TWI623701B - Terahertz-gigahertz illuminator - Google Patents

Terahertz-gigahertz illuminator Download PDF

Info

Publication number
TWI623701B
TWI623701B TW106108779A TW106108779A TWI623701B TW I623701 B TWI623701 B TW I623701B TW 106108779 A TW106108779 A TW 106108779A TW 106108779 A TW106108779 A TW 106108779A TW I623701 B TWI623701 B TW I623701B
Authority
TW
Taiwan
Prior art keywords
terahertz
girsch
lens
source
girth
Prior art date
Application number
TW106108779A
Other languages
Chinese (zh)
Other versions
TW201835497A (en
Inventor
莊大慶
吳彥儒
Original Assignee
鏡元科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 鏡元科技股份有限公司 filed Critical 鏡元科技股份有限公司
Priority to TW106108779A priority Critical patent/TWI623701B/en
Application granted granted Critical
Publication of TWI623701B publication Critical patent/TWI623701B/en
Publication of TW201835497A publication Critical patent/TW201835497A/en

Links

Landscapes

  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

可以被應用在或整合至許多太赫茲-吉赫茲應用及/或系統(像是影像、安全或通訊)的太赫茲-吉赫茲照明器。一或多個太赫茲-吉赫茲發射器被結合成一陣列,其中每個太赫茲-吉赫茲發射器都包含一太赫茲-吉赫茲光源與一太赫茲-吉赫茲透鏡。此外,在每一個太赫茲-吉赫茲發射器,太赫茲-吉赫茲光源與太赫茲-吉赫茲透鏡間的幾何關係係可以動態地調整藉以動態地調整所發射太赫茲-吉赫茲波的發射角度與指向角度。附帶地,任一個太赫茲-吉赫茲發射器都可以轉動及/或移動藉以改變所發射太赫茲-吉赫茲波的傳播方向。藉此,太赫茲-吉赫茲照明器可以均勻地照射位於任何距離的有興趣物件,而且不需要修改太赫茲-吉赫茲光源的其他方面便可以有效地應用各個可以均勻地照射位於任何距離的有興趣物件的發射器的有限的光源功率。 A terahertz-Girsch illuminator that can be applied to or integrated into many terahertz-Girsch applications and/or systems such as imaging, security or communications. One or more terahertz-Girsch transmitters are combined into an array, wherein each terahertz-Girhitz transmitter comprises a terahertz-Gird source and a terahertz-Girsch lens. In addition, in each terahertz-Girsch transmitter, the geometric relationship between the terahertz-Girsch source and the terahertz-Girsch lens can be dynamically adjusted to dynamically adjust the emission angle of the transmitted terahertz-Girsch wave. With pointing angles. Incidentally, any terahertz-Girsch transmitter can be rotated and/or moved to change the direction of propagation of the transmitted terahertz-Gird wave. In this way, the terahertz-Girsch illuminator can uniformly illuminate interesting objects located at any distance, and does not need to modify other aspects of the terahertz-Girsch light source to effectively apply each of them to uniformly illuminate at any distance. The limited source power of the transmitter of the object of interest.

Description

太赫茲-吉赫茲照明器 Terahertz-Girhez illuminator

本發明有關於太赫茲-吉赫茲照明器(terahertz-gigahertz illuminator,THz illuminator),特別是可以有效率地使用太赫茲-吉赫茲波以及改善照射在物件上太赫茲-吉赫茲波的均勻度的太赫茲-吉赫茲照明器。 The invention relates to a terahertz-gigahertz illuminator (THz illuminator), in particular to efficiently use a terahertz-Gird wave and to improve the uniformity of the terahertz-Gird wave on the object. Terahertz-Gehès illuminator.

對於太赫茲-吉赫茲技術的興趣在過去幾十年中顯著地增加,而且使用到太赫茲-吉赫茲系統的商業化應用也相對應地穩定增加。舉例來說,太赫茲-吉赫茲波的獨特傳輸性質使得太赫茲-吉赫茲影像系統與太赫茲-吉赫茲安全系統具有顯著的商業價值。一個經典例子是隱藏物件的鑑別,像是被纖維衣物所覆蓋的金屬武器。更多地,由於太赫茲-吉赫茲波的波長,太赫茲-吉赫茲波的高帶寬數據(bandwidth data)可能被應用在未來世代的通訊系統。 Interest in terahertz-gehitz technology has increased significantly over the past few decades, and commercial applications using terahertz-Girsch systems have steadily increased correspondingly. For example, the unique transmission properties of terahertz-Girsch waves make terahertz-Giltz imaging systems and terahertz-Girsch security systems of significant commercial value. A classic example is the identification of hidden objects, such as metal weapons covered by fiber clothing. More, due to the wavelength of the terahertz-Girsch wave, the high bandwidth data of the terahertz-gehz wave may be applied to future generation communication systems.

太赫茲-吉赫茲技術的發展必須要克服一些困難的挑戰。一個如此的挑戰是目前可用的商業化太赫茲-吉赫茲光源不只功率相對地低而且價格昂貴。舉例來說,典型的商業化太赫茲-吉赫茲光源的輸出功率在幾十毫瓦(milli-watt)的範圍,這是明 顯地小於一般性能的發光二極體(light-emitting-diodes,LED)或甚至家用燈泡(household light bulbs)。因此,太赫茲-吉赫茲系統的設計與應用明顯地受限於太赫茲-吉赫茲光源的能力。除此之外,因為太赫茲-吉赫茲波是不可視的,如何有效率地與均勻地將太赫茲-吉赫茲波只照射在距離不限的一或多個物件而不會照射到其他空間是一個困難的問題,特別如果這些物件的數目、這些太赫茲-吉赫茲光源的數目及/或這些物件與這些太赫茲-吉赫茲光源間的幾何關係是持續地改變時。 The development of terahertz-jihz technology must overcome some difficult challenges. One such challenge is that currently available commercial terahertz-Girsch sources are not only relatively low power but also expensive. For example, the output power of a typical commercial terahertz-Girsch source is in the range of tens of milliwatts, which is Light-emitting-diodes (LEDs) or even household light bulbs that are significantly smaller than the general performance. Therefore, the design and application of terahertz-Girsch systems is clearly limited by the capabilities of terahertz-Girsch sources. In addition, because the terahertz-Girsch wave is invisible, how to efficiently and uniformly illuminate the terahertz-Girsch wave to one or more objects at an unlimited distance without illuminating other spaces is A difficult problem, especially if the number of such objects, the number of these terahertz-Girsch sources and/or the geometric relationship between these objects and these terahertz-Girsch sources are continuously changing.

綜上所述,有需要發展可以有效率地與均勻地照射物件而且不會浪費太赫茲-吉赫茲光源輸出功率的太赫茲吉赫茲照明器。 In summary, there is a need to develop terahertz Hz illuminators that can efficiently and uniformly illuminate objects without wasting the output power of the terahertz-Girth source.

本發明所提出的太赫茲吉赫茲照明器使用排列成陣列的一或多個本發明所提出的太赫茲-吉赫茲發射器。特別是,這些太赫茲-吉赫茲發射器的分布以及每一個太赫茲-吉赫茲發射器的配置都是可以動態地調整的。 The terahertz-Girsch illuminator proposed by the present invention uses one or more terahertz-Girsch transmitters of the present invention arranged in an array. In particular, the distribution of these terahertz-Girsch transmitters and the configuration of each terahertz-Girsch transmitter can be dynamically adjusted.

基本上,提出的太赫茲-吉赫茲發射器是由太赫茲-吉赫茲光源與太赫茲-吉赫茲透鏡所組成。附帶地,透鏡夾具(lens fixture)被配置來固持太赫茲-吉赫茲光源與太赫茲-吉赫茲透鏡二者。太赫茲-吉赫茲光源可以是任何已知的、發展中的或是將來出現的太赫茲-吉赫茲光源。太赫茲-吉赫茲透鏡是可以處理太赫茲-吉赫茲波並會聚其功率的單一個鏡片元件或是多數個鏡片元件的組合。在某些例子,太赫茲-吉赫茲光源被放置在太赫 茲-吉赫茲透鏡的焦點(focal point)或其附近藉以使得太赫茲-吉赫茲光源所產生的太赫茲-吉赫茲波可以被發射到相對的一側。太赫茲-吉赫茲透鏡的焦距長度(focal length)應該盡可能地小藉以盡可能地收集太赫茲-吉赫茲波。在某些例子,太赫茲-吉赫茲光源與太赫茲-吉赫茲透鏡中的至少一者可以被沿著幾何軸線被移動,藉以改變太赫茲-吉赫茲波經過太赫茲-吉赫茲透鏡後的發射角度。在此,幾何軸線定義為連接太赫茲-吉赫茲透鏡中心與太赫茲-吉赫茲光源中心二者的直線。在某些例子,太赫茲-吉赫茲光源及/或太赫茲-吉赫茲透鏡可以被沿著與幾何軸線相互垂直及/或相互交錯的方向被移動,藉以改變太赫茲-吉赫茲波經過太赫茲-吉赫茲透鏡後的指向角度。在某些例子,太赫茲-吉赫茲光源及/或太赫茲-吉赫茲透鏡可以被轉動,像是繞著與幾何軸線相互交錯的方向被轉動,藉以改變被發射太赫茲-吉赫茲波的傳播方向。在此,發射角度定義為太赫茲-吉赫茲發射器所發射太赫茲-吉赫茲波的角度範圍,而指向角度定義為介於所發射太赫茲-吉赫茲波的中間與幾何軸線之間的角度。 Basically, the proposed terahertz-Girsch transmitter consists of a terahertz-Girsch source and a terahertz-Girsch lens. Incidentally, a lens fixture is configured to hold both the terahertz-Gird source and the terahertz-Girsch lens. The terahertz-Girsch source can be any known, evolving or future terahertz-Girth source. A terahertz-Girsch lens is a single lens element or a combination of a plurality of lens elements that can process terahertz-gehz waves and concentrate their power. In some examples, the terahertz-Girsch source is placed in terahertz The focal point of the Z-Girsch lens or its vicinity is such that the terahertz-Gird wave generated by the terahertz-Girsch source can be emitted to the opposite side. The focal length of the terahertz-Girsch lens should be as small as possible to collect terahertz-Gird waves as much as possible. In some examples, at least one of the terahertz-Girsch source and the terahertz-Girsch lens can be moved along the geometric axis to change the emission of the terahertz-Girsch wave after passing through the terahertz-Girsch lens. angle. Here, the geometric axis is defined as a line connecting the center of the terahertz-Girsch lens and the center of the terahertz-Girth source. In some examples, the terahertz-Girth source and/or the terahertz-Girsch lens may be moved in a direction perpendicular to and/or interdigitated with the geometric axis to change the terahertz-gehz wave through the terahertz - The pointing angle behind the Girsch lens. In some instances, the terahertz-Girsch source and/or the terahertz-Girsch lens can be rotated, as if rotated around a direction parallel to the geometrical axis, thereby altering the propagation of the transmitted terahertz-jihz wave. direction. Here, the emission angle is defined as the angular range of the terahertz-Gird wave emitted by the terahertz-Girsch transmitter, and the pointing angle is defined as the angle between the middle of the transmitted terahertz-Gird wave and the geometric axis. .

