uses two input variables, SINR error e(n) and SINR error change Δe(n), to track the SINR setpoint. The fixed value of the target SINR is set to 1.5 dB, which makes the power control process less flexible, and the ANFIS input parameter only depends on the SINR control, and cannot effectively coordinate with the current channel environment for power control. The technology also does not consider network multi-user (MU) service and service reliability (SR) performance.

[註5]C. H. Jiang, J. K. Lian, R. M. Weng, C. H. Hsu, "Multi-rate DS-CDMA with ANFIS-assisted power control for wireless multi-media communications," International Journal of Innovative Computing, Information and Control, vol. 6, no. 8, pp. 3641-3655, Aug. 2010. [Note 5] C. H. Jiang, J. K. Lian, R. M. Weng, C. H. Hsu, "Multi-rate DS-CDMA with ANFIS-assisted power control for wireless multi-media communications," International Journal of Innovative Computing, Information and Control, vol. 6, no. 8, pp. 3641-3655, Aug. 2010.

本發明為建構於適應性網路模糊推論系統(adaptive network-based fuzzy inference system,ANFIS)之多用戶(multi-user,MU)分頻全雙工-正交分頻多工接取室內小細胞基地台智慧型佈署控制(intelligent deployment cascade control,IDCC)軟體與裝置,尤指一種可適應性控制小細胞傳接機多用戶服務可靠度、發射功率與干擾之自我優化佈署控制器。本發明之主要自的在於可由用戶輸入服務可靠度、室內涵蓋半徑與最小通達率需求(對應細胞邊緣CQI 1~15)之設定和用戶設備端(user equipment,UE)回傳正交分頻多工(orthogonal frequency division multiplexing,OFDM)傳接機間路徑損(path loss,PL)與傳接機訊干雜比(signal-to-interference-plus-noise ratio,SINR)資訊,適應性控制傳接機的發射功率,使小細胞行動通訊網路內的用戶可滿足服務可靠度、最小發射功率與干擾需求。 The present invention is a multi-user (MU) frequency division full-duplex-orthogonal frequency division multiplexing multiplexed indoor small cell constructed in an adaptive network-based fuzzy inference system (ANFIS) Base station intelligent deployment cascade control (IDCC) software and devices, especially a self-optimizing deployment controller that can control the multi-user service reliability, transmission power and interference of small cell transmission machines. The main purpose of the present invention is that the user can input the service reliability, the indoor coverage radius and the minimum access rate requirement (corresponding to the cell edge CQI 1~15) and the user equipment (UE) backhaul orthogonal frequency division. Path frequency (PS) and signal-to-interference-plus-noise ratio (SINR) information, adaptive control transfer The transmit power of the machine enables users in the small cell mobile communication network to meet service reliability, minimum transmit power and interference requirements.

本發明以適應性網路模糊推論系統(adaptive network-based fuzzy inference system,ANFIS)[註6]方法,設計小細胞智慧型佈署控制裝置之串接控制架構,包含資源配置器、最小通達率/邊緣CQI轉換器、初始發射功率配置(initial transmit power setting control,ITPSC)(ANFIS控制器#1)、最佳化通道品質指標(channel quality index,CQI)決策器(CQIDC)(ANFIS控制器#2)與自我優化功率控制 (SOPC)五個單元。其中,自我優化功率控制單元包含發射功率調整量估測器(transmit power adjustment estimator,TPAE)(ANFIS控制器#3)、功率調整配置器與自我優化功率控制保護機制三部分。由用戶輸入服務可靠度、室內涵蓋半徑與最小通達率設定,自我優化佈署控制裝置藉用戶端回傳之資訊估測傳接機間路徑損與傳接機訊干雜比,適應性控制傳接機的發射功率,使室內小細胞基地台自我優化佈署控制裝置可滿足服務可靠度、最佳化通達率、最小發射功率與干擾的傳接機性能。 The invention adopts an adaptive network-based fuzzy inference system (ANFIS) method to design a serial control structure of a small cell intelligent deployment control device, including a resource configurator and a minimum access rate. /Edge CQI converter, initial transmit power setting control (ITPSC) (ANFIS controller #1), optimized channel quality index (CQI) decision maker (CQIDC) (ANFIS controller# 2) Self-optimizing power control (SOPC) five units. The self-optimizing power control unit includes a transmit power adjustment estimator (TPAE) (ANFIS controller #3), a power adjustment configurator and a self-optimizing power control protection mechanism. The user inputs the service reliability, the indoor coverage radius and the minimum access rate setting, and the self-optimized deployment control device estimates the path loss between the transmission and the transmission machine by using the information returned by the user terminal, and adaptive control transmission The transmitting power of the pick-up allows the indoor small cell base station self-optimized deployment control device to meet the service reliability, optimized access rate, minimum transmit power and interference transfer performance.

本發明資源配置單元依室內用戶數與設定之系統頻寬平均配置小型基地台之資源塊數,並依室內各用戶設定之最小(細胞邊緣)通達率需求經最小通達率/細胞邊緣CQI轉換單元產生對應之室內小細胞傳接機細胞邊緣CQI,而傳接機細胞邊緣CQI則對應接收機區塊誤差率(block error rate,BLER)等於0.1之訊干雜比閘限值(SINRth)。 The resource configuration unit of the present invention configures the resource block number of the small base station on average according to the number of indoor users and the set system bandwidth, and the minimum access rate/cell edge CQI conversion unit according to the minimum (cell edge) access rate requirement set by each user in the room. The corresponding indoor small cell transfer cell edge CQI is generated, and the interface cell edge CQI corresponds to a receiver block error rate (BLER) equal to a signal-to-interference ratio (SINR th ) of 0.1.

對初始發射功率控制器(ANFIS #1)而言,每一個室內用戶皆有三個輸入參數:分別是室內涵蓋半徑(Ru)、資源塊數(nRBu)與細胞邊緣CQI(CQImin,u),每個輸入參數皆使用3個鐘形(Generalized bell-shaped)歸屬函數(membership function,MF),定義涵蓋半徑為0m~15m,共分成3個位準(level);定義資源塊數為1~100個,共分成3個位準(level);定義細胞邊緣CQI為1~15,共分成3個位準(level),共有27條模糊推論規則。我們定義涵蓋半徑需求在5公尺以下為L、5公尺~10公尺為M、10公尺~15公尺為H,資源塊數在0~25個為L、26~74 個為M、75~100個為H,細胞邊緣CQI需求在1~5為L、6~10為M、11~15為H,其輸出為對應第u個用戶設定之初始最小發射功率(Pini,u)值。對應第u個用戶ANFIS初始發射功率控制器最佳化之目標與條件可表示為: For the initial transmit power controller (ANFIS #1), each indoor user has three input parameters: indoor coverage radius (R u ), resource block number (nRB u ), and cell edge CQI (CQI min, u ), each input parameter uses a three-shaped (Generalized bell-shaped) membership function (MF), defined as a radius of 0m~15m, divided into three levels; the number of defined resource blocks is 1~100, divided into 3 levels; define the cell edge CQI as 1~15, which is divided into 3 levels, and there are 27 fuzzy inference rules. We define the coverage radius to be less than 5 meters for L, 5 meters to 10 meters for M, 10 meters to 15 meters for H, and the number of resource blocks from 0 to 25 for L and 26 to 74 for M. 75~100 are H, cell edge CQI demand is 1~5 is L, 6~10 is M, 11~15 is H, and its output is the initial minimum transmit power corresponding to the uth user ( Pini, u )value. The objectives and conditions for optimizing the initial transmit power controller of the u-th user ANFIS can be expressed as:

對最佳化通道品質指標決策器(ANFIS #2)而言,每一個室內用戶皆有三個輸入參數:分別為傳接機間之平均路徑損、初始發射功率設定(P ini,u )與資源塊數(nRB u ),每個輸入參數皆使用3個高斯(Gaussian)歸屬函數。在最佳化CQI決策控制器單元中,定義平均路徑損為30dB~70dB,共分為三個位準;初始發射功率為-75dBm~20dBm,共分為三個位準;資源塊數為1~100個,共分成3個位準(level),總共有27條模糊推論規則。最佳化CQI決策控制器單元根據(2)式產生無干擾環境下最佳的CQI目標,提供自我優化控功率制器(SOPC)單元,在干擾環境下進行功率調整。 For the optimized channel quality indicator decision maker (ANFIS #2), each indoor user has three input parameters: the average path loss between the transceivers. The initial transmit power setting ( P ini , u ) and the number of resource blocks ( nRB u ), each of which uses three Gaussian membership functions. In the optimized CQI decision controller unit, the average path loss is defined as 30dB~70dB, which is divided into three levels; the initial transmit power is -75dBm~20dBm, which is divided into three levels; the number of resource blocks is 1. ~100, divided into 3 levels, a total of 27 fuzzy inference rules. The optimized CQI decision controller unit generates the best CQI target in the interference-free environment according to the formula (2), and provides a self-optimized control power controller (SOPC) unit to perform power adjustment in the interference environment.

我們定義平均路徑損在30dB~40dB為L、41dB~60dB為M、61dB~70dB為H;初始發射功率在-75dBm~-51dBm為L、-50dBm ~-4dBm為M、-3dBm~20dBm為H;資源塊數在0~25個為L、26~74個為M、75~100個為H,其輸出為在無干擾環境中對應第u個用戶之最佳CQI(CQIbest,u)。對應第u個用戶最佳化CQI決策控制器單元之最佳化目標與條件可表示為: We define the average path loss to be 30dB~40dB for L, 41dB~60dB for M, 61dB~70dB for H; the initial transmit power is -75dBm~-51dBm for L, -50dBm ~-4dBm for M, -3dBm~20dBm for H The number of resource blocks is 0 to 25 for L, 26 to 74 for M, and 75 to 100 for H, and the output is the best CQI (CQI best, u ) corresponding to the uth user in a non-interference environment. The optimization goals and conditions corresponding to the u-th user-optimized CQI decision controller unit can be expressed as:

1.對發射功率調整量估測器(TPAE)(ANFIS #3)而言,每一個室內用戶皆有三個輸入參數:分別是細胞邊緣CQI需求、無干擾環境之最佳CQI與SINR量測平均值,每個輸入參數皆使用3個鐘形歸屬函數,定義細胞邊緣CQI需求為1~15,共分成三個位準;最佳CQI為1~15,共分成三個位準;SINR量測平均值為-25dB~45dB,共分成三個位準,共27條模糊推論規則。我們定義細胞邊緣CQI需求在1~5為L、6~10為M、11~15為H,無干擾環境下之最佳CQI在1~5為L、6~10為M、11~15為H,SINR量測平均值在-25dB~-5dB為L、-5dB~25dB為M、25dB~45dB為H,輸出為在干擾環境中對應第u個用戶之最小發射功率調整值。對應第u個用戶對應第u個用戶發射功率調整量估測器之最佳化目標與條件可表示為: 1. For the Transmit Power Adjustment Estimator (TPAE) (ANFIS #3), each indoor user has three input parameters: the optimal CQI and SINR measurement average for cell edge CQI requirements and interference free environment. Value, each input parameter uses 3 bell-shaped attribution function, defines the cell edge CQI demand as 1~15, which is divided into three levels; the best CQI is 1~15, which is divided into three levels; SINR measurement The average value is -25dB~45dB, which is divided into three levels, a total of 27 fuzzy inference rules. We define cell edge CQI requirements as 1 to 5 for L, 6 to 10 for M, and 11 to 15 for H. The best CQI for undisturbed environments is L at 1 to 5, M at 10 to 10, and 11 to 15 at The average value of H and SINR is L at -25dB~-5dB, M is -5dB~25dB, and H is 25dB~45dB. The output is the minimum transmit power adjustment value corresponding to the uth user in the interference environment. The optimization target and condition corresponding to the uth user corresponding to the uth user transmit power adjustment amount estimator can be expressed as:

設計自我優化功率控制保護機制控制器使智慧型佈署串接控制(IDCC)裝置僅能對室內小細胞內用戶進行自我優化發射功率調整,避免和室外鄰近細胞用戶相互干擾,因而降低室內小細胞內之系統效能。 Designing a self-optimizing power control protection mechanism controller enables the intelligent deployment cascade control (IDCC) device to self-optimize the transmit power adjustment for indoor small cell users, avoiding interference with outdoor neighboring cell users, thus reducing indoor small cells System performance within.

為進一步對本發明有更深入的說明,乃藉由以下圖示、圖號說明及發明詳細說明,冀能對貴審查委員於審查工作有所助益。 In order to further explain the present invention, it will be helpful to review the review by the following illustrations, illustrations, and detailed description of the invention.

[註6]Jyh-Shing Roger Jang, “ANFIS: Adaptive-Network-Based Fuzzy Inference System”, IEEE Transaction on System, Man, and Cybernetics, Vol. 23, NO. 3, June 1993. [Note 6] Jyh-Shing Roger Jang, "ANFIS: Adaptive-Network-Based Fuzzy Inference System", IEEE Transaction on System, Man, and Cybernetics, Vol. 23, NO. 3, June 1993.

