TWI623728B - Detection device for stacked material and calculating method of stacked material volume - Google Patents

Detection device for stacked material and calculating method of stacked material volume Download PDF

Info

Publication number
TWI623728B
TWI623728B TW105139515A TW105139515A TWI623728B TW I623728 B TWI623728 B TW I623728B TW 105139515 A TW105139515 A TW 105139515A TW 105139515 A TW105139515 A TW 105139515A TW I623728 B TWI623728 B TW I623728B
Authority
TW
Taiwan
Prior art keywords
dimensional
positioning
trolley
stack
module
Prior art date
Application number
TW105139515A
Other languages
Chinese (zh)
Other versions
TW201821771A (en
Inventor
陸振原
杜憲文
吳慶祿
謝明興
吳文俊
葉百栱
王吉昌
Original Assignee
中國鋼鐵股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中國鋼鐵股份有限公司 filed Critical 中國鋼鐵股份有限公司
Priority to TW105139515A priority Critical patent/TWI623728B/en
Application granted granted Critical
Publication of TWI623728B publication Critical patent/TWI623728B/en
Publication of TW201821771A publication Critical patent/TW201821771A/en

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

一種堆料檢測裝置及堆料體積的計算方法,其中該堆料檢測裝置包含二個二維掃描儀、一定位模組、一資料收集模組及一運算處理模組。利用利用二維掃描儀及定位模組的設計,可達成掃描及計算全程自動化,可有效克服耗費人力及時間的問題。 A stack detecting device and a stacking volume calculating method, wherein the stack detecting device comprises two two-dimensional scanners, a positioning module, a data collecting module and an arithmetic processing module. By using the design of the two-dimensional scanner and the positioning module, the entire process of scanning and calculation can be achieved, which can effectively overcome the labor and time.

Description

堆料檢測裝置及堆料體積的計算方法 Stacking detection device and calculation method of stacking volume

本發明係關於一種檢測裝置及體積的計算方法,特別是關於一種堆料檢測裝置及堆料體積的計算方法。 The invention relates to a detection device and a calculation method of a volume, in particular to a stack detection device and a calculation method of a pile volume.

一般大型料廠的堆料,在估算該堆料的體積的過程中,通常是透過人員在該堆料旁以目測的方式,同時搭配隨身之角度規、測距儀進行丈量,接著再以簡單的幾何外形對照該堆料進行堆疊而加以計算該堆料的體積。 Generally, in the process of estimating the volume of the pile, the bulk material of the large-scale material factory is usually measured by means of visual inspection by the personnel at the same time, and with the angle gauge and range finder of the portable body, and then simple The geometry is calculated by stacking the stack to calculate the volume of the stock.

然而,這種利用傳統人工對該堆料進行丈量的方式,不僅耗費人力及時間,而且所測量的體積較容易因人員目測丈量的判斷誤差而產生不同的結果,導致該堆料估算的精度不高。又,近年來三位雷射掃描儀或三維影像辨識技術陸續被使用,可在定點或利用車輛及飛行載具進行輔助的貌形量測法,然而,其設置成本高昂,而且不適合在多結構、多管架、具障礙物或室內的料場對該堆料進行體積的測量估算。 However, this method of measuring the stock by conventional labor not only consumes manpower and time, but also the measured volume is more likely to produce different results due to the judgment error of the visual measurement of the person, resulting in the accuracy of the stock estimation. high. In addition, in recent years, three laser scanners or three-dimensional image recognition technologies have been used one after another, and can be used for assisting the shape measurement method at a fixed point or by using a vehicle and a flying vehicle. However, the installation cost is high and it is not suitable for multiple structures. , multi-bar racks, obstacles or indoor material yards to measure the volume of the stock.

因此,有必要提供改良的一種檢測裝置及體積的計算方法,以解決上述習知技術所存在的問題。 Therefore, it is necessary to provide an improved detection apparatus and volume calculation method to solve the problems of the above-mentioned conventional techniques.

本發明之主要目的在於提供一種堆料檢測裝置,利用二維掃描儀及定位模組的設計,可達成掃描及計算全程自動化,可有效克服耗費人力及時間的問題。 The main object of the present invention is to provide a stack detecting device, which can realize the whole process of scanning and calculation by using the design of the two-dimensional scanner and the positioning module, and can effectively overcome the problem of labor and time.

本發明之另一目的在於提供一種堆料體積的計算方法,利用二維輪廓資料及一維定位點的座標疊合,計算出堆料的外形及體積,可有效提高該堆料的外形及體積的量測穩定度及精準度。 Another object of the present invention is to provide a method for calculating the volume of a pile, which uses the two-dimensional contour data and the coordinate superposition of the one-dimensional positioning point to calculate the shape and volume of the pile, which can effectively improve the shape and volume of the pile. Measuring stability and accuracy.

為達上述之目的,本發明提供一種堆料檢測裝置,設置在一堆料機上,用以對該堆料機下方的一堆料進行檢測,該堆料檢測裝置包含二個二維掃描儀、一定位模組、一資料收集模組及一運算處理模組;該等二維掃描儀分別設置在該堆料機的一台車的相反兩側,用以沿著一掃描方向對該堆料進行二維掃描而獲得多個二維輪廓資料,其中該掃描方向與對該台車的一行進方向相互垂直;該定位模組設置在該台車上,用以沿著該行進方向檢測該台車的位置而獲得多個一維定位點;該資料收集模組電性連接該等二維掃描儀及定位模組,用以存儲該台車在行進時獲得的該等二維輪廓資料及該等一維定位點;該運算處理模組用以接收來自該資料收集模組所儲存的該等二維輪廓資料及該等一維定位點,並進行座標疊合而構成該堆料的一個三維座標資料。 In order to achieve the above object, the present invention provides a stack detecting device which is disposed on a stacker for detecting a pile of material under the stacker, the stack detecting device comprising two two-dimensional scanners a positioning module, a data collection module and an arithmetic processing module; the two-dimensional scanners are respectively disposed on opposite sides of a vehicle of the stacker for stacking the material along a scanning direction Performing a two-dimensional scan to obtain a plurality of two-dimensional contour data, wherein the scanning direction is perpendicular to a traveling direction of the trolley; the positioning module is disposed on the trolley to detect the position of the trolley along the traveling direction Obtaining a plurality of one-dimensional positioning points; the data collection module is electrically connected to the two-dimensional scanner and the positioning module, and is configured to store the two-dimensional contour data obtained by the trolley while traveling and the one-dimensional positioning The arithmetic processing module is configured to receive the two-dimensional contour data stored by the data collection module and the one-dimensional positioning points, and perform coordinate superposition to form a three-dimensional coordinate data of the stack.

在本發明之一實施例中,該定位模組能夠發射雷射或電波至一定位基準器,而獲得該台車的一維定位點。 In an embodiment of the invention, the positioning module is capable of transmitting a laser or an electric wave to a positioning reference to obtain a one-dimensional positioning point of the vehicle.

在本發明之一實施例中,該堆料檢測裝置另包含一個三維外形顯示模組,用以接收來自該運算處理模組的三維座標資料,並依據該堆料的三維座標資料,將該堆料的一外形顯示在一顯示器上。 In an embodiment of the present invention, the stack detecting device further includes a three-dimensional shape display module for receiving three-dimensional coordinate data from the arithmetic processing module, and the stack is based on the three-dimensional coordinate data of the stack. A shape of the material is displayed on a display.

在本發明之一實施例中,該堆料檢測裝置另包含一料高感測器,設置在該台車的底部,用以感測該堆料的一高度。 In an embodiment of the invention, the stack detecting device further comprises a material high sensor disposed at the bottom of the trolley for sensing a height of the stack.

為達上述之目的,本發明提供一種堆料體積的計算方法,利用如申請專利範圍第1項所述之堆料檢測裝置計算該堆料的體積,該計算方法包含一掃描步驟、一定位步驟、一處理步驟及一計算步驟;該掃描步驟是當該台車在行進時,利用二個二維掃描儀沿著一掃描方向對該堆料進行二維掃描而獲得多個二維輪廓資料,其中該掃描方向與對該台車的一行進方向相互垂直;該定位步驟是當該台車在進行時,利用一定位模組檢測該台車沿著該行進方向的位置而獲得多個一維定位點;該處理步驟是利用一運算處理模組對該等二維輪廓資料及該等一維定位點進行座標疊合,而構成該堆料的一個三維座標資料;該計算步驟是對該堆料的三維座標資料進行計算,而獲得該堆料的一體積。 In order to achieve the above object, the present invention provides a method for calculating a stack volume, which is calculated by using a stocker detecting device as described in claim 1, wherein the calculating method includes a scanning step and a positioning step. a processing step and a calculating step; the scanning step is to obtain a plurality of two-dimensional contour data by performing two-dimensional scanning on the stock in a scanning direction by using two two-dimensional scanners while the vehicle is traveling, wherein The scanning direction is perpendicular to a traveling direction of the trolley; the positioning step is to obtain a plurality of one-dimensional positioning points by detecting a position of the trolley along the traveling direction when the trolley is in progress; The processing step is to coordinate the two-dimensional contour data and the one-dimensional positioning points by using an arithmetic processing module to form a three-dimensional coordinate data of the stack; the calculating step is a three-dimensional coordinate of the stack. The data is calculated to obtain a volume of the stock.

如上所述,利用該等二維掃描儀及定位模組的設計,透過該等二維輪廓資料及該等一維定位點進行座標疊合,進而構成該堆料的一個三維座標資料,並且依據該三維座標資料計算出該堆料的外形及體積,不僅適用於多結構、多管架、具障礙物或室內的料場,而且執行掃描及計算全程自動化,可有效克服耗費人力及時間的問題,並且提高該堆料的外形及體積的量測穩定度及精準度。 As described above, using the two-dimensional scanner and the positioning module design, the two-dimensional contour data and the one-dimensional positioning points are superimposed on the coordinates to form a three-dimensional coordinate data of the stock, and The three-dimensional coordinate data calculates the shape and volume of the pile, which is not only suitable for multi-structure, multi-tube rack, obstacle or indoor material yard, but also performs scanning and calculation of the whole process automation, which can effectively overcome the labor and time problem. And improve the measurement stability and accuracy of the shape and volume of the stack.

100‧‧‧堆料檢測裝置 100‧‧‧ stocking detection device

101‧‧‧堆料機 101‧‧‧Stacker

102‧‧‧堆料 102‧‧‧ stock

103‧‧‧台車 103‧‧‧Trolley

104‧‧‧橫架 104‧‧‧ transverse frame

105‧‧‧出料口 105‧‧‧Outlet

106‧‧‧定位基準器 106‧‧‧ Positioning reference

107‧‧‧被遮蔽區域 107‧‧‧ shaded area

2‧‧‧二維掃描儀 2‧‧‧2D Scanner

3‧‧‧定位模組 3‧‧‧ Positioning Module

4‧‧‧資料收集模組 4‧‧‧ Data Collection Module

5‧‧‧運算處理模組 5‧‧‧Operation Processing Module

6‧‧‧三維外形顯示模組 6‧‧‧3D shape display module

7‧‧‧體積計算模組 7‧‧‧Volume calculation module

8‧‧‧料高感測器 8‧‧‧ material high sensor

a、b‧‧‧角度 a, b‧‧‧ angle

c‧‧‧安息角 c‧‧‧An angle of repose

S201‧‧‧掃描步驟 S201‧‧‧ scan steps

S202‧‧‧定位步驟 S202‧‧‧ Positioning steps

S203‧‧‧處理步驟 S203‧‧‧Processing steps

S204‧‧‧遮蔽補償步驟 S204‧‧‧Shadow compensation step

S205‧‧‧比較補償步驟 S205‧‧‧Comparative compensation steps

S206‧‧‧計算步驟 S206‧‧‧ Calculation steps

第1圖是依據本發明之堆料檢測裝置的一較佳實施例的一示意圖;第2圖是依據本發明之堆料檢測裝置的一較佳實施例的元件關係的一 示意圖;及第3及4圖是依據本發明之堆料檢測裝置的一較佳實施例在進行二維掃描的一示意圖;及第5圖是依據本發明之堆料體積的計算方法的一較佳實施例的一流程圖。 1 is a schematic view of a preferred embodiment of a stock detecting device according to the present invention; and FIG. 2 is a view showing a component relationship of a preferred embodiment of the stock detecting device according to the present invention. 3 and 4 are schematic views showing a two-dimensional scanning according to a preferred embodiment of the stock detecting device of the present invention; and FIG. 5 is a comparison of a method for calculating the volume of the stock according to the present invention. A flow chart of a preferred embodiment.

為了讓本發明之上述及其他目的、特徵、優點能更明顯易懂,下文將特舉本發明較佳實施例,並配合所附圖式,作詳細說明如下。再者,本發明所提到的方向用語,例如上、下、頂、底、前、後、左、右、內、外、側面、周圍、中央、水平、橫向、垂直、縱向、軸向、徑向、最上層或最下層等,僅是參考附加圖式的方向。因此,使用的方向用語是用以說明及理解本發明,而非用以限制本發明。 The above and other objects, features and advantages of the present invention will become more <RTIgt; Furthermore, the directional terms mentioned in the present invention, such as upper, lower, top, bottom, front, rear, left, right, inner, outer, side, surrounding, central, horizontal, horizontal, vertical, longitudinal, axial, Radial, uppermost or lowermost, etc., only refer to the direction of the additional schema. Therefore, the directional terminology used is for the purpose of illustration and understanding of the invention.

請參照第1、2及3圖所示,為本發明堆料檢測裝置的一較佳實施例,設置在一堆料機101上,用以對該堆料機101下方的一堆料102進行檢測。其中該堆料檢測裝置100包含二個二維掃描儀2、一定位模組3、一資料收集模組4、一運算處理模組5、一個三維外形顯示模組6、一體積計算模組7及一料高感測器8。本發明將於下文詳細說明各元件的細部構造、組裝關係及其運作原理。 Referring to Figures 1, 2 and 3, a preferred embodiment of the stack detecting device of the present invention is disposed on a stacker 101 for carrying a stack 102 of material below the stacker 101. Detection. The stack detecting device 100 includes two two-dimensional scanners 2, a positioning module 3, a data collecting module 4, an arithmetic processing module 5, a three-dimensional shape display module 6, and a volume computing module 7. And a high-sensing sensor 8. The detailed construction, assembly relationship, and operation principle of each element will be described in detail below.

續參照第1、2及3圖所示,該等二維掃描儀2分別設置在該堆料機101的一台車103的相反兩側,該台車103係沿著一行進方向(如第1圖箭頭所示)在該堆料機101的一橫架104上移動,並從一出料口105將原料或廢堆料積在下該台車103的下方而形成該堆料102。在本實施例中,該等二維 掃描儀2可以是利用雷射或微波的二維掃描,分別於該台車103的二相反方向對該堆料102的頂部輪廓進行掃描,即沿著一掃描方向對該堆料102進行二維掃描而獲得多個二維輪廓資料,其中該掃描方向與對該台車103的行進方向相互垂直。 Referring to Figures 1, 2 and 3, the two-dimensional scanners 2 are respectively disposed on opposite sides of a vehicle 103 of the stocker 101, and the trolleys 103 are along a traveling direction (as shown in Figure 1). The arrow 102 is moved on a cross frame 104 of the stocker 101, and the stock material 102 is formed by accumulating raw materials or waste piles under a lower carriage 103 from a discharge port 105. In this embodiment, the two dimensions The scanner 2 may be a two-dimensional scan using a laser or a microwave, and scan the top contour of the stack 102 in opposite directions of the carriage 103, that is, two-dimensional scanning of the stock 102 along a scanning direction. A plurality of two-dimensional contour data are obtained, wherein the scanning direction is perpendicular to the traveling direction of the carriage 103.

續參照第1、2及3圖所示,該定位模組3設置在該台車103上,用以沿著該行進方向檢測該台車103的位置而獲得多個一維定位點。在本實施例中,該定位模組3能夠發射雷射或電波至一定位基準器106,而獲得該台車103的一維定位點,其中該定位基準器106是如第1圖所示設置在該定位模組3的對面,可採用雷射測距的方式,即該定位模組3為一雷射測距儀,該定位基準器106為一反射板;或是採用電波測距的方式,即該定位模組3為一電波發射器,該定位基準器106為一電波接收器。另外,該料高感測器8是設置在該台車103的底部,即臨近該出料口105,該料高感測器8是用以感測該堆料102接近該台車103之區域的一高度。 Referring to Figures 1, 2 and 3, the positioning module 3 is disposed on the carriage 103 for detecting the position of the carriage 103 along the direction of travel to obtain a plurality of one-dimensional positioning points. In this embodiment, the positioning module 3 can emit a laser or an electric wave to a positioning reference 106 to obtain a one-dimensional positioning point of the trolley 103, wherein the positioning reference 106 is disposed as shown in FIG. The opposite side of the positioning module 3 can adopt a laser ranging method, that is, the positioning module 3 is a laser range finder, the positioning reference 106 is a reflecting plate, or a radio wave ranging method is adopted. That is, the positioning module 3 is an electric wave transmitter, and the positioning reference 106 is a radio wave receiver. In addition, the material high sensor 8 is disposed at the bottom of the trolley 103, that is, adjacent to the discharge port 105, and the material height sensor 8 is used to sense the area of the stack 102 close to the trolley 103. height.

續參照第1、2及3圖所示,該資料收集模組4電性連接該等二維掃描儀2、定位模組3及料高感測器8,該資料收集模組4是用以存儲該台車103在行進時獲得的該等二維輪廓資料、該等一維定位點及該堆料102接近該台車103之區域的高度。 With reference to the first, second and third figures, the data collection module 4 is electrically connected to the two-dimensional scanner 2, the positioning module 3 and the material height sensor 8, and the data collection module 4 is used for The two-dimensional contour data obtained by the carriage 103 during travel, the one-dimensional positioning points, and the height of the area of the stack 102 close to the trolley 103 are stored.

續參照第1、2及3圖所示,該運算處理模組5用以接收來自該資料收集模組4所儲存的該等二維輪廓資料、該等一維定位點及該堆料102接近該台車103之區域的高度,並且對該等二維輪廓資料及該等一維定位點進行座標疊合,進而構成該堆料102的一個三維座標資料。 Referring to Figures 1, 2 and 3, the arithmetic processing module 5 is configured to receive the two-dimensional contour data stored by the data collection module 4, the one-dimensional positioning points, and the stack 102 are close to The height of the area of the trolley 103, and the two-dimensional contour data and the one-dimensional positioning points are coordinately superimposed to form a three-dimensional coordinate data of the stack 102.

續參照第1、2及3圖所示,該三維外形顯示模組6是用以接收來自該運算處理模組5的三維座標資料,並依據該堆料102的三維座標資料將該堆料102的一外形顯示在一顯示器上。 Referring to Figures 1, 2 and 3, the three-dimensional shape display module 6 is configured to receive three-dimensional coordinate data from the arithmetic processing module 5, and the stack 102 is based on the three-dimensional coordinate data of the stack 102. A shape is displayed on a display.

續參照第1、2及3圖所示,該體積計算模組7用以接收來自該三維外形顯示模組6的多個區塊及高度平均值。 Referring to Figures 1, 2 and 3, the volume calculation module 7 is configured to receive a plurality of blocks and height averages from the three-dimensional shape display module 6.