基本上,這些太赫茲-吉赫茲發射器的分布方式可以是單一一點(亦即零維陣列)、或是二維陣列、或是三維陣列或是其他的。舉例來說,這些發射器可以沿著直線(straight line)、曲線(curve)或蜿蜒線段(zigzag)來列。舉例來說,這些發射器可以分布在正方形(square)、圓形(circular)、多邊形(polygon)、平面狀表面(planar surface)、曲面狀表面(curved surface)或是起伏的表面(undulant surface)。舉 例來說,這些發射器可以在X-Y平面上被分布成二維陣列但是至少二個發射器在Z軸的位置並不相同。舉例來說,這些發射器可以被規則地分布或是等距離地分布藉以達到比較好的照射均勻度。 Basically, these terahertz-Girsch emitters can be distributed in a single point (ie, a zero-dimensional array), or a two-dimensional array, or a three-dimensional array or others. For example, these emitters can be listed along a straight line, a curve, or a zigzag. For example, these emitters can be distributed over squares, circles, polygons, planar surfaces, curved surfaces, or undulant surfaces. . Lift For example, these emitters can be distributed in a two-dimensional array on the X-Y plane but at least two emitters are not identical in position on the Z-axis. For example, these emitters can be distributed regularly or equidistantly to achieve better illumination uniformity.

100、300、400、500‧‧‧太赫茲-吉赫茲照明器 100, 300, 400, 500‧‧‧ terahertz-jihz illuminators

110、210、310、410、510‧‧‧太赫茲-吉赫茲發射器 110, 210, 310, 410, 510‧‧‧ Terahertz-Gehz transmitters

112、212、312、512‧‧‧太赫茲-吉赫茲光源 112, 212, 312, 512‧‧‧ terahertz-Girsch light source

114、214、314、514‧‧‧太赫茲-吉赫茲透鏡 114, 214, 314, 514‧‧‧ terahertz-Girsch lenses

116‧‧‧內部驅動器 116‧‧‧Internal drive

118‧‧‧外部驅動器 118‧‧‧External drive

251、253、35、451、452、453‧‧‧物件 251, 253, 35, 451, 452, 453 ‧ ‧ objects

299、399、499‧‧‧太赫茲-吉赫茲波 299, 399, 499‧‧‧THz-Ghz wave

第一A圖摘要地描繪具有一些相等的太赫茲-吉赫茲發射器的太赫茲-吉赫茲照明器,第一B圖摘要地描繪太赫茲-吉赫茲發射器的配置,第一C圖到第一D圖定義了太赫茲-吉赫茲發射器所發射太赫茲-吉赫茲波的發射角度與指向角度,而第一E圖與第一F圖摘要地描繪一些太赫茲-吉赫茲發射器。 The first A diagram abstractly depicts a terahertz-Girsch illuminator with some equal terahertz-Girsch transmitters, the first B diagram abstractly depicting the configuration of the terahertz-Girsch transmitter, the first C-to-first A D-picture defines the emission angle and the pointing angle of the terahertz-Girsch wave emitted by the terahertz-Girsch transmitter, while the first E-picture and the first F-picture abstractly depict some terahertz-Girsch transmitters.

第二A圖與第二B圖摘要地描繪一太赫茲-吉赫茲照明器其中一些相同的太赫茲-吉赫茲發射器排列成一維陣列並且所發射太赫茲-吉赫茲波的發射角度是可以隨著不同物件距離而動態地調整,而第二C圖與第二D圖摘要地描繪太赫茲-吉赫茲光源與太赫茲-吉赫茲透鏡間距離如何被位於太赫茲-吉赫茲發射器內部的內部驅動器所改變而藉以動態地改變發射角度。 The second A and second B diagrams abstractly depict a terahertz-Gird illuminator in which some of the same terahertz-Girsch transmitters are arranged in a one-dimensional array and the emission angle of the transmitted terahertz-Girsch wave is The second C map and the second D map abstractly depict how the distance between the terahertz-Girsch source and the terahertz-Girsch lens is located inside the terahertz-Girsch transmitter. The drive is changed to dynamically change the launch angle.

第三A圖與第三B圖摘要地描繪一太赫茲-吉赫茲照明器其中一些相同的太赫茲-吉赫茲發射器排列成二維陣列並且可以隨著不同物件的不同距離而有不同的太赫茲-吉赫茲波的發射角度,而第三C圖與第三D圖摘要地呈現具有四個發射器的一樣例的太赫茲-吉赫茲照明器的照射圖案以及發射角度與物件距離的關係其中每一個照明器具有一瓦的功率並且這些照明器排列成具 有40公分週期的一維陣列。 The third A and third B diagrams abstractly depict a terahertz-Gird illuminator in which some of the same terahertz-Gird-type emitters are arranged in a two-dimensional array and can vary from one object to another depending on the distance of the different objects. The emission angle of the Hertz-Girsch wave, and the third C and third D diagrams abstractly present the illumination pattern of the terahertz-Girsch illuminator with the same example of four emitters and the relationship between the emission angle and the object distance. Each illuminator has a power of one watt and the illuminators are arranged to There is a one-dimensional array of 40 cm cycles.

第四A圖與第四B圖摘要地描繪一太赫茲-吉赫茲照明器其中一些相同的太赫茲-吉赫茲發射器排列成一維陣列並且任一個太赫茲-吉赫茲發射器可以分別地動態調整其指向角度,第四C圖摘要地呈現具有五個發射器的一樣例的太赫茲-吉赫茲照明器在照射距離五公尺外物件時的照射圖案以及發射角度與物件距離的關係其中每一個照明器具有一瓦的功率並且這些照明器排列成具有40公分週期的一維陣列。 Figures 4A and 4B abstractly depict a terahertz-Girsch illuminator in which some of the same terahertz-Girsch transmitters are arranged in a one-dimensional array and any terahertz-Girsch transmitter can be dynamically adjusted separately Its angle of pointing, the fourth C diagram abstractly presents the illumination pattern of the terahertz-Gird illuminator of the same example with five emitters when the object is irradiated at a distance of five meters and the relationship between the angle of emission and the distance of the object. The illuminator has a power of one watt and the illuminators are arranged in a one-dimensional array with a 40 cm period.

第五A圖摘要地描繪具有排列成一維陣列的三個發射器的一太赫茲-吉赫茲照明器,而第五B圖到第五F圖摘要地顯示這個太赫茲-吉赫茲照明器如何被根據所提及步驟而動態地被調整。 Figure 5A abstractly depicts a terahertz-Gird illuminator with three emitters arranged in a one-dimensional array, while Figures 5B through F represent a summary of how this terahertz-Girsch illuminator is It is dynamically adjusted according to the steps mentioned.

第六圖摘要地描繪具有排列成四乘四陣列的十六個太赫茲-吉赫茲照明器的太赫茲-吉赫茲照明器的正視圖與側視圖,其中這些太赫茲-吉赫茲照明器被嵌入在共通面板。 The sixth diagram abstractly depicts a front view and a side view of a terahertz-Gird illuminator having sixteen terahertz-Gird illuminators arranged in a four by four array, wherein the terahertz-gehz illuminators are embedded In the common panel.

本發明的詳細描繪將藉由以下的實施例討論,這些實施例並非用於限制本發明的範圍,而且可適用於其他應用中。圖示揭露了一些細節,必須理解的是揭露的細節可不同於已透露者,除非是明確限制特徵的情形。 The detailed description of the present invention will be discussed by the following examples, which are not intended to limit the scope of the invention, and are applicable to other applications. The drawings disclose some details, and it must be understood that the disclosed details may differ from those disclosed, unless the features are explicitly limited.

提出的太赫茲-吉赫茲照明器具有一或多個太赫茲-吉赫茲發射器並且集體地使用從這些太赫茲-吉赫茲發射器所發射的所有太赫茲-吉赫茲波,在此這些發射器可以根據要被照射的一或 多個物件的位置而被個別地動態調整。其中,第一A圖摘要地描繪太赫茲-吉赫茲照明器100具有一些相等的太赫茲-吉赫茲照明器110的狀況。如同在第一B圖所摘要地描繪,每一個太赫茲-吉赫茲照明器110有一個太赫茲-吉赫茲光源112與一個太赫茲-吉赫茲透鏡114,其中太赫茲-吉赫茲光源112被放在位於太赫茲-吉赫茲透鏡114後方的焦點或其附近。所發射太赫茲-吉赫茲波的發射角度與指向角度被定義在第一C圖與第一D圖。在第一C圖所顯示的狀況,發射的太赫茲-吉赫茲波199沿著定義為連接太赫茲-吉赫茲透鏡中心與太赫茲-吉赫茲光源中心二者的直線的幾何軸線被傳播,亦即指向角度亦為零度。在第一D圖所顯示的狀況,在此,發射的太赫茲-吉赫茲波199沿著與幾何軸線交錯的方向被傳播,亦即指向角度亦大於零度(不為零的指向角度)。如第一E圖所示,對於每一個太赫茲-吉赫茲發射器110,內部驅動器116可以被用來移動及/或轉動太赫茲-吉赫茲透鏡114與太赫茲-吉赫茲光源112中的至少一者。在另一個例子,如第一F圖所示,對於每一個太赫茲-吉赫茲發射器110,外部驅動器118可以被用來移動及/或轉動太赫茲-吉赫茲透鏡114與太赫茲-吉赫茲光源112中的至少一者。特別是,為了轉動太赫茲-吉赫茲透鏡114,轉軸通常是垂直於太赫茲-吉赫茲透鏡114的幾何中軸。顯而易見地,藉由使用內部驅動器116及/或外部驅動器118,對於每一個太赫茲-吉赫茲照明器110,所發射太赫茲-吉赫茲波119的發射角度與指向角度都是可以動態地調整的。 The proposed terahertz-Girhitz illuminator has one or more terahertz-Girsch transmitters and collectively uses all terahertz-Gird waves emitted from these terahertz-Girsch transmitters, where the transmitters can According to one or The positions of the plurality of objects are individually and dynamically adjusted. Among them, the first A diagram abstractly depicts the condition of the terahertz-Gird illuminator 100 having some equal terahertz-Girth illuminators 110. As depicted schematically in FIG. B, each terahertz-Girth illuminator 110 has a terahertz-Girth source 112 and a terahertz-Girsch lens 114, wherein the terahertz-Girth source 112 is placed At or near the focus behind the terahertz-Girsch lens 114. The emission angle and the pointing angle of the transmitted terahertz-jihz wave are defined in the first C-picture and the first D-picture. In the situation shown in the first C-picture, the transmitted terahertz-Gird-wave 199 is propagated along a geometric axis defined as a line connecting the center of the terahertz-Girsch lens and the center of the terahertz-Girsch source. That is, the pointing angle is also zero. In the situation shown in the first D-picture, the transmitted terahertz-Gird-wave 199 is propagated in a direction staggered with the geometrical axis, that is, the pointing angle is also greater than zero degrees (a non-zero pointing angle). As shown in FIG. E, for each terahertz-girth encoder 110, the internal driver 116 can be used to move and/or rotate at least terahertz-Gird-child lens 114 and terahertz-Girth source 112. One. In another example, as shown in the first F-figure, for each terahertz-girth encoder 110, the external driver 118 can be used to move and/or rotate the terahertz-Girsch lens 114 with terahertz-Girsch At least one of the light sources 112. In particular, to rotate the terahertz-Girsch lens 114, the axis of rotation is generally perpendicular to the geometric center axis of the terahertz-Girsch lens 114. Obviously, by using the internal driver 116 and/or the external driver 118, for each terahertz-Girth illuminator 110, the emission angle and the pointing angle of the transmitted terahertz-Girsch wave 119 can be dynamically adjusted. .

一般來說,太赫茲-吉赫茲透鏡114可以是單一個鏡片元件也是可以由多數個鏡片元件所組成,而且太赫茲-吉赫茲光源112位於太赫茲-吉赫茲透鏡114的焦點或其附近藉以使得太赫茲-吉赫茲光源112所發射的太赫茲-吉赫茲波可以被發射到相對的另一側。因此,太赫茲-吉赫茲光源112所產生的太赫茲-吉赫茲波可以被傳輸經過太赫茲-吉赫茲透鏡114且照明具有有限尺寸位於有限距離的物件。此外,為了避免繞射以及確保小的發射角度可以達成,太赫茲-吉赫茲透鏡114的直徑通常是太赫茲-吉赫茲光源112所產生太赫茲-吉赫茲波的波長的五到十倍。舉例來說,如果太赫茲-吉赫茲照明器100是針對頻率100吉赫茲(GHz)的太赫茲-吉赫茲波所設計,太赫茲-吉赫茲透鏡114的直徑至少須為三十公厘。舉例來說,受限於繞射,若二者的比例為十倍則最小的發射角度約為五度。無論如何,較大直徑的太赫茲-吉赫茲透鏡114也會因為材料成本、尺寸與重量而有一些缺點。此外,太赫茲-吉赫茲透鏡114的厚度並不需要限制,雖然具有較低材料成本、較少太赫茲-吉赫茲波吸收與容易製作等優點的較薄的太赫茲-吉赫茲透鏡114是較佳的。 In general, the terahertz-Girsch lens 114 can be a single lens element or can be composed of a plurality of lens elements, and the terahertz-Girth source 112 is located at or near the focus of the terahertz-Girsch lens 114. The terahertz-gehz wave emitted by the terahertz-Girsch source 112 can be emitted to the opposite side. Thus, the terahertz-Gird wave generated by the terahertz-Girth source 112 can be transmitted through the terahertz-Girsch lens 114 and illuminate objects having a finite size at a finite distance. Furthermore, in order to avoid diffraction and to ensure that a small emission angle is achievable, the diameter of the terahertz-Girsch lens 114 is typically five to ten times the wavelength of the terahertz-Gird wave generated by the terahertz-Girth source 112. For example, if the terahertz-Gird illuminator 100 is designed for a terahertz-gehz wave having a frequency of 100 gigahertz (GHz), the terahertz-Girsch lens 114 must have a diameter of at least thirty millimeters. For example, limited by diffraction, if the ratio of the two is ten times, the minimum emission angle is about five degrees. In any event, larger diameter terahertz-Girth lenses 114 may have some disadvantages due to material cost, size, and weight. In addition, the thickness of the terahertz-Girsch lens 114 does not need to be limited, although a thinner terahertz-Girsch lens 114 having lower material cost, less terahertz-jihz wave absorption, and ease of fabrication is preferred. Good.

除此之外,太赫茲-吉赫茲透鏡114的性能,甚至太赫茲-吉赫茲透鏡114中任何一個鏡片元件的性能,可以是相似於至少下列之一的性能:平凸透鏡(plano-convex lens)、平凹透鏡(plano-concave lens)、凹凸透鏡(concave-convex lens)與凸凹透鏡(convex-concave lens)。在者,對於每一個鏡片 元件,非平面的表面可以是球面的也可以是非球面的,雖然非球面的表面可能因為其可以減少鏡片元件厚度而較有實用性。 In addition, the performance of the terahertz-Girsch lens 114, even the performance of any one of the terahertz-Girsch lenses 114, may be similar to at least one of the following properties: plano-convex lens , a plano-concave lens, a concave-convex lens, and a convex-concave lens. In, for each lens The non-planar surface of the component may be spherical or aspherical, although an aspherical surface may be more practical because it reduces the thickness of the lens component.

本發明的某些實施例摘要地描繪在第二A圖到第二D圖,在此這些實施例關於具有一且唯一個(或視為具有零維陣列)且具有固定指向角度的太赫茲-吉赫茲照明器210的太赫茲-吉赫茲照明器200。在這些實施例,如果太赫茲-吉赫茲光源212和太赫茲-吉赫茲透鏡214間的距離是固定的,所發射的太赫茲-吉赫茲波的照射角度也將相對應地固定。因此,如果物件251與物件253的尺寸並不相等於在太赫茲-吉赫茲波299抵達物件251與物件253時的波束寬度(beam width),所發射的太赫茲-吉赫茲波299將不能適當地照射物件251與物件253。無論如何,藉由使用內部驅動器216來改變太赫茲-吉赫茲透鏡214與太赫茲-吉赫茲光源212間的幾何關係,這些實施例可以動態地調整所發射太赫茲-吉赫茲波299的發射角度(或視為改變所發散太赫茲-吉赫茲波299在抵達物件251與物件253時的波束寬度)藉以恰好覆蓋整個物件251與整個物件253。因此,至少部分的物件251並未被太赫茲-吉赫茲波299所覆蓋的缺點可以被極小化。綜上所述,這些實施例可以藉由適當地照射物件251與物件253來有效率地使用太赫茲-吉赫茲光源212所產生的太赫茲-吉赫茲波299。 Certain embodiments of the present invention are generally depicted in Figures 2A through 2D, where the embodiments relate to terahertz having one and only (or considered to have a zero dimensional array) and having a fixed pointing angle - The terahertz-Gird illuminator 200 of the GHz illuminator 210. In these embodiments, if the distance between the terahertz-Girsch source 212 and the terahertz-Girsch lens 214 is fixed, the angle of illumination of the emitted terahertz-Gird wave will also be correspondingly fixed. Therefore, if the size of the object 251 and the object 253 are not equal to the beam width when the terahertz-Girsch wave 299 reaches the object 251 and the object 253, the transmitted terahertz-Gird wave 299 will not be appropriate. The object 251 and the object 253 are irradiated. In any event, by using the internal driver 216 to change the geometric relationship between the terahertz-Girsch lens 214 and the terahertz-Girth source 212, these embodiments can dynamically adjust the emission angle of the transmitted terahertz-Girsch wave 299. (Or considered to change the beamwidth of the divergent terahertz-Girsch wave 299 when it reaches the object 251 and the object 253) so as to cover the entire object 251 and the entire object 253. Therefore, the disadvantage that at least part of the object 251 is not covered by the terahertz-Girsch wave 299 can be minimized. In summary, these embodiments can efficiently use the terahertz-Girdz wave 299 generated by the terahertz-Girth source 212 by appropriately illuminating the object 251 with the object 253.

本發明的某些實施例摘要地描繪在第三A圖到第三B圖,在此這些實施例係有關於具有排列成等間距(equally-spaced)一維陣列的一些相同的且具有固定指向角度的太赫茲-吉赫茲發 射器310的太赫茲-吉赫茲照明器300。在這些實施例,為了有效率地使用各個太赫茲-吉赫茲發射器310以及均勻地照明與太赫茲-吉赫茲照明器300相距任何距離的物件35,這些太赫茲-吉赫茲發射器310所發射的太赫茲-吉赫茲波的發射角度應該通同,藉以使得這些太赫茲-吉赫茲發射器310所共同對應到的照明區域在任何物件距離時都能維持在與此陣列尺寸相當的大小。舉例來說,若每個太赫茲-吉赫茲發射器310所照射出來的太赫茲-吉赫茲波399的分布都可推定為高斯輪廓(Gaussian profile),每一個太赫茲-吉赫茲發射器310都可以具有相等的且定義為2*tan-1(0.5*陣列週期/(物件距離))的發射角度,在此陣列週期為太赫茲-吉赫茲發射器陣列的週期性間距。換句話說,每當物件距離已被決定,所有的太赫茲-吉赫茲發射器310都可以被調整到具有需要的太赫茲-吉赫茲波399的發射角度藉以均勻地照明物件。為了提供一個特定的樣例,如第三C圖所示,這個照明圖案對應到四個各自具有一瓦功率且以間距四十公分排列成一直線的太赫茲-吉赫茲發射器310。如果所有太赫茲-吉赫茲發射器310的照射角度都是可以正確地且動態地調整,在沿著照明平面的軸線上可以得到均勻的照明輪廓。更多地,如第三D圖所示,取決於物件距離,每一個太赫茲-吉赫茲發射器的發射角度可以相對應地變化。綜上所述,內部驅動器可以被應用來根據要被照明物件的物件距離而動態地調整太赫茲-吉赫茲光源312與太赫茲-吉赫茲透鏡314間的距離。 Certain embodiments of the present invention are generally depicted in Figures A through 3B, where the embodiments are somewhat identical and have a fixed orientation with an array of equally-spaced one-dimensional arrays. The terahertz-Gird illuminator 300 of the terahertz-Girsch transmitter 310. In these embodiments, in order to efficiently use the individual terahertz-Girditz emitters 310 and to uniformly illuminate objects 35 at any distance from the terahertz-Girth illuminator 300, these terahertz-Girsch transmitters 310 emit The emission angles of the terahertz-gehz waves should be the same, so that the illumination regions corresponding to these terahertz-Girsch emitters 310 can be maintained at a size comparable to the size of the array at any object distance. For example, if the distribution of terahertz-gehz waves 399 illuminated by each terahertz-girsch transmitter 310 is presumed to be a Gaussian profile, each terahertz-girth transmitter 310 There may be equal and defined emission angles of 2*tan -1 (0.5*array period/(object distance)), where the array period is the periodic spacing of the terahertz-Girsch emitter array. In other words, whenever the object distance has been determined, all of the terahertz-girsch transmitters 310 can be adjusted to have the desired terahertz-gehz wave 399 emission angle to evenly illuminate the object. In order to provide a specific example, as shown in the third C diagram, this illumination pattern corresponds to four terahertz-Girdhertz emitters 310 each having one watt of power and arranged in a line at a pitch of forty centimeters. If the illumination angles of all terahertz-Girsch transmitters 310 are correctly and dynamically adjusted, a uniform illumination profile can be obtained on the axis along the illumination plane. More, as shown in the third D diagram, the emission angle of each terahertz-Girsch transmitter can be correspondingly varied depending on the object distance. In summary, the internal driver can be applied to dynamically adjust the distance between the terahertz-Gird source 312 and the terahertz-Girsch lens 314 depending on the object distance of the item to be illuminated.

