TWI622806B - Virtual reality display apparatus - Google Patents
Virtual reality display apparatus Download PDFInfo
- Publication number
- TWI622806B TWI622806B TW106111957A TW106111957A TWI622806B TW I622806 B TWI622806 B TW I622806B TW 106111957 A TW106111957 A TW 106111957A TW 106111957 A TW106111957 A TW 106111957A TW I622806 B TWI622806 B TW I622806B
- Authority
- TW
- Taiwan
- Prior art keywords
- display
- virtual reality
- user
- display device
- image
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/01—Head-up displays
- G02B27/0149—Head-up displays characterised by mechanical features
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/0093—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 with means for monitoring data relating to the user, e.g. head-tracking, eye-tracking
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/01—Head-up displays
- G02B27/0149—Head-up displays characterised by mechanical features
- G02B2027/0154—Head-up displays characterised by mechanical features with movable elements
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)
Abstract
一種虛擬實境顯示裝置,包括至少一顯示模組、一影像感測器及一調整機構。顯示模組包括一顯示器及一光學組件。顯示器用以提供一影像光束至一使用者的眼睛,光學組件設置於影像光束的傳遞路徑上,且包括至少一菲涅耳透鏡,其中光學組件具有一光學中心。影像感測器用以量測使用者的眼睛相對於光學中心的一偏移距離。調整機構連接至顯示器與光學組件,以調整顯示器相對於光學組件的傾斜角。顯示器與光學組件相對於使用者的雙眼連線皆傾斜。A virtual reality display device includes at least a display module, an image sensor, and an adjustment mechanism. The display module includes a display and an optical component. The display is used to provide an image beam to a user's eyes. The optical component is disposed on the transmission path of the image beam and includes at least one Fresnel lens, wherein the optical component has an optical center. The image sensor is used to measure an offset distance of the user's eyes from the optical center. The adjustment mechanism is connected to the display and the optical component to adjust the tilt angle of the display relative to the optical component. The display and the optical components are inclined relative to the eyes of the user.
Description
本發明是有關於一種顯示裝置,且特別是有關於一種虛擬實境顯示裝置。The present invention relates to a display device, and more particularly to a virtual reality display device.
隨著顯示技術的進步,為了追求身歷其境的感受,使用者已無法滿足於只觀看平面的影像,為了提供使用者更具有現實感與立體感的視覺娛樂,虛擬實境(virtual reality, VR)成為目前顯示技術的新潮流,虛擬實境可利用模擬出一個三維空間的虛擬場景,提供使用者關於視覺等感官體驗,可即時觀看三維空間的影像,甚至進一步能與虛擬影像進行互動。With the advancement of display technology, in order to pursue the immersive feeling, users are no longer satisfied with watching only flat images. In order to provide users with more realistic and three-dimensional visual entertainment, virtual reality (VR) ) Has become a new trend of current display technology. Virtual reality can use a virtual scene that simulates a three-dimensional space to provide users with visual and other sensory experiences. They can instantly view images in three-dimensional space and even interact with virtual images.
常見的虛擬實境顯示裝置有頭戴式顯示器(head mounted display, HMD),可配戴在使用者的頭部。然而,為了使頭戴式顯示器朝向輕薄短小發展,且為了製造出視場角更大的頭戴式顯示器,往往容易產生了影像的立體不平衡。舉例而言,當使用者的視線直視前方時所看到的影像的清晰度可能低於使用者的視線往兩側斜視時所看到的影像的清晰度。或者,當使用者的雙眼轉向左方或右方時,可能產生一個眼睛看到的影像較為清晰,而另一個眼睛看到的影像較為模糊的現象。上述這些立體不平衡的現象會讓使用者在使用頭戴式顯示器時感到不舒適或視覺效果不好。A common virtual reality display device includes a head mounted display (HMD), which can be worn on a user's head. However, in order to make head-mounted displays to be thin, light, and short, and to make head-mounted displays with larger viewing angles, stereoscopic imbalances in images tend to occur. For example, the sharpness of an image seen when the user's line of sight looks straight ahead may be lower than the sharpness of an image seen when the user's line of sight is squinted to both sides. Or, when the user's eyes turn to the left or right, the phenomenon that one eye sees a clearer image and the other eye sees a more blurred image may occur. These three-dimensional imbalances can make users feel uncomfortable or have poor visual effects when using a head-mounted display.
本發明提供一種虛擬實境顯示裝置,可有效達到立體平衡的視覺效果。The invention provides a virtual reality display device, which can effectively achieve the stereoscopically balanced visual effect.