依據上述的結構,當一人機介面被操作人員控制進行掃描時,即透過該堆料機101的一控制模組驅動該堆料檢測裝置100進行操作;其中該控制模組驅動該台車103在該橫架104執行一次全行程往返的移動,使該等二維掃描儀2在該台車103沿著該行進方向移動的同時,利用雷射或微波分別於該台車103的二相反方向對該堆料102的頂部輪廓進行二維掃描,例如第3圖在角度a的範圍進行二維掃描,或第4圖在角度b的範圍進行二維掃描,進而獲得多個二維輪廓資料;再利用該定位模組3發射雷射或電波至該定位基準器106,而獲得該台車103的一維定位點,並且將該等二維輪廓資料及一維定位點儲存至該資料收集模組4中;接著,利用該運算處理模組5對該等二維輪廓資料及該等一維定位點進行座標疊合,進而構成該堆料102的一個三維座標資料;再利用該三維外形顯示模組6將該堆料102的一外形顯示在一顯示器上,同時,透過該體積計算模組7進行加總計算,進而獲得該堆料102的一體積,以供操作人員檢視該堆料102的外形及體積。 According to the above configuration, when a human machine interface is controlled by an operator for scanning, the stack detecting device 100 is driven by a control module of the stocker 101; wherein the control module drives the trolley 103 at the The cross frame 104 performs a full-stroke reciprocating movement, so that the two-dimensional scanner 2 uses the laser or the microwave to respectively feed the stack in the opposite direction of the trolley 103 while the carriage 103 moves along the traveling direction. The top contour of 102 is scanned two-dimensionally, for example, FIG. 3 performs two-dimensional scanning in the range of angle a, or FIG. 4 performs two-dimensional scanning in the range of angle b, thereby obtaining a plurality of two-dimensional contour data; and then using the positioning The module 3 emits a laser or an electric wave to the positioning reference 106 to obtain a one-dimensional positioning point of the trolley 103, and stores the two-dimensional contour data and the one-dimensional positioning point into the data collection module 4; And using the operation processing module 5 to coordinate the two-dimensional contour data and the one-dimensional positioning points, thereby forming a three-dimensional coordinate data of the stack 102; and using the three-dimensional shape display module 6 A profile of the stacker 102 is displayed on a display, simultaneously, through the calculation of the volume calculation module 7 are summed, thereby obtaining a volume of the bulk material 102, for the operator to view the material shape and volume of the stack 102.

藉由上述的設計,利用該等二維掃描儀2及定位模組3的設計,透過該等二維輪廓資料及該等一維定位點進行座標疊合,進而構成該堆料102的一個三維座標資料,並且依據該三維座標資料計算出該堆料102的外形及體積,不僅適用於多結構、多管架、具障礙物或室內的料場,而 且執行掃描及計算全程自動化,可有效克服耗費人力及時間的問題,並且提高該堆料102的外形及體積的量測穩定度及精準度。 With the above design, the coordinates of the two-dimensional scanner 2 and the positioning module 3 are used to perform coordinate superposition through the two-dimensional contour data and the one-dimensional positioning points, thereby forming a three-dimensional shape of the stack 102. Coordinate data, and calculating the shape and volume of the stack 102 based on the three-dimensional coordinate data, not only for multi-structure, multi-tube rack, obstacle or indoor material yard, but And performing scanning and calculating the whole process automation can effectively overcome the labor and time problem, and improve the measurement stability and accuracy of the shape and volume of the stack 102.

請參照第5圖並配合第2、3圖所示,本發明堆料體積的計算方法的一較佳實施例,是利用上述堆料檢測裝置進行操作計算,該計算方法包含一掃描步驟S201、一定位步驟S202、一處理步驟S203、一遮蔽補償步驟S204、一比較補償步驟S205及一計算步驟S206。本發明將於下文詳細說明各步驟的運作流程。 Referring to FIG. 5 and FIG. 2 and FIG. 3, a preferred embodiment of the method for calculating the volume of the stack of the present invention is performed by using the stack detecting device, and the calculating method includes a scanning step S201. A positioning step S202, a processing step S203, a mask compensation step S204, a comparison compensation step S205, and a calculation step S206. The operation of each step will be described in detail below.

續參照第5圖並配合第2、3圖所示,在該掃描步驟S201中,當一堆料機101的台車103在行進時,利用二個二維掃描儀2沿著一掃描方向對該堆料102進行二維掃描而獲得多個二維輪廓資料,其中該掃描方向與對該台車103的一行進方向相互垂直,並且將該等二維輪廓資料傳送至該資料收集模組4中。 With continued reference to FIG. 5 and in conjunction with FIGS. 2 and 3, in the scanning step S201, when the carriage 103 of a stacker 101 is traveling, the two-dimensional scanner 2 is used to scan the scanner along a scanning direction. The stack 102 performs two-dimensional scanning to obtain a plurality of two-dimensional contour data, wherein the scanning direction is perpendicular to a traveling direction of the carriage 103, and the two-dimensional contour data is transmitted to the data collection module 4.

續參照第5圖並配合第2、3圖所示,在該定位步驟S202中,當該台車103在進行時,利用一定位模組3檢測該台車103沿著該行進方向的位置而獲得多個一維定位點,並且將該等一維定位點傳送至該資料收集模組4中。 With reference to FIG. 5 and in conjunction with FIGS. 2 and 3, in the positioning step S202, when the carriage 103 is in progress, a positioning module 3 is used to detect the position of the trolley 103 along the traveling direction. One-dimensional anchor points are transmitted to the data collection module 4.

續參照第5圖並配合第2、3圖所示,在該處理步驟S203中,是利用一運算處理模組5對該等二維輪廓資料及該等一維定位點進行座標疊合,而構成該堆料102的一個三維座標資料。 With reference to FIG. 5 and in conjunction with FIGS. 2 and 3, in the processing step S203, the coordinate processing is performed by using an arithmetic processing module 5 for the two-dimensional contour data and the one-dimensional positioning points. A three-dimensional coordinate data of the stock 102 is formed.

請參照第5圖並配合第2、4圖所示,在該遮蔽補償步驟S204中,透過該運算處理模組5獲得在該堆料102中的一被遮蔽區域107的一高度。 Referring to FIG. 5 and in conjunction with FIGS. 2 and 4, in the mask compensation step S204, a height of a shaded region 107 in the stack 102 is obtained by the arithmetic processing module 5.

續參照第5圖並配合第2、3圖所示,在該比較補償步驟S205中,透過該運算處理模組5獲得在該台車103下方的堆料102的一高度。 Referring to FIG. 5 and in conjunction with FIGS. 2 and 3, in the comparison compensation step S205, a height of the stock 102 below the trolley 103 is obtained by the arithmetic processing module 5.

續參照第5圖並配合第2、3圖所示,在該計算步驟S206中,是對該堆料102的三維座標資料進行計算而獲得該堆料102的一體積。 Referring to FIG. 5 and in conjunction with FIGS. 2 and 3, in the calculating step S206, the three-dimensional coordinate data of the stock 102 is calculated to obtain a volume of the stock 102.

如上所述,利用該等二維掃描儀2及定位模組3的設計,透過該等二維輪廓資料及該等一維定位點進行座標疊合,進而構成該堆料102的一個三維座標資料,並且依據該三維座標資料計算出該堆料102的外形及體積,不僅適用於多結構、多管架、具障礙物或室內的料場,而且執行掃描及計算全程自動化,可有效克服耗費人力及時間的問題,並且提高該堆料102的外形及體積的量測穩定度及精準度。 As described above, by using the design of the two-dimensional scanner 2 and the positioning module 3, the two-dimensional contour data and the one-dimensional positioning points are superimposed on the coordinates to form a three-dimensional coordinate data of the stack 102. And calculating the shape and volume of the stack 102 according to the three-dimensional coordinate data, which is not only suitable for multi-structure, multi-tube rack, obstacle or indoor material yard, but also performs scanning and calculation full automation, which can effectively overcome manpower And the problem of time, and improve the measurement stability and accuracy of the shape and volume of the stock 102.

雖然本發明已以較佳實施例揭露,然其並非用以限制本發明,任何熟習此項技藝之人士,在不脫離本發明之精神和範圍內,當可作各種更動與修飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。 The present invention has been disclosed in its preferred embodiments, and is not intended to limit the invention, and the present invention may be modified and modified without departing from the spirit and scope of the invention. The scope of protection is subject to the definition of the scope of the patent application.

Claims (5)

一種堆料檢測裝置,設置在一堆料機上,用以對該堆料機下方的一堆料進行檢測,該堆料檢測裝置包含:二個二維掃描儀,分別設置在該堆料機的一台車的相反兩側,用以沿著一掃描方向對該堆料進行二維掃描而獲得多個二維輪廓資料,其中該台車沿著一行進方向在該堆料機的一橫架上移動,該掃描方向與對該台車的該行進方向相互垂直;一定位模組,設置在該台車上,用以沿著該行進方向檢測該台車的位置而獲得多個一維定位點;一資料收集模組,電性連接該等二維掃描儀及定位模組,用以存儲該台車在行進時獲得的該等二維輪廓資料及該等一維定位點;及一運算處理模組,用以接收來自該資料收集模組所儲存的該等二維輪廓資料及該等一維定位點,並將每一個一維定位點及對應的二維輪廓資料進行座標疊合,進而構成該堆料的一個三維座標資料。 A stack detecting device is disposed on a stacker for detecting a pile of materials under the stacker, the stack detecting device comprising: two two-dimensional scanners respectively disposed on the stacker The opposite sides of a vehicle are used for two-dimensional scanning of the stock along a scanning direction to obtain a plurality of two-dimensional contour data, wherein the trolley is on a cross frame of the stacker along a traveling direction Moving, the scanning direction is perpendicular to the traveling direction of the trolley; a positioning module is disposed on the trolley for detecting the position of the trolley along the traveling direction to obtain a plurality of one-dimensional positioning points; a collection module electrically connected to the two-dimensional scanner and the positioning module for storing the two-dimensional contour data obtained by the trolley while traveling and the one-dimensional positioning point; and an operation processing module Receiving the two-dimensional contour data stored by the data collection module and the one-dimensional positioning points, and superimposing each one-dimensional positioning point and the corresponding two-dimensional contour data to form the stacking material a three-dimensional coordinate . 如申請專利範圍第1項所述之堆料檢測裝置,其中該定位模組能夠發射雷射或電波至一定位基準器,而獲得該台車的一維定位點。 The stack detecting device according to claim 1, wherein the positioning module is capable of emitting a laser or an electric wave to a positioning reference to obtain a one-dimensional positioning point of the vehicle. 如申請專利範圍第1項所述之堆料檢測裝置,另包含一個三維外形顯示模組,用以接收來自該運算處理模組的三維座標資 料,並依據該堆料的三維座標資料,將該堆料的一外形顯示在一顯示器上。 The stack detecting device according to claim 1, further comprising a three-dimensional shape display module for receiving the three-dimensional coordinate from the arithmetic processing module And according to the three-dimensional coordinate data of the stock, a shape of the stock is displayed on a display. 如申請專利範圍第1項所述之堆料檢測裝置,另包含一料高感測器,設置在該台車的底部,用以感測該堆料的一高度。 The stack detecting device according to claim 1, further comprising a high-sensing sensor disposed at the bottom of the trolley for sensing a height of the stack. 一種堆料體積的計算方法,利用如申請專利範圍第1項所述之堆料檢測裝置計算該堆料的體積,該計算方法包含:一掃描步驟,當該台車在行進時,利用設置在該台車的相反兩側的二個二維掃描儀沿著一掃描方向對該堆料進行二維掃描而獲得多個二維輪廓資料,其中該掃描方向與對該台車的一行進方向相互垂直;一定位步驟,當該台車在進行時,利用一定位模組檢測該台車沿著該行進方向的位置而獲得多個一維定位點;一處理步驟,利用一運算處理模組將每一個一維定位點及對應的二維輪廓資料進行座標疊合,進而構成該堆料的一個三維座標資料;及一計算步驟,對該堆料的三維座標資料進行計算,而獲得該堆料的一體積。 A method for calculating a stock volume, wherein the volume of the stock is calculated by using a stock detecting device according to claim 1 of the patent application, the calculating method comprising: a scanning step, when the vehicle is traveling, using the setting Two two-dimensional scanners on opposite sides of the trolley scan the stack in a scanning direction to obtain a plurality of two-dimensional contour data, wherein the scanning direction is perpendicular to a traveling direction of the trolley; a positioning step, when the trolley is in progress, using a positioning module to detect the position of the trolley along the traveling direction to obtain a plurality of one-dimensional positioning points; and a processing step, using an arithmetic processing module to locate each one-dimensional The point and the corresponding two-dimensional contour data are superimposed on the coordinate to form a three-dimensional coordinate data of the pile; and a calculation step is performed to calculate the three-dimensional coordinate data of the pile to obtain a volume of the pile.
TW105139515A 2016-11-30 2016-11-30 Detection device for stacked material and calculating method of stacked material volume TWI623728B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW105139515A TWI623728B (en) 2016-11-30 2016-11-30 Detection device for stacked material and calculating method of stacked material volume

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW105139515A TWI623728B (en) 2016-11-30 2016-11-30 Detection device for stacked material and calculating method of stacked material volume

Publications (2)

Publication Number Publication Date
TWI623728B true TWI623728B (en) 2018-05-11
TW201821771A TW201821771A (en) 2018-06-16

Family

ID=62951737

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105139515A TWI623728B (en) 2016-11-30 2016-11-30 Detection device for stacked material and calculating method of stacked material volume

Country Status (1)

Country Link
TW (1) TWI623728B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113295099A (en) * 2020-09-28 2021-08-24 湖南长天自控工程有限公司 System, method and device for detecting material layer thickness of circular cooler
CN113311427A (en) * 2021-05-25 2021-08-27 燕山大学 Method and system for measuring material height and repose angle in material piling process of stacker
CN113483710A (en) * 2021-06-29 2021-10-08 国能黄骅港务有限责任公司 Method for constructing material pile height calculation model and material pile height measurement method
CN115140563A (en) * 2022-07-20 2022-10-04 万宝矿产有限公司 Automatic compensation system and method for building and stacking position of mining spreader

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI736473B (en) * 2020-11-16 2021-08-11 中國鋼鐵股份有限公司 Device for detecting stacked material and method for calculating volume of stacked material

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1059790A (en) * 1990-10-08 1992-03-25 吉林热电厂 The self-operated measuring unit of big coal pile volume
CN101718523A (en) * 2009-11-10 2010-06-02 天津理工大学 System and method for measuring volume of material pile based on GPU
CN101334897B (en) * 2007-06-27 2011-06-15 宝山钢铁股份有限公司 Three-dimensional imaging method for implementing material pile real time dynamic tracking
CN202229731U (en) * 2011-09-28 2012-05-23 沈阳华岩电力技术有限公司 Digital inventory system of material field
CN102494611A (en) * 2011-12-05 2012-06-13 中国人民解放军国防科学技术大学 method for rapidly measuring volume of object
CN102878927A (en) * 2012-09-18 2013-01-16 武汉武大卓越科技有限责任公司 Device and method for automatically measuring volume of large open material yard based on vehicle carrier
WO2014040137A1 (en) * 2012-09-14 2014-03-20 Paul John Wighton Reclaimer 3d volume rate controller

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1059790A (en) * 1990-10-08 1992-03-25 吉林热电厂 The self-operated measuring unit of big coal pile volume
CN101334897B (en) * 2007-06-27 2011-06-15 宝山钢铁股份有限公司 Three-dimensional imaging method for implementing material pile real time dynamic tracking
CN101718523A (en) * 2009-11-10 2010-06-02 天津理工大学 System and method for measuring volume of material pile based on GPU
CN202229731U (en) * 2011-09-28 2012-05-23 沈阳华岩电力技术有限公司 Digital inventory system of material field
CN102494611A (en) * 2011-12-05 2012-06-13 中国人民解放军国防科学技术大学 method for rapidly measuring volume of object
WO2014040137A1 (en) * 2012-09-14 2014-03-20 Paul John Wighton Reclaimer 3d volume rate controller
CN102878927A (en) * 2012-09-18 2013-01-16 武汉武大卓越科技有限责任公司 Device and method for automatically measuring volume of large open material yard based on vehicle carrier

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113295099A (en) * 2020-09-28 2021-08-24 湖南长天自控工程有限公司 System, method and device for detecting material layer thickness of circular cooler
CN113311427A (en) * 2021-05-25 2021-08-27 燕山大学 Method and system for measuring material height and repose angle in material piling process of stacker
CN113311427B (en) * 2021-05-25 2023-01-06 唐山曹妃甸煤炭港务有限公司 Method and system for measuring material height and repose angle in material piling process of stacker
CN113483710A (en) * 2021-06-29 2021-10-08 国能黄骅港务有限责任公司 Method for constructing material pile height calculation model and material pile height measurement method
CN113483710B (en) * 2021-06-29 2022-04-01 国能黄骅港务有限责任公司 Method for constructing material pile height calculation model and material pile height measurement method
CN115140563A (en) * 2022-07-20 2022-10-04 万宝矿产有限公司 Automatic compensation system and method for building and stacking position of mining spreader
CN115140563B (en) * 2022-07-20 2023-10-31 万宝矿产有限公司 Automatic compensation system and method for building stacking position of mining distributing machine

Also Published As

Publication number Publication date
TW201821771A (en) 2018-06-16

Similar Documents

Publication Publication Date Title
TWI623728B (en) Detection device for stacked material and calculating method of stacked material volume
CN110039543B (en) Storage map rapid determination method, equipment, storage medium and robot
JP6211734B1 (en) Combination of stereo processing and structured light processing
CN104316050B (en) The method of mobile robot and its positioning and map structuring
CN104777835A (en) Omni-directional automatic forklift and 3D stereoscopic vision navigating and positioning method
US11035669B2 (en) Tilt and distance profiling vehicle
EP2520909A1 (en) Storage tank inspection system and method
EP3799790B1 (en) Method for tracking location of two-dimensional non-destructive inspection scanner on target object using scanned structural features
CN102043016A (en) Lamb wave-based autonomous damage identification imaging method
EP3347672B1 (en) An apparatus for the determination of the features of at least a moving load
JP6051751B2 (en) Method and apparatus for detecting position and orientation of metal plate, and method for inspecting metal plate
CN108007451A (en) Detection method, device, computer equipment and the storage medium of cargo carrying device pose
CN109362237A (en) For detecting the method and system invaded in monitored volume
JP2019020131A (en) Raw material mountain measurement method and raw material mountain measurement system
KR20220005025A (en) Simultaneous location recognition and map creation method
US20240133675A1 (en) Load Scanning Apparatus
CN110550067A (en) Train wheel measurement method and related system
CN204462850U (en) A kind of omnidirectional is from electrical forklift
KR101635749B1 (en) Velocity calculation method of folklift truck using image recognition algorithm
CN112882478B (en) Storage tank inspection method and system
JP4890294B2 (en) Underwater mobile device position measurement system
US9587950B2 (en) Carrier
JP6402526B2 (en) Movement control device, movement control method, movement control program, and target member used for movement control method
US11961305B2 (en) Enhanced vehicle navigation using non-destructive inspection one-dimensional sensor arrays
Nishimoto et al. Three dimensional recognition of environments for a mobile robot using laser range finder