本發明的某些實施例摘要地描繪在第四A圖與第四B圖,在此這些實施例有關於具有排列成一維陣列的一些相似的太赫茲-吉赫茲發射器410的太赫茲-吉赫茲照明器400。在這些實施例,每一個太赫茲-吉赫茲照明器410都可以動態地調整其指向角度與發射角度,使得這些太赫茲-吉赫茲發射器400可以有效率地與集體地照明位於任何物件距離且具有任何尺寸的物件451/452/453。每一個太赫茲-吉赫茲發射器400的指向角度與發射角度都可以被動態地調整到一個特別的組合,藉以使得從這些動態調整的太赫茲-吉赫茲發射器410所發射的太赫茲-吉赫茲波可以覆蓋住並且也只有覆蓋住這些物件451/452/453。舉例來說,若這些太赫茲-吉赫茲發射器410都可以被推定為相等間距的並且所發射的太赫茲-吉赫茲波499具有高斯輪廓,每一個太赫茲-吉赫茲發射器410可以具有相同的且被定義為2*tan-1(0.5*FWHM/(物件距離))的發射角度,在此FWHM為在物件上照明的半峰全高(full width half maximum)。為了使用所有的太赫茲-吉赫茲發射器410來均勻地照明物件,半峰全高等於需要的照明面積除以這些太赫茲-吉赫茲發射器410的軸向數目(axial number)。對於每一個太赫茲-吉赫茲照明器410,為了調整指向角度,內部驅動器可以被用來改變太赫茲-吉赫茲光源與太赫茲-吉赫茲透鏡的相對位置。內部驅動器也可以被用來轉動太赫茲-吉赫茲透鏡及/或太赫茲-吉赫茲光源,甚至外部驅動器可以被用來移動及/或轉動太赫茲-吉赫茲發射器410,藉以動態地調整指向角度。在整 個太赫茲-吉赫茲照明器400的第X行(或是第X列)的太赫茲-吉赫茲照明器410的指向角度被定義為tan-1(((陣列週期)*(0.5*(軸向數目)-1)-X)/((半峰全高*(0.5*(軸向數目)-1)-X)),其中軸向數目(axial number/ANOS)為太赫茲-吉赫茲照明器410的軸向數目。舉例來說,如第四C圖所示,樣例的照明圖案對應到分別具有一瓦功率並在照明平面上被排列成具有四十公分週期的五個太赫茲-吉赫茲發射器410被應用來照明距離五公尺外的物件45的狀況。明顯地,在沿著這五個太赫茲-吉赫茲發射器410的陣列軸線上,照明輪廓為均勻的。 Certain embodiments of the present invention are generally depicted in Figures 4A and 4B, where embodiments relate to terahertz-Ji with some similar terahertz-Girdher transmitters 410 arranged in a one-dimensional array. Hertz illuminator 400. In these embodiments, each terahertz-Girth illuminator 410 can dynamically adjust its pointing angle and launch angle so that these terahertz-Gird-type emitters 400 can efficiently illuminate at any object distance with collective illumination. Objects 451/452/453 of any size. The directional angle and the angle of emission of each terahertz-Girsch transmitter 400 can be dynamically adjusted to a particular combination whereby terahertz-Ji transmitted from these dynamically adjusted terahertz-Girditz transmitters 410 Hertz waves can cover and only cover these objects 451/452/453. For example, if these terahertz-Gird-type transmitters 410 can all be estimated to be equally spaced and the transmitted terahertz-Gird-waves 499 have a Gaussian profile, each terahertz-Gird-type transmitter 410 can have the same And is defined as the emission angle of 2*tan -1 (0.5*FWHM/(object distance)), where FWHM is the full width half maximum illuminated on the object. In order to uniformly illuminate the object using all of the terahertz-Girditz emitters 410, the full half-height is equal to the required illumination area divided by the axial number of these terahertz-girtz emitters 410. For each terahertz-Girth illuminator 410, an internal driver can be used to change the relative position of the terahertz-Girsch source to the terahertz-Girsch lens in order to adjust the pointing angle. The internal driver can also be used to rotate a terahertz-Girsch lens and/or a terahertz-Girth source, and even an external driver can be used to move and/or rotate the terahertz-Girsch transmitter 410, thereby dynamically adjusting the orientation. angle. The pointing angle of the terahertz-Gird illuminator 410 in the Xth row (or the Xth column) of the entire terahertz-Girsch illuminator 400 is defined as tan -1 (((array period)*) (0.5*( Axial number) -1) - X) / ((half-peak full height * (0.5 * (axial number) - 1) - X)), where the axial number (ANOS) is terahertz - gigahertz illumination The axial number of the device 410. For example, as shown in the fourth C-picture, the illumination pattern of the example corresponds to five terahertzs each having one watt of power and arranged on the illumination plane to have a forty centimeters period - The gigahertz emitter 410 is applied to illuminate the condition of the object 45 that is five meters away. Obviously, the illumination profile is uniform along the array axis along the five terahertz-girth emitters 410.

顯然地,如上述這些實施例所提到的,本發明有二個關鍵特徵。第一,對於每一個太赫茲-吉赫茲發射器,太赫茲-吉赫茲光源與太赫茲-吉赫茲透鏡間的幾何關係為可以動態調整的,進而使得其所發射的太赫茲-吉赫茲波的發射角度及/或指向角度也可以被動態調整。第二,對於排列成陣列的一些太赫茲-吉赫茲發射器,不同的太赫茲-吉赫茲發射器可以被獨立地與動態地調整,藉以使得所有太赫茲-吉赫茲發射器所發射的太赫茲-吉赫茲波可以有效地與均勻地照明位於不同物件位置的不同物件。因此,只要這二個關鍵特徵可以實現,其他細節並不需要限制。 Obviously, as mentioned in the above embodiments, the invention has two key features. First, for each terahertz-Girsch transmitter, the geometric relationship between the terahertz-Girsch source and the terahertz-Girsch lens is dynamically tunable, which in turn causes the terahertz-gehz wave to be emitted. The launch angle and/or the pointing angle can also be dynamically adjusted. Second, for some terahertz-Girsch transmitters arranged in an array, different terahertz-Girsch transmitters can be independently and dynamically adjusted so that all terahertz-Girsch transmitters emit terahertz - The GHz wave can effectively illuminate different objects located at different object locations. Therefore, as long as these two key features are achievable, other details do not need to be limited.

舉例來說,對於每一個太赫茲-吉赫茲發射器,太赫茲-吉赫茲光源與太赫茲-吉赫茲透鏡間的幾何關係可以透過下列步驟的至少某一者來調整:沿著幾何軸線移動太赫茲-吉赫茲光源、沿著幾何軸線移動太赫茲-吉赫茲透鏡、沿著與幾何軸線相互垂 直會相互交叉的一線段(直線線段、曲線線段、蜿蜒線段或其他)移動太赫茲-吉赫茲光源、沿著與幾何軸線相互垂直或相互交叉的一線段(直線線段、曲線線段、蜿蜒線段或其他)移動太赫茲-吉赫茲透鏡、繞著與幾何軸線相互垂直或相互交叉的一方向轉動太赫茲-吉赫茲光源、以及繞著與幾何軸線相互垂直或相互交叉的一方向轉動太赫茲-吉赫茲透鏡。舉例來說,對於排列成陣列的數個太赫茲-吉赫茲發射器,從這些太赫茲-吉赫茲發射器所發射的太赫茲-吉赫茲波的指向角度與發射角度可以透過下列步驟的至少某一者來調整:自由地轉動至少一太赫茲-吉赫茲發射器而不改變被轉動太赫茲-吉赫茲發射器內部中太赫茲-吉赫茲光源與太赫茲-吉赫茲透鏡的幾何關係、自由地移動至少一太赫茲-吉赫茲發射器而不改變被移動太赫茲-吉赫茲發射器內部中太赫茲-吉赫茲光源與太赫茲-吉赫茲透鏡的幾何關係、以及改變至少一太赫茲-吉赫茲發射器內部中太赫茲-吉赫茲光源與太赫茲-吉赫茲透鏡的幾何關係。僅僅作為樣例,第五A圖摘要地描繪具有排列成一維陣列的三個太赫茲-吉赫茲發射器的太赫茲-吉赫茲照明器,而第五B圖到第五F圖摘要地描繪這三個太赫茲-吉赫茲發射器是怎樣的根據上述這些步驟來分別地動態地調整。在此,太赫茲-吉赫茲照明器被標示為500,太赫茲-吉赫茲發射器被標示為510,而太赫茲-吉赫茲光源與太赫茲-吉赫茲透鏡分別被標示為512與514。 For example, for each terahertz-Girhitz emitter, the geometric relationship between the terahertz-Gird source and the terahertz-Girsch lens can be adjusted by at least one of the following steps: moving along the geometric axis too Hertz-Girsch light source, moving a terahertz-Girsch lens along the geometric axis, hangs along the geometric axis A line of straight lines (straight line segments, curved line segments, squall line segments, or others) that move straight along a line that is perpendicular or intersecting with the geometric axis (straight line segment, curve segment, 蜿蜒a line or other) moving the terahertz-Girsch lens, rotating the terahertz-Girth source in a direction perpendicular to or intersecting the geometric axis, and rotating the terahertz in a direction perpendicular or intersecting the geometric axis - Giltz lens. For example, for a plurality of terahertz-Gird-type emitters arranged in an array, the directional angle and the emission angle of the terahertz-gehz wave emitted from the terahertz-Girsch emitters can be transmitted through at least one of the following steps One to adjust: freely rotate at least one terahertz-Girhitz transmitter without changing the geometric relationship between the terahertz-Girsch source and the terahertz-Girsch lens in the inside of the rotated terahertz-Girsch transmitter Moving at least one terahertz-Girhitz transmitter without changing the geometry of the terahertz-Girsch source in the terahertz-Girsch transmitter and the terahertz-Girsch lens, and changing at least one terahertz-Girsch The geometric relationship between the terahertz-Girsch source and the terahertz-Girsch lens in the interior of the emitter. Merely as an example, Figure 5A abstractly depicts a terahertz-Gird illuminator with three terahertz-Gird-type emitters arranged in a one-dimensional array, while Figures 5B through V represent a summary of this How the three terahertz-Girhitz transmitters are dynamically adjusted separately according to the above steps. Here, the terahertz-Girsch illuminator is labeled 500, the terahertz-Girsch transmitter is labeled 510, and the terahertz-Girth source and the terahertz-Girsch lens are labeled 512 and 514, respectively.

總結來說,對於每一個太赫茲-吉赫茲發射器510,所發射太赫茲-吉赫茲波的發射角度可以藉由至少下列之一來調整: 沿著幾何軸線移動太赫茲-吉赫茲透鏡514以及沿著幾何軸線移動太赫茲-吉赫茲光源512。此外,所發射太赫茲-吉赫茲波的指向角度可以藉由至少下列之一來調整:繞著垂直於或交叉於幾何軸線的方向轉動太赫茲-吉赫茲透鏡514、繞著垂直於或交叉於幾何軸線的方向轉動太赫茲-吉赫茲光源512、沿著垂直於或交叉於幾何軸線的方向移動太赫茲-吉赫茲透鏡514、沿著垂直於或交叉於幾何軸線的方向移動太赫茲-吉赫茲光源512、以及繞著垂直於或交叉於幾何軸線的方向轉動太赫茲-吉赫茲發射器510。 In summary, for each terahertz-Girditz transmitter 510, the emission angle of the transmitted terahertz-Girsch wave can be adjusted by at least one of the following: The terahertz-Girsch lens 514 is moved along the geometric axis and the terahertz-Gird source 512 is moved along the geometric axis. Furthermore, the angle of incidence of the transmitted terahertz-Girsch wave can be adjusted by at least one of: rotating the terahertz-Girsch lens 514 about a direction perpendicular to or crossing the geometric axis, about perpendicular or intersecting Rotating the terahertz-Girth source 512 in the direction of the geometric axis, moving the terahertz-Girth lens 514 in a direction perpendicular to or crossing the geometric axis, moving the terahertz-jihz along a direction perpendicular or intersecting the geometric axis Light source 512, and rotating terahertz-Girditz emitter 510 about a direction perpendicular or intersecting the geometric axis.

更多的,一般來說,為了確保大多數的太赫茲-吉赫茲波可以被太赫茲-吉赫茲透鏡514所動態地調整,轉動角度往往是等於或小於四十五度。此外,一般來說,太赫茲-吉赫茲光源512和太赫茲-吉赫茲透鏡514間的距離是相等於或是小於太赫茲-吉赫茲透鏡514的焦距長度(或說是等效焦距長度),藉以確保大多數的由太赫茲-吉赫茲光源512所發射的太赫茲-吉赫茲波可以被動態地調整並被傳輸通過太赫茲-吉赫茲透鏡514。藉此,在一些樣例中,內部驅動器可以被設計來沿著幾何軸線或是與幾何軸線交叉的方向移動太赫茲-吉赫茲透鏡,在此太赫茲-吉赫茲透鏡與太赫茲-吉赫茲光源在沿著幾何軸線的距離被維持在等於或小於太赫茲-吉赫茲透鏡的半徑。在一些樣例中,內部驅動器可以被設計來沿著幾何軸線或是與幾何軸線交叉的方向移動太赫茲-吉赫茲光源,在此太赫茲-吉赫茲透鏡與太赫茲-吉赫茲光源在沿著幾何軸線的距離被維持在等於或小於太赫 茲-吉赫茲透鏡的半徑。在一些樣例中,內部驅動器可以被配置來繞著與幾何軸線交叉的方向將太赫茲-吉赫茲透鏡轉動一個等於或小於四十五度的轉動角度,或可以被配置來繞著與幾何軸線垂直的方向將太赫茲-吉赫茲透鏡轉動一個等於或小於四十五度的轉動角度。同樣地,在一些樣例中,內部驅動器可以被配置來繞著與幾何軸線交叉的方向將太赫茲-吉赫茲光源轉動一個等於或小於四十五度的轉動角度,或可以被配置來繞著與幾何軸線垂直的方向將太赫茲-吉赫茲光源轉動一個等於或小於四十五度的轉動角度。同樣地,在一些樣例中,外部驅動器可以被配置來繞著與幾何軸線交叉的方向將太赫茲-吉赫茲發射器轉動一個等於或小於四十五度的轉動角度,或可以被配置來繞著與幾何軸線垂直的方向將太赫茲-吉赫茲發射器轉動一個等於或小於四十五度的轉動角度。 More generally, in order to ensure that most of the terahertz-Gird waves can be dynamically adjusted by the terahertz-Girsch lens 514, the angle of rotation is often equal to or less than forty-five degrees. Moreover, in general, the distance between the terahertz-Girth source 512 and the terahertz-Girsch lens 514 is equal to or less than the focal length (or equivalent focal length) of the terahertz-Girsch lens 514, This ensures that most of the terahertz-Gird waves emitted by the terahertz-Girsch source 512 can be dynamically adjusted and transmitted through the terahertz-Girsch lens 514. Thereby, in some examples, the internal driver can be designed to move the terahertz-Girsch lens along the geometric axis or in a direction intersecting the geometric axis, where the terahertz-Girsch lens and the terahertz-Girth source The distance along the geometric axis is maintained at a radius equal to or less than the terahertz-Girsch lens. In some examples, the internal driver can be designed to move a terahertz-Gird source along a geometric axis or a direction intersecting the geometric axis, where the terahertz-Girsch lens and the terahertz-Girth source are along The distance of the geometric axis is maintained at or below the terahertz The radius of the Zigzil lens. In some examples, the internal driver can be configured to rotate the terahertz-Girth lens about a rotation angle equal to or less than forty-five degrees about a direction intersecting the geometric axis, or can be configured to surround the geometric axis The vertical direction rotates the terahertz-Girsch lens by a rotation angle equal to or less than forty-five degrees. Similarly, in some examples, the internal driver can be configured to rotate the terahertz-Girth source in a direction that intersects the geometric axis by a rotation angle equal to or less than forty-five degrees, or can be configured to be wound around The terahertz-Girth source is rotated by a direction perpendicular to the geometric axis by a rotation angle equal to or less than forty-five degrees. Similarly, in some examples, the external drive can be configured to rotate the terahertz-girth encoder in a direction that intersects the geometric axis by a rotation angle equal to or less than forty-five degrees, or can be configured to be wound The terahertz-Girheiser transmitter is rotated by a direction perpendicular to the geometric axis by a rotation angle equal to or less than forty-five degrees.

進一步地,雖然在上述實施例中只有描繪零維陣列與一維陣列,本發明也可以將多數個太赫茲-吉赫茲發射器排列成二維陣列或三維陣列。在此,陣列的種種細節並不受限制。舉例來說,零維陣列可以是單一點,代表只有一個太赫茲-吉赫茲發射器被使用。舉例來說,如果二個或更多個太赫茲-吉赫茲發射器被使用,一維陣列可以是直線、曲線或蜿蜒線段,而二維陣列可以是正方形、圓形、多邊形、平面狀表面、曲面狀表面、平坦的表面或是起伏的表面。舉例來說,對於三維陣列,二個或更多個太赫茲-吉赫茲發射器可以在X-Y平面上被分布為如上述的二維陣列但是在Z方向上至少二個太赫茲-吉赫茲發射器沿 著Z軸具有不同的位置。特別是,為了有效地與均勻地照明這些物件,將這些太赫茲-吉赫茲發射器等間距地排列是有利的但不是強制性的。在此,第六圖摘要地描繪具有排列成四乘四陣列的十六個太赫茲-吉赫茲照明器的太赫茲-吉赫茲照明器的正視圖與側視圖,其中這些太赫茲-吉赫茲照明器被嵌入在共通面板。 Further, although only zero-dimensional arrays and one-dimensional arrays are depicted in the above embodiments, the present invention can also arrange a plurality of terahertz-Gird-type emitters into a two-dimensional array or a three-dimensional array. Here, the details of the array are not limited. For example, a zero-dimensional array can be a single point, representing that only one terahertz-Girsch transmitter is used. For example, if two or more terahertz-Girsch emitters are used, the one-dimensional array can be a straight line, a curved line or a meander line segment, and the two-dimensional array can be a square, circular, polygonal, planar surface. , a curved surface, a flat surface, or an undulating surface. For example, for a three-dimensional array, two or more terahertz-Gird-type emitters can be distributed in the XY plane as a two-dimensional array as described above but at least two terahertz-Girsch emitters in the Z direction along The Z axis has different positions. In particular, in order to efficiently and uniformly illuminate these objects, it is advantageous, but not mandatory, to arrange these terahertz-Girsch emitters equally spaced. Here, the sixth diagram abstractly depicts front and side views of a terahertz-Gird illuminator having sixteen terahertz-Girth illuminators arranged in a four by four array, wherein these terahertz-Girth illuminations The device is embedded in a common panel.

本發明所提出的太赫茲-吉赫茲照明器的一個優點是需要的太赫茲-吉赫茲透鏡的尺寸可以有理由地縮小,這是因為每一個太赫茲-吉赫茲光源皆與一個太赫茲-吉赫茲透鏡搭配成對,而且不同的太赫茲-吉赫茲光源與不同的太赫茲-吉赫茲透鏡搭配。由於太赫茲-吉赫茲波較長的波長以及太赫茲-吉赫茲光源較低的功率性能,使用多數個太赫茲-吉赫茲光源是普遍的但是這些太赫茲-吉赫茲光源的組合的尺寸將隨之變大。因此,使用多數個小型太赫茲-吉赫茲透鏡可以較使用少數幾個大型太赫茲-吉赫茲透鏡較為便宜與較為輕穎。 An advantage of the terahertz-Girth illuminator proposed by the present invention is that the size of the required terahertz-Girsch lens can be reasonably reduced, since each terahertz-Girth source is associated with a terahertz-ji Hertz lenses are paired and different terahertz-Girsch sources are matched with different terahertz-Girsch lenses. Due to the longer wavelengths of terahertz-Girsch waves and the lower power performance of terahertz-Girsch sources, it is common to use most terahertz-Girth sources, but the size of these terahertz-Girsch sources will vary. It has become bigger. Therefore, the use of a plurality of small terahertz-Girsch lenses can be cheaper and lighter than using a few large terahertz-Girsch lenses.

附帶地,為了極小化尺寸以提供緊湊的與可以手提的太赫茲-吉赫茲照明器,每一個太赫茲-吉赫茲發射器都可以緊緊相鄰於鄰近的其他太赫茲-吉赫茲發射器。另外,為了與預訂的照明器運作環境相匹配或是與這些物件的位置與尺寸的可能分布範圍相互匹配,每個太赫茲-吉赫茲發射器皆與其他的太赫茲-吉赫茲發射器相互分離是較為有利的。 Incidentally, in order to miniaturize the size to provide a compact and portable terahertz-Gird illuminator, each terahertz-Girsch transmitter can be placed in close proximity to other adjacent terahertz-Girsch transmitters. In addition, each terahertz-Girsch transmitter is separated from other terahertz-Girsch transmitters in order to match the intended illuminator operating environment or to match the possible distribution of the position and size of the objects. It is more advantageous.

除此之外,太赫茲-吉赫茲透鏡的材料(或說是每一個鏡片元件的材料)可以是玻璃、石英或是任何其他可以讓太赫茲-吉 赫茲波穿透的材料。此外,內部驅動器與外部驅動器的細節也是不受限制的。舉例來說,馬達與機械結構的組合被可以用來移動太赫茲-吉赫茲光源及/或太赫茲-吉赫茲透鏡藉以動態地調整這二者間距離,而線性制動器可以被用來移動太赫茲-吉赫茲發射器,以及轉動制動器可以被用來轉動太赫茲-吉赫茲發射器。附帶地,為了進一步改善太赫茲-吉赫茲發射器所發射太赫茲-吉赫茲波的品質,或可以將太赫茲-吉赫茲透鏡的至少一部分用反反射層(anti-reflection layer)來塗蓋也或可以將一或多個鏡片元件的至少一部份用反反射層來塗蓋,當然也或可以將用以固持太赫茲-吉赫茲透鏡與太赫茲-吉赫茲光源的透鏡夾具的至少一部份表面用反反射層來塗蓋(或說覆蓋)。在此,反反射層可以是由任何可以吸收太赫茲-吉赫茲波與極小化自太赫茲-吉赫茲光源而來的太赫茲-吉赫茲波的反射的材料。僅僅作為樣例,反反射層的材料可以是可膨脹聚丙烯(Expandable Polypropylene,EPP),甚至可以是混雜有碳顆粒、銀顆粒或其他導電性顆粒的可膨脹聚丙烯。 In addition, the material of the terahertz-Girsch lens (or the material of each lens element) can be glass, quartz or any other that can make terahertz-ji Hertz wave penetrates the material. In addition, the details of the internal drive and the external drive are also unlimited. For example, a combination of motor and mechanical structure can be used to move a terahertz-Girth source and/or a terahertz-Girsch lens to dynamically adjust the distance between them, while a linear brake can be used to move the terahertz The Girsch transmitter, as well as the rotary brake, can be used to rotate the terahertz-Girsch transmitter. Incidentally, in order to further improve the quality of the terahertz-Girsch wave emitted by the terahertz-Girsch transmitter, at least a part of the terahertz-Girsch lens may be coated with an anti-reflection layer. Or at least a portion of the one or more lens elements may be coated with a reflective layer, or at least one of the lens holders for holding the terahertz-Girsch lens and the terahertz-Girth source may be used. The surface is covered (or covered) with a reflective layer. Here, the anti-reflection layer may be any material that can absorb terahertz-Girsch waves and minimize the reflection of terahertz-gehz waves from a terahertz-Girsch source. Merely by way of example, the material of the antireflective layer may be Expandable Polypropylene (EPP), or even an expandable polypropylene mixed with carbon particles, silver particles or other conductive particles.