IDCC‧‧‧智慧型佈署串接控制 IDCC‧‧‧Smart deployment cascade control

CQI‧‧‧通道品質指標 CQI‧‧‧ channel quality indicators

SR‧‧‧服務可靠度 SR‧‧‧Service reliability

MU‧‧‧多用戶 MU‧‧‧Multiple users

ITPSC‧‧‧初始發射功率配置器 ITPSC‧‧‧Initial Transmit Power Configurator

CQIDC‧‧‧通道品質指標決策器 CQIDC‧‧‧ channel quality indicator decision maker

SOPC‧‧‧自我優化功率控制器 SOPC‧‧‧ self-optimizing power controller

Ru‧‧‧第u個用戶之涵蓋半徑需求 R u ‧‧‧The radius requirement of the u user

nRBu‧‧‧第u個用戶之資源塊數 nRB u ‧‧‧Number of resource blocks for the uth user

nUE‧‧‧同一室內中總用戶設備端 nUE‧‧‧The total user equipment side in the same room

Tmin,u‧‧‧第u個用戶之最小通達率需求 T min, u ‧‧‧The minimum access rate requirement for the u-user

CQImin,u‧‧‧第u個用戶之最小CQI需求 CQI min, u ‧‧‧The minimum CQI requirement for the u-user

CQIbest,u‧‧‧第u個用戶之最佳CQI估測 CQI best,u ‧‧‧The best CQI estimate for the u user

Pini,u‧‧‧第u個用戶之初始發射功率配置 P ini,u ‧‧‧U-user initial transmit power configuration

PL‧‧‧路徑損 PL‧‧‧path loss

‧‧‧第u個用戶之平均路徑損 ‧‧‧The average path loss of the uth user

△P‧‧‧第u個用戶之發射功率調整量 △P‧‧‧The transmission power adjustment amount of the uth user

SINR‧‧‧訊干雜比 SINR‧‧‧ News

SINR(t)‧‧‧在時間t之傳接機訊干雜比 SINR(t)‧‧‧ transmits the machine-to-machine ratio at time t

‧‧‧第u個用戶之平均訊干雜比 ‧‧‧The average user's average interference ratio

TTI‧‧‧傳送時間間隔 TTI‧‧‧ transmission time interval

ANFIS‧‧‧適應性網路模糊推論系統 ANFIS‧‧‧Adaptive Network Fuzzy Inference System

圖一 室內小細胞智慧型佈署串接控制裝置系統架構 Figure 1 System architecture of indoor small cell intelligent deployment serial control device

圖二 初始發射功率控制器單元架構圖 Figure 2 Initial transmission power controller unit architecture diagram

圖三 最佳化CQI決策控制器單元架構圖 Figure 3 Optimized CQI decision controller unit architecture diagram

圖四 自我優化功率控制器單元架構圖 Figure 4 Self-optimized power controller unit architecture diagram

圖五 小細胞下鏈傳輸在室內辦公室A環境下之BLER性能曲線 Figure 5. BLER performance curve of small cell down-chain transmission in indoor office A environment

圖六 小細胞下鏈傳輸在室內辦公室A環境下之通達率與系統容 量 Figure 6. Access rate and system capacity of small cell downlink transmission in indoor office A environment the amount

圖七 室內小細胞基地台功率量測環境之平面圖 Figure 7. Plan of the indoor small cell base station power measurement environment

圖八 ITU-R室內辦公室路徑損模型與量測所得路徑損曲線 Figure VIII ITU-R indoor office path loss model and measured path loss curve

圖九 初始發射功率控制器(ITPSC)單元之一組訓練資料:在固定涵蓋半徑為5公尺和最小CQI(3、7、10)狀況下,不同資源塊(1~100個)所對應之最小發射功率 Figure 9. Initial training power controller (ITPSC) unit training data: in the case of fixed coverage radius of 5 meters and minimum CQI (3, 7, 10), different resource blocks (1~100) Minimum transmit power

圖十(a) 初始發射功率控制器(ITPSC)單元初始歸屬函數 Figure 10 (a) Initial Transmit Power Controller (ITPSC) unit initial attribution function

圖十(b) 初始發射功率控制器(ITPSC)單元經過混合式學習演算法訓練過後之歸屬函數 Figure 10 (b) The initial transmit power controller (ITPSC) unit is trained by the hybrid learning algorithm

圖十(c) 初始發射功率控制器(ITPSC)單元之初始發射功率均方根誤差 Figure 10 (c) Initial transmit power root mean square error of the initial transmit power controller (ITPSC) unit

圖十一 最佳化CQI決策控制器(CQIDC)單元之一組訓練資料:當資源塊皆為50個,初始發射功率分別為-40dBm、-20dBm與0dBm的狀況下,不同平均路徑損(30dB~60dB)所對應之最佳化CQI Figure 11 Optimized CQI Decision Controller (CQIDC) unit training data: When the resource blocks are 50, the initial transmit power is -40dBm, -20dBm and 0dBm, respectively, different average path loss (30dB) ~60dB) corresponding optimized CQI

圖十二(a) 最佳化CQI決策控制器(CQIDC)單元初始歸屬函數 Figure 12 (a) Optimized CQI decision controller (CQIDC) unit initial attribution function

圖十二(b) 最佳化CQI決策控制器(CQIDC)單元經過混合式學習演算法訓練過後之歸屬函數 Figure 12 (b) The attribution function of the optimized CQI decision controller (CQIDC) unit after training through the hybrid learning algorithm

圖十二(c) 最佳化CQI決策控制器(CQIDC)單元之最佳CQI均方根誤差 Figure 12 (c) Optimum CQI Root Mean Square Error for Optimized CQI Decision Controller (CQIDC) Unit

圖十三 發射功率調整量估測器單元之一組訓練資料:在服務可靠度需求為90%,最小CQImin為6,最佳化CQIbest為7、10狀況下,不同SINR量測平均值所對應之最佳功率調整量 Figure 13: Training data of one of the transmit power adjustment estimator units: average value of different SINR measurements under the condition of service reliability requirement of 90%, minimum CQI min of 6, and optimized CQI best of 7, 10 Corresponding optimal power adjustment

圖十四(a) 發射功率調整量估測器單元初始歸屬函數 Figure 14 (a) Initial power transfer function of the transmitter power adjustment estimator

圖十四(b) 發射功率調整量估測器單元經過混合式學習演算法訓練過後之歸屬函數 Figure 14 (b) The attribution function of the transmit power adjustment estimator unit after training through the hybrid learning algorithm

圖十四(c) 發射功率調整量估測器單元之發射功率調整量均方根誤差 Figure 14 (c) Radiated root power error of the transmit power adjustment amount of the transmit power adjustment estimator unit

圖十五 功率配置單元功率調整控制演算法流程圖 Figure 15 Flow chart of power configuration unit power adjustment control algorithm

圖十六 IDCC訓練模擬流程圖 Figure 16 IDCC training simulation flow chart

圖十七(a) 固定發射功率與智慧型佈署串接控制器在干擾功率為-100dBm環境下之SINR量測值CCDF分布圖 Figure 17 (a) CCRF distribution of SINR measurements for fixed transmit power and smart deployment controllers with interference power of -100dBm

圖十七(b) 智慧型佈署串接控制器在干擾功率為-90dBm環境下之SINR量測值CCDF分布圖 Figure 17 (b) The CCRF distribution of the SINR measurement value of the intelligent deployment of the cascade controller in the interference power of -90dBm

圖十七(c) 固定發射功率與智慧型佈署串接控制器在干擾功率為-80dBm環境下之SINR量測值CCDF分布圖 Figure 17 (c) CCRF distribution of SINR measurements for fixed transmit power and smart deployment controllers with interference power of -80dBm

圖十八(a) 固定發射功率與智慧型佈署串接控制器在干擾功率為-100dBm環境下之通達率CCDF分布圖 Figure 18 (a) CCDF distribution map of fixed transmission power and smart deployment controller in the interference power of -100dBm

圖十八(b) 固定發射功率與智慧型佈署串接控制器在干擾功率為-90dBm環境下之通達率CCDF分布圖 Figure 18 (b) CCDF distribution map of fixed transmission power and intelligent deployment controller in the interference power of -90dBm

圖十八(c) 固定發射功率與智慧型佈署串接控制器在干擾功率為-80dBm環境下之通達率CCDF分布圖 Figure 18 (c) CCDF distribution map of fixed transmission power and intelligent deployment controller in the interference power of -80dBm

圖十九 不同干擾功率環境下,固定發射功率與智慧型佈署串接控制之平均通達率 Figure 19 Average access rate of fixed transmit power and smart deployment cascade control under different interference power environments

圖二十 不同干擾功率環境下,智慧型佈署串接控制之平均發射功率 Figure 20 Average transmission power of smart deployment cascade control under different interference power environments

茲配合下列之圖示說明本發明之詳細結構,及其連結關係,以利於貴審委做一瞭解。 The detailed structure of the present invention and its connection relationship are illustrated in conjunction with the following diagrams to facilitate an understanding of the audit committee.

本發明之小細胞智慧型佈署控制裝置主要架構如圖一所示,係為串接式適應性控制器。其架構分成資源配置器、最小通達率/邊緣CQI轉換器、初始發射功率配置(initial transmit power setting control,ITPSC)(ANFIS控制器#1)、最佳化通道品質指標(channel quality index,CQI)決策器(CQIDC)(ANFIS控制器#2)與自我優化功率控制(SOPC)五個單元。 The main structure of the small cell intelligent deployment control device of the present invention is shown in Figure 1, which is a series-connected adaptive controller. Its architecture is divided into resource configurator, minimum access rate/edge CQI converter, initial transmit power setting control (ITPSC) (ANFIS controller #1), optimized channel quality index (CQI). Decision maker (CQIDC) (ANFIS controller #2) and self-optimized power control (SOPC) five units.

本發明小細胞智慧型佈署串接控制器裝置之資源配置單元,考慮室內多用戶資源配置係依室內用戶數與基地台系統頻寬平均調配資源塊;最小通達率/邊緣CQI轉換單元,根據配置資源塊數與用戶最小通達率需求轉換對應之邊緣CQI。本發明以Jyh-Shing Roger Jang在1993年利用模糊推論系統建立的可適性網路,稱為 適應性類神經模糊推論系統(ANFIS)[註6],實現智慧型自我優化功率控制。ANFIS藉由混合式學習的方法,其輸入及輸出模式可模仿人類神經系統,其特點是可藉由學習調整權重至適當值完成人們所要實現之功能。在初始發射功率配置(ITPSC)單元,用戶依照室內房間大小進行涵蓋半徑、配置資源塊數與細胞邊緣CQI需求設定,且作為ANFIS初始發射功率控制器的輸入參數,在小細胞基地台最大發射功率的限制下,在無干擾環境中輸出可滿足上述需求之發射功率。最佳化通道品質指標決策器(CQIDC)單元依照初始設定發射功率控制器所輸出之初始發射功率、配置資源塊數與用戶端量測之傳接機間之路徑損平均值作為最佳CQI決策控制器的輸入參數,輸出在無干擾環境下滿足區塊錯誤率(block error rate,BLER)小於0.1之最佳CQI。我優化功率控制單元包含發射功率調整量估測器(transmit power adjustment estimator,TPAE)(ANFIS控制器#3)、功率調整配置器與自我優化功率控制保護機制三部分。其中發射功率調整量估測器(TPAE)單元由用戶設定之服務可靠度需求、細胞邊緣CQI需求、最佳化CQI決策控制器所輸出之無干擾環境下最佳CQI與用戶端量測之SINR平均值作為自我優化最小發射功率調整量估測器的輸入參數,輸出滿足用戶服務可靠度設定與BLER0.1之最小發射功率調整值。 The resource allocation unit of the small cell intelligent deployment controller device of the present invention considers that the indoor multi-user resource configuration allocates resource blocks according to the indoor user number and the base station system bandwidth average; the minimum access rate/edge CQI conversion unit, according to Configure the edge CQI corresponding to the user's minimum access rate requirement conversion. The invention uses the adaptive network established by Jyh-Shing Roger Jang in 1993 using the fuzzy inference system, called the adaptive neuro-fuzzy inference system (ANFIS) [Note 6], to realize intelligent self-optimizing power control. ANFIS uses a hybrid learning approach in which the input and output modes mimic the human nervous system, which is characterized by learning to adjust the weights to the appropriate values to perform the functions that people want to achieve. In the initial transmit power configuration (ITPSC) unit, the user sets the radius of coverage, the number of configured resource blocks, and the cell edge CQI requirement according to the size of the indoor room, and as the input parameter of the ANFIS initial transmit power controller, the maximum transmit power at the small cell base station. Under the limitation, the transmission power that can meet the above requirements is output in a non-interference environment. The optimized channel quality indicator decision maker (CQIDC) unit is used as the optimal CQI decision according to the initial setting of the initial transmit power output by the transmit power controller, the number of configured resource blocks, and the path loss average between the transmitters of the user end measurement. The input parameters of the controller, the output satisfies the best CQI with a block error rate (BLER) less than 0.1 in a non-interference environment. My optimized power control unit includes three parts: transmit power adjustment estimator (TPAE) (ANFIS controller #3), power adjustment configurator and self-optimized power control protection mechanism. The transmit power adjustment estimator (TPAE) unit is set by the user's service reliability requirements, cell edge CQI requirements, optimized CQI decision controller output in the interference-free environment, the best CQI and the user-side measurement SINR The average value is used as the input parameter of the self-optimizing minimum transmit power adjustment estimator, and the output satisfies the user service reliability setting and BLER. The minimum transmit power adjustment value of 0.1.

圖二為對應第u個用戶初始設定發射功率控制器單元架構圖,圖中包含五層架構,共有三個輸入參數與一個輸出參數,對初始發射功率控制器單元而言,輸入參數分別是第u個用戶之室 內涵蓋半徑、配置資源塊數與細胞邊緣CQI需求,輸出參數為第u個用戶之初始發射功率;圖三為對應第u個用戶之最佳化CQI決策控制器單元之架構圖,圖中包含五層架構,共有三個輸入參數與一個輸出參數,對最佳CQI決策器單元而言,輸入參數分別是第u個用戶傳接機間之平均路徑損、配置資源塊數與初始設定發射功率,輸出參數為對應第u個用戶之最佳CQI;圖四為對應第u個用戶之自我優化最小發射功率控制器單元架構圖,圖中包含五層架構,共有三個輸入參數與一個輸出參數,對自我優化最小發射功率控制器單元而言,輸入參數分別是第u個用戶之細胞邊緣CQI需求、無干擾環境之最佳CQI與SINR平均量測值,輸出參數為對應第u個用戶之發射功率調整值。本發明SINR主要透過用戶端量測之RSRP參數來估算,並且回報SINR給基地台[註7],而傳接機路徑損則由基地台發射之參考訊號(Reference Signal)與RSRP相減產生[註8]。 Figure 2 is a block diagram of the initial set transmit power controller unit corresponding to the uth user. The figure contains a five-layer architecture with three input parameters and one output parameter. For the initial transmit power controller unit, the input parameters are respectively u user room The radius, the number of allocated resource blocks and the cell edge CQI requirement are included, and the output parameter is the initial transmission power of the uth user; FIG. 3 is the architecture diagram of the optimized CQI decision controller unit corresponding to the uth user, which includes The five-layer architecture has three input parameters and one output parameter. For the optimal CQI decision maker unit, the input parameters are the average path loss between the uth user relays, the number of configured resource blocks, and the initial set transmit power. The output parameter is the best CQI corresponding to the uth user; FIG. 4 is the self-optimized minimum transmit power controller unit architecture diagram corresponding to the uth user, the figure includes a five-layer architecture, and has three input parameters and one output parameter. For the self-optimizing minimum transmit power controller unit, the input parameters are the cell edge CQI requirement of the uth user, the optimal CQI and SINR average measurement value of the non-interference environment, and the output parameter is corresponding to the uth user. Transmit power adjustment value. The SINR of the present invention is mainly estimated by the RSRP parameter of the UE measurement, and the SINR is reported to the base station [Note 7], and the path loss of the transmission is generated by subtracting the Reference Signal transmitted by the base station from the RSRP [ Note 8].

(A)ANFIS控制器架構(A) ANFIS controller architecture

本發明將以自我優化最小發射功率控制器單元之發射功率調整估測器(TPAE)為例介紹: The present invention will be described by taking the self-optimizing minimum transmit power controller unit's transmit power adjustment estimator (TPAE) as an example:

第一層:在這一層包含三個第m筆輸入參數xj,m及歸屬函數的輸出Aj,n,歸屬函數皆為鐘型函數,如(1)式所示, The first layer: in this layer contains three m- th input parameters x j,m and the output of the attribution function A j,n , the attribution function is a bell-shaped function, as shown in (1),

a j,n ,b j,n ,c j,n 是前件部參數,將利用降梯度公式(gradient descent formula)進行參數調整。 a j,n , b j,n , c j,n are the parameters of the front part, and the parameters will be adjusted using the gradient descent formula.

第二層:此層第i個輸出w i,m 是從上一層收到的第m筆輸入相乘產生,並表示ANFIS資料率控制器共有27條規則。 Second layer: This layer W i i-th output, m is one received from the pen input is generated by multiplying the first m, and represents the information rate controller ANFIS total of 27 rules.

w i,m =O 2,i =A 1,p (x 1,m A 2,q (x 2,m A 3,r (x 3,m ) for i=1,2…,27;p=1,2,3;q=1,2,3;r=1,2,3 (5) w i , m = O 2, i = A 1, p ( x 1, m ) × A 2, q ( x 2, m ) × A 3, r ( x 3, m ) for i =1, 2..., 27; p =1,2,3; q =1,2,3; r =1,2,3 (5)

第三層:將第二層所得做正規化的動作。 The third layer: the action of normalizing the second layer of income.

第四層:O 4,i 是第四層的輸出。 The fourth layer: O 4, i is the output of the fourth layer.

α i ,β i ,γ i ,ω i 為後件部參數,將利用最小平方估測(least squares estimate LSE)來進行參數調整。其中27條模糊推論規則庫之模糊規則R i ,for i=1~27表示如下:R1:If(x 1,m is A 11 )and(x 2,m is A 21 )and(x 3,m is A 31 )then(output is f 1,m )R2:If(x 1,m is A 11 )and(x 2,m is A 21 )and(x 3,m is A 32 )then(output is f 2,m )R3:If(x 1,m is A 11 )and(x 2,m is A 21 )and(x 3,m is A 33 )hen(output is f 3,m )⋮R26:If(x 1,m is A 13 )and(x 2,m is A 23 )and(x 3,m is A 32 )then(output is f 26,m ) R27:If(x 1,m is A 13 )and(x 2,m is A 23 )and(x 3,m is A 33 )then(output is f 27,m ) (8)使用設計出來的ANFIS規則庫,將可替系統操作者產生最佳化的決策。 α i , β i , γ i , ω i are the post-part parameters, and the parameters are adjusted using the least squares estimate LSE. The fuzzy rules R i , for i =1~27 of the 27 fuzzy inference rule bases are expressed as follows: R 1 : If( x 1,m is A 11 )and( x 2,m is A 21 )and( x 3, m is A 31 )then(output is f 1,m )R 2 :If( x 1,m is A 11 )and( x 2,m is A 21 )and( x 3,m is A 32 )then(output Is f 2,m )R 3 :If( x 1,m is A 11 )and( x 2,m is A 21 )and( x 3,m is A 33 )hen(output is f 3,m )⋮R 26 : If( x 1,m is A 13 )and( x 2,m is A 23 )and( x 3,m is A 32 )then(output is f 26,m ) R 27 :If( x 1,m Is A 13 )and( x 2,m is A 23 )and( x 3,m is A 33 )then(output is f 27,m ) (8) Using the designed ANFIS rule base, the system operator will be replaced Produce optimal decisions.

第五層:將第四層的輸出,利用(9)式得到最後之資料率輸出參數G m The fifth layer: the output of the fourth layer, using the formula (9) to obtain the final data rate output parameter G m .

[註7]S. Hämäläinen and H. Sanneck, LTE: Self Organising Networks (SON): Network Management Automation for Operational Efficiency, Wiley, Jan. 30, 2012 [Note 7] S. Hämäläinen and H. Sanneck, LTE: Self Organising Networks (SON): Network Management Automation for Operational Efficiency , Wiley, Jan. 30, 2012

[註8]3GPP Technical Specification 136.213, “EvolvedUniversal Terrestrial Radio Access (E-UTRA); Physical layer procedures” (Release 8), www.3gpp.org [Note 8] 3GPP Technical Specification 136.213, "Evolved Universal Terrestrial Radio Access (E-UTRA); Physical layer procedures" (Release 8), www.3gpp.org

(B)最小通達率/邊緣CQI轉換單元(B) Minimum access rate/edge CQI conversion unit

為滿足用戶通達率設定與接收機區塊錯誤率(Block Error Rate,BLER)小於0.1需求,我們必須得到通達率與不同CQI下SINR閘限值之對應關係,因此進行室內小細胞傳接機下鏈傳輸區塊錯誤率(block error rate,BLER)與通達率性能模擬。在實施例模擬中,系統模擬參數如表一所示,小細胞下鏈傳接機基本參數如表二所示。 In order to meet the user access rate setting and the receiver block error rate (BLER) is less than 0.1, we must obtain the correspondence between the access rate and the SINR threshold under different CQI, so the indoor small cell transfer machine is performed. Chain transmission block error rate (BLER) and pass rate performance simulation. In the simulation of the embodiment, the system simulation parameters are shown in Table 1. The basic parameters of the small cell downlink transceiver are shown in Table 2.

本發明將在不同CQI條件下,進行1x1 SISO-OFDM傳接機BLER性能模擬,系統頻寬設定為20MHz,通道模式為室內辦公室A(Indoor Office A,IOA)[註9],通道估測使用Least square(LS)進行估測,等化器使用minimum mean square error(MMSE)進行等化,用戶移動速度假設為10km/hr,在不同SINR狀況下使用1000個子訊框進行模擬,其結果如圖五所示。本發明藉由圖五可產生在不同CQI狀況下滿足BLER0.1之SINR閘限值,見表三所示。而表三中之實體資源塊(physical resource block,PRB)係依據20MHz系統頻寬與3個室內用戶配置產生。 The invention will perform BLER performance simulation of 1x1 SISO-OFDM transmission machine under different CQI conditions, the system bandwidth is set to 20MHz, and the channel mode is Indoor Office A (IOA) [Note 9], channel estimation is used. The Least square (LS) is estimated, and the equalizer is equalized by minimum mean square error (MMSE). The user's moving speed is assumed to be 10 km/hr, and 1000 sub-frames are used for simulation under different SINR conditions. Five is shown. The invention can generate BLER under different CQI conditions by using FIG. The SINR threshold of 0.1 is shown in Table 3. The physical resource block (PRB) in Table 3 is generated based on the 20 MHz system bandwidth and three indoor user configurations.

根據上述傳接機BLER性能模擬其通達率模擬結果,如圖六所示。本發明考慮分頻全雙工模式,在頻率域分隔上行及下行鏈路的信號,其單方向的資源在時間上是連續的,且隨著行動通訊技術之演進,其系統通達率已逐漸接近Shannon上限,下鏈系統容量可表示為[註10] 式中BWBW_eff分別為系統頻寬與系統有效頻寬;η為修正參數;SINRSINR_eff為訊干雜比與有效訊干雜比;nRBtotal為系統總共資源塊數與nRBu為第u用戶所分配到的資源塊數。在本發明中,SISO下鏈傳輸系統模擬參數設定如表一,其BW為20MHz、BW_eff為0.83、η為0.43與SINR_eff為2.5119(4dB),系統容量如圖六黑色虛線所示,不同CQI之實際傳接機模擬通達率如圖六實線所示。 According to the BLER performance of the above-mentioned transfer machine, the simulation results of the access rate are simulated, as shown in Fig. 6. The present invention considers a frequency division full-duplex mode, and separates uplink and downlink signals in the frequency domain, and the resources in one direction are continuous in time, and as the mobile communication technology evolves, the system access rate is gradually approaching. Shannon upper limit, the capacity of the downlink system can be expressed as [Note 10] Where BW and BW_eff are the system bandwidth and the effective bandwidth of the system respectively; η is the correction parameter; SINR and SINR_eff are the signal-to-interference ratio and the effective signal-to-interference ratio; nRB total is the total resource block number of the system and nRB u is the u The number of resource blocks that the user has assigned. In the present invention, the simulation parameter setting of the SISO downlink transmission system is as shown in Table 1. The BW is 20 MHz, the BW_eff is 0.83, the η is 0.43, and the SINR_eff is 2.5119 (4 dB). The system capacity is shown by the black dotted line in Figure 6, and the CQI is different. The actual transmission rate of the actual transmission machine is shown in the solid line of Figure 6.

當系統頻寬為20MHz時,資源塊總數為100個,假設三個室內用戶經過資源配置後,資源塊數各為33個,由(10)式計算出對應在不同SINR閘限值之系統通達率,見表三所示,故當此用戶輸入通達率需求範圍為1.99~2.76Mbps、6.76~7.44Mbps、12.99~14.13Mbps時,根據表三分別對應細胞邊緣CQI 3、7、10。因此,本發明可藉由(10)式可針對各個用戶不同的資源塊數,得到不同的通達率與SINR閘限值之對應關係,方能進行最小通達率/邊緣CQI轉換。 When the system bandwidth is 20MHz, the total number of resource blocks is 100. Assuming that three indoor users are configured by resources, the number of resource blocks is 33, and the system access corresponding to different SINR thresholds is calculated by (10). The rate is shown in Table 3. Therefore, when the user input access rate requirement range is 1.99~2.76Mbps, 6.76~7.44Mbps, 12.99~14.13Mbps, according to Table 3, the cell edge CQI 3, 7, 10 respectively. Therefore, the present invention can obtain a minimum access rate/edge CQI conversion by using (10) for different resource blocks of different users and obtaining corresponding correspondence between different access rates and SINR thresholds.

(C)初始設定發射功率控制器(ITPSC)單元(C) Initial setting transmit power controller (ITPSC) unit

為控制小細胞基地台的初始發射功率,使細胞內用戶可滿足用戶設定之需求,我們將利用室內小細胞傳接機下鏈傳輸區塊錯誤率(block error rate,BLER)性能模擬結果,產生控制器之訓練資料。 In order to control the initial transmit power of the small cell base station, so that the intracellular users can meet the user's set requirements, we will use the indoor small cell transfer machine to transmit the block error rate (BLER) performance simulation results. Training information for the controller.

本發明考慮室內小細胞衰減環境之多用戶服務可靠度需求,其細胞內基地台之訊號強度P r 為log-normally分佈 The invention considers the multi-user service reliability requirement of the indoor small cell attenuation environment, and the signal intensity P r of the intracellular base station is log-normally distributed.

式中σ W 分別為平均信號強度與標準差。信號強度之平均值為 In the middle And σ W are the average signal strength and standard deviation, respectively. The average value of the signal strength is

式中K為接收機在d=R之(最小)平均信號強度(dBm),N為路徑損指數。而距基地台距離d之行動用戶,其P r 大於閘限值P r,min 之涵蓋機率為 Where K is the (minimum) average signal strength (dBm) of the receiver at d = R , and N is the path loss index. For mobile users who are at a distance d from the base station , the probability that P r is greater than the threshold value P r,min

式中R為細胞半徑,K-P r,min (dB)為d=R時之Fade Margin(FM),以確保通訊鏈路之可靠度。 Where R is the cell radius and KP r,min (dB) is Fade Margin(FM) for d = R to ensure the reliability of the communication link.

服務可靠度決定在細胞半徑為R之細胞內,用戶設備端(UE)接收機之接收信號強度P r 大於P r,min 之百分比。服務可靠度可表示為 [註11] The service reliability is determined in cells with a cell radius R , and the received signal strength P r of the user equipment (UE) receiver is greater than the percentage of P r,min . Service reliability can be expressed as [Note 11]

(13)帶入(14)可得服務可靠度為 (13) Bringing in (14) the service reliability is

make

本控制器將利用鏈路估算產生在不同涵蓋半徑(R)、服務可靠度(SR)、細胞邊緣CQI(CQI min )需求下之最小發射功率,即為初始發射功率,其對應第u個用戶之鏈路估算可表示如下P ini,u =P r min,u (CQImin,u )+L t -G t +PL(R u )+FM(SR u )-G r +L r (17)式中P ini,u 為第u個UE之初始發射功率(dBm),P rmin,u (CQI min,u )為第u個UE在細胞邊緣CQI需求等於CQI min,u 之接收靈敏度,L t 為基地台纜線傳遞損(dB),G t 為基地台天線增益(dBi),PL(R u )為在傳接機距離等於R之第u個用戶路徑損,FM(SR u )為第u個用戶在服務可靠度等於SR u 之衰減邊際值(fade margin,FM)(dB),G r 為用戶端天線增益(dBi),L r 為用戶端body loss(dB)。衰減邊際值可以由(15)(16)式計算產生。 The controller will use the link estimation to generate the minimum transmit power under different coverage radius ( R ), service reliability ( SR ), and cell edge CQI ( CQI min ) requirements, which is the initial transmit power, which corresponds to the uth user. The link estimate can be expressed as follows: P ini , u = P r min, u ( CQ I min, u ) + L t - G t + PL ( R u ) + FM ( SR u )- G r + L r (17 Where P ini, u is the initial transmit power (dBm) of the uth UE, P rmin, u ( CQI min, u ) is the receiving sensitivity of the uth UE at the cell edge CQI equal to CQI min, u , L t is the base station cable transmission loss (dB), G t is the base station antenna gain (dBi), PL (R u ) is the uth user path loss at the transmission machine distance equal to R , FM(SR u ) is The uth user has a service reliability equal to the fade margin (FM) (dB) of SR u , G r is the client antenna gain (dBi), and L r is the user body loss (dB). The attenuation margin value can be calculated by the equation (15)(16).

本發明假設室內小細胞下鏈傳接機基本參數如表二所示,在本實施例為單天線模式(SISO),本發明亦適用於多天線模式(MIMO),藉由表二之參數與傳接機BLER性能模擬,可以計算在無干擾環境中度在不同細胞邊緣CQI需求之第u個用戶接收靈敏度 The present invention assumes that the basic parameters of the indoor small cell downlink transceiver are as shown in Table 2. In this embodiment, the single antenna mode (SISO), the present invention is also applicable to the multi-antenna mode (MIMO), with the parameters of Table 2 and Transmitter BLER performance simulation, which can calculate the u-th user receiving sensitivity of CQI requirements at different cell edges in a non-interfering environment

P r min,u (CQImin,u )=P N,u +SNR th (CQImin,u ) (18)其中P N,u 為第u個用戶之雜訊功率(dBm),SNR th (CQI min,u )為第u個用戶在不同CQI min,u 下滿足BLER=0.1的SNR閘限值(如表三)。雜訊功率P N,u 可表示如下P N,u =NF×N 0(W)=NF×kT 0×BW r,u (W)=NF(dB)+(-174)+10log10(BW r,u )(dBm) (19)NF為UE之雜訊指標(noise figure,NF),N 0 為接收端熱雜訊功率頻譜密度(dBm/Hz),k為波茲曼常數1.3804 x 10-23 Joule/°K、T 0 為絕對溫度290°K,BW r,u 為第u個用戶接收頻寬(Hz),表示如下式:BW r,u =15kHz×12×nRB u (20)其中nRBu為第u個用戶所配置之資源塊數。 P r min, u ( CQ I min, u )= P N , u + SNR th ( CQ I min, u ) (18) where P N,u is the noise energy (dBm) of the uth user, SNR th (CQI min, u ) is the SNR threshold of BLER=0.1 for the uth user under different CQI min, u (as shown in Table 3). The noise power P N,u can be expressed as follows: P N , u = NF × N 0 (W) = NF × kT 0 × BW r , u (W) = NF (dB) + (-174) + 10log 10 ( BW r,u )(dBm) (19) NF is the noise figure (NF) of the UE, N 0 is the thermal noise power spectral density (dBm/Hz) at the receiving end, and k is the Boltzmann constant of 1.3804 x 10 -23 Joule/°K, T 0 is the absolute temperature 290°K, BW r, u is the uth user receiving bandwidth (Hz), which is expressed as follows: BW r , u =15kHz×12× nRB u (20) Where nRB u is the number of resource blocks configured by the uth user.

本發明參考ITU-R室內路徑損模型進行鏈路估算模擬,可表示如下式[註12]PL(d)=20log10(f)+10Nlog10(d)+L f (n)-28(dB) (21)其中d為傳接機間之距離(m);f為載波頻率(MHz),為配合實際小細胞基地台實驗量測,其載波頻率設定為2350MHz;N為路徑損指數;L f (n)為樓層穿透損(dB),n為樓層數,在本實驗不考慮樓層穿透損。 Reference ITU-R indoor path loss estimation model of the present invention is an analog link, may be represented by the following formula [Note 12] PL (d) = 20log 10 (f) +10 N log 10 (d) + L f (n) -28 ( dB ) (21) where d is the distance between the transmissions (m); f is the carrier frequency (MHz), which is used to match the actual small cell base station experimental measurement, the carrier frequency is set to 2350MHz; N is the path loss index L f (n) is the floor penetration loss (dB), n is the number of floors, and the floor penetration loss is not considered in this experiment.

實驗量測Experimental measurement

為了使本發明室內功率路徑損與接收訊號強度之標準差兩個參數更貼近實際環境,我們在實驗室進行小細胞基地台功率量測,傳接機基本參數如表二所列,實驗環境考慮了兩種情況:直視性(line of sight,LOS)與非直視性(non-line of sight,NLOS),環境擺設如圖七顯示,其實驗室長約20.98公尺、 寬約7.30公尺,小細胞基地台放置在實驗室之右側,手機量測端則在距離小細胞基地台1~19公尺,星星圖案為量測點,圖七(a)為19點直視性(LOS)量測點,圖七(b)為36點非直視性(NLOS)量測點,而各個不同的量測點將進行2000筆參考信號接收功率(RSRP)量測。 In order to make the two parameters of the indoor power path loss and the standard deviation of the received signal strength closer to the actual environment, we carry out small cell base station power measurement in the laboratory. The basic parameters of the transfer machine are listed in Table 2, and the experimental environment considers There are two cases: line of sight (LOS) and non-line of sight (NLOS). The environment is shown in Figure 7. The laboratory is about 20.98 meters long. The width is about 7.30 meters, the small cell base station is placed on the right side of the laboratory, and the mobile phone measurement end is 1~19 meters away from the small cell base station. The star pattern is the measurement point. Figure 7 (a) is 19 point direct view. The LOS measurement point, Figure 7(b) is the 36-point non-direct-view (NLOS) measurement point, and each of the different measurement points will perform 2000 Reference Signal Received Power (RSRP) measurements.

本發明以手機量測基地台所發射之信號,針對不同傳接機間距所量測之RSRP進行差值統計,進而修正ITU-R辦公室內路徑損模型藉以近似目前環境下訊號傳遞之路徑損。路徑損之實驗量測結果,如圖八所示,其中黑色實線為ITU-R辦公室內路徑損模型;圓圈虛線為實際直視性(LOS)量測所得路徑損,方塊虛線為實際非直視性(NLOS)量測所得路徑損,以基地台端所測得RSRP為基準與每個距離量測之2000筆RSRP平均值進行路徑損估算,即為各個距離下之實際量測路徑損。圓圈實線為近似實際直視性(LOS)量測分布,ITU-R辦公室內路徑損模型被修改為:PL(d)=20log10(f)+19.5log10(d)-36(dB) (22)其中載波頻率f為2350MHz,路徑損指數N為1.95。方塊實線則為近似實際非直視性(NLOS)量測分布,ITU-R辦公室內路徑損模型被修改為:PL(d)=20log10(f)+28log10(d)-36(dB) (23)其中載波頻率f為2350MHz,路徑損指數N為2.8。 The invention uses the mobile phone to measure the signal transmitted by the base station, and performs the difference statistics on the RSRP measured by the different transmission machine spacing, and then corrects the path loss model in the ITU-R office to approximate the path loss of the signal transmission in the current environment. The experimental results of the path loss are shown in Figure 8, where the solid black line is the path loss model in the ITU-R office; the dotted line is the path loss measured by the actual direct visibility (LOS), and the square dotted line is the actual non-direct view. (NLOS) The measured path loss is estimated by using the RSRP measured at the base station and the average of 2000 RSRP values for each distance measurement, that is, the actual measured path loss at each distance. The solid line is a circle approximation of the actual measured distribution of-sight (LOS) the amount of the ITU-R office path loss model is modified as: PL (d) = 20log 10 (f) + 19.5log 10 (d) -36 (dB) ( 22) wherein the carrier frequency f is 2350 MHz and the path loss index N is 1.95. Solid squares approximation of the actual line was measured non-distribution-of-sight (the NLOS) the amount of the ITU-R office path loss model is modified as: PL (d) = 20log 10 (f) + 28log 10 (d) -36 (dB) (23) wherein the carrier frequency f is 2350 MHz and the path loss index N is 2.8.

本發明考慮室內環境大多以多隔板阻礙擺設為主,故將以非直視性(NLOS)修正模型(23)式作為以下模擬與設計。 The present invention considers that the indoor environment is mostly blocked by a plurality of partitions, so the non-direct visibility (NLOS) correction model (23) is used as the following simulation and design.

接收功率遮蔽衰弱標準差σ W 可利用不同量測點所量測之RSRP計算平均標準差4.27dB產生,做為本文測試環境之遮蔽衰弱標準差。因此將遮蔽衰減標準差σ W 與路徑損常數N帶入(15)(16)式,可得在服務可靠度為90% 所對應之衰減邊際值(FM)2.14dB。 The received power shading weak standard deviation σ W can be generated by using the RSRP calculated by the different measuring points to calculate the average standard deviation 4.27dB, which is used as the masking weak standard deviation of the test environment. Therefore, the shadow attenuation standard deviation σ W and the path loss constant N are brought into equations (15) and (16), and the attenuation margin value (FM) corresponding to 90% of the service reliability can be obtained by 2.14 dB.

ITPSC單元為了滿足使用者之設定需求且達到最小發射功率之目標,本發明藉由室內小細胞傳接機基本參數,如表二所列,模擬產生傳接機BLER結果,如表三所列。結合表二、表三與(18)(19)(20)(21)(23)式,產生在不同涵蓋半徑(2.5、5、7.5、10、12.5、15公尺)、資源塊數(1~100個)與不同最小CQI(1~15)狀況下之最小發射功率,作為初始發射功率控制器之訓練資料。圖九為初始設定發射功率控制器之其中一組訓練資料:在固定涵蓋半徑為5公尺和最小CQI(3、7、10)狀況下,不同資源塊(1~100個)所對應之最小發射功率。以50個資源塊為例,對應不同最小CQI(3、7、10)之最小發射功率分別為-35.33dBm、-27.33dBm和-18.33dBm。 In order to meet the user's set requirements and achieve the minimum transmit power, the present invention simulates the BLER results of the transfer machine by the basic parameters of the indoor small cell transfer machine, as listed in Table 2, as listed in Table 3. Combined with Tables 2 and 3 and (18)(19)(20)(21)(23), the ratios of the different coverage radii (2.5, 5, 7.5, 10, 12.5, 15 meters) and the number of resource blocks (1) are generated. ~100) and the minimum transmit power under different minimum CQI (1~15) conditions, as the training data of the initial transmit power controller. Figure 9 shows one of the training data of the initial set transmit power controller: the minimum corresponding to different resource blocks (1~100) under the fixed coverage radius of 5 meters and the minimum CQI (3, 7, 10). Transmit power. Taking 50 resource blocks as an example, the minimum transmit powers corresponding to different minimum CQIs (3, 7, 10) are -35.33 dBm, -27.33 dBm, and -18.33 dBm, respectively.

在初始發射功率控制器單元中,定義涵蓋半徑需求在5公尺以下為L、6公尺~10公尺為M、11公尺~15公尺為H,資源塊數在0~25個為L、26~74個為M、75~100個為H,細胞邊緣CQI需求在1~5為L、6~10為M、11~15為H。其模糊推論規則見表四所示。 In the initial transmit power controller unit, the definition of the coverage radius is less than 5 meters, L, 6 meters to 10 meters is M, 11 meters to 15 meters is H, and the number of resource blocks is 0 to 25 L, 26~74 are M, 75~100 are H, cell edge CQI demand is 1~5 is L, 6~10 is M, 11~15 is H. The fuzzy inference rules are shown in Table 4.

初始設定發射功率控制器單元的目的,在於設定基地台初始最小發射功率。在初始無干擾環境下,滿足第u個用戶設定之涵蓋半徑、服務可靠度與細胞邊緣CQI需求。對ITPSC而言,輸入分別是涵蓋半徑(R u )、資源塊數(nRB u )與細胞邊緣CQI(CQI min,u ),每個輸入參數皆使用3個鐘形歸屬函數(Generalized bell-shaped)定義為 ,共有27條模糊推論規則,其模糊推論規則見表四所示,對應第u個用戶之目標輸出為初始發射功率(P ini,u )The purpose of initially setting the transmit power controller unit is to set the initial minimum transmit power of the base station. In the initial non-interference environment, the coverage radius, service reliability and cell edge CQI requirements of the u-th user are met. For ITPSC, the inputs are the radius of coverage ( R u ), the number of resource blocks ( nRB u ), and the cell edge CQI ( CQI min, u ). Each input parameter uses three bell-shaped assignment functions (Generalized bell-shaped). )defined as There are 27 fuzzy inference rules. The fuzzy inference rules are shown in Table 4. The target output corresponding to the u-th user is the initial transmit power (P ini, u ) .

圖十(a)與圖十(b)分別為ITPSC初始歸屬函數及經過混合式學習演算法訓練過後之歸屬函數。在經過500次訓練後初始發射功率均方根誤差降至0.9dBm,約在300次訓練即可收斂,如圖十(c)所示。 Figure 10 (a) and Figure 10 (b) are the ITPSC initial attribution function and the attribution function after training through the hybrid learning algorithm. After 500 trainings, the rms error of the initial transmit power is reduced to 0.9 dBm, which converges after about 300 trainings, as shown in Figure 10 (c).

[註9]ITU-R, Recommendation ITU-R M.1225, GUIDELINES FOR EVALUATION OF RADIO TRANSMISSION TECHNOLOGIES FOR IMT-2000, 1997 [Note 9] ITU-R, Recommendation ITU-R M.1225, GUIDELINES FOR EVALUATION OF RADIO TRANSMISSION TECHNOLOGIES FOR IMT-2000, 1997

[註10]Mogensen, P., et al, “LTE Capacity comparedto the Shannon Bound”, Vehicular TechnologyConference, 2007. VTC2007-Spring. IEEE 65th, pp.1234-1238, April 2007. [Note 10] Mogensen, P., et al, “LTE Capacity compared to the Shannon Bound”, Vehicular Technology Conference, 2007. VTC2007-Spring. IEEE 65th, pp.1234-1238, April 2007.

[註11]Wiliam C. Jakes, Jr., Microwave Mobile Communications, 1974 [Note 11] Wiliam C. Jakes, Jr., Microwave Mobile Communications, 1974

[註12]ITU-R, Recommendation ITU-R P.1238-7 (02/2012) Propagation data and prediction methods for the planning of indoor radiocommunication systems and radio local area networks in the frequency range 900 MHz to 100 GHz, 02/2012 [Note 12] ITU-R, Recommendation ITU-R P.1238-7 (02/2012) Propagation data and prediction methods for the planning of indoor radiocommunication systems and radio local area networks in the frequency range 900 MHz to 100 GHz, 02 /2012

(D)最佳化CQI決策控制器(CQIDC)單元 (D) Optimized CQI Decision Controller (CQIDC) unit

在實際無線通道環境中,室內小細胞基地台智慧型佈署會面臨外在大基地台或鄰近小細胞之同頻干擾。因此本發明為了對抗干擾所造成的通訊品質下降,自我優化佈署串接控制裝置使用最佳化CQI決策控制器(CQIDC)單元,決策在無干擾環境下可以滿足BLER0.1之最佳CQI。進而在干擾環境下以自我優化控功率制器(SOPC)單元持續追蹤量測之SINR,並自我優化調整發射功率,使用戶滿足服務可靠度與最小發射功率之目標需求。 In the actual wireless channel environment, the indoor small cell base station smart deployment will face the same frequency interference of the external large base station or adjacent small cells. Therefore, in order to prevent the communication quality degradation caused by the interference, the self-optimized deployment tandem control device uses the optimized CQI decision controller (CQIDC) unit, and the decision can satisfy the BLER in the interference-free environment. The best CQI of 0.1. In addition, in the interference environment, the self-optimized control power controller (SOPC) unit continuously tracks the measured SINR, and self-optimizes the transmission power, so that the user meets the target requirements of service reliability and minimum transmission power.

在無干擾環境中,CQIDC單元根據鏈路估算,推算出用戶端所在位置在無干擾環境下可以滿足BLER0.1之最佳CQI,其目的在於給定一個理想環境下的CQI目標,使控制器在干擾環境中藉著此目標進行功率調整以補償干擾所造成的通訊品質下降。為了決定用戶所在位置在無干擾環境下之最佳CQI,我們必須先估算第u個用戶在無干擾環境下之SNRu,可表示如下式SNR u =P r,u (W)/P N,u (W) (25)其中P r,u 為無干擾環境下第u個用戶平均接收功率,可表示如下式 In the interference-free environment, the CQIDC unit estimates that the location of the user terminal can satisfy the BLER in a non-interference environment based on the link estimation. The best CQI of 0.1 is to give a CQI target in an ideal environment, so that the controller can adjust the power in the interference environment by this target to compensate for the degradation of communication quality caused by the interference. In order to determine the optimal CQI of the user's location in a non-interfering environment, we must first estimate the SNR u of the uth user in a non-interfering environment, which can be expressed as follows: SNR u = P r , u (W) / P N , u (W) (25) where P r,u is the average received power of the uth user in a non-interference environment, which can be expressed as follows

當我們已知第u個用戶之初始發射功率P ini,u 、第u個用戶端與基地台之 平均路徑損與其他參數如表二所示,即可利用(26)式計算第u個用戶在無干擾環境下之接收功率P r,u ;第u個用戶之雜訊功率P N,u 即為(19)式。 When we know the initial transmission power of the u-th user, P ini, u , the average path loss of the u-th user and the base station As shown in Table 2, other parameters can be used to calculate the received power P r,u of the u-th user in the interference-free environment using (26); the noise power P N of the u-th user , u is (19) )formula.

在估算出無干擾環境下之SNR後,我們可以藉由表三尋找第u個用戶符合BLER0.1之最佳CQI,決策方式表示如下 After estimating the SNR in a non-interfering environment, we can find the u-th user to meet the BLER by Table 3. The best CQI of 0.1, the decision mode is as follows

CQIDC單元為了決策在無干擾環境下應當符合之最佳CQI,本發明藉由室內小細胞傳接機基本參數,如表二所列,模擬產生傳接機BLER結果,如表三所列。結合表二、表三與(25)(26)(27)式產生在不同平均路徑損(30dB~70dB)、初始發射功率(-75dBm~20dBm)與資源塊數(1~100個)狀況下之最佳CQI輸出作為訓練資料。圖十一為最佳化CQI決策控制器之一組訓練資料:當資源塊皆為50個,初始發射功率分別為-40dBm、-20dBm與0dBm的狀況下,不同平均路徑損(30dB~70dB)所對應之最佳化CQI,可觀察到隨著路徑損增加,所決策之最佳化CQI會隨之變小,且若初始發射功率越大,在相同平均路徑損下所決策之最佳化CQI越大。 The CQIDC unit is used to determine the optimal CQI that should be met in a non-interfering environment. The present invention simulates the BLER results of the transfer machine by the basic parameters of the indoor small cell transfer machine, as listed in Table 2, as listed in Table 3. Combined with Table 2, Table 3, and (25)(26)(27), different average path loss (30dB~70dB), initial transmit power (-75dBm~20dBm) and resource block number (1~100) are generated. The best CQI output is used as training material. Figure 11 shows the training data of one of the optimized CQI decision controllers: when the resource blocks are 50, and the initial transmit power is -40dBm, -20dBm and 0dBm, respectively, the average path loss (30dB~70dB) Corresponding to the optimized CQI, it can be observed that as the path loss increases, the optimal CQI of the decision will become smaller, and if the initial transmit power is larger, the decision of the same average path loss is optimized. The larger the CQI.

在最佳化CQI決策控制器單元中,定義平均路徑損在30dB~40dB為L、41dB~60dB為M、61dB~70dB為H;初始發射功率在-75dBm~-51dBm為L、-50dBm~-4dBm為M、-3dBm~20dBm為H;資源塊數在0~25個為L、26~74個為M、75~100個為H。其模糊推論規則見表五所示。 In the optimized CQI decision controller unit, the average path loss is defined as 30dB~40dB for L, 41dB~60dB for M, and 61dB~70dB for H; the initial transmit power is -75dBm~-51dBm for L, -50dBm~- 4dBm is M, -3dBm~20dBm is H; the number of resource blocks is 0~25 for L, 26~74 for M, and 75~100 for H. The fuzzy inference rules are shown in Table 5.

最佳化CQI決策控制器單元藉由ITPSC輸出之無干擾環境下第u個用戶之最小發射功率、基於第u個用戶自前所在位置估算出之路徑損與第u個用戶目前所使用之資源塊數,決策出在無干擾環境下第u個用戶應當符合之最佳CQI。對最佳化CQI決策控制器單元而言,輸入參數分別是第u個用戶傳接端間路徑損估測平均值、ITPSC所輸出之初始發射功率(P ini,u )與第u個用戶資源塊數(nRB u ),每個輸入參數皆使用3個高斯歸屬函數定義為 ,共有27條模糊推論規則,其模糊推論規則見表五所示。目標輸出為無干擾環境中第u個用戶之最佳CQI(CQI best,u )。 Optimized CQI decision controller unit The minimum transmit power of the uth user in the interference-free environment output by ITPSC, the path loss estimated based on the position of the uth user from the previous location, and the resource block currently used by the uth user The number determines the best CQI that the uth user should meet in a non-interfering environment. For the optimized CQI decision controller unit, the input parameters are the average value of the path loss estimate between the uth user terminals. The initial transmit power ( P ini, u ) and the uth user resource block number ( nRB u ) output by ITPSC , each input parameter is defined by using three Gaussian attribution functions as There are 27 fuzzy inference rules, and the fuzzy inference rules are shown in Table 5. The target output is the best CQI ( CQI best, u ) for the uth user in a non-interfering environment.

圖十二(a)與圖十二(b)分別為ANFIS CQI最佳化決策控制器初始歸屬函 數與經過混合式學習演算法訓練過後之歸屬函數。在經過300次訓練後最佳CQI之均方根誤差降至0.46,約在250次訓練時即可收斂,如圖十二(c)所示。 Figure 12 (a) and Figure 12 (b) are the initial attribution letters of the ANFIS CQI optimization decision controller. The number and the attribution function after training through the hybrid learning algorithm. After 300 trainings, the rms error of the best CQI is reduced to 0.46, which converges at about 250 training sessions, as shown in Figure 12(c).

(E)自我優化功率控制器(SOPC)單元(E) Self-optimizing power controller (SOPC) unit

自我優化最小發射功率控制器由發射功率調整量估測器(TPAE)與功率調整配置器組成。TPAE單元透過用戶需求設定、CQIDC最佳化決策控制器之輸出(CQI best,u )與用戶端量測資訊進行發射功率調整,使得室內小細胞用戶在干擾環境中仍可滿足用戶設定需求與傳接機通訊品質需求,而且自我優化控制室內小細胞基地台發射最小功率,進而減少對鄰近細胞之干擾。 The self-optimizing minimum transmit power controller consists of a transmit power adjustment estimator (TPAE) and a power adjustment configurator. TPAE unit through user demand setting, CQIDC optimization decision controller output ( CQI best, u ) and user measurement information The transmission power adjustment is made so that the indoor small cell users can still meet the user setting requirements and the communication quality requirements of the transmission machine in the interference environment, and the self-optimized control indoor small cell base station transmits the minimum power, thereby reducing the interference to neighboring cells.

自我優化功率控制器包含了兩個部分,分別為功率調整量估測與功率調整量配置。功率調整量估測主要針對各個用戶在干擾環境中計算出符合用戶設定需求與傳接機通訊品質之最小發射功率調整量;功率調整量配置則是針對當各用戶調整後功率之總和超過最大發射功率時,此控制器將對各用戶功率以步階增減方法,使各用戶之發射功率在最大發射功率限制內公平配置。 The self-optimizing power controller consists of two parts, the power adjustment amount estimation and the power adjustment amount configuration. The power adjustment amount estimation is mainly for each user to calculate the minimum transmission power adjustment amount in accordance with the user setting requirement and the communication quality of the transmission machine in the interference environment; the power adjustment amount configuration is for the sum of the powers after the adjustment of each user exceeds the maximum transmission. At power, the controller will increase or decrease the power of each user in a step-by-step manner so that the transmit power of each user is fairly configured within the maximum transmit power limit.

(i)發射功率調整量估測器(i) Transmit power adjustment estimator

在發射功率調整量估測部分,為了在干擾環境下滿足BLER0.1和服務可靠度之需求,因此第u個用戶目標SINR閘限值之設定不得低於滿足服務可靠度(SR u )與邊緣CQI(CQI min,u )之最小SNR閘限值SNR th (CQI min,u )+FM(SR u ),故第u個用戶目標SINR閘限值定義如下式SINR th,u =max{SNR th (CQI min,u )+FM(SR u ),SNR th (CQI best,u )}(dB) (29) 接著藉著此目標SINR閘限值,進行最小發射功率自我優化調整,其發射功率調整量表示如下式 其中為第u個用戶端回報之SINR量測平均值。 In the estimation part of the transmission power adjustment amount, in order to satisfy the BLER in the interference environment 0.1 and service reliability requirements, so the u-th target SINR threshold should not be set below the minimum SNR threshold SNR th ( CQI ) that satisfies the service reliability ( SR u ) and the edge CQI ( CQI min, u ) Min, u )+ FM ( SR u ), so the uth user target SINR threshold is defined by the following equation SINR th , u =max{ SNR th ( CQI min, u )+ FM ( SR u ), SNR th ( CQI Best , u )}(dB) (29) Then, by this target SINR threshold, the minimum transmit power self-optimization adjustment is performed, and the transmit power adjustment amount is expressed as follows among them The average value of the SINR measured for the uth client.

TPAE單元為了在干擾環境中滿足用戶設定SR需求且輸出最小發射功率,本發明藉由室內小細胞傳接機BLER模擬結果產生表三對應細胞邊緣CQI之訊干雜比閘限值。結合表二、表三與(29)(30)式產生在服務可靠度90%、不同細胞邊緣CQI(1~15)、在無干擾環境下之不同最佳化CQI(1~15)與不同SINR量測平均值(-25dB~45dB)狀況下之最小發射功率調整量作為訓練資料。圖十三為自我優化功率控制器之一組訓練資料:在服務可靠度需求為90%,最小CQI min,u 為6,最佳化CQI best,u 為7、10狀況下,不同SINR量測平均值所對應之最佳功率調整量,顯示功率調整量會隨著量測之SINR平均值增加而減少,以達到最小發射功率之設計目標。圓圈實線曲線係根據(28)式調整目標SINR閘限值應為用戶邊緣CQI需求CQI min,u =6所對應之SINR閘限值(12dB)加上90%服務可靠度需求所對應之FM=2.14dB,相加後之SINR閘限值為14.14dB大於CQI best,u =7所對應之SNR閘限值(13dB),因此調整目標SINR閘限值為14.14dB:方塊實線曲線因CQI best,u =10所對應之SNR閘限值(22dB)大於14.14dB,故調整目標SINR閘限值為22dB。圖十三顯示功率調整量為0dB時,對應CQI best,u =6,10之目標SINR量測平均值分別為14.14dB與22dB。 In order to meet the user-set SR requirement and output the minimum transmit power in the interference environment, the TPAE unit generates the signal-to-interference ratio threshold of the corresponding cell edge CQI of Table 3 by the indoor small cell transfer machine BLER simulation result. Combined with Tables 2, 3 and (29) (30), different CQIs (1~15) and different CQIs (1~15) are obtained in different cell edge CQIs (1~15). The minimum transmit power adjustment amount under the SINR measurement average (-25dB~45dB) is used as training data. Figure 13 shows the training data for a group of self-optimizing power controllers: in the case of service reliability requirement of 90%, minimum CQI min, u is 6, optimized CQI best, u is 7, 10, different SINR measurements The optimal power adjustment corresponding to the average value shows that the power adjustment amount decreases as the measured SINR average value increases to achieve the minimum transmission power design goal. The solid curve of the circle is adjusted according to the formula (28). The target SINR threshold should be the user edge CQI demand CQI min, the SINR threshold corresponding to u = 6 (12dB) plus the FM corresponding to the 90% service reliability requirement. =2.14dB, the summed SINR threshold is 14.14dB greater than CQI best, u =7 corresponds to the SNR threshold (13dB), so the adjustment target SINR threshold is 14.14dB: the solid line curve is due to CQI Best, u = 10 corresponds to the SNR threshold (22dB) greater than 14.14dB, so the adjustment target SINR threshold is 22dB. Figure 13 shows that when the power adjustment amount is 0 dB, the average SINR of the corresponding CQI best, u = 6, 10 is 14.14 dB and 22 dB, respectively.

在發射功率調整量估測器中,定義最佳CQI在1~5為L、6~10為M、 11~15為H,SINR量測平均值在-25dB~-5dB為L、-5dB~25dB為M、25dB~45dB為H。其模糊推論規則見表六所示。 In the transmit power adjustment estimator, the optimal CQI is defined as 1 to 5 for L and 6 to 10 for M. 11~15 is H, and the average value of SINR is L at -25dB~-5dB, M is -5dB~25dB, and H is 25dB~45dB. The fuzzy inference rules are shown in Table 6.

發射功率調整量估測器藉由用戶設定細胞邊緣CQI需求、CQIDC輸出之無干擾環境下最佳CQI與用戶設備端SINR量測平均值,在多用戶干擾環境下,指配滿足服務可靠度需求之最小發射功率給傳接機。對發射功率調整量估測器而言,第u個用戶輸入分別是細胞邊緣CQI需求(CQImin,u)、最佳CQI(CQIbest,u)與SINR量測平均值,每個輸入參數皆使用3個鐘形歸屬函數如(4)式所示,共有27條模糊推論規則,其模糊推論規則見表六所示,第u個用戶目標輸出則為最小發射功率調整量(△P u )。 The transmit power adjustment estimator sets the average CQI and the SINR of the user equipment in the interference-free environment of the CQIC output by the user. In the multi-user interference environment, the assignment meets the service reliability requirement. The minimum transmit power is given to the transceiver. For the transmit power adjustment estimator, the uth user input is the cell edge CQI demand (CQI min, u ), the best CQI (CQI best, u ) and the SINR measurement average. Each input parameter uses three bell-shaped attribution functions as shown in equation (4). There are 27 fuzzy inference rules. The fuzzy inference rules are shown in Table 6. The u-th user target output is the minimum transmit power adjustment. Quantity ( △P u ).

圖十四(a)與圖十四(b)分別為發射功率調整量估測器初始歸屬函數及經過混合式學習演算法訓練過後之歸屬函數。經過500次訓練後最小發射功率調整量之均方根誤差降至0.86dB,約在300次訓練時即可收斂,如圖十四(c)所示。 Figure 14 (a) and Figure 14 (b) show the initial assignment function of the transmit power adjustment estimator and the attribution function after training by the hybrid learning algorithm. After 500 trainings, the root mean square error of the minimum transmit power adjustment is reduced to 0.86 dB, which converges at about 300 training sessions, as shown in Figure 14 (c).

(ii)功率調整配置演算法(ii) Power adjustment configuration algorithm

在功率調整配置部分,為了控制各用戶經過功率調量估測後之調整功率總和不超過室內小細胞基地台最大發射功率,其功率配置演算法流程圖如圖十五所示。首先各個用戶將其功率調整量△P u補償至前次時間發射功率P u(m-1),然後計算所有用戶應發射之功率總和,判斷總發射功率P total是否大於最大發射功率P max ,若小於P max ,即針對各用戶補償後之發射功率P u(m)進行功率配置;若大於P max ,則進行功率遞迴步階調整。其中P tmp,u(i)為各用戶前次時間發射功率之第i迴圈暫存值,每一迴圈P tmp,u(i)皆會增減之功率,而±在本實施例假設為±0.1dB,當△P u>0,即P tmp,u(i)在每一迴圈增加0.1dB;當△P u<0,則P tmp,u(i)在每一迴圈減少0.1dB。將各用戶經過步階調整後之功率P tmp,u(i+1)加總後,判斷總發射功率P total是否大於P max ,若未大於P max ,則針對P tmp,u(i+1)持續以功率調整量進行調整;若大於P max ,將上一迴圈各用戶發射功率暫存值P tmp,u(i)設定為各用戶發射功率P u(m),即可完成功率配置。 In the power adjustment configuration part, in order to control the sum of the adjusted powers of each user after the power modulation estimation does not exceed the maximum transmission power of the indoor small cell base station, the flow chart of the power configuration algorithm is shown in FIG. First, each user compensates its power adjustment amount ΔP u to the previous time transmission power P u (m-1), then calculates the sum of powers that all users should transmit, and determines whether the total transmission power P total is greater than the maximum transmission power P max . If it is less than P max , the power allocation is performed for the compensated transmission power P u (m) of each user; if it is greater than P max , the power reversal step adjustment is performed. Where P tmp,u (i) is the i-th ring temporary storage value of each user's previous time transmission power, and each cycle P tmp,u (i) will increase or decrease the power of , and ± in this implementation The example assumes ±0.1dB, when ΔP u >0, ie P tmp,u (i) increases by 0.1dB in each loop; when ΔP u <0, then P tmp,u (i) in each The circle is reduced by 0.1 dB. After summing the powers P tmp,u (i+1) of each user through the step adjustment, it is determined whether the total transmission power P total is greater than P max , and if not greater than P max , then for P tmp, u (i+1 ) Continue to adjust with power adjustment; if it is greater than P max , set the user transmit power temporary value P tmp, u (i) of the previous circle to the user transmit power P u (m), and the power can be completed. Configuration.

(F)自我優化功率控制保護機制(F) Self-optimizing power control protection mechanism

為了使IDCC裝置僅對室內小細胞內用戶進行自我優化發射功率調整,避免和室外鄰近細胞用戶相互干擾,降低IDCC裝置之效能。本發明設置自我優化功率控制保護機制,根據用戶設備端回傳路徑損估測值計算平均路 徑損,接著依據(23)式室內路徑損模型估算用戶端與基地台之間距離(d),若用戶設備端在涵蓋半徑(R)內,才進行自我優化最小發射功率控制。 In order to make the IDCC device only self-optimize the transmission power adjustment for indoor small cell users, avoid interference with outdoor neighboring cell users, and reduce the performance of the IDCC device. The invention sets a self-optimizing power control protection mechanism, and calculates an average road according to the estimated value of the return path loss of the user equipment end. The path loss is then estimated according to the indoor path loss model (23) to estimate the distance between the client and the base station (d). If the user equipment end is within the radius (R), the self-optimized minimum transmit power control is performed.

(G)模擬實驗結果(G) Simulation experiment results

本發明模擬驗證多用戶服務可靠度,實驗時採用三個用戶個別在涵蓋半徑R之室內小細胞涵蓋區均勻分佈地進行多點多次量測,每個量測點皆量測1000次,其量測點總數定義如下: 在半徑r=1公尺之圓周上,均勻分佈地進行7點量測;在半徑r=2,3,4,5公尺之圓周上,分別均勻分佈地進行14,21,28,35點量測;當用戶設定之涵蓋半徑為5公尺,量測點總數為105點,其量測點總數會隨用戶設定之涵蓋半徑增加而增加。 The invention simulates and verifies the reliability of multi-user service. In the experiment, three users individually measure multiple times in the indoor small cell coverage area covering the radius R, and each measurement point is measured 1000 times. The total number of measurement points is defined as follows: On the circumference of the radius r=1m, the 7-point measurement is performed uniformly; on the circumference of the radius r=2, 3, 4, 5 meters, the points are uniformly distributed, 14, 21, 28, 35 points respectively. Measurement; when the user sets a radius of 5 meters and the total number of measurement points is 105 points, the total number of measurement points will increase with the radius of the user-set coverage.

本發明驗證將由互補累積分布(complementary cumulative distribution function,CCDF)來觀察用戶在涵蓋區內均勻分布在不同地點所量測之SINR量測值、通達率與服務可靠度之性能。以SINR量測值CCDF為例,定義如下:F(SINR th )=P(SINR量測值>SINR th ) (32)CCDF與服務可靠度意義相同,在SINR量測值=SINRth所對應之機率值,即為所有室內多用戶SINR量測值大於SINRth之比例,亦即服務可靠度。依照公式(15)、(16)可顯示其意義與服務可靠度相符合。 The invention verifies that the performance of the SINR measurement, the access rate and the service reliability measured by the user uniformly distributed in different locations in the coverage area will be observed by the complementary cumulative distribution function (CCDF). Taking the SINR measurement value CCDF as an example, it is defined as follows: F(SINR th ) = P (SINR measurement value > SINR th ) (32) CCDF has the same meaning as service reliability, and corresponds to SINR measurement value = SINR th The probability value is the ratio of all indoor multi-user SINR measurements greater than SINR th , that is, service reliability. According to formulas (15) and (16), the meaning can be shown to be consistent with service reliability.

本發明實施例皆假設室內小細胞內總共擁有3個用戶,其涵蓋半徑皆設 定為5公尺、服務可靠度需求皆設定為90%,每個用戶則設定不同最小通達率需求:UE1為2.76Mbps,UE2為7.44Mbps,UE3為14.13Mbps,進行以下模擬。 The embodiments of the present invention all assume that there are a total of three users in the indoor small cells, and the radius of the coverage is set. Set to 5 meters, service reliability requirements are set to 90%, each user sets different minimum access rate requirements: UE1 is 2.76Mbps, UE2 is 7.44Mbps, UE3 is 14.13Mbps, and the following simulation is performed.

本發明將進行比較在不同干擾環境下固定發射功率(fixed power)即僅使用初始發射功率控制器(ITPSC)之輸出與使用智慧型佈署串接控制器(IDCC)之性能模擬。資源配置部分假設為平均配置,即3個用戶皆被配置33個資源塊;而最小通達率經過最小通達率/最小CQI轉換單元轉換後得知各個用戶所對應之最小CQI分別為3、7、10;初始發射功率控制器之輸出功率為在無干擾環境下滿足用戶涵蓋半徑、服務可靠度與最小通達率設求需求之最小發射功率,分別UE1為-36.83dBm,UE2為-27.72dBm,UE3為-19.03dBm。 The present invention will compare the performance of a fixed transmit power in a different interference environment, i.e., using only the output of the initial transmit power controller (ITPSC) and the performance of the intelligent deployment cascade controller (IDCC). The resource allocation part is assumed to be an average configuration, that is, three users are configured with 33 resource blocks; and the minimum access rate is converted by the minimum access rate/minimum CQI conversion unit, and the minimum CQI corresponding to each user is 3, 7, respectively. 10; The output power of the initial transmit power controller is the minimum transmit power that satisfies the user's coverage radius, service reliability, and minimum access rate requirement in a non-interference environment, respectively, UE1 is -36.83dBm, UE2 is - 27.72dBm, UE3 It is -19.03dBm.

圖十七顯示使用智慧型佈署串接控制與固定發射功率控制,隨著干擾功率上升,其SINR量測值性能比較。藉由圖十七(a)與圖十七(c)比較,實線部分為使用智慧型佈署串接控制之SINR性能,虛線部分為固定發射功率控制之SINR性能。圖十七(a)顯示在近似無干擾(-100dBm)環境下,UE1 SINR量測值大於最小CQI(CQImin=3)所對應之SINR閘限值(5dB)的比例約為90%,固定發射功率則約為87%;UE2 SINR量測值大於最小CQI(CQImin=7)所對應之SINR閘限值(13dB)的比例約為90%,固定發射功率則約為89%;UE3 SINR量測值大於最小CQI(CQImin=10)所對應之SINR閘限值(22dB)的比例約為90%,固定發射功率則約為89%;隨著干擾變大,圖十七(c)顯示在干擾功率為-80dBm環境下,UE1 SINR量測值大於最小CQI(CQImin=3)所對應之SINR閘限值(5dB)的比例約為89%,固定發射功率則約為14%;UE2 SINR量測值大於最小CQI(CQImin=7)所對應之SINR閘限值(13dB)的比例約為 89%,固定發射功率則約為15%;UE3 SINR量測值大於最小CQI(CQImin=10)所對應之SINR閘限值(22dB)的比例約為89%,固定發射功率則約為15%。 Figure 17 shows the use of smart deployment cascade control and fixed transmit power control. As the interference power increases, its SINR measurement performance is compared. By comparing Fig. 17(a) with Fig. 17(c), the solid line part is the SINR performance using the smart deployment cascade control, and the broken line part is the SINR performance of the fixed transmission power control. Figure 17 (a) shows that in the approximate interference-free (-100dBm) environment, the ratio of the SINR measurement value (5dB) corresponding to the UE1 SINR measurement value greater than the minimum CQI (CQI min = 3) is about 90%, fixed. The transmit power is about 87%; the UE2 SINR measurement is greater than the minimum CQI (CQI min = 7) corresponding to the SINR threshold (13dB) is about 90%, and the fixed transmit power is about 89%; UE3 SINR The measured value is greater than the minimum CQI (CQI min = 10) corresponding to the SINR threshold (22dB) ratio of about 90%, the fixed transmission power is about 89%; as the interference becomes larger, Figure 17 (c) It is shown that in the environment where the interference power is -80 dBm, the ratio of the SINR measurement value corresponding to the UE1 SINR measurement value to the minimum CQI (CQI min = 3) is about 89%, and the fixed transmission power is about 14%; The ratio of the UE2 SINR measured value to the SINR threshold (13dB) corresponding to the minimum CQI (CQI min = 7) is approximately 89%, and the fixed transmit power is approximately 15%; the UE3 SINR measured value is greater than the minimum CQI (CQI) Min = 10) The corresponding SINR threshold (22dB) is approximately 89%, and the fixed transmit power is approximately 15%.

圖十八顯示使用智慧型佈署串接控制與上述固定發射功率控制,隨著干擾功率上升,其通達率性能比較。實線部分為使用自我優化佈署串接控制之通達率性能,虛線部分為固定發射功率控制之通達率性能。藉由圖十八(a)與圖十八(c)比較,圖十八(a)顯示在近似無干擾(-100dBm)環境下,UE1通達率大於最小通達率需求(2.76Mbps)的比例約為90%,固定發射功率則約為87%;;UE2通達率大於最小通達率需求(7.44Mbps)的比例約為90%,固定發射功率則約為89%;;UE3通達率大於最小通達率需求(14.13Mbps)的比例約為90%,固定發射功率則約為89%;;隨著干擾變大,圖十八(c)顯示在干擾功率為-80dBm環境下,UE1通達率大於最小通達率需求(2.76Mbps)的比例約為89%,固定發射功率則約為14%;UE2通達率大於最小通達率需求(7.44Mbps)的比例約為89%,固定發射功率則約為15%;UE3通達率大於最小通達率需求(14.13Mbps)的比例約為89%,固定發射功率則約為15%。 Figure 18 shows the use of smart deployment cascade control and the above fixed transmit power control. As the interference power increases, its access rate performance is compared. The solid line part is the access rate performance using self-optimized deployment tandem control, and the dotted line part is the access rate performance of fixed transmission power control. By comparing Fig. 18(a) with Fig. 18(c), Fig. 18(a) shows that the UE1 access rate is greater than the minimum access rate requirement (2.76Mbps) in an approximately interference-free (-100dBm) environment. For 90%, the fixed transmit power is about 87%; the UE2 access rate is greater than the minimum pass rate requirement (7.44Mbps) is about 90%, the fixed transmit power is about 89%; and the UE3 pass rate is greater than the minimum pass rate. The ratio of demand (14.13Mbps) is about 90%, and the fixed transmission power is about 89%.; As the interference becomes larger, Figure 18(c) shows that the UE1 access rate is greater than the minimum accessibility in the case of interference power of -80dBm. The ratio of demand (2.76 Mbps) is about 89%, and the fixed transmission power is about 14%; the ratio of UE2 access rate is greater than the minimum access rate requirement (7.44 Mbps) is about 89%, and the fixed transmission power is about 15%; The UE3 access rate is greater than the minimum access rate requirement (14.13 Mbps), which is approximately 89%, and the fixed transmit power is approximately 15%.

由圖十七與圖十八可以觀察到隨著干擾功率的增加,僅固定發射功率的服務可靠度已無法維持用戶設定服務可靠度的需求,而使用智慧型佈署串接控制,則可使室內小細胞之三個用戶持續維持近似用戶設定服務可靠度90%的需求。 It can be observed from Figure 17 and Figure 18 that with the increase of interference power, the service reliability of only fixed transmit power can no longer maintain the user's requirement for setting service reliability, and using smart deployment cascade control can make The three users of indoor small cells continue to maintain a demand that is approximately 90% of the user-defined service reliability.

圖十九為在不同干擾環境下,固定發射功率與使用智慧型佈署串接控制器各用戶平均通達率與平均總通達率。實線部分為使用智慧型佈署串接控制器之平均通達率性能,虛線部分為固定發射功率控制之平均通達率性能。圖十九顯示當干擾功率為-100dBm時,使用智慧型佈署串接控制器, UE1平均通達率約為10.48Mbps,UE2平均通達率則約為17.38Mbps,UE3平均通達率約為24.59Mbps,總平均通達率約為52.45Mbps;固定發射功率UE1平均通達率約為10.86Mbps,UE2平均通達率則分別為17.38Mbps,UE3平均通達率約為24.08Mbps,總平均通達率分別為52.45Mbps。隨著干擾功率增加,當干擾功率為-80dBm時,使用智慧型佈署串接控制器,UE1平均通達率為11.48Mbps,UE2平均通達率為17.31Mbps,UE3平均通達率為22.97Mbps,總平均通達率為51.75Mbps;固定發射功率之UE1平均通達率降至2.97Mbps,UE2平均通達率降至6.93Mbps,UE3平均通達率降至12.41Mbps,總平均通達率降至22.32Mbps。由上述結果可以發現固定發射功率,其平均通達率隨著干擾變大而有明顯下降,但使用智慧型佈署串接控制器,其平均通達率即使在不同干擾環境中,依然能維持在一定的性能。 Figure 19 shows the average access rate and average total access rate of users with fixed transmit power and intelligent deployment of cascaded controllers under different interference environments. The solid line portion is the average access rate performance using the smart deployment cascade controller, and the dotted line portion is the average throughput performance of the fixed transmission power control. Figure 19 shows the use of a smart deployment cascade controller when the interference power is -100dBm. The average access rate of UE1 is about 10.48 Mbps, the average access rate of UE2 is about 17.38 Mbps, the average access rate of UE3 is about 24.59 Mbps, and the total average access rate is about 52.45 Mbps; the average access rate of fixed transmit power UE1 is about 10.86 Mbps, UE2 The average access rate is 17.38 Mbps, the average access rate of UE3 is about 24.08 Mbps, and the total average access rate is 52.45 Mbps. As the interference power increases, when the interference power is -80dBm, the intelligent deployment of the serial controller is used. The average access rate of UE1 is 11.48Mbps, the average access rate of UE2 is 17.31Mbps, and the average access rate of UE3 is 22.97Mbps. The access rate is 51.75Mbps; the average access rate of UE1 with fixed transmit power is reduced to 2.97Mbps, the average access rate of UE2 is reduced to 6.93Mbps, the average access rate of UE3 is reduced to 12.41Mbps, and the total average access rate is reduced to 22.32Mbps. From the above results, the fixed transmission power can be found, and the average access rate decreases significantly with the increase of the interference. However, with the intelligent deployment of the serial controller, the average access rate can be maintained even in different interference environments. Performance.

圖二十為使用智慧型佈署串接控制器,在不同干擾(-100dBm~-80dBm)環境下之平均發射功率。圖二十顯示使用智慧型佈署串接控制器,當干擾功率增加,其發射功率也會逐漸增加。當干擾功率為-100dBm時,UE 1平均輸出功率約為-39.99dBm,UE 2平均輸出功率約為-29.85dBm,UE 3平均輸出功率約為-22.36dBm,平均總發射功率為-21.58dBm;隨著干擾變大,在干擾功率為-80dBm時,UE 1平均輸出功率約為-24.06dBm,UE 2平均輸出功率約為-13.56dBm,UE 3平均輸出功率約為-5.896dBm,平均總發射功率為-5.154dBm,其結果顯示使用智慧型佈署串接控制器可隨著環境干擾功率的變化,適應性調整發射功率進而維持多用戶服務可靠度需求。 Figure 20 shows the average transmit power in a different interference (-100dBm~-80dBm) environment using a smart deployment cascade controller. Figure 20 shows the use of a smart deployment cascade controller, when the interference power increases, its transmit power will gradually increase. When the interference power is -100dBm, the average output power of UE 1 is about -39.99dBm, the average output power of UE 2 is about -29.85dBm, the average output power of UE 3 is about -22.36dBm, and the average total transmit power is -21.58dBm; As the interference becomes larger, the average output power of UE 1 is about -2.46 dBm when the interference power is -80 dBm, the average output power of UE 2 is about -13.56 dBm, and the average output power of UE 3 is about -5.886 dBm, the average total emission. The power is -5.154 dBm, and the results show that the intelligent deployment of the cascade controller can adaptively adjust the transmit power to maintain the multi-user service reliability requirements as the environmental interference power changes.

因此由模擬結果可以顯示,室內小細胞智慧型佈署串接控制裝置包含了初始發射功率控制器單元、最佳化CQI決策控制器單元與自我優化功 率控制器單元,不但能在多用戶干擾環境下滿足用戶設定之服務可靠度需求,且盡可能以滿足用戶需求的最小發射功率進行信號傳輸,進而達到節省能源、減少對異質網路鄰近用戶產生同頻干擾之目標。 Therefore, the simulation results show that the indoor small cell smart deployment cascade control device includes the initial transmit power controller unit, the optimized CQI decision controller unit and the self-optimization function. The rate controller unit can not only meet the service reliability requirements set by the user in the multi-user interference environment, but also transmit the signal with the minimum transmission power as much as possible to meet the user's demand, thereby saving energy and reducing the generation of neighboring users of heterogeneous networks. The goal of co-channel interference.

在本實施例之模擬中傳接機基本參數如表二,為單天線模式(SISO),本發明亦適用於多天線模式(MIMO)與其他不同通道環境。 In the simulation of this embodiment, the basic parameters of the transceiver are as shown in Table 2, which is single antenna mode (SISO), and the present invention is also applicable to multi-antenna mode (MIMO) and other different channel environments.

Claims (9)

一種多用戶干擾環境中建構於分頻全雙工與正交分頻多工接取之室內小細胞智慧型佈署串接控制裝置,係使一室內小細胞基地台可滿足傳接機區塊錯誤率(Block Error Rate,BLER)低於0.1以下、多用戶(multi-user,MU)服務可靠度、最佳通達率與細胞半徑需求,實現自我優化佈署串接控制裝置其係包含:一傳接機,係採用分頻全雙工(FDD),分隔上行及下行鏈路的信號;一基地台,係採用正交分頻多工接取(OFDMA)分配資源;一資源配置單元,係依室內用戶數與系統頻寬平均配置小細胞基地台之資源塊;一最小通達率/細胞邊緣通道品質指標(channel quality index,CQI)轉換單元,係與該資源配置單元連接,並產生細胞邊緣通道品質指標需求;一初始設定發射功率配置(ITPSC),係使每一個室內用戶輸入參數分別為一室內涵蓋半徑(R u )、資源塊數(nRB u )與細胞邊緣通道品質指標(CQI min,u )需求;一最佳化通道品質指標(channel quality index,CQI)決策器(CQIDC),係串接該初始設定發射功率配置;一自我優化功率控制器(SOPC),係串接該最佳化通道品質指標決策器;以及一自我優化功率控制單元,係包含一發射功率調整量估測器(TPAE)、一功率調整配置器與一自我優化功率控制保護機制三部分;一發射功率調整量估測器(TPAE),係串接該功率調整配置器;一自我優化功率控制保護機制控制器,係控制該功率調整配置 器之啟動;其中,藉由用戶輸入該服務可靠度、該室內涵蓋半徑與該最小通達率需求,在多用戶干擾環境中智慧型該室內小細胞基地台佈署,該室內小細胞基地台智慧型佈署控制裝置藉由用戶回傳之資訊,一估測傳接機間平均路徑損(path loss,PL)與一傳接機平均訊干雜比(Signal-to-Interference-plus-Noise Ratio,SINR),以適應性控制一正交分頻多工傳接機的發射功率,使該室內小細胞基地台的用戶可自我優化最小發射功率,以滿足多用戶服務可靠度及最佳化該細胞邊緣之通達率需求,並達到最小化發射功率與相鄰細胞間之同頻干擾;且其中該最佳化通道品質指標(channel quality index,CQI)決策器(CQIDC)單元之該適應性網路模糊推論系統設計,係依照一初始設定發射功率控制器所輸出之初始發射功率、用戶端量測之傳接機間之路徑損平均值與用戶所須資源塊數作為該最佳化通道品質指標決策器單元的輸入參數,輸出參數為在無干擾環境下,滿足區塊錯誤率小於0.1之最佳通道品質指標,共有三個輸入參數與一個輸出參數;對該最佳化通道品質指標決策器單元而言,每一個室內用戶皆有三個輸入參數,分別為第u個用戶之傳接機間平均路徑損()、初始發射功率設定(Pini,u)與資源塊數(nRBu),每個輸入參數皆使用高斯歸屬函數,每個高斯歸屬函數皆分成3個位準,共有27條模糊推論規則,輸出為在無干擾環境中對應第u個用戶之最佳通道品質指標(CQIbest,u);對應第u個用戶之該最佳化通道品質指標決策器單元之最佳化目標與條件可表示為: 在無干擾環境下BLER 0.1,對應第u個用戶之最佳CQI決策目標優化指配受限條件:{,P ini,u ,nRB u }30dB70dB -75dBmP ini,u 20dBm 1nRB u 100 CQI best,u {1~15}。 An indoor small cell intelligent deployment serial control device constructed in a multi-user interference environment built in frequency division full duplex and orthogonal frequency division multiplexing access, enables an indoor small cell base station to satisfy the transfer block The error rate (BLER) is less than 0.1, the multi-user (MU) service reliability, the best access rate and the cell radius requirement, and the self-optimized deployment tandem control device includes: The transceiver uses a frequency division full duplex (FDD) to separate the uplink and downlink signals; a base station uses orthogonal frequency division multiple access (OFDMA) to allocate resources; a resource configuration unit, Configuring a small cell base station resource block according to the number of indoor users and the system bandwidth; a minimum access rate/cell edge channel quality index (CQI) conversion unit is connected to the resource configuration unit and generates a cell edge Channel quality indicator requirements; an initial set transmit power configuration (ITPSC), which allows each indoor user input parameter to be an indoor coverage radius ( R u ), resource block number ( nRB u ), and cell edge channel quality indicator ( CQI mi) n, u ) demand; an optimized channel quality index (CQI) decision maker (CQIDC), which is connected in series with the initial set transmit power configuration; a self-optimized power controller (SOPC), which is connected in series An optimized channel quality indicator decision maker; and a self-optimizing power control unit comprising a transmit power adjustment amount estimator (TPAE), a power adjustment configurator and a self-optimizing power control protection mechanism; The adjustment quantity estimator (TPAE) is connected in series with the power adjustment configurator; a self-optimizing power control protection mechanism controller controls the activation of the power adjustment configurator; wherein, by the user inputting the service reliability, the The indoor coverage radius and the minimum access rate requirement are intelligently deployed in a multi-user interference environment. The indoor small cell base station intelligent deployment control device estimates by the user's returned information. The average path loss (PL) and the Signal-to-Interference-plus-Noise Ratio (SINR) of the inter-connector are adaptively controlled by an orthogonal frequency division multiplexing The transmit power of the pick-up allows the user of the indoor small cell base station to self-optimize the minimum transmit power to meet the multi-user service reliability and optimize the access rate requirements of the cell edge, and to minimize the transmit power and adjacent Co-channel interference between cells; and the adaptive network fuzzy inference system design of the optimized channel quality index (CQI) decision maker (CQIDC) unit is based on an initial setting of the transmit power controller The initial transmit power of the output, the average path loss between the transmitters of the client and the number of resource blocks required by the user are used as input parameters of the optimized channel quality indicator decision maker unit, and the output parameters are in a non-interference environment. The best channel quality indicator with block error rate less than 0.1, there are three input parameters and one output parameter; for the optimized channel quality indicator decision unit, each indoor user has three input parameters, respectively Average path loss between the relays of the uth user ( ), initial transmit power setting (P ini, u ) and resource block number (nRB u ), each input parameter uses Gaussian attribution function, each Gaussian attribution function is divided into 3 levels, a total of 27 fuzzy inference rules, The output is the optimal channel quality indicator (CQIbest, u) corresponding to the uth user in the interference-free environment; the optimized target and condition of the optimized channel quality indicator decision maker unit corresponding to the u-th user can be expressed as : BLER in a non-interfering environment 0.1, the optimal CQI decision target optimization assignment for the u-th user Restricted conditions: { , P ini,u , nRB u }30dB 70dB -75dBm P ini,u 20dBm 1 nRB u 100 CQI best,u {1~15}. 如申請專利範圍第1項所述之多用戶干擾環境中建構於分頻全雙工與正交分頻多工接取之室內小細胞智慧型佈署串接控制裝置,其中該初始設定發射功率配置依一適應性網路模糊推論系統(adaptive network-based fuzzy inference system,ANFIS)架構設計,共有三個輸入參數與一個輸出參數,對一初始設定發射功率控制器單元而言,每一個室內用戶輸入參數分別是室內涵蓋半徑(R u )、資源塊數(nRB u )與細胞邊緣通道品質指標(CQI min,u ),在符合OFDM傳接機之區塊錯誤率低於一預設值(0.1)以下,輸出參數對應第u個用戶設定之初始最小發射功率值(P ini,u )指配給該傳接機,每個輸入參數皆使用鐘形歸屬函數(Generalized Bell-Shaped),每個鐘形歸屬函數皆分成3個位準,共有27條模糊推論規則,對應第u個用戶ANFIS初始發射功率控制器最佳化之目標與條件可表示為:對應第u個用戶基地台初始發射最小功率為最佳化目標優化指配受限條件:{R u ,nRB u ,CQI min,u }0m<R u 15m 1 nRB u 100 1 CQI min,u 15 P ini,u {20dBm}。 The indoor small cell intelligent deployment serial control device constructed in the frequency division full duplex and the orthogonal frequency division multiplexing access device in the multi-user interference environment described in claim 1 of the patent scope, wherein the initial setting transmit power The configuration is based on an adaptive network-based fuzzy inference system (ANFIS) architecture. There are three input parameters and one output parameter. For an initial setting of the transmit power controller unit, each indoor user The input parameters are the indoor coverage radius ( R u ), the number of resource blocks ( nRB u ) and the cell edge channel quality indicator ( CQI min, u ), and the block error rate in accordance with the OFDM transmission machine is lower than a preset value ( 0.1) Below, the output parameter corresponds to the initial minimum transmit power value ( P ini, u ) set by the uth user is assigned to the transceiver, and each input parameter uses a generalized Bell-Shaped function, each The bell-shaped attribution function is divided into three levels, and there are 27 fuzzy inference rules. The target and condition for optimizing the initial transmission power controller of the u-user ANFIS can be expressed as: corresponding to the u-th user base. The minimum initial transmission power is assigned the best optimization goal Restricted conditions: { R u , nRB u , CQI min,u }0m< R u 15m 1 nRB u 100 1 CQI min,u 15 P ini,u { 20dBm}. 如申請範圍第2項所述之多用戶干擾環境中建構於分頻全雙工與正交分頻多工接取之室內小細胞智慧型佈署串接控制裝置,其中該初始設定發射功率配置依該適應性網路模糊推論系統架構設計,其前件部參數與後件部參數藉由以下訓練資料的產生進行訓練與調整;為了滿足在無干擾環境下發射滿足用戶設定與區塊錯誤率0.1需求之最小發射功率,對應第u個用戶之初始發射功率訓練資料,可由下式估算產生;Pini,u=Prmin,u(CQImin,u)+Lt-Gt+PL(Ru)+FM(SRu)-Gr+Lr該初始設定發射功率配置單元所需之訓練資料藉由滿足服務可靠度90%、涵蓋半徑(2.5、5、7.5、10、12.5、15公尺)、資源塊數(1~100個)與細胞邊緣通道品質指標(1~15)不同狀況下對應之最小發射功率(P ini,u )產生。 The indoor small cell intelligent deployment serial control device constructed in the frequency division full duplex and the orthogonal frequency division multiplexing access device in the multi-user interference environment described in the second application scope, wherein the initial setting transmit power configuration According to the adaptive network fuzzy inference system architecture design, the parameters of the front part and the post parts are trained and adjusted by the following training data; in order to meet the user setting and block error rate in the non-interference environment The minimum transmit power of 0.1 demand, corresponding to the initial transmit power training data of the uth user, can be estimated by the following formula; P ini, u = P rmin, u (CQI min, u ) + L t - G t + PL (R u )+FM(SR u )-G r +L r The training data required for the initial setting of the transmit power configuration unit by satisfying the service reliability by 90% and covering the radius (2.5, 5, 7.5, 10, 12.5, 15 gong) The ruler), the number of resource blocks (1~100) and the minimum transmit power (P ini, u ) corresponding to the cell edge channel quality index (1~15) are different. 如申請範圍第1項所述之多用戶干擾環境中建構於分頻全雙工與正交分頻多工接取之室內小細胞智慧型佈署串接控制裝置,其中該最佳化通道品質指標決策器單元依該適應性網路模糊推論系統設計,其前件部參數與後件部參數藉由以下訓練資料的產生,進行訓練與調整;在無干擾環境下,滿足區塊錯誤率0.1之最佳通道品質指標(CQI best,u )訓練資料,可藉由第u個用戶位置之SNRu估算與決策產生,其決策方式表示如下 該最佳化通道品質指標決策器單元所需之訓練資料,由不同用戶平均路徑損(30dB~70dB)、初始發射功率(-75dBm~20dBm)與資源塊數(1~100個)狀況下所對應之最佳通道品質指標。 The indoor small cell intelligent deployment serial control device constructed in the multi-user interference environment described in the first application of the scope of the application of the frequency division full duplex and the orthogonal frequency division multiplexing access, wherein the optimized channel quality The indicator decision maker unit is designed according to the adaptive network fuzzy inference system. The parameters of the front part and the post part are trained and adjusted by the following training data; in the non-interference environment, the block error rate is satisfied. The optimal channel quality indicator ( CQI best, u ) training data of 0.1 can be estimated and determined by the SNR u of the u-th user position. The training data required for the optimized channel quality indicator decision maker unit is determined by the average path loss (30dB~70dB), initial transmit power (-75dBm~20dBm) and resource block number (1~100) of different users. Corresponding to the best channel quality indicators. 如申請專利範圍第1、4項所述之多用戶干擾環境中建構於分頻全雙工與正交分頻多工接取之室內小細胞智慧型佈署串接控制裝置,其中辦公室內的該平均路徑損ITU修改模型如下式(路徑損指數為2.8):PL(d)=20log10(f)+28log10(d)-36(dB)。 In the multi-user interference environment described in the scope of claims 1 and 4, the indoor small cell intelligent deployment serial control device constructed in the frequency division full duplex and the orthogonal frequency division multiplexing access device is included in the office. modifying the average path loss ITU (path loss exponent of 2.8) the following model formula: PL (d) = 20log 10 (f) + 28log 10 (d) -36 (dB). 如申請專利範圍第1項所述之多用戶干擾環境中建構於分頻全雙工與正交分頻多工接取之室內小細胞智慧型佈署串接控制裝置,其中該自我優化功率控制器係由該發射功率調整量估測器、該功率調整配置器與該自我優化功率控制保護機制控制器組成。 The self-optimized power control is constructed in a multi-user interference environment as described in claim 1 of the invention, which is constructed in a frequency division full-duplex and orthogonal frequency division multiplexing access indoor small-cell intelligent deployment control device. The device is composed of the transmit power adjustment amount estimator, the power adjustment configurator and the self-optimizing power control protection mechanism controller. 如申請專利範圍第1項所述之多用戶干擾環境中建構於分頻全雙工與正交分頻多工接取之室內小細胞智慧型佈署串接控制裝置,其中該自我優化功率控制器之該發射功率調整量估測器依一適應性網路模糊推論系統設計,共有三個輸入參數,分別是第u個用戶設定之細胞邊緣通道品質指標需求(CQI min,u )、該最佳化通道品質指標決策器單元所輸出無干擾環境下之最佳通道品質指標(CQI best,u )與用戶量測之訊干雜比平均值()作為該發射功率調整量估測器的輸入參數,在干擾環境下輸出滿足第u個用戶服務可靠度設定與區塊錯誤率0.1之最小發射功率調整值;每個輸入參數皆使用鐘形歸屬函數,每個鐘形歸屬函數皆分成3個位準,共有27條模糊推論規則,輸出為在干擾環境下對應第u個用戶之最小發射功率調整量;對應第u個用戶之該發射功率調整量估測器之最佳化目標與條件可表示為: 在干擾環境中,對應第u個用戶傳接機發射最小功率估測之最佳化目標為優化指配受限條件:{CQI min,u ,CQI best,u and }1 CQI min,u 15 1 CQI best,u 15-25dB45dB +△P u {20dBm},P u 為前次發射功率(dBm),nUE為室內用戶數。 The self-optimized power control is constructed in a multi-user interference environment as described in claim 1 of the invention, which is constructed in a frequency division full-duplex and orthogonal frequency division multiplexing access indoor small-cell intelligent deployment control device. The transmit power adjustment estimator is designed according to an adaptive network fuzzy inference system. There are three input parameters, which are the cell edge channel quality indicator requirements ( CQI min, u ) set by the uth user. The optimal channel quality index ( CQI best, u ) and the average of the user's measurement signal in the interference-free environment output by the quality channel decision maker unit of Jiahua Channel ( As the input parameter of the transmit power adjustment amount estimator, the output satisfies the uth user service reliability setting and the block error rate in the interference environment. The minimum transmit power adjustment value of 0.1; each input parameter uses a bell-shaped attribution function, each bell-shaped attribution function is divided into three levels, a total of 27 fuzzy inference rules, and the output is corresponding to the u-th user in the interference environment. The minimum transmit power adjustment amount; the optimization target and condition of the transmit power adjustment amount estimator corresponding to the uth user can be expressed as: in the interference environment, the minimum power estimate corresponding to the uth user transfer transmitter Optimization goal is to optimize the assignment Restricted conditions: { CQI min, u , CQI best, u and }1 CQI min, u 15 1 CQI best,u 15-25dB 45dB +△ P u { 20dBm}, P u is the previous transmit power (dBm), and nUE is the number of indoor users. 如申請範圍第7項所述之多用戶干擾環境中建構於分頻全雙工與正交分頻多工接取之室內小細胞智慧型佈署串接控制裝置,其中在多用戶干擾環境中之該發射功率調整量估測器依該適應性網路模糊推論系統設計,其前件部參數與後件部參數藉由訓練資料進行訓練與調整;為了在干擾環境下滿足區塊錯誤率0.1和服務可靠度(SRu)之需求,第u個用戶目標訊干雜比閘限值(SINRth,u)定義為SINRth,u=max{SNRth(CQImin,u)+FM(SRu),SNRth(CQIbest,u)}(dB)其第u個發射功率調整量(△Pu)為目標訊干雜比閘限值(SINRth,u)與用戶訊干雜比量測平均值()相減之差值;該發射功率調整量估測器所需之訓練資料,由服務可靠度(90%)與細胞邊緣通道品質指標(1~15)、最佳通道品質指標(1~15)與訊干雜比量測平均值不同狀況下所對應之發射功率調整量。 The indoor small cell intelligent deployment tandem control device constructed in the multi-user interference environment described in the seventh application scope of the application is divided into a full-duplex full-duplex and an orthogonal frequency-division multiplexed access device, wherein in a multi-user interference environment The transmit power adjustment amount estimator is designed according to the adaptive network fuzzy inference system, and the front part parameter and the post part parameter are trained and adjusted by the training data; in order to satisfy the block error rate in the interference environment For the demand of 0.1 and service reliability (SR u ), the uth user target interference ratio threshold (SINR th, u ) is defined as SINR th, u = max{SNR th (CQI min, u ) + FM ( SR u ), SNR th (CQI best, u )} (dB), the uth transmit power adjustment amount (ΔP u ) is the target signal to interference ratio threshold (SINR th, u ) and the user signal to interference ratio Measuring average The difference between the subtraction; the training data required by the transmit power adjustment estimator, from the service reliability (90%) and the cell edge channel quality index (1~15), the best channel quality index (1~15) The amount of transmission power adjustment corresponding to the average value of the signal-to-interference ratio. 如申請專利範圍第1項所述之多用戶干擾環境中建構於分頻全雙工與正交分頻多工接取之室內小細胞智慧型佈署串接控制裝置,其中該自我優化功率控制保護機制為避免室內小細胞進行 自我優化發射功率調整時,和室外鄰近細胞用戶相互干擾,因而降低自我優化佈署串接控制裝置之效能,智慧型佈署串接控制裝置輸入用戶端回傳之平均路徑損,再藉由室內路徑損模型估算用戶端與基地台之間距離(d),若用戶端在涵蓋半徑(R)內,才能啟動自我優化最小發射功率控制單元。 The self-optimized power control is constructed in a multi-user interference environment as described in claim 1 of the invention, which is constructed in a frequency division full-duplex and orthogonal frequency division multiplexing access indoor small-cell intelligent deployment control device. Protection mechanism to avoid indoor small cells When the self-optimized transmit power is adjusted, it interferes with the neighboring cell users, thus reducing the efficiency of the self-optimized deployment of the serial control device. The intelligent deployment serial control device inputs the average path loss of the user back, and then uses the indoor The path loss model estimates the distance between the client and the base station (d). If the client is within the radius (R), the self-optimized minimum transmit power control unit can be activated.
TW105134160A 2016-10-21 2016-10-21 An intelligent deployment cascade control device based on an fdd-ofdma indoor small cell in multi-user and interference environments TWI624168B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW105134160A TWI624168B (en) 2016-10-21 2016-10-21 An intelligent deployment cascade control device based on an fdd-ofdma indoor small cell in multi-user and interference environments

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW105134160A TWI624168B (en) 2016-10-21 2016-10-21 An intelligent deployment cascade control device based on an fdd-ofdma indoor small cell in multi-user and interference environments

Publications (2)

Publication Number Publication Date
TW201817192A TW201817192A (en) 2018-05-01
TWI624168B true TWI624168B (en) 2018-05-11

Family

ID=62949250

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105134160A TWI624168B (en) 2016-10-21 2016-10-21 An intelligent deployment cascade control device based on an fdd-ofdma indoor small cell in multi-user and interference environments

Country Status (1)

Country Link
TW (1) TWI624168B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020008181A1 (en) * 2018-07-04 2020-01-09 Ranplan Wireless Network Design Ltd Evaluating the wireless performance of a building
TWI732350B (en) * 2019-11-20 2021-07-01 國立清華大學 Resource allocation method and data control center based on genetic algorithm

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1468473A (en) * 2000-10-03 2004-01-14 ��ʵ��λ��˾ Mobile-assisted network based techniques for improving accuracy of wireless location system
US20140126491A1 (en) * 2012-11-02 2014-05-08 Texas Instruments Incorporated Efficient Allocation of Uplink HARQ-ACK Resources for LTE Enhanced Control Channel
TW201509149A (en) * 2013-07-11 2015-03-01 Interdigital Patent Holdings Method and apparatus for supporting sectorization coordination
US20150189627A1 (en) * 2012-07-06 2015-07-02 Lg Electronics Inc. Method and apparatus for transceiving control signal
TWI553566B (en) * 2015-10-13 2016-10-11 Univ Yuan Ze A self-optimizing deployment cascade control scheme and device based on tdma for indoor small cell in interference environments

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1468473A (en) * 2000-10-03 2004-01-14 ��ʵ��λ��˾ Mobile-assisted network based techniques for improving accuracy of wireless location system
US20150189627A1 (en) * 2012-07-06 2015-07-02 Lg Electronics Inc. Method and apparatus for transceiving control signal
US20140126491A1 (en) * 2012-11-02 2014-05-08 Texas Instruments Incorporated Efficient Allocation of Uplink HARQ-ACK Resources for LTE Enhanced Control Channel
TW201509149A (en) * 2013-07-11 2015-03-01 Interdigital Patent Holdings Method and apparatus for supporting sectorization coordination
TWI553566B (en) * 2015-10-13 2016-10-11 Univ Yuan Ze A self-optimizing deployment cascade control scheme and device based on tdma for indoor small cell in interference environments

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020008181A1 (en) * 2018-07-04 2020-01-09 Ranplan Wireless Network Design Ltd Evaluating the wireless performance of a building
US11323891B2 (en) 2018-07-04 2022-05-03 Ranplan Wireless Network Design Ltd Evaluating the wireless performance of a building
TWI732350B (en) * 2019-11-20 2021-07-01 國立清華大學 Resource allocation method and data control center based on genetic algorithm

Also Published As

Publication number Publication date
TW201817192A (en) 2018-05-01

Similar Documents

Publication Publication Date Title
TWI553566B (en) A self-optimizing deployment cascade control scheme and device based on tdma for indoor small cell in interference environments
US10080200B2 (en) Intelligent deployment cascade control device based on an FDD-OFDMA indoor small cell in multi-user and interference environments
Zhang et al. Weighted sum-rate maximization in multi-cell networks via coordinated scheduling and discrete power control
Fodor et al. A distributed power control scheme for cellular network assisted D2D communications
EP2011247B1 (en) Power control in a wireless system having multiple interfering communication resources
US8463190B2 (en) System and method for interference reduction in self-optimizing networks
Liu et al. Dual-band femtocell traffic balancing over licensed and unlicensed bands
CN101919296A (en) Overload control method for a wireless cellular network
JP2012510749A (en) Method and apparatus for power allocation in a multi-carrier system
Muhammad et al. Uplink closed loop power control for LTE system
Louvros et al. LTE cell coverage planning algorithm optimising uplink user cell throughput
Feng et al. Heterogeneous network resource allocation optimization based on improved bat algorithm
Li et al. Joint mode selection and proportional fair scheduling for D2D communication
TWI624168B (en) An intelligent deployment cascade control device based on an fdd-ofdma indoor small cell in multi-user and interference environments
Susanto et al. On the reduction of interference effect using power control for device-to-device communication underlying cellular communication network
de Melo et al. Power control with variable target SINR for D2D communications underlying cellular networks
Morozs et al. A novel adaptive call admission control scheme for distributed reinforcement learning based dynamic spectrum access in cellular networks
Liu et al. Proactive interference avoidance for mobile-to-mobile communication in LTE networks
de Melo et al. Uplink power control with variable target SINR for D2D communications underlying cellular networks
Ko et al. Distributed power allocation for efficient inter-cell interference management in multi-cell OFDMA systems
Wu et al. Maximization of con-current links in V2V communications based on belief propagation
Abdallah et al. Joint channel allocation and power control for D2D communications using stochastic geometry
Wang et al. Joint dynamic access points grouping and resource allocation for coordinated transmission in user‐centric UDN
Carreras et al. A System-Level Simulator for the Downlink of LTE-A: Case of study—Cell-offloading in HetNets
Karataş et al. Load based cell selection algorithm for Tetra based professional mobile radio