本發明的一實施例提出一種虛擬實境顯示裝置,包括至少一顯示模組、一影像感測器及一調整機構。顯示模組包括一顯示器及一光學組件。顯示器用以提供一影像光束至一使用者的眼睛,光學組件設置於影像光束的傳遞路徑上,且包括至少一菲涅耳透鏡,其中光學組件具有一光學中心。影像感測器用以量測使用者的眼睛相對於光學中心的一偏移距離。調整機構連接至顯示器與光學組件,以調整顯示器相對於光學組件的傾斜角。顯示器與光學組件相對於使用者的雙眼連線皆傾斜。An embodiment of the present invention provides a virtual reality display device including at least one display module, an image sensor, and an adjustment mechanism. The display module includes a display and an optical component. The display is used to provide an image beam to a user's eyes. The optical component is disposed on the transmission path of the image beam and includes at least one Fresnel lens, wherein the optical component has an optical center. The image sensor is used to measure an offset distance of the user's eyes from the optical center. The adjustment mechanism is connected to the display and the optical component to adjust the tilt angle of the display relative to the optical component. The display and the optical components are inclined relative to the eyes of the user.
在本發明的實施例的虛擬實境顯示裝置中,由於可利用影像感測器量測使用者的眼睛相對於光學中心的一偏移距離,且利用調整機構可據以調整顯示器相對於光學組件的傾斜角,因此本發明的實施例的虛擬實境顯示裝置可有效達到立體平衡的視覺效果。In the virtual reality display device according to the embodiment of the present invention, an image sensor can be used to measure an offset distance of the user's eyes from the optical center, and the adjustment mechanism can be used to adjust the display relative to the optical component. Therefore, the virtual reality display device according to the embodiment of the present invention can effectively achieve a stereoscopically balanced visual effect.
為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。In order to make the above features and advantages of the present invention more comprehensible, embodiments are hereinafter described in detail with reference to the accompanying drawings.
圖1為本發明的一實施例的虛擬實境顯示裝置的剖面示意圖,而圖2繪示使用者以不同的視線角度觀看圖1的虛擬實境顯示裝置的情形。請參照圖1與圖2,本實施例的虛擬實境顯示裝置100包括至少一顯示模組200(圖1中是以兩個顯示模組200a與200b為例)、一影像感測器110及一調整機構120。每一顯示模組200包括一顯示器210及一光學組件220。顯示器210用以提供一影像光束212至一使用者的眼睛50。在本實施例中,顯示器210例如為一液晶顯示器、一有機發光二極體顯示器、一發光二極體顯示器或其他適當的顯示器。FIG. 1 is a schematic cross-sectional view of a virtual reality display device according to an embodiment of the present invention, and FIG. 2 illustrates a situation in which a user views the virtual reality display device of FIG. 1 at different viewing angles. Please refer to FIGS. 1 and 2. The virtual reality display device 100 of this embodiment includes at least one display module 200 (two display modules 200 a and 200 b are taken as an example in FIG. 1), an image sensor 110, and One adjustment mechanism 120. Each display module 200 includes a display 210 and an optical component 220. The display 210 is used to provide an image beam 212 to a user's eye 50. In this embodiment, the display 210 is, for example, a liquid crystal display, an organic light emitting diode display, a light emitting diode display, or other appropriate displays.
光學組件220設置於影像光束212的傳遞路徑上,且包括至少一菲涅耳透鏡222(在圖中是以兩個平行配置的菲涅耳透鏡222為例)。光學組件220具有一光學中心C,其為光學組件220的光軸與光學組件220朝向眼睛50的表面221的交會點。在本實施例中,兩個菲涅耳透鏡222都呈平板狀,且具有菲涅耳表面225、227與呈平面狀的表面221、223。The optical component 220 is disposed on the transmission path of the image light beam 212 and includes at least one Fresnel lens 222 (in the figure, two Fresnel lenses 222 arranged in parallel are taken as an example). The optical component 220 has an optical center C, which is the intersection of the optical axis of the optical component 220 and the surface 221 of the optical component 220 facing the eye 50. In this embodiment, both Fresnel lenses 222 are flat plates, and have Fresnel surfaces 225 and 227 and planar surfaces 221 and 223.
影像感測器110用以量測使用者的眼睛50相對於光學中心C的一偏移距離D1。在本實施例中,影像感測器110例如為眼球追蹤器(eye tracker)。此外,在本實施例中,偏移距離D1是指眼睛50的正前方視線(如圖2視線角度為0度時的視線)與表面221的交會點S至光學中心C的距離。另外,調整機構120連接至顯示器210與光學組件220,以調整顯示器210相對於光學組件220的傾斜角θ3。再者,顯示器210與光學組件220相對於使用者的雙眼連線L皆傾斜。舉例而言,顯示器210相對於連線L傾斜一傾斜角θ1,光學組件220相對於連線L傾斜一傾斜角θ2,而θ3=θ1-θ2。在本實施例中,傾斜角θ1例如是大於23度且小於等於29度,傾斜角θ2例如是23度,且傾斜角θ1大於傾斜角θ2。此外,視線角度為0度時的視線的方向即垂直於連線L的方向。The image sensor 110 is used to measure an offset distance D1 of the user's eye 50 relative to the optical center C. In this embodiment, the image sensor 110 is, for example, an eye tracker. In addition, in this embodiment, the offset distance D1 refers to the distance from the intersection point S of the front line of sight 50 of the eye 50 (see the line of sight when the line of sight angle is 0 degrees) and the surface 221 to the optical center C. In addition, the adjustment mechanism 120 is connected to the display 210 and the optical component 220 to adjust the inclination angle θ3 of the display 210 with respect to the optical component 220. Furthermore, the display 210 and the optical component 220 are inclined relative to the user's binocular connection L. For example, the display 210 is inclined by an inclination angle θ1 relative to the connection line L, the optical component 220 is inclined by an inclination angle θ2 relative to the connection line L, and θ3 = θ1-θ2. In this embodiment, the tilt angle θ1 is, for example, greater than 23 degrees and less than or equal to 29 degrees, the tilt angle θ2 is, for example, 23 degrees, and the tilt angle θ1 is greater than the tilt angle θ2. The direction of the line of sight when the line of sight angle is 0 degrees, that is, the direction perpendicular to the line L.
在本實施例中,調整機構120可包括齒輪、齒條、滑軌、螺絲、彈簧、其他適當的機械元件或其組合,只要是能夠調整傾斜角θ3的機械元件或其組合都可用來作為調整機構120的構件。在一實施例中,使用者可根據影像感測器110所測得的偏移距離D1的大小,手動藉由調整機構120將傾斜角θ3調整至一適當值。在此適當值下,使用者的眼睛50直視前方(即圖2中視線角度為0度時)所看到的顯示器210所顯示的影像的清晰度優於使用者的眼睛50往兩側之任一側斜視時(例如圖2中視線角度為23度與-23度之任一者時)所看到的顯示器210所顯示的影像的清晰度。In this embodiment, the adjusting mechanism 120 may include a gear, a rack, a slide rail, a screw, a spring, other appropriate mechanical elements or a combination thereof. Any mechanical element or a combination thereof capable of adjusting the inclination angle θ3 may be used for adjustment. Components of the mechanism 120. In one embodiment, the user can manually adjust the tilt angle θ3 to an appropriate value according to the magnitude of the offset distance D1 measured by the image sensor 110. At this appropriate value, the sharpness of the image displayed by the display 210 seen by the user's eyes 50 looking straight ahead (that is, when the line of sight angle is 0 degrees in FIG. 2) is better than that of the user's eyes 50 on either side. The sharpness of the image displayed on the display 210 when viewed from one side (for example, when the sight angle is either 23 degrees or -23 degrees in FIG. 2).
圖3A至圖3C為當圖1之偏移距離D1分別為2毫米(mm)、3 mm與4 mm時,各視線角度所看到的影像的調制轉換函數(modulation transfer function, MTF)與傾斜角θ3的關係曲線圖,而圖4A至4C為當圖1之偏移距離D1分別為2 mm、3 mm與4 mm時,各視線角度所看到的影像的光點圖(spot diagram)中的光點半徑與傾斜角θ3的關係曲線圖,其中圖3A至圖4C皆是在光學組件220的後焦距(back focal length, BFL)為38 mm的條件下所模擬而出的。從圖3A與圖4A可看出,當偏移距離D1為2 mm時,使用者可將傾斜角θ3調整至3度左右,此時視線角度為0度時的調制轉換函數的值為最大(如圖3A所示),且大於其他視線角度(如23度、-23度及-45度)所看到的調制轉換函數,也就是此時視線角度為0度時所看到的影像最清晰,而此時(即傾斜角θ3為3度左右)的視線角度為0度時的光點半徑亦約略處於最小值(如圖4A),可驗證此時影像最清晰。此外,從圖3B與圖4B可看出,當偏移距離D1為3 mm時,使用者可將傾斜角θ3調整至4度左右,此時視線角度為0度時的調制轉換函數的值為最大(如圖3B所示),且大於其他視線角度(如23度、-23度及-45度)所看到的調制轉換函數,也就是此時視線角度為0度時所看到的影像最清晰,而此時(即傾斜角θ3為4度左右)的視線角度為0度時的光點半徑亦約略處於最小值(如圖4B),可驗證此時影像最清晰。另一方面,從圖3C與圖4C可看出,當偏移距離D1為4 mm時,使用者可將傾斜角θ3調整至4.5度左右,此時視線角度為0度時的調制轉換函數的值為最大(如圖3C所示),且大於其他視線角度(如23度、-23度及-45度)所看到的調制轉換函數,也就是此時視線角度為0度時所看到的影像最清晰,而此時(即傾斜角θ3為4.5度左右)的視線角度為0度時的光點半徑亦約略處於最小值(如圖4C),可驗證此時影像最清晰。FIG. 3A to FIG. 3C are modulation transfer functions (MTF) and tilts of the image when the offset distance D1 in FIG. 1 is 2 millimeters (mm), 3 mm, and 4 mm, respectively. The relationship curve of the angle θ3, and FIGS. 4A to 4C are the spot diagrams of the images seen at each viewing angle when the offset distance D1 of FIG. 1 is 2 mm, 3 mm, and 4 mm, respectively. 3A to 4C are simulated under the condition that the back focal length (BFL) of the optical component 220 is 38 mm. It can be seen from FIG. 3A and FIG. 4A that when the offset distance D1 is 2 mm, the user can adjust the tilt angle θ3 to about 3 degrees. At this time, the value of the modulation conversion function is the largest when the line of sight angle is 0 degrees ( (As shown in Figure 3A), and is greater than the modulation conversion function seen at other viewing angles (such as 23 degrees, -23 degrees, and -45 degrees), that is, the image seen when the viewing angle is 0 degrees is the clearest , And at this time (that is, the inclination angle θ3 is about 3 degrees), the light spot radius is also at a minimum value when the line-of-sight angle is 0 degrees (see FIG. 4A), which can verify that the image is clearest at this time. In addition, it can be seen from FIG. 3B and FIG. 4B that when the offset distance D1 is 3 mm, the user can adjust the tilt angle θ3 to about 4 degrees. At this time, the value of the modulation conversion function when the line of sight angle is 0 degrees is The largest (as shown in Figure 3B) and greater than the modulation conversion function seen at other viewing angles (such as 23 degrees, -23 degrees, and -45 degrees), that is, the image seen when the viewing angle is 0 degrees It is the clearest, and at this time (that is, the inclination angle θ3 is about 4 degrees), the light spot radius is also at a minimum value when the line-of-sight angle is 0 degrees (see FIG. 4B), which can verify that the image is the clearest at this time. On the other hand, it can be seen from FIGS. 3C and 4C that when the offset distance D1 is 4 mm, the user can adjust the tilt angle θ3 to about 4.5 degrees. At this time, the modulation conversion function of the line of sight angle is 0 degrees. The value is the largest (as shown in Figure 3C), and is greater than the modulation conversion function seen at other viewing angles (such as 23 degrees, -23 degrees, and -45 degrees), that is, when the viewing angle is 0 degrees The clearest image is the clearest. At this time (that is, the inclination angle θ3 is about 4.5 degrees), the radius of the light spot is also at a minimum value when the line-of-sight angle is 0 degrees (see Figure 4C). It can be verified that the image is the clearest at this time.
由上述光學模擬可知,當偏移距離D1越大時,使用者將傾斜角θ3調整至的適當值越大。It can be known from the above-mentioned optical simulation that the larger the offset distance D1 is, the larger the user adjusts the tilt angle θ3 to a proper value.
在本實施例中,為了讓使用者在使用時更為方便,可藉由自動調整的方式來調整傾斜角θ3。具體而言,在本實施例中,虛擬實境顯示裝置100更包括一控制器130,電性連接至影像感測器110與調整機構120,且用以根據偏移距離D1命令調整機構120將顯示器210相對於光學組件220的傾斜角θ3調整至一適當值,其中在適當值下,使用者的眼睛50直視前方所看到的顯示器210所顯示的影像的清晰度優於使用者的眼睛50往兩側之任一側斜視時所看到的顯示器210所顯示的影像的清晰度,且此適當值可以與上述手動調整傾斜角θ3的適當值相同。在本實施例中,調整機構120除了包括上述機械元件之外,還包括一致動器122,而控制器130電性連接至影像感測器110與致動器122,且用以根據偏移距離D1控制致動器122的作動。具體而言,控制器130可根據偏移距離D1命令致動器122作動,而使調整機構120將傾斜角θ3調整至上述適當值。在本實施例中,致動器122例如為馬達或其他適當的致動器。此外,在本實施例中,控制器130亦可根據影像感測器110所傳來的關於眼睛50的影像訊號,判斷出或計算出偏移距離D1。In this embodiment, in order to make it more convenient for the user, the tilt angle θ3 can be adjusted by an automatic adjustment method. Specifically, in this embodiment, the virtual reality display device 100 further includes a controller 130, which is electrically connected to the image sensor 110 and the adjustment mechanism 120, and is configured to instruct the adjustment mechanism 120 to change the distance according to the offset distance D1. The inclination angle θ3 of the display 210 with respect to the optical component 220 is adjusted to an appropriate value. Under the appropriate value, the sharpness of the image displayed by the user's eyes 50 when looking directly at the front of the display 210 is better than the user's eyes 50. The sharpness of the image displayed on the display 210 when looking obliquely to either of the two sides, and this appropriate value may be the same as the appropriate value of the manual adjustment tilt angle θ3 described above. In this embodiment, the adjustment mechanism 120 includes an actuator 122 in addition to the above-mentioned mechanical elements, and the controller 130 is electrically connected to the image sensor 110 and the actuator 122, and is configured to be based on the offset distance. D1 controls the operation of the actuator 122. Specifically, the controller 130 may instruct the actuator 122 to operate according to the offset distance D1, so that the adjustment mechanism 120 adjusts the inclination angle θ3 to the above-mentioned appropriate value. In the present embodiment, the actuator 122 is, for example, a motor or other suitable actuator. In addition, in this embodiment, the controller 130 may also determine or calculate the offset distance D1 according to the image signal of the eye 50 transmitted from the image sensor 110.
在本實施例中,顯示模組200的數量有兩個,即顯示模組200a與顯示模組200b,二顯示模組200a與200b的二顯示器210分別提供二影像光束212至使用者的左眼50a與右眼50b,而調整機構120適於調整二顯示模組200間的距離D2,以適應於不同使用者的不同的雙眼瞳孔的距離D3,即左眼50a的瞳孔52至右眼50b的瞳孔52的距離。在本實施例中,使用者的雙眼瞳孔的距離D3小於二顯示模組200a與200b的二光學組件220的二光學中心C的距離D4。In this embodiment, there are two display modules 200, that is, the display module 200a and the display module 200b, and the two displays 210 of the two display modules 200a and 200b provide two image light beams 212 to the left eye of the user, respectively. 50a and right eye 50b, and the adjustment mechanism 120 is adapted to adjust the distance D2 between the two display modules 200 to suit the different distance D3 of the pupils of the two eyes, that is, the pupil 52 of the left eye 50a to the right eye 50b The distance of the pupil 52. In this embodiment, the distance D3 of the pupils of the eyes of the user is smaller than the distance D4 of the two optical centers C of the two optical components 220 of the two display modules 200a and 200b.
在本實施例的虛擬實境顯示裝置100中,由於可利用影像感測器110量測使用者的眼睛50相對於光學中心C的一偏移距離D1,且利用調整機構120可據以調整顯示器210相對於光學組件220的傾斜角θ3,因此本實施例的虛擬實境顯示裝置100可使使用者的眼睛50直視前方所看到的顯示器210所顯示的影像的清晰度優於使用者的眼睛50往兩側之任一側斜視時所看到的顯示器210所顯示的影像的清晰度,因而可有效達到立體平衡的視覺效果。In the virtual reality display device 100 of this embodiment, an image sensor 110 can be used to measure an offset distance D1 of the user's eye 50 from the optical center C, and the adjustment mechanism 120 can be used to adjust the display accordingly. The inclination angle θ3 of 210 with respect to the optical component 220. Therefore, the virtual reality display device 100 of this embodiment enables the user's eyes 50 to look directly at the display 210 seen in front of the display. The sharpness of the image displayed by the display 210 is better than that of the user's eyes. The sharpness of the image displayed on the display 210 when seen from one side to the other side 50 can effectively achieve the stereoscopically balanced visual effect.
在本實施例中,控制器130用以根據影像感測器110所偵測到的左眼50a與右眼50b的轉動位置命令調整機構120將二顯示模組200a與200b的二顯示器210分別相對於二光學組件220的二個傾斜角θ3分別調整至一第一適當值與一第二適當值,其中在第一適當值與第二適當值下,左眼50a與右眼50b在此轉動位置所分別看到的二顯示器210所顯示的影像的清晰度的差距被縮小。舉例而言,在本實施例中,在第一適當值與第二適當值下,左眼50a與右眼50b在此轉動位置所分別看到的二顯示器210所顯示的影像的調制轉換函數的差距小於0.1。也就是說,控制器130可以根據光學模擬數據(如圖3A至圖4C所示的數據)來根據左眼50a與右眼50b的視線角度找到兩眼相近的調制轉換函數的值分別對應的二個傾斜角θ3的第一適當值與第二適當值。如此一來,無論使用者的左眼50a與右眼50b轉往哪個方向,二個傾斜角θ3便對應被調整,而使兩眼皆能夠看到清晰度差不多的影像,進而達到更佳的立體平衡視覺效果。在另一實施例中,控制器130亦可藉由查表的方式來找到左眼50a與右眼50b轉動至某個角度時所對應的二個傾斜角θ3的第一適當值與第二適當值,而命令調整機構120將二個傾斜角θ3分別調整至第一適當值與第二適當值。此查表的方式所利用的數值表可於出廠前先藉由實驗設置完成,或在使用前先校正完成,而此數值表可儲存於資料儲存媒體而供控制器130讀取。此數值表可包括左眼50a與右眼50b的視線角度與第一適當值及第二適當值的對應關係。In this embodiment, the controller 130 is used to instruct the adjusting mechanism 120 to adjust the two displays 210 of the two display modules 200a and 200b respectively according to the rotation positions of the left eye 50a and the right eye 50b detected by the image sensor 110. The two inclination angles θ3 of the two optical components 220 are adjusted to a first appropriate value and a second appropriate value, respectively. Under the first appropriate value and the second appropriate value, the left eye 50a and the right eye 50b are in this rotation position. The difference in sharpness of the images displayed by the two monitors 210 respectively seen is narrowed. For example, in this embodiment, at the first proper value and the second proper value, the modulation conversion functions of the images displayed by the two displays 210 seen by the left eye 50a and the right eye 50b at this rotation position are The gap is less than 0.1. That is, the controller 130 may find two values corresponding to the modulation conversion functions of the two eyes that are close to each other according to the sight angles of the left eye 50a and the right eye 50b according to the optical simulation data (such as the data shown in FIGS. 3A to 4C). The first appropriate value and the second appropriate value of the inclination angles θ3. In this way, no matter which direction the user's left eye 50a and right eye 50b turn, the two inclination angles θ3 will be adjusted correspondingly, so that both eyes can see a similarly sharp image, thereby achieving a better stereo Balance visual effects. In another embodiment, the controller 130 can also find the first proper value and the second proper value of the two tilt angles θ3 when the left eye 50a and the right eye 50b rotate to a certain angle by looking up a table. And the command adjustment mechanism 120 adjusts the two tilt angles θ3 to the first appropriate value and the second proper value, respectively. The value table used in this table lookup method can be completed by experimental settings before leaving the factory or calibrated before use. The value table can be stored in a data storage medium for the controller 130 to read. The numerical table may include the correspondence between the sight angles of the left eye 50a and the right eye 50b and the first appropriate value and the second appropriate value.
在一實施例中,控制器130例如為中央處理單元(central processing unit, CPU)、微處理器(microprocessor)、數位訊號處理器(digital signal processor, DSP)、可程式化控制器、可程式化邏輯裝置(programmable logic device, PLD)或其他類似裝置或這些裝置的組合,本發明並不加以限制。此外,在一實施例中,控制器130的各功能可被實作為多個程式碼。這些程式碼會被儲存在一個記憶體中,由控制器130來執行這些程式碼。或者,在一實施例中,控制器130的各功能可被實作為一或多個電路。本發明並不限制用軟體或硬體的方式來實作控制器130的各功能。In one embodiment, the controller 130 is, for example, a central processing unit (CPU), a microprocessor, a digital signal processor (DSP), a programmable controller, and a programmable The present invention is not limited to a logic device (programmable logic device, PLD) or other similar devices or a combination of these devices. In addition, in one embodiment, each function of the controller 130 may be implemented as a plurality of codes. The codes are stored in a memory, and the controller 130 executes the codes. Alternatively, in one embodiment, the functions of the controller 130 may be implemented as one or more circuits. The present invention is not limited to implementing the functions of the controller 130 by means of software or hardware.
綜上所述,在本發明的實施例的虛擬實境顯示裝置中,由於可利用影像感測器量測使用者的眼睛相對於光學中心的一偏移距離,且利用調整機構可據以調整顯示器相對於光學組件的傾斜角,因此本發明的實施例的虛擬實境顯示裝置可有效達到立體平衡的視覺效果。In summary, in the virtual reality display device according to the embodiment of the present invention, an image sensor can be used to measure an offset distance of the user's eyes from the optical center, and the adjustment mechanism can be used to adjust accordingly. The inclination angle of the display relative to the optical component, so the virtual reality display device of the embodiment of the present invention can effectively achieve the stereoscopically balanced visual effect.
雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。Although the present invention has been disclosed as above with the examples, it is not intended to limit the present invention. Any person with ordinary knowledge in the technical field can make some modifications and retouching without departing from the spirit and scope of the present invention. The protection scope of the present invention shall be determined by the scope of the attached patent application.
50‧‧‧眼睛
50a‧‧‧左眼
50b‧‧‧右眼
52‧‧‧瞳孔
100‧‧‧虛擬實境顯示裝置
110‧‧‧影像感測器
120‧‧‧調整機構
122‧‧‧致動器
130‧‧‧控制器
200、200a、200b‧‧‧顯示模組
210‧‧‧顯示器
212‧‧‧影像光束
220‧‧‧光學組件
221、223‧‧‧表面
222‧‧‧菲涅耳透鏡
225、227‧‧‧菲涅耳表面
C‧‧‧光學中心
D1‧‧‧偏移距離
D2、D3、D4‧‧‧距離
L‧‧‧連線
S‧‧‧交會點
θ1、θ2、θ3‧‧‧傾斜角50‧‧‧ eyes
50a‧‧‧left eye
50b‧‧‧right eye
52‧‧‧ Pupil
100‧‧‧Virtual Reality Display Device
110‧‧‧Image Sensor
120‧‧‧ adjustment agency
122‧‧‧Actuator
130‧‧‧controller
200, 200a, 200b‧‧‧ display module
210‧‧‧ Display
212‧‧‧Image Beam
220‧‧‧Optical components
221, 223‧‧‧ surface
222‧‧‧ Fresnel lens
225, 227‧‧‧ Fresnel surface
C‧‧‧Optical Center
D1‧‧‧Offset distance
D2, D3, D4‧‧‧ distance
L‧‧‧ Connect
S‧‧‧ meeting point θ1, θ2, θ3‧‧‧ tilt angle
圖1為本發明的一實施例的虛擬實境顯示裝置的剖面示意圖。 圖2繪示使用者以不同的視線角度觀看圖1的虛擬實境顯示裝置的情形。 圖3A至圖3C為當圖1之偏移距離D1分別為2 mm、3 mm與4 mm時,各視線角度所看到的影像的調制轉換函數與傾斜角θ3的關係曲線圖。 圖4A至4C為當圖1之偏移距離D1分別為2 mm、3 mm與4 mm時,各視線角度所看到的影像的光點圖中的光點半徑與傾斜角θ3的關係曲線圖。FIG. 1 is a schematic cross-sectional view of a virtual reality display device according to an embodiment of the present invention. FIG. 2 illustrates a situation in which a user views the virtual reality display device of FIG. 1 at different viewing angles. FIG. 3A to FIG. 3C are graphs showing the relationship between the modulation conversion function and the tilt angle θ3 of the image when the offset distance D1 in FIG. 1 is 2 mm, 3 mm, and 4 mm, respectively. FIGS. 4A to 4C are graphs showing the relationship between the light spot radius and the inclination angle θ3 in the light spot image of the image when the offset distance D1 of FIG. 1 is 2 mm, 3 mm, and 4 mm, respectively. .
Claims (10)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW106111957A TWI622806B (en) | 2017-04-11 | 2017-04-11 | Virtual reality display apparatus |
CN201810187281.4A CN108693645B (en) | 2017-04-11 | 2018-03-07 | Virtual reality display device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW106111957A TWI622806B (en) | 2017-04-11 | 2017-04-11 | Virtual reality display apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI622806B true TWI622806B (en) | 2018-05-01 |
TW201837537A TW201837537A (en) | 2018-10-16 |
Family
ID=62951394
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW106111957A TWI622806B (en) | 2017-04-11 | 2017-04-11 | Virtual reality display apparatus |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN108693645B (en) |
TW (1) | TWI622806B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI716968B (en) * | 2018-08-20 | 2021-01-21 | 大陸商余姚舜宇智能光學技術有限公司 | Head-mounted display apparatus and eye-tracking system thereof |
TWI730573B (en) * | 2019-01-15 | 2021-06-11 | 日商藍光科技股份有限公司 | Wearable image display device |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110161712A (en) * | 2019-05-29 | 2019-08-23 | 广州易视光电科技有限公司 | Display system and head-wearing display device |
CN113495361A (en) * | 2020-03-20 | 2021-10-12 | 宏星技术股份有限公司 | Virtual reality display device |
CN113703161B (en) * | 2020-05-22 | 2023-07-25 | 宏碁股份有限公司 | Augmented reality system and anchoring display method thereof |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5347400A (en) * | 1993-05-06 | 1994-09-13 | Ken Hunter | Optical system for virtual reality helmet |
US7656585B1 (en) * | 2008-08-19 | 2010-02-02 | Microvision, Inc. | Embedded relay lens for head-up displays or the like |
US20160198949A1 (en) * | 2015-01-12 | 2016-07-14 | Google Inc. | Hybrid lens system for head wearable display |
WO2016141054A1 (en) * | 2015-03-02 | 2016-09-09 | Lockheed Martin Corporation | Wearable display system |
TWI553344B (en) * | 2011-12-26 | 2016-10-11 | 洛伊馬汀公司 | Head-mounted display apparatus employing one or more fresnel lenses |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8625200B2 (en) * | 2010-10-21 | 2014-01-07 | Lockheed Martin Corporation | Head-mounted display apparatus employing one or more reflective optical surfaces |
JP5414946B2 (en) * | 2011-06-16 | 2014-02-12 | パナソニック株式会社 | Head-mounted display and method for adjusting misalignment thereof |
US20140146394A1 (en) * | 2012-11-28 | 2014-05-29 | Nigel David Tout | Peripheral display for a near-eye display device |
CN104090371B (en) * | 2014-06-19 | 2017-07-04 | 京东方科技集团股份有限公司 | A kind of 3D glasses and 3D display systems |
CN104618705B (en) * | 2014-11-28 | 2017-04-05 | 深圳市魔眼科技有限公司 | Different distance self adaptation holography display methods and equipment based on eyeball tracking |
-
2017
- 2017-04-11 TW TW106111957A patent/TWI622806B/en active
-
2018
- 2018-03-07 CN CN201810187281.4A patent/CN108693645B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5347400A (en) * | 1993-05-06 | 1994-09-13 | Ken Hunter | Optical system for virtual reality helmet |
US7656585B1 (en) * | 2008-08-19 | 2010-02-02 | Microvision, Inc. | Embedded relay lens for head-up displays or the like |
TWI553344B (en) * | 2011-12-26 | 2016-10-11 | 洛伊馬汀公司 | Head-mounted display apparatus employing one or more fresnel lenses |
US20160198949A1 (en) * | 2015-01-12 | 2016-07-14 | Google Inc. | Hybrid lens system for head wearable display |
WO2016141054A1 (en) * | 2015-03-02 | 2016-09-09 | Lockheed Martin Corporation | Wearable display system |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI716968B (en) * | 2018-08-20 | 2021-01-21 | 大陸商余姚舜宇智能光學技術有限公司 | Head-mounted display apparatus and eye-tracking system thereof |
TWI730573B (en) * | 2019-01-15 | 2021-06-11 | 日商藍光科技股份有限公司 | Wearable image display device |
US11675196B2 (en) | 2019-01-15 | 2023-06-13 | Blue Optech Co., Ltd. | Wearable device with image display module |
Also Published As
Publication number | Publication date |
---|---|
TW201837537A (en) | 2018-10-16 |
CN108693645A (en) | 2018-10-23 |
CN108693645B (en) | 2021-03-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI622806B (en) | Virtual reality display apparatus | |
JP6423945B2 (en) | Display device and display method using projector | |
EP3586185B1 (en) | Compact eye tracking using folded display optics | |
US11726321B2 (en) | Image shift correction for binocular virtual imaging apparatus | |
JP6502586B2 (en) | Virtual reality headset to focus | |
US10397539B2 (en) | Compensating 3D stereoscopic imagery | |
JP4233270B2 (en) | Adaptive autostereoscopic display system | |
EP3001238B1 (en) | High transmittance eyewear for head-up displays | |
US10935797B1 (en) | Multifocal system with polarizing elements | |
US20210311314A1 (en) | Wearable apparatus and unmanned aerial vehicle system | |
CN107076984A (en) | Virtual image maker | |
CN113892050A (en) | Electronic device and method for displaying augmented reality | |
JP7566339B2 (en) | Binocular head-mounted display system with adjustable interpupillary distance mechanism | |
CN113196141B (en) | Optical system using segmented phase profile liquid crystal lens | |
US10282912B1 (en) | Systems and methods to provide an interactive space over an expanded field-of-view with focal distance tuning | |
CN110426847B (en) | Head-mounted display, lens for head-mounted display and configuration method thereof | |
US11906750B1 (en) | Varifocal display with actuated reflectors | |
JP2022553629A (en) | Optical system for head mounted display device | |
TWI646356B (en) | Head mounted display | |
CN107111143A (en) | Vision system and viewing equipment | |
TW202317771A (en) | Compact imaging optics using spatially located, free form optical components for distortion compensation and image clarity enhancement | |
TW202232187A (en) | Head mounted display apparatus | |
US10948631B1 (en) | Optical systems and methods for increasing interpupillary distance of a display device | |
TWM601350U (en) | Virtual reality display apparatus | |
TW201809799A (en) | Head-mounted display device and binocular vision image calibrating method of the same |