雖然上述實施例中都是使用相同的太赫茲-吉赫茲發射器來建構太赫茲-吉赫茲照明器,本發明可以使用不同的太赫茲-吉赫茲發射器來建構太赫茲-吉赫茲照明器。換句話說,本發明可以使用具有不同太赫茲-吉赫茲透鏡及/或不同太赫茲-吉赫茲光源的不同太赫茲-吉赫茲發射器,雖然動態地調整由不同的太赫茲-吉赫茲發射器所形成的太赫茲-吉赫茲照明器會比動態地調整由相同的太赫茲-吉赫茲發射器所形成的太赫茲-吉赫茲照 明器來的複雜。舉例來說,具有不同的太赫茲-吉赫茲透鏡的不同的太赫茲-吉赫茲發射器可能需要太赫茲-吉赫茲光源與太赫茲-吉赫茲透鏡間的不同幾何關係來使得自每個太赫茲-吉赫茲發射器所發射的太赫茲-吉赫茲波具有相似的(甚至相等的)指向角度或發射角度。 Although the same embodiment uses the same terahertz-Girsch transmitter to construct the terahertz-Gird illuminator, the present invention can use different terahertz-Girsch transmitters to construct the terahertz-Gird illuminator. In other words, the present invention can use different terahertz-Girditz transmitters with different terahertz-Girsch lenses and/or different terahertz-Girth sources, although dynamically adjusted by different terahertz-Girsch transmitters The resulting terahertz-Girsch illuminator will dynamically adjust the terahertz-Girsch photo formed by the same terahertz-Girsch transmitter The complexity of the Ming instrument. For example, different terahertz-Girhitz emitters with different terahertz-Girsch lenses may require different geometric relationships between terahertz-Girsch sources and terahertz-Girsch lenses to make each terahertz The terahertz-gehz waves emitted by the Girsch transmitter have similar (even equal) pointing angles or emission angles.

所提出的太赫茲-吉赫茲照明器的種種應用可以摘要地描述如下。在太赫茲-吉赫茲照明器被嵌入在太赫茲-吉赫茲影像系統的狀況,一個裝置被用來偵測物件距離(像是深度影像器或是雷達系統)然後一個太赫茲-吉赫茲照明器被搭配使用,深度影像器或是雷達系統的角色是發現有興趣物件的位置,然後太赫茲-吉赫茲照明器相對應地運作來使得太赫茲-吉赫茲波聚焦在有興趣的物件,像是均勻地且有效率地僅僅照射在有興趣的物件。如此的方式可以改善太赫茲-吉赫茲影像系統的信躁比(signal-to-noise-ratio)。 The various applications of the proposed terahertz-Girsch illuminators can be summarized as follows. In the state of the terahertz-Girhez illuminator embedded in the terahertz-Girth image system, a device is used to detect the object distance (such as a depth imager or radar system) and then a terahertz-Girsch illuminator Used together, the role of the depth imager or radar system is to find the location of the object of interest, and then the terahertz-Girsch illuminator operates correspondingly to focus the terahertz-gehz wave on objects of interest, like Uniformly and efficiently illuminate only objects of interest. Such a way can improve the signal-to-noise-ratio of the terahertz-Ghiz image system.

顯然地,依照上面實施例中的描繪,本發明可能有許多的修正與差異。因此需在其附加的權利請求項的範圍內加以理解,除上述詳細描繪外,本發明還可以廣泛地在其他的實施例中施行。上述僅為本發明的較佳實施例而已,並非用以限定本發明的申請專利範圍;凡其它未脫離本發明所揭示的精神下所完成的等效改變或修飾,均應包含在下述申請專利範圍內。 Obviously, many modifications and differences may be made to the invention in light of the above description. It is therefore to be understood that within the scope of the appended claims, the invention may be The above are only the preferred embodiments of the present invention, and are not intended to limit the scope of the claims of the present invention; any equivalent changes or modifications made without departing from the spirit of the present invention should be included in the following patents. Within the scope.

Claims (21)

一種太赫茲-吉赫茲照明器,包含:一太赫茲-吉赫茲發射器,其具有一太赫茲-吉赫茲光源與一太赫茲-吉赫茲透鏡;在此,太赫茲-吉赫茲發射器的發射角度與指向角度二者中的至少一者可以動態地調整;在此,發射角度定義為太赫茲-吉赫茲發射器所發射太赫茲-吉赫茲波的角度範圍;在此,指向角度定義為介於所發射太赫茲-吉赫茲波的中間與幾何軸線之間的角度,其中幾何軸線定義為連接太赫茲-吉赫茲透鏡中心與太赫茲-吉赫茲光源中心二者的直線。 A terahertz-Girth illuminator comprising: a terahertz-Girsch transmitter having a terahertz-Gird source and a terahertz-Girsch lens; here, the emission of the terahertz-Girsch transmitter At least one of an angle and a pointing angle can be dynamically adjusted; here, the angle of emission is defined as the angular range of the terahertz-Gird wave emitted by the terahertz-Girditz transmitter; here, the pointing angle is defined as The angle between the middle of the transmitted terahertz-Girsch wave and the geometrical axis, where the geometric axis is defined as the line connecting the center of the terahertz-Girsch lens to the center of the terahertz-Girsch source. 如申請專利範圍第1項所述的太赫茲-吉赫茲照明器,在此太赫茲-吉赫茲透鏡的直徑為太赫茲-吉赫茲光源所產生太赫茲-吉赫茲波的波長的至少五到十倍。 A terahertz-Gird illuminator as described in claim 1, wherein the terahertz-Girsch lens has a diameter of at least five to ten of a wavelength of a terahertz-Gird-wave generated by a terahertz-Gird source. Times. 如申請專利範圍第1項所述的太赫茲-吉赫茲照明器,在此太赫茲-吉赫茲透鏡可以為單一個鏡片元件或是多數個鏡片元件的組合。 A terahertz-Gird illuminator as described in claim 1, wherein the terahertz-Girsch lens can be a single lens element or a combination of a plurality of lens elements. 如申請專利範圍第3項所述的太赫茲-吉赫茲照明器,在此至少一個鏡片元件的至少一個表面為球面的或非球面的。 The terahertz-Gird illuminator of claim 3, wherein at least one surface of the at least one lens element is spherical or aspherical. 如申請專利範圍第3項所述的太赫茲-吉赫茲照明器,在此至少一鏡片元件的性能相等於至少下列某者的性能:一平凹透鏡、一平凸透鏡、一凹凸透鏡與一凸凹透鏡。 A terahertz-Gird illuminator as claimed in claim 3, wherein the at least one lens element has a performance equal to at least one of the following: a plano-concave lens, a plano-convex lens, a meniscus lens and a convex-concave lens. 如申請專利範圍第1項所述的太赫茲-吉赫茲照明器,在此太赫茲-吉赫茲光源位於太赫茲-吉赫茲透鏡的焦點上或其附近藉以使得太赫茲-吉赫茲光源所產生的太赫茲-吉赫茲波可以被發射到相對的一側。 A terahertz-Gird illuminator as claimed in claim 1, wherein the terahertz-Girth source is located at or near the focus of the terahertz-Girsch lens to thereby produce a terahertz-Gird source Terahertz-Girsch waves can be emitted to the opposite side. 如申請專利範圍第1項所述的太赫茲-吉赫茲照明器,更包含至少下列之一:一內部驅動器,被配置來沿著幾何軸線移動太赫茲-吉赫茲光源;以及一內部驅動器,被配置來沿著幾何軸線移動太赫茲-吉赫茲透鏡。 The terahertz-Gird illuminator of claim 1, further comprising at least one of: an internal driver configured to move the terahertz-Girth source along the geometric axis; and an internal driver Configure to move the terahertz-Girsch lens along the geometric axis. 如申請專利範圍第1項所述的太赫茲-吉赫茲照明器,更包含至少下列之一:一內部驅動器,被配置來轉動太赫茲-吉赫茲透鏡;以及一內部驅動器,被配置來轉動太赫茲-吉赫茲光源。 The terahertz-Gird illuminator of claim 1, further comprising at least one of: an internal driver configured to rotate the terahertz-Girsch lens; and an internal driver configured to rotate too Hertz-Girsch light source. 如申請專利範圍第1項所述的太赫茲-吉赫茲照明器,更包含一外部驅動器,其被配置來轉動及/或移動整個太赫茲-吉赫茲發射器而且不會改變太赫茲-吉赫茲光源與太赫茲-吉赫茲透 鏡間的幾何關係。 The terahertz-Gird illuminator of claim 1, further comprising an external driver configured to rotate and/or move the entire terahertz-Girditz transmitter without changing the terahertz-Girsch Light source and terahertz-jihs The geometric relationship between the mirrors. 如申請專利範圍第7項所述的太赫茲-吉赫茲照明器,更包含至少下列之一:內部驅動器被配置來沿著幾何軸線移動太赫茲-吉赫茲透鏡,在此太赫茲-吉赫茲透鏡與太赫茲-吉赫茲光源間的距離保持在等於或小於太赫茲-吉赫茲透鏡的半徑;內部驅動器被配置來沿著與幾何軸線交叉的方向移動太赫茲-吉赫茲透鏡,在此太赫茲-吉赫茲透鏡與太赫茲-吉赫茲光源間的距離保持在等於或小於太赫茲-吉赫茲透鏡的半徑;內部驅動器被配置來沿著幾何軸線移動太赫茲-吉赫茲光源,在此太赫茲-吉赫茲透鏡與太赫茲-吉赫茲光源間的距離被保持在等於或小於太赫茲-吉赫茲透鏡的半徑;內部驅動器被配置來沿著與幾何軸線交叉的方向移動太赫茲-吉赫茲光源,在此太赫茲-吉赫茲透鏡與太赫茲-吉赫茲光源間的距離保持在等於或小於太赫茲-吉赫茲透鏡的半徑;內部驅動器被配置來沿著與太赫茲-吉赫茲透鏡幾何中軸交叉的方向轉動太赫茲-吉赫茲透鏡,其中轉動角度等於或小於45度;內部驅動器被配置來沿著與太赫茲-吉赫茲光源幾何中軸交叉的方向轉動太赫茲-吉赫茲透鏡,其中轉動角度等於或小於45度;內部驅動器被配置來沿著與太赫茲-吉赫茲透鏡幾何中軸 交叉的方向轉動太赫茲-吉赫茲光源,其中轉動角度等於或小於45度;內部驅動器被配置來沿著與太赫茲-吉赫茲光源幾何中軸交叉的方向轉動太赫茲-吉赫茲光源,其中轉動角度等於或小於45度;外部驅動器被配置來沿著與太赫茲-吉赫茲透鏡幾何中軸交叉的方向轉動太赫茲-吉赫茲發射器,其中轉動角度等於或小於45度;以及外部驅動器被配置來沿著與太赫茲-吉赫茲光源幾何中軸交叉的方向轉動太赫茲-吉赫茲發射器,其中轉動角度等於或小於45度。 The terahertz-Girhetz illuminator of claim 7, further comprising at least one of: the internal driver configured to move the terahertz-Girsch lens along the geometric axis, where the terahertz-Girsch lens The distance from the terahertz-Girsch source is maintained at a radius equal to or less than the radius of the terahertz-Girsch lens; the internal driver is configured to move the terahertz-Girsch lens in a direction intersecting the geometric axis, where terahertz - The distance between the gigahertz lens and the terahertz-Girsch source is maintained at a radius equal to or less than the radius of the terahertz-Girsch lens; the internal driver is configured to move the terahertz-Girth source along the geometric axis, where terahertz-ji The distance between the Hertzian lens and the terahertz-Girsch source is maintained at a radius equal to or less than the radius of the terahertz-Girsch lens; the internal driver is configured to move the terahertz-Girth source along the direction intersecting the geometric axis, where The distance between the terahertz-Girsch lens and the terahertz-Girsch source is kept at or below the radius of the terahertz-Girsch lens; the internal driver is Rotating the terahertz-Girsch lens in a direction intersecting the axis of the terahertz-Girsch lens geometry, wherein the angle of rotation is equal to or less than 45 degrees; the internal driver is configured to cross along the axis of the terahertz-Girth source geometry The direction of rotation of the terahertz-Girsch lens, where the angle of rotation is equal to or less than 45 degrees; the internal driver is configured to follow the axis of the terahertz-Girsch lens geometry Rotating the terahertz-Girth source in the direction of the intersection, wherein the angle of rotation is equal to or less than 45 degrees; the internal driver is configured to rotate the terahertz-Girth source in a direction intersecting the axis of the terahertz-Girth source geometry, wherein the angle of rotation Equal to or less than 45 degrees; the external driver is configured to rotate the terahertz-Girditz transmitter in a direction that intersects the axis of the terahertz-Girsch lens geometry, wherein the angle of rotation is equal to or less than 45 degrees; and the external driver is configured to The terahertz-Girditz transmitter is rotated in a direction intersecting the axis of the terahertz-Girth source geometry, wherein the angle of rotation is equal to or less than 45 degrees. 如申請專利範圍第7項所述的太赫茲-吉赫茲照明器,更包含至少下列之一:內部驅動器被配置來沿著幾何軸線移動太赫茲-吉赫茲透鏡,在此太赫茲-吉赫茲透鏡與太赫茲-吉赫茲光源間的距離保持在等於或小於太赫茲-吉赫茲透鏡的半徑;內部驅動器被配置來沿著與幾何軸線交叉的方向移動太赫茲-吉赫茲透鏡,在此太赫茲-吉赫茲透鏡與太赫茲-吉赫茲光源間的距離保持在等於或小於太赫茲-吉赫茲透鏡的半徑;內部驅動器被配置來沿著幾何軸線移動太赫茲-吉赫茲光源,在此太赫茲-吉赫茲透鏡與太赫茲-吉赫茲光源間的距離被保持在等於或小於太赫茲-吉赫茲透鏡的半徑; 內部驅動器被配置來沿著與幾何軸線交叉的方向移動太赫茲-吉赫茲光源,在此太赫茲-吉赫茲透鏡與太赫茲-吉赫茲光源間的距離保持在等於或小於太赫茲-吉赫茲透鏡的半徑;內部驅動器被配置來沿著與太赫茲-吉赫茲透鏡幾何中軸交叉的方向轉動太赫茲-吉赫茲透鏡,其中轉動角度等於或小於45度;內部驅動器被配置來沿著與太赫茲-吉赫茲光源幾何中軸交叉的方向轉動太赫茲-吉赫茲透鏡,其中轉動角度等於或小於45度;內部驅動器被配置來沿著與太赫茲-吉赫茲透鏡幾何中軸交叉的方向轉動太赫茲-吉赫茲光源,其中轉動角度等於或小於45度;內部驅動器被配置來沿著與太赫茲-吉赫茲光源幾何中軸交叉的方向轉動太赫茲-吉赫茲光源,其中轉動角度等於或小於45度;外部驅動器被配置來沿著與太赫茲-吉赫茲透鏡幾何中軸交叉的方向轉動太赫茲-吉赫茲發射器,其中轉動角度等於或小於45度;以及外部驅動器被配置來沿著與太赫茲-吉赫茲光源幾何中軸交叉的方向轉動太赫茲-吉赫茲發射器,其中轉動角度等於或小於45度。 The terahertz-Girhetz illuminator of claim 7, further comprising at least one of: the internal driver configured to move the terahertz-Girsch lens along the geometric axis, where the terahertz-Girsch lens The distance from the terahertz-Girsch source is maintained at a radius equal to or less than the radius of the terahertz-Girsch lens; the internal driver is configured to move the terahertz-Girsch lens in a direction intersecting the geometric axis, where terahertz - The distance between the gigahertz lens and the terahertz-Girsch source is maintained at a radius equal to or less than the radius of the terahertz-Girsch lens; the internal driver is configured to move the terahertz-Girth source along the geometric axis, where terahertz-ji The distance between the Hertzian lens and the terahertz-Girsch source is maintained at a radius equal to or less than the radius of the terahertz-Girsch lens; The internal driver is configured to move the terahertz-Gird source in a direction crossing the geometric axis, where the distance between the terahertz-Girsch lens and the terahertz-Girth source remains at or below the terahertz-Girsch lens Radius; the internal driver is configured to rotate the terahertz-Girsch lens in a direction that intersects the axis of the terahertz-Girsch lens geometry, where the angle of rotation is equal to or less than 45 degrees; the internal driver is configured to follow the terahertz- The terahertz-Girsch lens is rotated in the direction of the axis crossing in the gigaherian source geometry, wherein the angle of rotation is equal to or less than 45 degrees; the internal driver is configured to rotate the terahertz-jihz in a direction intersecting the axis of the terahertz-Girsch lens geometry a light source, wherein the angle of rotation is equal to or less than 45 degrees; the internal driver is configured to rotate the terahertz-Girth source in a direction intersecting the axis of the terahertz-Girth source geometry, wherein the angle of rotation is equal to or less than 45 degrees; the external driver is Configuring to rotate terahertz-Girsch emission in a direction that intersects the axis of the terahertz-Girsch lens geometry The rotation angle is equal to or less than 45 degrees; and the external driver is configured to rotate the terahertz-Girditz transmitter in a direction crossing the axis of the terahertz-Girth source geometry, wherein the angle of rotation is equal to or less than 45 degrees. 如申請專利範圍第8項所述的太赫茲-吉赫茲照明器,更包含至少下列之一: 內部驅動器被配置來沿著幾何軸線移動太赫茲-吉赫茲透鏡,在此太赫茲-吉赫茲透鏡與太赫茲-吉赫茲光源間的距離保持在等於或小於太赫茲-吉赫茲透鏡的半徑;內部驅動器被配置來沿著與幾何軸線交叉的方向移動太赫茲-吉赫茲透鏡,在此太赫茲-吉赫茲透鏡與太赫茲-吉赫茲光源間的距離保持在等於或小於太赫茲-吉赫茲透鏡的半徑;內部驅動器被配置來沿著幾何軸線移動太赫茲-吉赫茲光源,在此太赫茲-吉赫茲透鏡與太赫茲-吉赫茲光源間的距離被保持在等於或小於太赫茲-吉赫茲透鏡的半徑;內部驅動器被配置來沿著與幾何軸線交叉的方向移動太赫茲-吉赫茲光源,在此太赫茲-吉赫茲透鏡與太赫茲-吉赫茲光源間的距離保持在等於或小於太赫茲-吉赫茲透鏡的半徑;內部驅動器被配置來沿著與太赫茲-吉赫茲透鏡幾何中軸交叉的方向轉動太赫茲-吉赫茲透鏡,其中轉動角度等於或小於45度;內部驅動器被配置來沿著與太赫茲-吉赫茲光源幾何中軸交叉的方向轉動太赫茲-吉赫茲透鏡,其中轉動角度等於或小於45度;內部驅動器被配置來沿著與太赫茲-吉赫茲透鏡幾何中軸交叉的方向轉動太赫茲-吉赫茲光源,其中轉動角度等於或小於45度;內部驅動器被配置來沿著與太赫茲-吉赫茲光源幾何中軸交叉的方向轉動太赫茲-吉赫茲光源,其中轉動角度等於或小於 45度;外部驅動器被配置來沿著與太赫茲-吉赫茲透鏡幾何中軸交叉的方向轉動太赫茲-吉赫茲發射器,其中轉動角度等於或小於45度;以及外部驅動器被配置來沿著與太赫茲-吉赫茲光源幾何中軸交叉的方向轉動太赫茲-吉赫茲發射器,其中轉動角度等於或小於45度。 The terahertz-Girhetz illuminator as described in claim 8 of the patent application further comprises at least one of the following: The internal driver is configured to move the terahertz-Girsch lens along the geometric axis, wherein the distance between the terahertz-Girsch lens and the terahertz-Girth source is maintained at a radius equal to or less than the radius of the terahertz-Girsch lens; The driver is configured to move the terahertz-Girsch lens in a direction crossing the geometric axis, wherein the distance between the terahertz-Girsch lens and the terahertz-Girth source is maintained at or below the terahertz-Girsch lens Radius; the internal drive is configured to move the terahertz-Girth source along the geometric axis, where the distance between the terahertz-Girsch lens and the terahertz-Girth source is maintained at or below the terahertz-Girsch lens Radius; the internal driver is configured to move the terahertz-Girth source in a direction crossing the geometric axis, where the distance between the terahertz-Girsch lens and the terahertz-Girth source remains equal to or less than terahertz-ji The radius of the Hertz lens; the internal driver is configured to rotate terahertz-gihs in a direction that intersects the axis of the terahertz-Girsch lens geometry Where the angle of rotation is equal to or less than 45 degrees; the internal driver is configured to rotate the terahertz-Girsch lens in a direction intersecting the axis of the terahertz-Girth source geometry, wherein the angle of rotation is equal to or less than 45 degrees; the internal driver is configured To rotate a terahertz-Girth source in a direction intersecting the axis of the terahertz-Girsch lens geometry, wherein the angle of rotation is equal to or less than 45 degrees; the internal driver is configured to intersect along the axis of the terahertz-Girth source geometry Directional rotation of the terahertz-Girth source, where the angle of rotation is equal to or less than 45 degrees; the external driver is configured to rotate the terahertz-Girditz emitter in a direction intersecting the axis of the terahertz-Girsch lens geometry, wherein the angle of rotation is equal to or less than 45 degrees; and the external driver is configured to follow In the Hertz-Girsch source geometry, the direction of the axis crossing is rotated by a terahertz-Girditz emitter with a rotation angle equal to or less than 45 degrees. 如申請專利範圍第9項所述的太赫茲-吉赫茲照明器,更包含至少下列之一:內部驅動器被配置來沿著幾何軸線移動太赫茲-吉赫茲透鏡,在此太赫茲-吉赫茲透鏡與太赫茲-吉赫茲光源間的距離保持在等於或小於太赫茲-吉赫茲透鏡的半徑;內部驅動器被配置來沿著與幾何軸線交叉的方向移動太赫茲-吉赫茲透鏡,在此太赫茲-吉赫茲透鏡與太赫茲-吉赫茲光源間的距離保持在等於或小於太赫茲-吉赫茲透鏡的半徑;內部驅動器被配置來沿著幾何軸線移動太赫茲-吉赫茲光源,在此太赫茲-吉赫茲透鏡與太赫茲-吉赫茲光源間的距離被保持在等於或小於太赫茲-吉赫茲透鏡的半徑;內部驅動器被配置來沿著與幾何軸線交叉的方向移動太赫茲-吉赫茲光源,在此太赫茲-吉赫茲透鏡與太赫茲-吉赫茲光源間的距離保持在等於或小於太赫茲-吉赫茲透鏡的半徑;內部驅動器被配置來沿著與太赫茲-吉赫茲透鏡幾何中軸 交叉的方向轉動太赫茲-吉赫茲透鏡,其中轉動角度等於或小於45度;內部驅動器被配置來沿著與太赫茲-吉赫茲光源幾何中軸交叉的方向轉動太赫茲-吉赫茲透鏡,其中轉動角度等於或小於45度;內部驅動器被配置來沿著與太赫茲-吉赫茲透鏡幾何中軸交叉的方向轉動太赫茲-吉赫茲光源,其中轉動角度等於或小於45度;內部驅動器被配置來沿著與太赫茲-吉赫茲光源幾何中軸交叉的方向轉動太赫茲-吉赫茲光源,其中轉動角度等於或小於45度;外部驅動器被配置來沿著與太赫茲-吉赫茲透鏡幾何中軸交叉的方向轉動太赫茲-吉赫茲發射器,其中轉動角度等於或小於45度;以及外部驅動器被配置來沿著與太赫茲-吉赫茲光源幾何中軸交叉的方向轉動太赫茲-吉赫茲發射器,其中轉動角度等於或小於45度。 The terahertz-Gird illuminator of claim 9, further comprising at least one of: the internal driver configured to move the terahertz-Girsch lens along the geometric axis, where the terahertz-Girsch lens The distance from the terahertz-Girsch source is maintained at a radius equal to or less than the radius of the terahertz-Girsch lens; the internal driver is configured to move the terahertz-Girsch lens in a direction intersecting the geometric axis, where terahertz - The distance between the gigahertz lens and the terahertz-Girsch source is maintained at a radius equal to or less than the radius of the terahertz-Girsch lens; the internal driver is configured to move the terahertz-Girth source along the geometric axis, where terahertz-ji The distance between the Hertzian lens and the terahertz-Girsch source is maintained at a radius equal to or less than the radius of the terahertz-Girsch lens; the internal driver is configured to move the terahertz-Girth source along the direction intersecting the geometric axis, where The distance between the terahertz-Girsch lens and the terahertz-Girsch source is kept at or below the radius of the terahertz-Girsch lens; the internal driver is Along opposing to THz - gigahertz lens geometric center axis Rotating the terahertz-Girsch lens in the direction of the cross, wherein the angle of rotation is equal to or less than 45 degrees; the internal driver is configured to rotate the terahertz-Girsch lens in a direction intersecting the axis of the terahertz-Girth source geometry, wherein the angle of rotation Equal to or less than 45 degrees; the internal driver is configured to rotate the terahertz-Gird source in a direction that intersects the axis of the terahertz-Girsch lens geometry, wherein the angle of rotation is equal to or less than 45 degrees; the internal driver is configured to follow The terahertz-Girth source geometry crosses the terahertz-Girth source in the direction of the axis crossing, where the angle of rotation is equal to or less than 45 degrees; the external driver is configured to rotate the terahertz in a direction that intersects the axis of the terahertz-Girsch lens geometry a Girsch transmitter in which the angle of rotation is equal to or less than 45 degrees; and the external driver is configured to rotate the terahertz-Girditz transmitter in a direction intersecting the axis of the terahertz-Girth source geometry, wherein the angle of rotation is equal to or less than 45 degree. 如申請專利範圍第1項所述的太赫茲-吉赫茲照明器,更包含至少下列之一:太赫茲-吉赫茲透鏡的一或多個鏡片元件塗覆一反反射層:以及用以固持太赫茲-吉赫茲透鏡與太赫茲-吉赫茲光源的太赫 茲-吉赫茲透鏡夾具的內表面的至少一部分塗覆一反反射層。 The terahertz-Gird illuminator of claim 1, further comprising at least one of the following: one or more lens elements of the terahertz-Girsch lens are coated with a retroreflective layer: and Hertz-Girsch lens with terahertz-Girsch source At least a portion of the inner surface of the zig-zirtz lens holder is coated with a retroreflective layer. 如申請專利範圍第1項所述的太赫茲-吉赫茲照明器,更包含二或多個太赫茲-吉赫茲發射器被放置在一一維陣列、一二維陣列或一三維陣列。 The terahertz-Gird illuminator as described in claim 1 further comprises two or more terahertz-Girth emitters placed in a one-dimensional array, a two-dimensional array or a three-dimensional array. 如申請專利範圍第14項所述的太赫茲-吉赫茲照明器,購包含至少下列之一:一維陣列選自下列之一:直線、曲線或蜿蜒線段;以及二維陣列選自下列之一:圓形、多邊形、平面形表面、曲面形表面與起伏的表面。 A terahertz-Gird illuminator as claimed in claim 14, comprising at least one of the following: the one-dimensional array is selected from one of the following: a straight line, a curved line or a squall line segment; and the two-dimensional array is selected from the group consisting of One: round, polygonal, planar surface, curved surface and undulating surface. 如申請專利範圍第14項所述的太赫茲-吉赫茲照明器,在此各個太赫茲-吉赫茲發射器被調整到所發射的太赫茲-吉赫茲波具有相同的發射角度與相同的指向角度。 A terahertz-Gird illuminator as claimed in claim 14, wherein each terahertz-Gird-offer transmitter is tuned to emit the same terahertz-gehz wave having the same angle of emission and the same pointing angle . 如申請專利範圍第14項所述的太赫茲-吉赫茲照明器,更包含至少下列之一:至少二個太赫茲-吉赫茲發射器被動態地調整到所發射的太赫茲-吉赫茲波具有不同的發射角度:以及至少二個太赫茲-吉赫茲發射器被動態地調整到所發射的太赫茲-吉赫茲波具有不同的指向角度。 The terahertz-Gird illuminator according to claim 14 further comprising at least one of the following: at least two terahertz-Girsch transmitters are dynamically adjusted to emit terahertz-Girsch waves Different emission angles: and at least two terahertz-Girsch transmitters are dynamically adjusted to have different pointing angles for the transmitted terahertz-Gird waves. 如申請專利範圍第14項所述的太赫茲-吉赫茲照明器,至少一個太赫茲-吉赫茲發射器中太赫茲-吉赫茲光源與太赫茲-吉 赫茲透鏡間的幾何關係可以調整的。 A terahertz-Girsch illuminator as described in claim 14 of the patent scope, at least one terahertz-Girsch source in the terahertz-Girhitz emitter and terahertz-ji The geometric relationship between the Hertz lenses can be adjusted. 如申請專利範圍第14項所述的太赫茲-吉赫茲照明器,更包含少下列之一:至少一太赫茲-吉赫茲發射器可以自由地被轉動;至少一太赫茲-吉赫茲發射器可以自由地被移動;以及至少二個太赫茲-吉赫茲發射器可以動態地調整所發射太赫茲-吉赫茲波的發射角度與指向角度中的任一個。 The terahertz-Gird illuminator as described in claim 14 further includes one of the following: at least one terahertz-Girsch transmitter can be freely rotated; at least one terahertz-Girhitz transmitter can Freely moved; and at least two terahertz-Girsch transmitters can dynamically adjust any of the emission angle and the pointing angle of the transmitted terahertz-Girsch wave. 如申請專利範圍第14項所述的太赫茲-吉赫茲照明器,更包含至少下列之一:這些太赫茲-吉赫茲發射器規則地分布在整個陣列;以及這些太赫茲-吉赫茲發射器等距離地分布在整個陣列。 The terahertz-Gird illuminator of claim 14, further comprising at least one of: the terahertz-Girsch transmitters are regularly distributed throughout the array; and the terahertz-Girsch transmitters, etc. The distance is distributed throughout the array.
TW106108779A 2017-03-16 2017-03-16 Terahertz-gigahertz illuminator TWI623701B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW106108779A TWI623701B (en) 2017-03-16 2017-03-16 Terahertz-gigahertz illuminator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW106108779A TWI623701B (en) 2017-03-16 2017-03-16 Terahertz-gigahertz illuminator

Publications (2)

Publication Number Publication Date
TWI623701B true TWI623701B (en) 2018-05-11
TW201835497A TW201835497A (en) 2018-10-01

Family

ID=62951528

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106108779A TWI623701B (en) 2017-03-16 2017-03-16 Terahertz-gigahertz illuminator

Country Status (1)

Country Link
TW (1) TWI623701B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7105820B2 (en) * 2004-01-16 2006-09-12 New Jersey Institute Of Technology Terahertz imaging for near field objects
US7519096B2 (en) * 2003-06-06 2009-04-14 The General Hospital Corporation Process and apparatus for a wavelength tuning source
CN102810814A (en) * 2012-08-02 2012-12-05 中国航天科工集团第二研究院二〇三所 Waveguide technique for multiplex terahertz pulses
CN103097916A (en) * 2009-12-10 2013-05-08 特拉辛斯集团公司 Tera-and gigahertz solid state miniature spectrometer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7519096B2 (en) * 2003-06-06 2009-04-14 The General Hospital Corporation Process and apparatus for a wavelength tuning source
US7105820B2 (en) * 2004-01-16 2006-09-12 New Jersey Institute Of Technology Terahertz imaging for near field objects
CN103097916A (en) * 2009-12-10 2013-05-08 特拉辛斯集团公司 Tera-and gigahertz solid state miniature spectrometer
CN102810814A (en) * 2012-08-02 2012-12-05 中国航天科工集团第二研究院二〇三所 Waveguide technique for multiplex terahertz pulses

Also Published As

Publication number Publication date
TW201835497A (en) 2018-10-01

Similar Documents

Publication Publication Date Title
JP5987065B2 (en) Light mixing lens and system
KR101880898B1 (en) Lamp assembly
US10254474B2 (en) Light mixing systems with a glass light pipe
KR101487344B1 (en) Optical element and radiation-emitting device comprising such an optical element
KR20180107673A (en) LIDAR light-emitting system improved pattern rotation
CN109477911A (en) Microlens array diffusing globe
JP2017527957A (en) Light emitting module
CN111971504A (en) Lighting system for outdoor lighting
US20220247158A1 (en) Light source, sensor and method of illuminating a scene
TWI623701B (en) Terahertz-gigahertz illuminator
US20080197286A1 (en) Deflection device and imaging apparatus
KR20150057012A (en) Laser beam generator
WO2017049201A1 (en) Angled light source with uniform broad area illumination
ES2834448T3 (en) Aiming and deflection system for a microwave beam
CN102549333B (en) Luminaire and optical component
US10663652B2 (en) Light mixing systems with a glass light pipe
CN102563397A (en) Operating lamp and its light transmission cover and light spot regulation method
US20180292633A1 (en) Terahertz-gigahertz illuminator
EP3762646A1 (en) An optical device for modifying light distribution
WO2018169517A1 (en) Terahertz-gigahertz illuminator
US20210381675A1 (en) Compact illumination devices and compact illumination devices with spatially controllable light emission
US11965625B2 (en) Light emitting device
JP2022527100A (en) Micro LED sheet with small spheres to enable digital beam shaping
JP2006323337A (en) Reflector and liquid crystal display device
JP2008514022A (en) Apparatus and method for equalization of optical communication signals

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees