TWI621839B - Active optical cable and method of calculating ah effective age of the same - Google Patents

Active optical cable and method of calculating ah effective age of the same Download PDF

Info

Publication number
TWI621839B
TWI621839B TW104134827A TW104134827A TWI621839B TW I621839 B TWI621839 B TW I621839B TW 104134827 A TW104134827 A TW 104134827A TW 104134827 A TW104134827 A TW 104134827A TW I621839 B TWI621839 B TW I621839B
Authority
TW
Taiwan
Prior art keywords
memory
optical cable
active optical
value
temperature
Prior art date
Application number
TW104134827A
Other languages
Chinese (zh)
Other versions
TW201632858A (en
Inventor
周舒瓦R 闊爾內魯
埃里克 俊 斯賓登
駿馬克 安卓 瑞迪爾
威廉J 扣洛斯奇
凱文 伯特
湯姆士 班傑明 措可斯爾
雷斯理 雷爾瑞
大衛A 郎山姆
安迪 俊 巴可斯特
Original Assignee
山姆科技公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山姆科技公司 filed Critical 山姆科技公司
Publication of TW201632858A publication Critical patent/TW201632858A/en
Application granted granted Critical
Publication of TWI621839B publication Critical patent/TWI621839B/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/30Testing of optical devices, constituted by fibre optics or optical waveguides
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M99/00Subject matter not provided for in other groups of this subclass
    • G01M99/002Thermal testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K1/00Details of thermometers not specially adapted for particular types of thermometer
    • G01K1/02Means for indicating or recording specially adapted for thermometers
    • G01K1/022Means for indicating or recording specially adapted for thermometers for recording
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K3/00Thermometers giving results other than momentary value of temperature
    • G01K3/02Thermometers giving results other than momentary value of temperature giving means values; giving integrated values
    • G01K3/04Thermometers giving results other than momentary value of temperature giving means values; giving integrated values in respect of time
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/28Supervision thereof, e.g. detecting power-supply failure by out of limits supervision
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2212/00Indexing scheme relating to accessing, addressing or allocation within memory systems or architectures
    • G06F2212/72Details relating to flash memory management
    • G06F2212/7203Temporary buffering, e.g. using volatile buffer or dedicated buffer blocks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2212/00Indexing scheme relating to accessing, addressing or allocation within memory systems or architectures
    • G06F2212/72Details relating to flash memory management
    • G06F2212/7211Wear leveling

Abstract

本發明提供一種計算主動光學纜線的有效年齡的方法,該主動光學纜線包含一光纖纜線、至少一光學換能器、一第一記憶體以及一第二記憶體,該方法包含:在被分割成多個規律子時間區間的規律時間區間期間以及在每一個該些規律的子時間區間之後,感測該主動光學纜線的一操作參數並且在該第二記憶體之中記錄一對應於一被感測到的操作參數的數值;在每一個該些規律的時間區間之後,將被記錄於該第二記憶體之中的數值儲存於該第一記憶體之中;以及以被儲存在該第一記憶體之中的數值為基礎來計算該主動光學纜線的有效年齡。 The present invention provides a method of calculating an effective age of an active optical cable, the active optical cable comprising a fiber optic cable, at least one optical transducer, a first memory, and a second memory, the method comprising: Sensing an operational parameter of the active optical cable and recording a correspondence in the second memory during a regular time interval divided into a plurality of regular sub-time intervals and after each of the regular sub-time intervals a value of the sensed operational parameter; after each of the regular time intervals, the value recorded in the second memory is stored in the first memory; and is stored The effective age of the active optical cable is calculated based on the values in the first memory.

Description

主動光學纜線及用於計算其有效年齡之方法 Active optical cable and method for calculating its effective age

本發明和測量及記錄主動元件的溫度資料之方法有關並且和估算主動元件的剩餘生命期之方法有關。更明確地說,本發明和利用具有有限被寫入能力及有限容量的記憶體來測量及記錄主動元件的溫度資料之方法有關,並且和以主動元件的溫度歷史資料為基礎來估算它的剩餘生命期之方法有關。 The invention relates to a method of measuring and recording temperature data of an active component and is related to a method of estimating the remaining lifetime of the active component. More specifically, the present invention relates to a method of measuring and recording temperature data of an active device using a memory having limited write capability and limited capacity, and estimating its remaining based on temperature history data of the active component. The method of life is related.

生命期(也就是,發生失效之前的時間)相依於主動元件的操作環境,其包含溫度、濕度、…等。平均失效時間(Mean Time To Failure,MTTF)為發生失效之前的元件的平均預估操作時間。一主動元件的MTTF同樣相依於該主動元件的操作環境。製造商通常會提供一給定操作條件(溫度、濕度、電流、…等)中的MTTF。然而,主動元件的操作溫度卻會隨著應用而大幅地改變。 The lifetime (that is, the time before the failure occurs) depends on the operating environment of the active component, which includes temperature, humidity, ..., and the like. Mean Time To Failure (MTTF) is the average estimated operating time of components before failure occurs. The MTTF of an active component is also dependent on the operating environment of the active component. Manufacturers typically provide MTTF in a given operating condition (temperature, humidity, current, ..., etc.). However, the operating temperature of the active components can vary greatly with the application.

主動元件的範例為一垂直腔表面發射雷射(Vertical Cavity Surface-Emitting Laser,VCSEL)。VCSEL為半導體光源,其會發射同調光並且在光纖應用中通常會被整合於系統之中。其中一種此類系統為主動光學纜線(Active Optical Cable,AOC),其係一種光纖纜線,其包含被稱為換能器 (transducer)的電氣至光學轉換器及/或光學至電氣轉換器。VCSEL在高溫處傾向於更快速地磨耗並且係AOC之中最可能的失效來源。VCSEL能夠表示單一雷射或是單一晶粒中的雷射陣列(也就是,VCSEL陣列)。 An example of an active component is a Vertical Cavity Surface-Emitting Laser (VCSEL). VCSELs are semiconductor light sources that emit the same dimming and are typically integrated into the system in fiber optic applications. One such system is an Active Optical Cable (AOC), which is a fiber optic cable, which is called a transducer. (transducer) electrical to optical converter and / or optical to electrical converter. VCSELs tend to wear more quickly at high temperatures and are the most likely source of failure among AOCs. A VCSEL can represent a single laser or a laser array in a single die (ie, a VCSEL array).

主動元件的問題係,不知道它們何時會失效。理想上,主動元件的操作環境的條件會連續受到監視以及記錄。然而,未必可以如此。舉例來說,AOC便無法連續地監視與記錄溫度,因為AOC的非揮發性記憶體僅能夠被寫入有限的次數。倘若使用可電氣抹除程式化唯讀記憶體(Electrically Erasable Programmable Read-Only Memory,EEPROM)半導體元件作為AOC的記憶體的話,此記憶體會有有限次數的寫入循環。於一範例中,由ATMEL(位於美國加州的聖荷西市)所製造的特定EEPROM在85℃的操作溫度下,於失效之前會有額定30,000次的寫入循環。 The problem with active components is that they don't know when they will fail. Ideally, the conditions of the operating environment of the active components are continuously monitored and recorded. However, this may not be the case. For example, AOC cannot continuously monitor and record temperature because AOC's non-volatile memory can only be written a limited number of times. If an Electrically Erasable Programmable Read-Only Memory (EEPROM) semiconductor component is used as the memory of the AOC, the memory will have a limited number of write cycles. In one example, a particular EEPROM fabricated by ATMEL (San Jose, Calif.) will have a nominal 30,000 write cycles prior to failure at an operating temperature of 85 °C.

為克服上面所述問題,本發明的較佳實施例提供一種利用具有有限被寫入能力及有限容量的記憶體來測量及記錄主動元件的溫度資料的方法,以及提供一種利用該溫度資料來估算該主動元件之年齡的估算方法。 In order to overcome the above problems, a preferred embodiment of the present invention provides a method for measuring and recording temperature data of an active device using a memory having limited write capability and limited capacity, and providing an estimate using the temperature data. A method of estimating the age of the active component.

於本發明的一較佳實施例中提供一種AOC,其包含一VCSEL、揮發性記憶體元件與非揮發性記憶體元件、一處理器、以及一感測器。該感測器提供和影響主動元件老化的操作參數有關的資訊。該感測器會在規律的子時間區間處受到該處理器監視,而所產生的資訊則會被儲存在揮發性記憶體之中。被儲存在揮發性記憶體之中的資訊會在規律的時間區間處由該處理器傳輸且寫入至該非揮發性記憶體,一時間區間的長度 大於一子時間區間的長度,以便減少該非揮發性記憶體之寫入循環的次數。被儲存在該非揮發性記憶體之中的資訊會被用來決定該主動元件的有效年齡。 In an embodiment of the invention, an AOC is provided that includes a VCSEL, a volatile memory component and a non-volatile memory component, a processor, and a sensor. The sensor provides information related to operational parameters that affect the aging of the active components. The sensor is monitored by the processor during regular sub-time intervals and the generated information is stored in volatile memory. The information stored in the volatile memory is transmitted by the processor and written to the non-volatile memory at regular time intervals, the length of a time interval Greater than the length of a sub-period of time to reduce the number of write cycles of the non-volatile memory. The information stored in the non-volatile memory is used to determine the effective age of the active component.

本發明的一較佳實施例提供一種主動光學纜線,其包含:一光纖纜線;至少一光學換能器;一第一記憶體;一第二記憶體;一感測器,其會感測該主動光學纜線的操作參數;以及一處理器,其被連接至該至少一光學換能器、該第一記憶體、該第二記憶體、以及該感測器。在被分割成多個規律子時間區間的規律時間區間期間以及在每一個該些規律的子時間區間之後,該處理器會在該第二記憶體之中記錄一對應於一被感測到的操作參數的數值,並且在每一個該些規律的時間區間之後將被記錄於該第二記憶體之中的數值儲存於該第一記憶體之中。 A preferred embodiment of the present invention provides an active optical cable comprising: a fiber optic cable; at least one optical transducer; a first memory; a second memory; a sensor, which senses Measure the operational parameters of the active optical cable; and a processor coupled to the at least one optical transducer, the first memory, the second memory, and the sensor. During a regular time interval divided into a plurality of regular sub-time intervals and after each of the regular sub-time intervals, the processor records a corresponding one in the second memory corresponding to a sensed The values of the operational parameters are stored, and the values recorded in the second memory are stored in the first memory after each of the regular time intervals.

該些規律的時間區間以及該些規律的子時間區間較佳的係以該第一記憶體的預期寫入次數以及該主動光學纜線的預期生命期為基礎。該操作參數較佳的係溫度。 The regular time intervals and the regular sub-time intervals are preferably based on the expected number of writes of the first memory and the expected lifetime of the active optical cable. This operating parameter is preferably a temperature.

較佳的係,該第二記憶體包含多個分組(bin),並且該些分組中的每一者皆對應於該被感測的操作參數的一數值範圍。該處理器較佳的係以將對應於該被感測的操作參數之數值範圍(其包含該被感測的操作參數的數值)的分組的分組數值遞增一的方式於該第二記憶體之中記錄對應於該被感測到的操作參數的數值。該第一記憶體較佳的係包含多個分組,它們對應於該第二記憶體之中的分組。該處理器較佳的係藉由將該第二記憶體之中的每一個分組的分組數值加入先前被儲存在該第一記憶體之中的對應分組之中的對應分組數值而將被記錄在該第二記憶體之中的數值儲存在該 第一記憶體之中。該處理器較佳的係以被儲存在該第一記憶體之中的分組的分組數值為基礎來計算該主動光學纜線的有效年齡。該處理器較佳的係僅以被儲存在該第一記憶體之中的分組的分組數值為基礎來計算該有效年齡。該處理器較佳的係倘該有效年齡係在一臨界數值之上,則提供一指示符信號。較佳的係,該操作參數為溫度;該些分組中的每一者皆代表一溫度範圍;並且該處理器會利用下面的方程式來計算該主動光學纜線的有效年齡teffective 其中,,m為以分鐘為單位的規律子時間區間的時間,b為 分組的數量,Nn為被儲存在分組n之中的數值,EA為激活能量(activation energy),kB為波茲曼常數(Boltzman's constant),Tn為分組溫度,以及TR為參考溫度。 Preferably, the second memory comprises a plurality of bins, and each of the packets corresponds to a range of values of the sensed operating parameter. Preferably, the processor is configured to increment the grouping value of the packet corresponding to the value range of the sensed operating parameter (which includes the value of the sensed operating parameter) by one. The value corresponding to the sensed operational parameter is recorded. Preferably, the first memory comprises a plurality of packets corresponding to the packets in the second memory. Preferably, the processor is to be recorded by adding a packet value of each of the second memories to a corresponding packet value among the corresponding packets previously stored in the first memory. The value in the second memory is stored in the first memory. The processor preferably calculates the effective age of the active optical cable based on the packet values of the packets stored in the first memory. Preferably, the processor calculates the effective age based only on the grouping values of the packets stored in the first memory. Preferably, the processor provides an indicator signal if the effective age is above a threshold. The preferred system, the operating parameter is temperature; each of the plurality of packet by key represents a temperature range; and the processor may be calculated using the following equation t effective Effective Age of the active optical cable: among them, m is the time in the regular sub-time interval in minutes, b is the number of packets, N n is the value stored in packet n, E A is the activation energy, and k B is Bozeman Boltzman's constant, T n is the grouping temperature, and T R is the reference temperature.

在每一個該些規律的時間區間之後,該處理器較佳的係重置被儲存在該第二記憶體之中的數值。該處理器較佳的係以被儲存在該第一記憶體之中的數值為基礎來計算該主動光學纜線的有效年齡。該第一記憶體較佳的係非揮發性記憶體,以及該第二記憶體較佳的係揮發性記憶體。該第一記憶體較佳的係EEPROM。 Preferably, after each of the regular time intervals, the processor resets the value stored in the second memory. Preferably, the processor calculates the effective age of the active optical cable based on the value stored in the first memory. Preferably, the first memory is a non-volatile memory, and the second memory is preferably a volatile memory. The first memory is preferably an EEPROM.

本發明的一較佳實施例提供一種計算主動光學纜線的有效年齡的方法,該主動光學纜線包含一光纖纜線、至少一光學換能器、一第一記憶體、以及一第二記憶體,該方法包含:在被分割成多個規律子時間區間的規律時間區間期間以及在每一個該些規律的子時間區間之後感測該 主動光學纜線的一操作參數並且在該第二記憶體之中記錄一對應於一被感測到的操作參數的數值;在每一個該些規律的時間區間之後將被記錄於該第二記憶體之中的數值儲存於該第一記憶體之中;以及以被儲存在該第一記憶體之中的數值為基礎來計算該主動光學纜線的有效年齡。 A preferred embodiment of the present invention provides a method of calculating an effective age of an active optical cable, the active optical cable including a fiber optic cable, at least one optical transducer, a first memory, and a second memory Body, the method comprising: sensing the regular time interval divided into a plurality of regular sub-time intervals and after each of the regular sub-time intervals An operational parameter of the active optical cable and recording a value corresponding to a sensed operational parameter in the second memory; after each of the regular time intervals, the second memory is recorded The value in the body is stored in the first memory; and the effective age of the active optical cable is calculated based on the value stored in the first memory.

該些規律的時間區間以及該些規律的子時間區間較佳的係以該第一記憶體的預期寫入次數以及該主動光學纜線的預期生命期為基礎。該操作參數較佳的係溫度。 The regular time intervals and the regular sub-time intervals are preferably based on the expected number of writes of the first memory and the expected lifetime of the active optical cable. This operating parameter is preferably a temperature.

較佳的係,該第二記憶體包含多個分組,並且該些分組中的每一者皆對應於該被感測的操作參數的一數值範圍。在該第二記憶體之中記錄對應於被感測到的操作參數的數值較佳的係包含將對應於該被感測的操作參數之數值範圍(其包含該被感測的操作參數的數值)的分組的分組數值遞增一。該第一記憶體較佳的係包含多個分組,它們對應於該第二記憶體之中的分組。將被記錄於該第二記憶體之中的數值儲存於該第一記憶體之中較佳的係包含將該第二記憶體之中的每一個分組的分組數值加入先前被儲存在該第一記憶體之中的對應分組之中的對應分組數值。計算該主動光學纜線的有效年齡較佳的係以被儲存在該第一記憶體之中的分組的分組數值為基礎。計算該有效年齡較佳的係僅以被儲存在該第一記憶體之中的分組的分組數值為基礎。該方法進一步較佳的係包含倘該有效年齡係在一臨界數值之上,則提供一指示符信號。較佳的係,該操作參數為溫度;該些分組中的每一者皆代表一溫度範圍;並且計算該主動光學纜線的有效年齡包含利用下面的方程式: 其中,,teffective為主動光學纜線的有效年齡,m為以分鐘為單 位的規律子時間區間的時間,b為分組的數量,Nn為被儲存在分組n之中的數值,EA為激活能量,kB為波茲曼常數,Tn為分組溫度,以及TR為參考溫度。 Preferably, the second memory comprises a plurality of packets, and each of the packets corresponds to a range of values of the sensed operational parameter. Recording a value corresponding to the sensed operational parameter among the second memories preferably includes a range of values corresponding to the sensed operational parameter (which includes the value of the sensed operational parameter) The packet value of the packet is incremented by one. Preferably, the first memory comprises a plurality of packets corresponding to the packets in the second memory. Storing the value recorded in the second memory in the first memory preferably includes adding a packet value of each of the second memories to the first stored in the first memory. The corresponding packet value among the corresponding packets in the memory. Calculating the effective age of the active optical cable is preferably based on the grouping values of the packets stored in the first memory. The calculation of the effective age is preferably based only on the grouping values of the packets stored in the first memory. Further preferably, the method includes providing an indicator signal if the effective age is above a threshold value. Preferably, the operating parameter is temperature; each of the groups represents a temperature range; and calculating the effective age of the active optical cable comprises utilizing the following equation: among them, , t effective is the effective age of the active optical cable, m is the time in the regular sub-time interval in minutes, b is the number of packets, N n is the value stored in the packet n, and E A is the activation energy , k B is the Boltzmann constant, T n is the grouping temperature, and T R is the reference temperature.

該方法進一步較佳的係包含在每一個該些規律的時間區間之後重置被儲存在該第二記憶體之中的數值。該第一記憶體較佳的係非揮發性記憶體,以及該第二記憶體較佳的係揮發性記憶體。該第一記憶體較佳的係EEPROM。 The method further preferably includes resetting the value stored in the second memory after each of the regular time intervals. Preferably, the first memory is a non-volatile memory, and the second memory is preferably a volatile memory. The first memory is preferably an EEPROM.

參考附圖,從本發明之較佳實施例的下面詳細說明中會更明白本發明的上面及其它特點、元素、特徵、步驟、以及優點。 The above and other features, elements, features, steps and advantages of the present invention will become more apparent from the description of the appended claims.

101‧‧‧殼體 101‧‧‧shell

102‧‧‧基板 102‧‧‧Substrate

103‧‧‧微處理器 103‧‧‧Microprocessor

107‧‧‧光偵測器 107‧‧‧Photodetector

108‧‧‧光學豎板 108‧‧‧ Optical riser

109‧‧‧垂直腔表面發射雷射(VCSEL) 109‧‧‧Vertical Cavity Surface Emitting Laser (VCSEL)

110‧‧‧模塑光學結構(MOS) 110‧‧‧Molded Optical Structure (MOS)

111‧‧‧光學纜線 111‧‧‧ optical cable

112‧‧‧光纖 112‧‧‧Fiber

202‧‧‧基板 202‧‧‧Substrate

203‧‧‧微處理器 203‧‧‧Microprocessor

209‧‧‧垂直腔表面發射雷射(VCSEL) 209‧‧‧Vertical Cavity Surface Emitting Laser (VCSEL)

210‧‧‧模塑光學結構(MOS) 210‧‧‧Molded Optical Structure (MOS)

211‧‧‧光學纜線 211‧‧‧ optical cable

213‧‧‧散熱片 213‧‧‧ Heat sink

214‧‧‧驅動器 214‧‧‧ drive

圖1所示的係根據本發明的一較佳實施例的流程圖。 1 is a flow chart in accordance with a preferred embodiment of the present invention.

圖2所示的係一AOC的爆炸圖。 Figure 2 shows an exploded view of an AOC.

圖3所示的係能夠用於圖2中所示之AOC的印刷電路板以及模塑光學結構的爆炸圖。 The diagram shown in Figure 3 can be used for the printed circuit board of the AOC shown in Figure 2 and an exploded view of the molded optical structure.

圖4所示的係圖3中所示之印刷電路板的背面透視圖。 Figure 4 is a rear perspective view of the printed circuit board shown in Figure 3.

圖5所示的係另一AOC的正面透視圖。 Figure 5 is a front perspective view of another AOC.

圖6所示的係圖5中所示之AOC的爆炸圖。 Figure 6 is an exploded view of the AOC shown in Figure 5.

圖7所示的係圖6中所示的印刷電路板以及模塑光學結構的爆炸圖。 Figure 7 is an exploded view of the printed circuit board and molded optical structure shown in Figure 6.

本發明希望知道主動元件的剩餘生命,以便能夠在該主動元件或是併入該主動元件的系統失效之前預先將其替換。被動式機制及/或方法需要以該主動元件的操作環境為基礎來決定失效機率。因此,本發明的較佳實施例會:1)在規律的時間區間處儲存和該主動元件的(多個)操作參數有關的資訊,其中,該(些)操作參數係在比該些時間區間更短的規律子時間區間處被監視與記錄;以及2)從該被儲存的資訊中決定該主動元件的有效年齡。 The present invention contemplates the remaining life of the active component so that it can be replaced in advance before the active component or system incorporating the active component fails. Passive mechanisms and/or methods need to determine the probability of failure based on the operating environment of the active component. Accordingly, a preferred embodiment of the present invention would: 1) store information relating to the operational parameter(s) of the active component at regular time intervals, wherein the operational parameter(s) are more than the time intervals The short regular sub-time interval is monitored and recorded; and 2) the effective age of the active component is determined from the stored information.

本發明的各種較佳實施例的特定範例提供一種利用具有有限被寫入能力及有限容量的記憶體來測量及記錄主動元件的溫度的方法,以及提供一種利用該溫度資料來估算該主動元件的有效年齡並且因而估算剩餘的預期生命期的估算方法。該剩餘的預期生命期能夠被用來在失效之前預先替換該主動元件或是含有該主動元件的系統,也就是,AOC。 A specific example of various preferred embodiments of the present invention provides a method of measuring and recording the temperature of an active device using a memory having limited write capability and limited capacity, and providing an estimate of the active component using the temperature data. Estimated method of effective age and thus estimating the remaining expected lifetime. The remaining expected lifetime can be used to pre-replace the active component or the system containing the active component prior to failure, that is, the AOC.

儲存溫度花費時間(time-spent-at-temperature)資料並且利用合宜的生命期估算方法來估算主動元件的年齡具有下面數項好處。首先,該生命期估算方法能夠以應用為基礎進行修正。其次,當有新的可靠度資料可以利用時,更新的生命期估算便能夠被算出。第三,相較於由系統處理器實施估算年齡的計算時所需要用到的電路板內運算電力,額外的電路板內運算電力會減少。 Storing temperature-time-spent-at-temperature data and using appropriate life-time estimation methods to estimate the age of active components has several benefits. First, the lifetime estimation method can be modified based on the application. Second, when new reliability data is available, the updated lifetime estimates can be calculated. Third, the additional computational power within the board is reduced compared to the in-board computing power required to implement the estimated age calculation by the system processor.

知道主動元件(例如,VCSEL)以溫度為函數而老化的近似速率並且知道該主動元件花費在每一個溫度的時間數額便能夠預測該主動元 件的年齡,並且因而預測該主動元件的剩餘生命期。主動元件製造商通常會提供老化速率和該主動元件的溫度之間的關係,也就是,函數主動元件的溫度能夠由被放置在該主動元件附近的感測器來測量並且於任何時間被記錄,只要該主動元件開機啟動即可。利用溫度感測器可以被動地估算該主動元件的生命期,而不需要額外的電路。合宜的生命期估算方法能夠被用來以操作在一恆定參考溫度(舉例來說,其可能為40℃)處的主動元件為基準而決定該主動元件的有效年齡。 Knowing the approximate rate at which the active component (eg, VCSEL) ages as a function of temperature and knowing the amount of time the active component spends at each temperature can predict the active element The age of the piece, and thus the remaining life of the active component. Active component manufacturers typically provide a relationship between the aging rate and the temperature of the active component, that is, the temperature of the functional active component can be measured by a sensor placed near the active component and recorded at any time. As long as the active component is powered on. The temperature sensor can be used to passively estimate the lifetime of the active component without the need for additional circuitry. A suitable lifetime estimation method can be used to determine the effective age of the active component based on the active component operating at a constant reference temperature (which may be, for example, 40 °C).

先前關於操作溫度所述的方法及設備能夠套用於影響一主動元件之生命期的其它因素。將會施壓於該元件的其它條件(其包含濕度、溫度循環、操作電流、…等)考量進去的雷同年齡預測會需要能夠測量花費在每一個受壓條件處的時間數額。舉例來說,針對在高電流處老化較快速的主動元件來說,該主動元件的電流或是電力消耗會隨著時間經過而被監視,以便預測裝置年齡。 Previous methods and apparatus described with respect to operating temperatures can be applied to other factors that affect the life of an active component. The same age predictions that will be applied to other conditions of the component (which include humidity, temperature cycling, operating current, ..., etc.) will need to be able to measure the amount of time spent at each of the stressed conditions. For example, for an active component that ages faster at high currents, the current or power consumption of the active component can be monitored over time to predict device age.

VCSEL雖然為本發明的較佳實施例的特定範例中所使用的主動元件;不過,本發明亦能夠套用於其它主動元件。舉例來說,AOC通常包含許多類型的主動元件,例如,但是並不受限於:轉阻放大器、光偵測器、雷射驅動器、VCSEL以外的光源、…等。本發明的較佳實施例同樣可套用於任何此些主動元件。VCSEL會較佳地被使用在本發明的較佳實施例之中,因為VCSEL被預期為第一個失效的元件;然而,倘若另一個主動元件被預期為會第一個失效的話,那麼,較佳的係,使用該第一個失效的主動元件。不需要直接監視VCSEL的光學輸出(其會需要用到額外的器件)便能夠估算VCSEL的年齡。取而代之地,VCSEL的溫度會被動地受到監視。 The VCSEL is an active component used in a particular example of a preferred embodiment of the invention; however, the invention can be applied to other active components. For example, AOC typically includes many types of active components, such as, but not limited to, transimpedance amplifiers, photodetectors, laser drivers, light sources other than VCSELs, and the like. The preferred embodiment of the invention can be applied to any of these active components as well. A VCSEL would preferably be used in the preferred embodiment of the invention because the VCSEL is expected to be the first failed component; however, if another active component is expected to be the first to fail, then The best system uses the first failed active component. The age of the VCSEL can be estimated without the need to directly monitor the optical output of the VCSEL (which would require additional components). Instead, the temperature of the VCSEL is passively monitored.

圖2所示的係一AOC的爆炸圖。本申請案中的圖2和申請案第12/944,545號以及第12/944,562號中的圖1相同,本文以引用的方式將它們的完整內容併入。該AOC包含:一殼體101;一具有光纖112的光學纜線111;一基板102;一模塑光學結構(Molded Optical Structure,MOS)110,其耦合至或連接至基板102並且耦合至或連接至光纖112;以及一光學豎板(optical riser)108。基板102包含一光偵測器107、一VCSEL 109、以及一微處理器103。圖3所示的係能夠用於圖2中所示之AOC的基板102以及MOS 110的爆炸圖。圖4所示的係圖3中所示之基板102的背面。圖3顯示的係位於MOS 110下方的VCSEL 109。圖4顯示的係位於基板102背面的微處理器103,其較佳的係包含非揮發性記憶體(也就是,EEPROM)以及揮發性記憶體。基板102還包含一溫度感測器,其能夠被用來決定VCSEL 109的溫度。該溫度感測器能夠為一獨立的器件,或者能夠被整合於印刷電路板中的其它器件之中,或者被放置在該AOC之中位於該VCSEL 109附近的其它地方。較佳的係,多項功能會被併入於單一半導體晶片之中。舉例來說,該微處理器、感測器、揮發性記憶體、非揮發性記憶體、以及VCSEL驅動器能夠被併入於單一特定應用積體電路(Application Specific Integrated Circuit,ASIC)之中。 Figure 2 shows an exploded view of an AOC. Figure 2 of the present application is the same as Figure 1 of the application Nos. 12/944,545 and 12/944,562, the entire contents of each of which are incorporated herein by reference. The AOC comprises: a housing 101; an optical cable 111 having an optical fiber 112; a substrate 102; a molded optical structure (MOS) 110 coupled to or coupled to the substrate 102 and coupled or coupled To the optical fiber 112; and an optical riser 108. The substrate 102 includes a photodetector 107, a VCSEL 109, and a microprocessor 103. The diagram shown in FIG. 3 can be used for the substrate 102 of the AOC shown in FIG. 2 and the exploded view of the MOS 110. The back side of the substrate 102 shown in FIG. 3 is shown in FIG. Figure 3 shows the VCSEL 109 located below the MOS 110. 4 shows a microprocessor 103 on the back side of substrate 102, which preferably includes non-volatile memory (ie, EEPROM) and volatile memory. Substrate 102 also includes a temperature sensor that can be used to determine the temperature of VCSEL 109. The temperature sensor can be a stand-alone device or can be integrated into other devices in the printed circuit board or placed elsewhere in the AOC near the VCSEL 109. Preferably, multiple functions are incorporated into a single semiconductor wafer. For example, the microprocessor, sensor, volatile memory, non-volatile memory, and VCSEL driver can be incorporated into a single Application Specific Integrated Circuit (ASIC).

圖5所示的係能夠被使用在一AOC之中的光學接收器。此接收器雷同於美國申請案第13/539,173號、第13/758,464號、第13/895,571號、第13/950,628號、以及第14/295,367號之中所示的光學傳收器之中的其中一者,本文以引用的方式將它們的完整內容併入。舉例來說,本申請案中的圖5至7之中的接收器雷同於美國申請案第13/539,173號的圖15A至 17B之中所示的光學傳收器。該接收器包含:一光學纜線211;一基板202;一MOS 210,其耦合至或連接至該基板202並且耦合至或連接至光纖212;一微處理器203;以及一非必要的散熱片213。基板202包含一驅動器214、一VCSEL 209、以及一微處理器203。圖6所示的係圖5中所示之接收器的爆炸圖。圖7所示的係圖6中所示的基板202以及MOS 210的爆炸圖。圖7顯示位於MOS 210下方的VCSEL 209以及微處理器203。如同圖4中所示的微處理器103,圖7中所示的微處理器203較佳的係包含非揮發性記憶體(也就是,EEPROM)以及揮發性記憶體。 The system shown in Figure 5 can be used in an optical receiver in an AOC. The receiver is identical to the optical transceivers shown in U.S. Application Nos. 13/539,173, 13/758,464, 13/895,571, 13/950,628, and 14/295,367. In one of them, this article incorporates their complete content by reference. For example, the receivers of Figures 5 through 7 of the present application are identical to Figures 15A of U.S. Application Serial No. 13/539,173. The optical transceiver shown in 17B. The receiver comprises: an optical cable 211; a substrate 202; a MOS 210 coupled to or connected to the substrate 202 and coupled to or connected to the optical fiber 212; a microprocessor 203; and an unnecessary heat sink 213. The substrate 202 includes a driver 214, a VCSEL 209, and a microprocessor 203. Figure 6 is an exploded view of the receiver shown in Figure 5. FIG. 7 is an exploded view of the substrate 202 and the MOS 210 shown in FIG. FIG. 7 shows VCSEL 209 and microprocessor 203 located below MOS 210. Like the microprocessor 103 shown in FIG. 4, the microprocessor 203 shown in FIG. 7 preferably includes non-volatile memory (ie, EEPROM) and volatile memory.

在本發明的較佳實施例的特定範例中雖然使用EEPROM作為記憶體元件;不過,本發明的較佳實施例亦可套用於其它合宜類型的記憶體。任何靜態記憶體(舉例來說,SRAM)皆能夠被使用。如果可以在該主動元件關機時保留資料於揮發性記憶體之中的話,亦可以使用揮發性記憶體取代非揮發性記憶體。 Although a EEPROM is used as a memory element in a particular example of a preferred embodiment of the invention; however, the preferred embodiment of the invention may be applied to other suitable types of memory. Any static memory (for example, SRAM) can be used. Volatile memory can also be used in place of non-volatile memory if data can be retained in volatile memory when the active device is turned off.

溫度分組Temperature grouping

根據本發明的較佳實施例的溫度分組方法能夠用於具有有限被寫入能力及有限容量的記憶體,例如,EEPROM。因為EEPROM中通常沒有足夠的空間來記錄精確的溫度讀數,所以,溫度數值必須被「分組」,其中,每一個分組代表不同的溫度範圍。該溫度分組方法被用來創造一溫度直方圖,其能夠被用來預測主動元件的年齡。接著,合宜的生命期估算演算法會被套用於該溫度直方圖,用以決定該主動元件的有效年齡,其可以估算該主動元件的剩餘生命期。 The temperature grouping method according to the preferred embodiment of the present invention can be used for a memory having limited write capability and limited capacity, such as an EEPROM. Because there is usually not enough room in the EEPROM to record accurate temperature readings, the temperature values must be "grouped", where each packet represents a different temperature range. This temperature grouping method is used to create a temperature histogram that can be used to predict the age of the active components. Next, a suitable lifetime estimation algorithm is applied to the temperature histogram to determine the effective age of the active component, which can estimate the remaining lifetime of the active component.

該溫度直方圖會被分割成多個溫度分組,每一個分組皆代表 一不同的溫度範圍。舉例來說,每一個溫度分組能夠代表5℃的溫度範圍。每一個溫度分組的飽滿程度提供花費在該溫度範圍處的時間數額的代表符。舉例來說,倘若25℃至30℃的溫度分組的飽滿程度大於35℃至40℃的溫度分組的話,那麼,該主動元件花費在溫度範圍25℃至30℃中的時間便大於溫度範圍35℃至40℃。 The temperature histogram will be divided into multiple temperature groups, each of which represents A different temperature range. For example, each temperature group can represent a temperature range of 5 °C. The fullness of each temperature group provides an indication of the amount of time spent at that temperature range. For example, if the degree of fullness of the temperature group of 25 ° C to 30 ° C is greater than the temperature group of 35 ° C to 40 ° C, then the active component spends in the temperature range of 25 ° C to 30 ° C is greater than the temperature range of 35 ° C To 40 ° C.

每一個溫度分組能夠為EEPROM之中特定數量的位元組,舉例來說,三個位元組。位元組數量的選擇相依於單一分組的最大數值。舉例來說,於此範例中選擇三個位元組,因為最大分組數值必須為約1百萬。倘若該主動元件維持在一恆定溫度中五年的話,那麼,該溫度的分組的最大數值便必須大於525,600,因為在5年週期中會有525,600個可能的子時間區間(24[個子時間區間/2小時週期]x12[2小時週期/天]x365[天/年]x5[年]=525,600個子時間區間)。在該主動元件第一次被末端使用者啟動時,每一個溫度分組會被設為零,也就是,每一個位元組會被設為零,其表示該主動元件在每一個溫度範圍中沒有花費任何時間。當該溫度被測量為落在一特定的溫度範圍裡面時,那麼,對應於該溫度範圍的溫度分組的位元組便會被遞增適當的數額。 Each temperature packet can be a specific number of bytes in the EEPROM, for example, three bytes. The choice of the number of bytes depends on the maximum value of a single packet. For example, three bytes are selected in this example because the maximum packet value must be about 1 million. If the active component is maintained at a constant temperature for five years, the maximum value of the grouping of the temperature must be greater than 525,600 because there will be 525,600 possible sub-time intervals in the 5-year period (24 [sub-time interval / 2 hour period] x12 [2 hour period/day] x365 [day/year] x5 [year] = 525, 600 sub-time intervals). When the active component is first activated by the end user, each temperature packet is set to zero, that is, each byte is set to zero, indicating that the active component is not in each temperature range. Spend any time. When the temperature is measured to fall within a particular temperature range, then the byte of the temperature group corresponding to the temperature range is incremented by the appropriate amount.

寫入至該EEPROM之間的時間區間(也就是,記憶體寫入時間區間)相依於該主動元件的所希望的生命期以及該EEPROM能夠被寫入多少次。舉例來說,於該選定的特殊晶片之中的EEPROM之中的任何給定胞體當操作在85℃處時,於該胞體可能失效之前能夠被寫入至約30,000次。這意謂著倘若該EEPROM預期在其生命期中操作在85℃處的話,寫入至每一個溫度分組的次數應該小於30,000次寫入。生命期寫入的次數會隨著提 高操作溫度而減少。舉例來說,倘若該EEPROM的操作溫度超過85℃的話,生命期寫入的次數會小於30,000次。該時間區間的選擇會使得該EEPROM的操作生命期超過VCSEL(或是受監視的任何主動元件)的操作生命期特定的安全係數。這會確保該EEPROM能夠在其整個操作生命中繼續記錄關於該VCSEL的操作資訊。所使用的適當安全係數雖然為應用特有;但是,舉例來說,通常落在1.2至10的範圍之中。 The time interval (ie, the memory write time interval) written between the EEPROMs depends on the desired lifetime of the active device and how many times the EEPROM can be written. For example, any given cell in the EEPROM of the selected particular wafer, when operating at 85 ° C, can be written to about 30,000 times before the cell body may fail. This means that if the EEPROM is expected to operate at 85 °C during its lifetime, the number of writes to each temperature packet should be less than 30,000 writes. The number of lifetime writes will be Reduced by high operating temperatures. For example, if the operating temperature of the EEPROM exceeds 85 ° C, the number of lifetime writes will be less than 30,000 times. This time interval is selected such that the operational lifetime of the EEPROM exceeds the operational lifetime specific safety factor of the VCSEL (or any active component being monitored). This will ensure that the EEPROM continues to record operational information about the VCSEL throughout its operational life. The appropriate safety factor used is specific to the application; however, for example, it typically falls within the range of 1.2 to 10.

倘若主動元件的生命期預期為約五年的話,那麼,該EEPROM便同樣必須操作至少和該VCSEL相同的時間長度,俾使得整個系統元件不會受限於該EEPROM。為確保該EEPROM能夠在85℃或更低的操作溫度處操作五年,假設在最差的操作條件下,該EEPROM應該每兩個小時被寫入(2小時x30,000=60,0006.8年)。EEPROM的生命期可能會超過五年,因為(1)該主動元件於該主動元件的生命期之中並不會一直操作在相同的溫度處,因此,一個以上的溫度分組會被更新,及/或(2)該主動元件於該主動元件的生命期之中並不會一直操作在最大操作溫度處,因此,假設該EEPROM生命期在整個溫度範圍中超過該VCSEL生命期的話,該EEPROM能夠實施更多的寫入循環。此2小時記憶體寫入時間區間僅為一種可能的時間區間範例。舉例來說,倘若寫入至EEPROM的次數增加的話,那麼,該記憶體寫入時間區間便會縮短;或者,倘若主動元件的生命期預期為更長的話,那麼,該記憶體寫入時間區間則會延長。該記憶體寫入時間區間較佳的係被選擇為用以確保該EEPROM的生命大於該VCSEL的生命。 If the lifetime of the active component is expected to be about five years, then the EEPROM must also operate for at least the same length of time as the VCSEL, so that the entire system component is not limited by the EEPROM. To ensure that the EEPROM can operate for five years at 85 ° C or lower operating temperature, the EEPROM should be written every two hours under the worst operating conditions (2 hours x 30,000 = 60,000) 6.8 years). The lifetime of the EEPROM may exceed five years because (1) the active component does not always operate at the same temperature during the lifetime of the active component, so more than one temperature packet will be updated, and / Or (2) the active component does not always operate at the maximum operating temperature during the lifetime of the active component, so the EEPROM can be implemented assuming that the EEPROM lifetime exceeds the lifetime of the VCSEL over the entire temperature range More write cycles. This 2-hour memory write time interval is only one possible time interval paradigm. For example, if the number of writes to the EEPROM is increased, then the memory write time interval is shortened; or, if the lifetime of the active device is expected to be longer, then the memory write time interval is Will be extended. Preferably, the memory write time interval is selected to ensure that the life of the EEPROM is greater than the life of the VCSEL.

因為溫度在該記憶體寫入時間區間(舉例來說,2個小時)內會大幅地變動,所以,以較高的溫度記錄粒度為較佳。為提高溫度記錄的 粒度,溫度可在更小的時間區間(舉例來說,每5分鐘)處被測量並且記錄於揮發性記憶體之中。也就是,該記憶體寫入時間區間會被分成多個子時間區間。溫度直方圖不能被儲存於該揮發性記憶體之中,因為倘若該主動元件關閉的話,被儲存在該揮發性記憶體之中的所有資料便會遺失。該揮發性記憶體能夠被併入於該微處理器之中,該微處理器為含有該主動元件的系統的一部分。舉例來說,倘若該些子時間區間為5分鐘的話並且倘若該記憶體寫入時間區間為兩個小時的話,那麼,當寫入至該EEPROM時便會有24個溫度測量值被附加至它們個別的溫度分組。 Since the temperature greatly varies within the memory writing time interval (for example, 2 hours), it is preferable to record the particle size at a higher temperature. Recorded for temperature increase Particle size, temperature can be measured in smaller time intervals (for example, every 5 minutes) and recorded in volatile memory. That is, the memory write time interval is divided into a plurality of sub-time intervals. The temperature histogram cannot be stored in the volatile memory, because if the active component is turned off, all the data stored in the volatile memory will be lost. The volatile memory can be incorporated into the microprocessor, which is part of a system containing the active component. For example, if the sub-time intervals are 5 minutes and if the memory write time interval is two hours, then 24 temperature measurements will be attached to the EEPROM when they are written to the EEPROM. Individual temperature groupings.

根據本發明的較佳實施例的溫度分組方法的範例提供在下面的表A與表B之中。於此範例中,記憶體寫入時間區間為2個小時以及子時間區間為5分鐘。表A顯示的EEPROM的直方圖係從未被開機過的主動元件,因此,所有溫度分組的所有位元組皆為零;而表B顯示的EEPROM的直方圖係已經被開機兩個小時的主動元件。倘若該主動元件在第一記憶體寫入時間區間之中操作於13℃處的話,那麼,溫度範圍10℃T<15℃的分組#4會被遞增24(Hex 18),用以表示該主動元件已花費全部24個五分鐘的子時間區間操作在10℃與15℃之間,如表B中所示。顯示該溫度分組方法的流程圖顯示在圖1中。 An example of a temperature grouping method in accordance with a preferred embodiment of the present invention is provided in Tables A and B below. In this example, the memory write time interval is 2 hours and the sub-time interval is 5 minutes. The histogram of the EEPROM shown in Table A is the active component that has never been turned on. Therefore, all the bytes of all temperature packets are zero; and the histogram of the EEPROM shown in Table B has been activated for two hours. element. If the active component operates at 13 ° C in the first memory write time interval, then the temperature range is 10 ° C Packet #4 at T < 15 °C is incremented by 24 (Hex 18) to indicate that the active component has spent all 24 five-minute sub-time intervals operating between 10 ° C and 15 ° C, as shown in Table B. . A flowchart showing the temperature grouping method is shown in FIG.

該溫度直方圖在下一個兩個小時之後會被更新,舉例來說,於該主動元件在該溫度範圍裡面被測量的每一個溫度分組會在每一個5分鐘的子時間區間之中被遞增一。在任何時間處,該溫度直方圖以五分鐘子時間區間為單位來表示花費在每一個溫度範圍處的時間數額。該溫度直方 圖接著會被用來估算該主動元件的有效年齡。 The temperature histogram will be updated after the next two hours. For example, each temperature group that the active component is measured in the temperature range will be incremented by one in each of the five minute sub-time intervals. At any time, the temperature histogram represents the amount of time spent at each temperature range in units of five minute sub-intervals. The temperature is square The graph will then be used to estimate the effective age of the active component.

舉例來說,該些溫度分組可以大於或小於三個位元組。舉例來說,分組的數量能夠大於或小於22。舉例來說,溫度範圍能夠大於或小於5℃。任何合宜的編碼技術(其包含大頭結構(big endian)或小頭結構(little endian))皆能夠被用來儲存該溫度分組的大小。 For example, the temperature packets can be larger or smaller than three bytes. For example, the number of packets can be greater or less than 22. For example, the temperature range can be greater or less than 5 °C. Any suitable coding technique (which includes a big endian or little endian) can be used to store the size of the temperature packet.

記憶體寫入時間區間、子時間區間、以及分組大小能夠以該主動元件的熱時間常數、期望的主動元件生命期、以及EEPROM的生命期與容量為基礎來最佳化。舉例來說,倘若該主動元件的熱時間常數很大而使得該主動元件的溫度緩慢地改變的話,那麼,記憶體寫入時間區間以及子時間區間便會被提高並且分組縮小。具有長的期望生命期的主動元件則能夠使用較長的記憶體寫入時間區間以及子時間區間。高容量的EEPROM則能夠支援較大的分組大小。上面所使用的5年生命期、2個小時記憶體寫入時間區間、以及5分鐘的子時間區間僅為範例,並且能夠針對各種應用作適當的改變與最佳化。 The memory write time interval, the sub-time interval, and the packet size can be optimized based on the thermal time constant of the active device, the desired active device lifetime, and the lifetime and capacity of the EEPROM. For example, if the thermal time constant of the active component is large and the temperature of the active component is slowly changed, then the memory write time interval and the sub-time interval are increased and the packet is reduced. Active components with long expected lifetimes can use longer memory write time intervals as well as sub-time intervals. High-capacity EEPROMs can support larger packet sizes. The 5-year lifetime, 2-hour memory write time interval, and 5-minute sub-time interval used above are merely examples and can be appropriately changed and optimized for various applications.

生命期估算演算法Lifetime estimation algorithm

生命期估算方法的一種範例為阿瑞尼士等式(Arrhenius equation),其係一種能夠被用來估算化學反應之溫度相依性的經驗性方程式。其亦可以使用在可靠度計算中,作為決定當操作在高溫時加速老化之影響的方法。也就是,該阿瑞尼士等式能夠被用來決定以一操作在恆定40℃或是特定其它參考溫度處的主動元件為基準之一主動元件的有效老化加速因子。該阿瑞尼士等式提供在下面的等式1中,其中,k為速率常數,A為比例常數,EA為激活能量,kB為波茲曼常數,以及T為以開式溫度(Kelvin) 為單位的溫度。 An example of a lifetime estimation method is the Arrhenius equation, which is an empirical equation that can be used to estimate the temperature dependence of a chemical reaction. It can also be used in reliability calculations as a method of determining the effect of accelerated aging when operating at high temperatures. That is, the Arrives equation can be used to determine an effective aging acceleration factor for an active component based on an active component operating at a constant 40 ° C or a particular other reference temperature. The Arrives equation is provided in Equation 1 below, where k is the rate constant, A is the proportionality constant, E A is the activation energy, k B is the Boltzmann constant, and T is the open temperature ( Kelvin) is the temperature of the unit.

激活能量EA通常係由該主動元件的製造商提供於可靠度的研究中。 The activation energy E A is usually provided by the manufacturer of the active component in the study of reliability.

老化加速因子AF由下面的等式2來提供,其定義為相較於操作在一參考溫度處而在高溫操作處老化加速的速率,其中,tH為該高溫,而tR為該較低的參考溫度。 The aging accelerating factor A F is provided by Equation 2 below, which is defined as the rate at which aging accelerates at a high temperature operation compared to operating at a reference temperature, where t H is the elevated temperature and t R is the ratio Low reference temperature.

該老化加速因子AF經由tH與tR和阿瑞尼士等式相關,tH與tR等效於在它們個別溫度位準處於該阿瑞尼士等式中所決定的速率常數。該被用來估算主動元件之有效年齡的方法依賴於以一參考溫度TR為基準來決定每一個溫度分組Tn的老化加速因子AFn,其能夠從下面的等式3中找到,其中,n為分組數量: 溫度分組Tn能夠被選擇為分組溫度範圍之中的任何溫度,舉例來說,其包含該分組範圍之中的最低溫度、該分組範圍之中的平均溫度、以及該分組範圍之中的最高溫度。 The aging accelerating factor A F is related to t R and the Arrhenius equation via t H , and t H and t R are equivalent to the rate constants determined in the Arrhenius equation at their individual temperature levels. The method used to estimate the effective age of the active component relies on determining the aging acceleration factor A Fn of each temperature packet T n based on a reference temperature T R , which can be found from Equation 3 below, wherein n is the number of groups: The temperature group T n can be selected to be any temperature within the packet temperature range, for example, including the lowest temperature among the grouping ranges, the average temperature among the grouping ranges, and the highest temperature among the grouping ranges .

接著,藉由將花費在每一個溫度處的時間Nn與對應的老化加速因子AFn相乘並且加總所有該些分組的此些數值便會找到以小時為單位 之該主動元件的有效年齡teffective。該估算有效年齡teffective可從下面的等式4中找到,其中,Nn為被儲存在分組n之中的數值並且子時間區間假設為5分鐘: Then, by multiplying the time N n spent at each temperature by the corresponding aging acceleration factor A Fn and summing up the values of all of the packets, the effective age of the active component in hours is found. t effective . The estimated effective age t effective can be found in Equation 4 below, where N n is the value stored in packet n and the sub-time interval is assumed to be 5 minutes:

此等式能夠廣義為適應於每m分鐘取得溫度讀數並且將該些讀數分箱為b個分組的系統: This equation can be broadly adapted to a system that takes temperature readings every m minutes and bins the readings into b groups:

一旦估算出該有效年齡teffective之後,接著,便可以該主動元件的MTTF扣除該有效年齡teffective來估算該主動元件的剩餘生命期。亦能夠比較該有效年齡teffective和元件生命期的其它指標。舉例來說,有效年齡teffective能夠和B10、B5、或是B1生命作比較,它們分別代表總體10%、5%、或是1%的失效時間。於特定的應用中,一旦該主動元件有效年齡到達此些生命期指標中的其中一者,可能以替換該系統為宜。此些明確說明以外的其它生命期指標亦能夠被使用。 Once the estimated MTTF Effective Age t effective, then, the active element can deduct Effective Age t effective to estimate the remaining life of the active element. It is also possible to compare the effective age t effective with other indicators of the component lifetime. For example, the effective age t effective can be compared to B10, B5, or B1 life, which represent the overall 10%, 5%, or 1% failure time, respectively. In a particular application, once the active age of the active component reaches one of these lifetime indicators, it may be desirable to replace the system. Other life-cycle indicators other than those explicitly stated can also be used.

決定有效年齡teffective以及剩餘生命期能夠以各種方式並且在各種位置實施。於本發明的一較佳實施例中,圖4中所示的微處理器能夠與該揮發性記憶體進行通信,質問各個記憶體分組,以及實施用以決定該有效年齡teffective的必要計算。一旦該有效年齡teffective超過特定臨界值,該微處理器便會發送一指示符信號給使用者。於本發明的另一較佳實施例中,一 包含該主動元件但是並非該系統之一部分的外部元件能夠與該揮發性記憶體進行通信,質問各個記憶體分組,以及實施用以決定該有效年齡teffective的必要計算。一旦該有效年齡teffective超過特定臨界值,該外部元件便會提供一指示符信號給使用者。 Determining the effective age t effective and the remaining lifetime can be implemented in various ways and at various locations. In a preferred embodiment of the invention, the microprocessor shown in FIG. 4 is capable of communicating with the volatile memory, interrogating individual memory packets, and implementing the necessary calculations to determine the effective age t effective . Once the effective age t effectively exceeds a certain threshold, the microprocessor sends an indicator signal to the user. In another preferred embodiment of the present invention, an external component including the active component but not part of the system is capable of communicating with the volatile memory, questioning individual memory packets, and implementing to determine the effective age The necessary calculation of t effective . Once the effective age t effective exceeds a certain threshold, the external component provides an indicator signal to the user.

該有效年齡teffective能夠利用任何其它老化模型來估算,其包含以該阿瑞尼士等式為基礎之模型的修正模型以及並非從阿瑞尼士等式中所推導的模型。該有效年齡teffective能夠以會影響該主動元件之年齡的任何可測量的條件為基礎來決定。舉例來說,可測量的條件包含濕度、溫度循環、電流、電力消耗、UV曝光、…等。舉例來說,Rodriguez在2010年夏季發表14頁的參數式存活模型(Parametric Survival Models)之中所揭示的模型便可被使用,本文以引用的方式將其完整併入。該有效年齡teffective能夠以溫度結合任何其它可測量的條件為基礎;或者,亦能夠僅以一或多個任何可測量的條件為基礎,而不考量溫度。 The effective age t effective can be estimated using any other aging model, including a modified model of the model based on the Arrhenius equation and a model not derived from the Arrives equation. The effective age t effective can be determined based on any measurable condition that would affect the age of the active component. For example, measurable conditions include humidity, temperature cycling, current, power consumption, UV exposure, ... and the like. For example, Rodriguez's model disclosed in the 14-page Parametric Survival Models published in the summer of 2010 can be used, which is hereby incorporated by reference in its entirety. The effective age t effective can be based on temperature combined with any other measurable condition; or, can be based on only one or more measurable conditions, without regard to temperature.

於某些應用中,一固定的偏壓電流會在該主動元件的生命期中被套用至雷射。以該偏壓電流為基礎的老化加速因子能夠被用來計算該主動元件的有效年齡。以偏壓電流為基礎的老化加速因子以及以溫度為基礎的老化加速因子(舉例來說,等式3之中的AFn)兩者皆能夠被用來決定該主動元件的有效年齡。 In some applications, a fixed bias current is applied to the laser during the life of the active component. An aging accelerating factor based on the bias current can be used to calculate the effective age of the active component. Both the aging accelerating factor based on the bias current and the temperature-based aging accelerating factor (for example, A Fn in Equation 3) can be used to determine the effective age of the active component.

於其它應用中,一可變的偏壓電流會在該主動元件的生命期中被套用至雷射。舉例來說,一半導體雷射的光學輸出功率通常隨著溫度下降。於某些應用中可能會希望隨著溫度維持相對恆定的光學輸出功率。於此些應用中,當溫度升高時,提供被套用於該雷射的偏壓電流能夠被用 來維持相對恆定的光學輸出功率。因為操作在高偏壓電流處通常會以已知的方式提高該老化加速因子,所以,每一個溫度分組皆會有一以相關聯偏壓電流為基礎的老化加速因子。以偏壓電流為基礎的老化加速因子以及以溫度為基礎的老化加速因子(舉例來說,等式3之中的AFn)兩者皆能夠被用來決定該主動元件的有效年齡。舉例來說,藉由將等式3的右邊乘以和每一個溫度分組相關聯的以偏壓電流為基礎的老化加速因子便能夠決定每一個溫度分組的總老化加速因子。 In other applications, a variable bias current can be applied to the laser during the life of the active component. For example, the optical output power of a semiconductor laser typically decreases with temperature. In some applications it may be desirable to maintain a relatively constant optical output power with temperature. In such applications, the bias current provided to the jacket for the laser can be used to maintain a relatively constant optical output power as the temperature increases. Since the operation typically increases the aging acceleration factor at a high bias current in a known manner, each temperature packet will have an aging acceleration factor based on the associated bias current. Both the aging accelerating factor based on the bias current and the temperature-based aging accelerating factor (for example, A Fn in Equation 3) can be used to determine the effective age of the active component. For example, the total aging acceleration factor for each temperature group can be determined by multiplying the right side of Equation 3 by the bias current based aging acceleration factor associated with each temperature group.

本發明的較佳實施例的特定範例會考量溫度係因為其為最影響VCSEL之年齡的可測量條件;然而,溫度以外的可測量條件亦可能對其它主動元件的老化更具影響效應。 A particular example of a preferred embodiment of the invention will take into account the temperature because it is a measurable condition that most affects the age of the VCSEL; however, measurable conditions other than temperature may also have an effect on the aging of other active components.

應該瞭解的係,前面的說明僅係解釋本發明。本文在說明本發明的較佳實施例時,主動元件雖然為VCSEL,該系統雖然為AOC,以及被測量的操作參數雖然為溫度;不過,此些皆僅為本發明的較佳實施例的特定範例。本發明的較佳實施例亦能夠被套用於具有生命期相依於特定可測量操作參數之主動元件的任何系統。於某些實施例中,一個以上的操作參數會被測量並且記錄,並且該有效年齡會以此些參數的組合效應為基礎來計算。熟習本技術的人士便能夠設計出各種替代例與修正例,其並沒有脫離本發明。據此,本發明希望涵蓋落在隨附申請專利範圍之範疇裡面的所有此些替代例、修正例、以及變化例。 It is to be understood that the foregoing description is merely illustrative of the invention. In describing a preferred embodiment of the present invention, the active component is a VCSEL, although the system is an AOC, and the measured operating parameters are temperature; however, these are only specific to the preferred embodiment of the present invention. example. The preferred embodiment of the present invention can also be applied to any system having active components that depend on a particular measurable operational parameter over its lifetime. In some embodiments, more than one operational parameter is measured and recorded, and the effective age is calculated based on the combined effects of the parameters. Various alternatives and modifications can be devised by those skilled in the art without departing from the invention. Accordingly, the present invention is intended to cover all such alternatives, modifications, and variations in the scope of the appended claims.

Claims (29)

一種主動光學纜線,其包括:一光纖纜線;至少一光學換能器;一第一記憶體;一第二記憶體;一感測器,其會感測該主動光學纜線的一操作參數;以及一處理器,其被連接至該至少一光學換能器、該第一記憶體、該第二記憶體以及該感測器;其中該處理器會:在被分割成多個規律子時間區間的規律時間區間期間以及在每一個該些規律的子時間區間之後,在該第二記憶體之中記錄表示一被感測的操作參數的一數值;以及在每一個該些規律的時間區間之後,將被記錄於該第二記憶體之中的數值儲存於該第一記憶體之中。 An active optical cable includes: a fiber optic cable; at least one optical transducer; a first memory; a second memory; and a sensor that senses an operation of the active optical cable a parameter; and a processor coupled to the at least one optical transducer, the first memory, the second memory, and the sensor; wherein the processor: is divided into a plurality of regularities During a regular time interval of the time interval and after each of the regular sub-time intervals, a value representing a sensed operational parameter is recorded in the second memory; and at each of the regular times After the interval, the value to be recorded in the second memory is stored in the first memory. 根據申請專利範圍第1項的主動光學纜線,其中:該第二記憶體包含多個分組(bin);以及該些分組中的每一者皆對應於該被感測的操作參數的一數值範圍。 The active optical cable of claim 1, wherein: the second memory comprises a plurality of bins; and each of the packets corresponds to a value of the sensed operational parameter range. 根據申請專利範圍第2項的主動光學纜線,其中,該些規律的時間區間以及該些規律的子時間區間係以該第一記憶體的一預期寫入次數以及該主動光學纜線的一預期生命期為基礎。 According to the active optical cable of claim 2, wherein the regular time intervals and the regular sub-time intervals are an expected number of writes of the first memory and one of the active optical cables The life expectancy is based. 根據申請專利範圍第2項的主動光學纜線,其中,該操作參數係溫度。 An active optical cable according to item 2 of the patent application, wherein the operating parameter is temperature. 根據申請專利範圍第2項的主動光學纜線,其中,該處理器係以將對應於該被感測的操作參數之數值範圍的分組的分組數值遞增一的方式於該第二記憶體之中記錄表示該被感測的操作參數的數值,其中該被感測的操作參數之數值範圍包含表示該被感測的操作參數的數值。 An active optical cable according to claim 2, wherein the processor is in the second memory by incrementing a grouping value of a packet corresponding to a numerical range of the sensed operating parameter by one A value indicative of the sensed operational parameter is recorded, wherein the range of values of the sensed operational parameter includes a value indicative of the sensed operational parameter. 根據申請專利範圍第5項的主動光學纜線,其中,該第一記憶體包含多個分組,它們對應於該第二記憶體之中的分組。 The active optical cable of claim 5, wherein the first memory comprises a plurality of packets corresponding to the packets in the second memory. 根據申請專利範圍第6項的主動光學纜線,其中,該處理器藉由將該第二記憶體之中的每一個分組的分組數值加入先前被儲存在該第一記憶體之中對應的分組之中的對應的分組數值而將被記錄在該第二記憶體之中的數值儲存在該第一記憶體之中。 An active optical cable according to claim 6 wherein the processor adds a packet value of each of the second memories to a corresponding packet previously stored in the first memory. The value recorded in the second memory is stored in the first memory in the corresponding packet value. 根據申請專利範圍第7項的主動光學纜線,其中,該處理器係以被儲存在該第一記憶體之中的分組的分組數值為基礎來計算該主動光學纜線的一有效年齡。 The active optical cable of claim 7, wherein the processor calculates an effective age of the active optical cable based on a packet value of a packet stored in the first memory. 根據申請專利範圍第8項的主動光學纜線,其中,該處理器僅以被儲存在該第一記憶體之中的分組的分組數值為基礎來計算該有效年齡。 An active optical cable according to claim 8 wherein the processor calculates the effective age based only on the grouping value of the packets stored in the first memory. 根據申請專利範圍第8項的主動光學纜線,其中,倘該有效年齡係在一臨界數值之上,則該處理器提供一指示符信號。 An active optical cable according to claim 8 wherein the processor provides an indicator signal if the effective age is above a critical value. 根據申請專利範圍第7項的主動光學纜線,其中:該操作參數為溫度,並且該些分組中的每一者皆代表一溫度範圍;以及該處理器會利用下面的方程式來計算該主動光學纜線的一有效年齡teffective 其中, m為以分鐘為單位的規律子時間區間的時間,b為分組的數量,Nn為被儲存在分組n之中的數值,EA為激活能量,kB為波茲曼常數,Tn為分組溫度,以及TR為參考溫度。 An active optical cable according to claim 7 wherein: the operating parameter is temperature, and each of the groups represents a temperature range; and the processor calculates the active optical using the following equation An effective age of the cable t effective : among them, m is the time of the regular sub-time interval in minutes, b is the number of packets, N n is the value stored in packet n, E A is the activation energy, k B is the Boltzmann constant, and T n is The grouping temperature, and T R is the reference temperature. 根據申請專利範圍第2項的主動光學纜線,其中,在每一個該些規律的時間區間之後,該處理器會重置被儲存在該第二記憶體之中的數值。 The active optical cable of claim 2, wherein the processor resets the value stored in the second memory after each of the regular time intervals. 根據申請專利範圍第2項的主動光學纜線,其中,該處理器係以被儲存在該第一記憶體之中的數值為基礎來計算該主動光學纜線的一有效年齡。 An active optical cable according to claim 2, wherein the processor calculates an effective age of the active optical cable based on a value stored in the first memory. 根據申請專利範圍第2項的主動光學纜線,其中,該第一記憶體係非揮發性記憶體,並且該第二記憶體係揮發性記憶體。 The active optical cable according to claim 2, wherein the first memory system is a non-volatile memory, and the second memory system is a volatile memory. 根據申請專利範圍第2項的主動光學纜線,其中,該第一記憶體係EEPROM。 An active optical cable according to item 2 of the patent application, wherein the first memory system EEPROM. 一種計算主動光學纜線的有效年齡的方法,該主動光學纜線包含一光纖纜線、至少一光學換能器、一第一記憶體以及一第二記憶體,該方法包括:在被分割成多個規律子時間區間的規律時間區間期間以及在每一個該些規律的子時間區間之後,感測該主動光學纜線的一操作參數並且在該第二記憶體之中記錄表示一被感測的操作參數的一數值; 在每一個該些規律的時間區間之後,將被記錄於該第二記憶體之中的數值儲存於該第一記憶體之中;以及以被儲存在該第一記憶體之中的數值為基礎來計算該主動光學纜線的該有效年齡。 A method of calculating an effective age of an active optical cable, the active optical cable comprising a fiber optic cable, at least one optical transducer, a first memory, and a second memory, the method comprising: being divided into Sensing an operational parameter of the active optical cable during a regular time interval of the plurality of regular sub-time intervals and after each of the regular sub-time intervals and recording in the second memory indicates that one is sensed a value of the operational parameter; After each of the regular time intervals, the value recorded in the second memory is stored in the first memory; and based on the value stored in the first memory To calculate the effective age of the active optical cable. 根據申請專利範圍第16項的方法,其中:該第二記憶體包含多個分組(bin);以及該些分組中的每一者皆對應於該被感測的操作參數的一數值範圍。 The method of claim 16, wherein: the second memory comprises a plurality of bins; and each of the packets corresponds to a range of values of the sensed operational parameter. 根據申請專利範圍第17項的方法,其中,該些規律的時間區間以及該些規律的子時間區間係以該第一記憶體的一預期寫入次數以及該主動光學纜線的一預期生命期為基礎。 The method of claim 17, wherein the regular time intervals and the regular sub-time intervals are an expected number of writes of the first memory and an expected lifetime of the active optical cable Based on. 根據申請專利範圍第17項的方法,其中,該操作參數係溫度。 The method of claim 17, wherein the operating parameter is temperature. 根據申請專利範圍第17項的方法,其中,在該第二記憶體之中記錄表示該被感測的操作參數的數值係包含將對應於該被感測的操作參數之數值範圍的分組的分組數值遞增一,其中該被感測的操作參數之數值範圍包含表示該被感測的操作參數的數值。 The method of claim 17, wherein the numerical value indicating the sensed operational parameter is recorded in the second memory to include a grouping of packets corresponding to a range of values of the sensed operational parameter The value is incremented by one, wherein the range of values of the sensed operational parameter includes a value indicative of the sensed operational parameter. 根據申請專利範圍第20項的方法,其中,該第一記憶體包含多個分組,它們對應於該第二記憶體之中的分組。 The method of claim 20, wherein the first memory comprises a plurality of packets corresponding to the packets in the second memory. 根據申請專利範圍第21項的方法,其中,將被記錄於該第二記憶體之中的數值儲存於該第一記憶體之中係包含將該第二記憶體之中的每一個分組的分組數值加入先前被儲存在該第一記憶體之中對應的分組之中的對應的分組數值。 The method of claim 21, wherein storing the value recorded in the second memory in the first memory comprises grouping each of the second memories The value is added to the corresponding packet value previously stored in the corresponding packet in the first memory. 根據申請專利範圍第22項的方法,其中,計算該主動光學纜線的該 有效年齡係以被儲存在該第一記憶體之中的分組的分組數值為基礎。 The method of claim 22, wherein the active optical cable is calculated The effective age is based on the grouping value of the packets stored in the first memory. 根據申請專利範圍第23項的方法,其中,計算該有效年齡僅以被儲存在該第一記憶體之中的分組的分組數值為基礎。 The method of claim 23, wherein calculating the effective age is based only on a grouping value of a packet stored in the first memory. 根據申請專利範圍第23項的方法,其進一步包括倘該有效年齡係在一臨界數值之上,則提供一指示符信號。 The method of claim 23, further comprising providing an indicator signal if the effective age is above a critical value. 根據申請專利範圍第22項的方法,其中:該操作參數為溫度,並且該些分組中的每一者皆代表一溫度範圍;以及計算該主動光學纜線的該有效年齡包含利用下面的方程式: 其中, teffective為主動光學纜線的有效年齡,m為以分鐘為單位的規律子時間區間的時間,b為分組的數量,Nn為被儲存在分組n之中的數值,EA為激活能量,kB為波茲曼常數,Tn為分組溫度,以及TR為參考溫度。 The method of claim 22, wherein: the operating parameter is temperature, and each of the groups represents a temperature range; and calculating the effective age of the active optical cable comprises utilizing the following equation: among them, t effective is the effective age of the active optical cable, m is the time in the regular sub-time interval in minutes, b is the number of packets, N n is the value stored in the packet n, and E A is the activation energy, k B is the Boltzmann constant, T n is the grouping temperature, and T R is the reference temperature. 根據申請專利範圍第17項的方法,其進一步包括在每一個該些規律的時間區間之後重置被儲存在該第二記憶體之中的數值。 The method of claim 17, further comprising resetting the value stored in the second memory after each of the regular time intervals. 根據申請專利範圍第17項的方法,其中,該第一記憶體係非揮發性記憶體,並且該第二記憶體係揮發性記憶體。 The method of claim 17, wherein the first memory system is a non-volatile memory and the second memory system is a volatile memory. 根據申請專利範圍第17項的方法,其中,該第一記憶體係EEPROM。 The method of claim 17, wherein the first memory system EEPROM.
TW104134827A 2014-10-23 2015-10-23 Active optical cable and method of calculating ah effective age of the same TWI621839B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201462067570P 2014-10-23 2014-10-23
US62/067,570 2014-10-23

Publications (2)

Publication Number Publication Date
TW201632858A TW201632858A (en) 2016-09-16
TWI621839B true TWI621839B (en) 2018-04-21

Family

ID=57443218

Family Applications (2)

Application Number Title Priority Date Filing Date
TW104134827A TWI621839B (en) 2014-10-23 2015-10-23 Active optical cable and method of calculating ah effective age of the same
TW104217002U TWM531600U (en) 2014-10-23 2015-10-23 Active optical cable

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW104217002U TWM531600U (en) 2014-10-23 2015-10-23 Active optical cable

Country Status (3)

Country Link
EP (1) EP3210213A4 (en)
CN (1) CN107148564A (en)
TW (2) TWI621839B (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030078741A1 (en) * 2001-10-19 2003-04-24 International Business Machines Corporation Method and apparatus for estimating remaining life of a product
CN101313226A (en) * 2005-12-30 2008-11-26 英特尔公司 Dynamic estimation of semiconductor device life

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2405496B (en) * 2003-08-27 2007-02-07 Agilent Technologies Inc A method and a system for evaluating aging of components, and computer program product therefor
CN2769895Y (en) * 2005-01-15 2006-04-05 喻青 Automatic recording device for on-line industrial equipment operating data and fault data
GB2428844A (en) * 2005-07-30 2007-02-07 Siemens Ind Turbomachinery Ltd Rotating machines
KR20080000718A (en) * 2006-06-28 2008-01-03 (주)누리텔레콤 Meter data management apparatus for measuring instrument and method therefore
CN103398860B (en) * 2013-07-26 2015-12-23 天津亿利科能源科技发展股份有限公司 A kind of ocean platform safety monitoring method of deformation based sensor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030078741A1 (en) * 2001-10-19 2003-04-24 International Business Machines Corporation Method and apparatus for estimating remaining life of a product
CN101313226A (en) * 2005-12-30 2008-11-26 英特尔公司 Dynamic estimation of semiconductor device life

Also Published As

Publication number Publication date
EP3210213A1 (en) 2017-08-30
TW201632858A (en) 2016-09-16
EP3210213A4 (en) 2018-05-02
CN107148564A (en) 2017-09-08
TWM531600U (en) 2016-11-01

Similar Documents

Publication Publication Date Title
JP2017531837A (en) Approximating the remaining lifetime of active devices
US6775624B2 (en) Method and apparatus for estimating remaining life of a product
JP6647212B2 (en) Method, device, and system for detecting installation of an electronic patch
US8140294B2 (en) Temperature estimations in a blood glucose measuring device
US20160377686A1 (en) Degradation estimation method, degradation estimation system, and degradation estimation program
US20140328367A1 (en) Portable electronic device
EP1946133B1 (en) Battery analysis system for determining quantity of cells of a battery
JP2014509769A (en) Using temperature sensors in memory devices
KR20140131880A (en) Portable electronic device
JP2007024531A (en) Electronic thermometer, control method and control program of thermometer
CN108885199B (en) Sensor signal processing apparatus
US11177620B2 (en) Laser failure early warning indicator
US9472085B2 (en) Ambient and processor temperature difference comparison
TWI426513B (en) Information processing system
TWI621839B (en) Active optical cable and method of calculating ah effective age of the same
CN101233397B (en) Electronic clinical thermometer, and control method for electronic clinical thermometer
US20080177496A1 (en) Electronic clinical thermometer, method of controlling the same, and control program
JP6082027B2 (en) Measuring device, probe unit and connection cable
US6677860B2 (en) Method and apparatus for end of discharge indication based on critical energy requirement
JP2006349393A (en) Sensor system
KR102182444B1 (en) Medical analyte test system and operation method thereof
CN110998314A (en) Measuring the concentration of a target gas
US11716270B2 (en) Determining reliability information for a network component
US20230400361A1 (en) Systems and methods for cell temperature measurement
US20150137981A1 (en) Method for early detection of cooling-loss events

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees