TWI620819B - Novel vaccines against pandemic influenza virus a/h1n1 - Google Patents

Novel vaccines against pandemic influenza virus a/h1n1 Download PDF

Info

Publication number
TWI620819B
TWI620819B TW100140015A TW100140015A TWI620819B TW I620819 B TWI620819 B TW I620819B TW 100140015 A TW100140015 A TW 100140015A TW 100140015 A TW100140015 A TW 100140015A TW I620819 B TWI620819 B TW I620819B
Authority
TW
Taiwan
Prior art keywords
vaccine
virus
influenza
influenza virus
mutation
Prior art date
Application number
TW100140015A
Other languages
Chinese (zh)
Other versions
TW201249996A (en
Inventor
羅培茲 海克特 資沛達
Original Assignee
歐科製藥有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 歐科製藥有限公司 filed Critical 歐科製藥有限公司
Publication of TW201249996A publication Critical patent/TW201249996A/en
Application granted granted Critical
Publication of TWI620819B publication Critical patent/TWI620819B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N7/00Viruses; Bacteriophages; Compositions thereof; Preparation or purification thereof
    • C12N7/02Recovery or purification
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P39/00General protective or antinoxious agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/525Virus
    • A61K2039/5252Virus inactivated (killed)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/54Medicinal preparations containing antigens or antibodies characterised by the route of administration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/555Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
    • A61K2039/55511Organic adjuvants
    • A61K2039/55516Proteins; Peptides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2760/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
    • C12N2760/00011Details
    • C12N2760/16011Orthomyxoviridae
    • C12N2760/16111Influenzavirus A, i.e. influenza A virus
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2760/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
    • C12N2760/00011Details
    • C12N2760/16011Orthomyxoviridae
    • C12N2760/16111Influenzavirus A, i.e. influenza A virus
    • C12N2760/16134Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2760/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
    • C12N2760/00011Details
    • C12N2760/16011Orthomyxoviridae
    • C12N2760/16111Influenzavirus A, i.e. influenza A virus
    • C12N2760/16171Demonstrated in vivo effect

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Zoology (AREA)
  • Microbiology (AREA)
  • Wood Science & Technology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Immunology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Virology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Toxicology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Epidemiology (AREA)
  • Mycology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本發明係關於流行性感冒病毒疫苗,且具體而言係關於流行性感冒病毒,該病毒至少具有其包含D222突變之血球凝集素基因及奧司他韋(oseltamivir)抗性神經胺酸酶基因。在一些實施例中,該流行性感冒病毒疫苗進一步包含基質蛋白,該基質蛋白包含提高人類之特異性免疫反應之突變。該病毒可用於產生抵抗超毒力及奧司他韋抗性流行性感冒之疫苗。The present invention relates to an influenza virus vaccine, and specifically to an influenza virus, which has at least its hemagglutinin gene containing a D222 mutation and an oseltamivir resistant neuraminidase gene. In some embodiments, the influenza virus vaccine further comprises a matrix protein that contains mutations that increase the specific immune response in humans. The virus can be used to produce vaccines against hypervirulence and oseltamivir-resistant influenza.

Description

抗大流行性感冒病毒A/H1N1之新穎疫苗Novel vaccine against pandemic influenza virus A / H1N1

本發明係關於抗流行性感冒病毒疫苗,且具體而言係關於抗大流行性A/H1N1流行性感冒病毒之超毒力株之疫苗。本發明提供可用於製造在HA及NA區段載有特定突變之流行性感冒疫苗之流行性感冒病毒株。The present invention relates to an anti-influenza virus vaccine, and specifically to a vaccine against a hypervirulent strain of pandemic A / H1N1 influenza virus. The present invention provides influenza virus strains that can be used to manufacture influenza vaccines carrying specific mutations in the HA and NA segments.

本申請案主張對2010年11月2日申請之美國臨時專利申請案第61,409/303號之優先權。此臨時申請案係全文以引用方式併入本文中。This application claims priority over US Provisional Patent Application No. 61,409 / 303 filed on November 2, 2010. The full text of this provisional application is incorporated herein by reference.

流行性感冒係由正黏液病毒科(orthomyxoviridae family)之RNA病毒引起的。該等病毒有三種類型,且其引起三種不同類型之流行性感冒:A型、B型及C型。A型流行性感冒病毒病毒感染哺乳動物(人類、豬、雪貂、馬)及鳥。此對人類極為重要,此乃因該類型病毒已引起過世界範圍之大流行病。B型流行性感冒病毒(亦簡稱為流行性感冒B)僅感染人類。其有時引起流感之局部爆發。流行性感冒C病毒亦僅感染人類。其在早期感染人數最多且極少引起嚴重疾病。Influenza is caused by RNA viruses of the orthomyxoviridae family. There are three types of these viruses, and they cause three different types of influenza: type A, type B, and type C. Influenza A virus infects mammals (humans, pigs, ferrets, horses) and birds. This is extremely important for humans, because this type of virus has caused a pandemic worldwide. Influenza B virus (also referred to as influenza B) only infects humans. It sometimes causes local outbreaks of flu. Influenza C virus only infects humans. It has the largest number of early infections and rarely causes serious illness.

流行性感冒A病毒感染眾多種哺乳動物,包括人類、馬、豬、雪貂及鳥。主要人類病原體與流行病及大流行病有關。有至少15種已知血球凝集素(H)血清型及9鐘已知神經胺酸酶(N)血清型。業內相信豬及鳥係尤其重要之儲存庫,其生成遺傳上及抗原性上不同之病毒池,該等病毒經由人類與動物之間之密切接觸轉移回人群。流行性感冒B病毒僅感染哺乳動物並引起疾病,但一般不如A型嚴重。與流行性感冒A病毒不同,流行性感冒B病毒不具有可辨別的血清型。流行性感冒C病毒亦僅感染哺乳動物,但極少引起疾病。其在遺傳上及形態上與A型及B型不同。Influenza A virus infects many species of mammals, including humans, horses, pigs, ferrets and birds. The main human pathogens are related to epidemics and pandemics. There are at least 15 known hemagglutinin (H) serotypes and 9 known neuraminidase (N) serotypes. The industry believes that pigs and birds are particularly important reservoirs, which generate genetically and antigenically different pools of viruses that are transferred back to the population through close contact between humans and animals. Influenza B virus only infects mammals and causes disease, but is generally not as severe as type A. Unlike influenza A virus, influenza B virus does not have a discernable serotype. Influenza C virus only infects mammals, but rarely causes disease. It is genetically and morphologically different from type A and type B.

與許多其他病毒不同,流行性感冒基因組係由RNA而非DNA組成。該基因組包含8個區段,且僅含有所有8個區段之病毒顆粒有活力。(Steinhauer DA,Skehel JJ.,Genetics of influenza viruses. Ann Rev Genet. 2002 36: 305-332)。Unlike many other viruses, the influenza genome consists of RNA rather than DNA. The genome contains 8 segments and only the virus particles containing all 8 segments are viable. (Steinhauer DA, Skehel JJ., Genetics of influenza viruses. Ann Rev Genet. 2002 36: 305-332).

在流行性感冒病毒中存在4種抗原:血球凝集素(HA)、神經胺酸酶(NA)、核殼體(NA)、基質(M)及核殼蛋白(NP)。NP係類型特異性抗原,且以3種形式A、B及C存在,其提供人類流行性感冒病毒分類之基礎。基質蛋白(M蛋白)圍繞核殼體且佔顆粒質量之35-45%。在表面上觀察到兩種表面糖蛋白呈棒形凸起。血球凝集素(HA)係由2個次單元HA1及HA2構成。HA介導病毒附著至細胞受體。神經胺酸酶(NA)分子在外套膜中以較少量存在。循環之人類菌株因其往往年復一年地累積突變且造成流行病復發而廣為人知。There are four kinds of antigens in influenza virus: hemagglutinin (HA), neuraminidase (NA), nucleocapsid (NA), matrix (M) and nucleocapsid protein (NP). NP is a type-specific antigen and exists in three forms A, B, and C, which provide the basis for classification of human influenza virus. The matrix protein (M protein) surrounds the core shell and accounts for 35-45% of the mass of the particles. On the surface, two surface glycoproteins were observed as rod-shaped protrusions. Hemagglutinin (HA) consists of two subunits HA1 and HA2. HA mediates virus attachment to cellular receptors. Neuraminidase (NA) molecules are present in lesser amounts in the mantle. Circulating human strains are widely known for accumulating mutations year after year and causing epidemics to recur.

流行性感冒病毒係極少數基因組位於單獨區段(8個)中之病毒之一。基因組之區段性亦使得不同病毒株之間可交換完整基因,從而提高形成重組體之可能性(若兩種不同病毒感染相同細胞,則可藉由互換基因區段來形成)。亦即,若一細胞受到兩種不同流行性感冒株感染,則各區段可重分配以產生具有來自每一初始病毒之區段之新病毒。在自然界中,此可有助於快速產生新流感株。可由兩種病毒之間混合組裝出新基因組。該過程亦可在實驗室中複製(用於製造疫苗株)。在遠東地區,在豬中重組之禽類及人類株可容許進化出毒力人類株。Influenza virus is one of the very few genomes whose genomes are located in separate segments (8). The segmentation of the genome also makes it possible to exchange complete genes between different virus strains, thereby increasing the possibility of forming recombinants (if two different viruses infect the same cell, they can be formed by swapping gene segments). That is, if a cell is infected with two different influenza strains, each segment can be redistributed to produce a new virus with a segment from each original virus. In nature, this can help to quickly generate new influenza strains. A new genome can be assembled by mixing between the two viruses. This process can also be replicated in the laboratory (used to make vaccine strains). In the Far East, poultry and human strains recombined in pigs may allow the evolution of virulent human strains.

流行性感冒病毒之遺傳可塑性亦很可能與疫苗設計、致病性及新病毒自天然儲存庫中出現並引起世界性大流行病之能力有關。The genetic plasticity of influenza viruses is also likely related to vaccine design, pathogenicity, and the ability of new viruses to emerge from natural reservoirs and cause pandemic diseases worldwide.

大流行性(H1N1) 2009病毒已在世界範圍內進化,其在大流行過程期間自初始混合分枝模式變為一種分枝(分枝7)佔優。因此,構成此分枝之病毒可對世界範圍內爆發之大部分該大流行病負責。血球凝集素(HA)蛋白質序列中之突變S203T為分枝7分離物所特有。(Valli MB等人,Evolutionary pattern of pandemic influenza(H1N1) 2009 virus in the late phases of the 2009 pandemic. PLoS Curr Influenza. 2010年3月3日:RRN1149)。The pandemic (H1N1) 2009 virus has evolved around the world, and it has become dominant during the pandemic process from the initial mixed branching pattern to a branch (branch 7). Therefore, the virus that constitutes this branch can be responsible for most of the pandemic outbreaks worldwide. The mutation S203T in the hemagglutinin (HA) protein sequence is unique to the branch 7 isolate. (Valli MB et al., Evolutionary pattern of pandemic influenza (H1N1) 2009 virus in the late phases of the 2009 pandemic. PLoS Curr Influenza. March 3, 2010: RRN1149).

在包含S203T突變之分枝7分離物中,血球凝集素HA1基因序列中對應於222位(H3編號中之225位)之胺基酸變化(其中天冬胺酸(D)變為甘胺酸(G))與嚴重臨床結果有關。在2009年4月至11月期間的不同時間點,在基因庫(GenBank)中之H1N1 pdm全球分離物(global isolate)中記錄到D222G突變(Chen GW,Shih SR(2009) Genomic signatures of influenza A pandemic(H1N1) 2009 virus. Emerg Infect Dis)。In the branch 7 isolate containing the S203T mutation, the amino acid change corresponding to position 222 (position 225 in H3 numbering) in the hemagglutinin HA1 gene sequence (where aspartic acid (D) becomes glycine) (G)) is related to serious clinical outcomes. At different time points from April to November 2009, the D222G mutation (Chen GW, Shih SR (2009) Genomic signatures of influenza A) was recorded in the H1N1 pdm global isolate in the GenBank. pandemic (H1N1) 2009 virus. Emerg Infect Dis).

流行性感冒疫苗係欲抵抗高度易變流行性感冒病毒進行保護之週年疫苗。所注射每一季節性流行性感冒疫苗皆含有三種流行性感冒病毒:一種A(H3N2)病毒、2009大流行性H1N1病毒及一種流行性感冒B病毒。(www.cdc.gov/vaccines/pubs/vis/downloads/vis-flu.pdf)。然而,大流行性流感疫苗對HA蛋白中載有D222G突變之流行性感冒H1N1病毒僅微弱有效。Influenza vaccine is an anniversary vaccine intended to protect against highly variable influenza viruses. Each seasonal influenza vaccine injected contains three influenza viruses: an A (H3N2) virus, the 2009 pandemic H1N1 virus, and an influenza B virus. (www.cdc.gov/vaccines/pubs/vis/downloads/vis-flu.pdf). However, the pandemic influenza vaccine is only weakly effective against influenza H1N1 virus carrying the D222G mutation in the HA protein.

因此,業內迫切需要生成抗H1N1之D222G變體之穩健抗體效價之病毒株及病毒衍生抗原。Therefore, there is an urgent need in the industry for virus strains and virus-derived antigens that generate robust antibody titers against the D222G variant of H1N1.

本發明係關於製備對抗大流行性感冒A H1N1病毒之超毒力形式及/或奧司他韋(oseltamivir)抗性形式之疫苗之方法及組合物。提供在HA之D222殘基及NA之S275殘基中包含突變之疫苗組合物。The present invention relates to a method and composition for preparing a vaccine against a hypervirulent form of influenza A H1N1 virus and / or an oseltamivir resistant form. Vaccine compositions containing mutations in residues D222 of HA and S275 of NA are provided.

本發明提供流行性感冒病毒疫苗,其包含至少具有以下之流行性感冒病毒:血球凝集素(HA)基因區段,其包含衍生自大流行性感冒A H1/N1流行性感冒病毒之病毒1分離物之胺基酸序列SEQ ID NO: 34;及神經胺酸酶(NA)基因區段,其包含衍生自大流行性感冒A H1/N1流行性感冒病毒之病毒1分離物之胺基酸序列SEQ ID NO: 39。The present invention provides an influenza virus vaccine, which contains an influenza virus having at least the following: hemagglutinin (HA) gene segment, which contains a virus 1 isolated from influenza A H1 / N1 influenza virus Amino acid sequence SEQ ID NO: 34; and neuraminidase (NA) gene segment, which contains the amino acid sequence of the virus 1 isolate derived from influenza A H1 / N1 influenza virus SEQ ID NO: 39.

在一實施例中,HA基因區段包含由病毒1之區段4之核苷酸序列(SEQ ID NO: 4)編碼之胺基酸序列。在一些形式中,HA基因區段包含大流行性感冒A H1/N1流行性感冒病毒之分枝7特異性HA序列。In one embodiment, the HA gene segment comprises the amino acid sequence encoded by the nucleotide sequence of segment 4 of virus 1 (SEQ ID NO: 4). In some forms, the HA gene segment contains the influenza A H1 / N1 influenza virus branching 7 specific HA sequence.

在一實施例中,HA基因區段包含野生型大流行性感冒A H1/N1流行性感冒病毒中D222殘基處之突變。在一實施例中,HA基因區段包含D222E突變。在一些實施例中,HA基因區段相對於野生型大流行性感冒A H1/N1流行性感冒病毒包含S203T突變。In one embodiment, the HA gene segment contains a mutation at residue D222 in the wild-type influenza A H1 / N1 influenza virus. In one embodiment, the HA gene segment contains the D222E mutation. In some embodiments, the HA gene segment contains the S203T mutation relative to the wild-type influenza A H1 / N1 influenza virus.

本發明係關於疫苗,其中HA基因區段進一步包含P83S及I321V突變中之一或多者。The present invention relates to a vaccine, wherein the HA gene segment further includes one or more of P83S and I321V mutations.

在一實施例中,NA基因區段包含由病毒1中區段6之核苷酸序列(SEQ ID NO: 6)編碼之胺基酸序列。NA基因區段相對於野生型大流行性感冒A H1/N1流行性感冒病毒包含Y275H突變。In one embodiment, the NA gene segment comprises the amino acid sequence encoded by the nucleotide sequence of segment 6 in virus 1 (SEQ ID NO: 6). The NA gene segment contains the Y275H mutation relative to the wild-type influenza A H1 / N1 influenza virus.

本發明係關於疫苗,其中NA基因區段進一步包含I106V突變、D248N突變中之一或多者。The present invention relates to a vaccine, wherein the NA gene segment further contains one or more of I106V mutation and D248N mutation.

本發明疫苗可進一步包含:c)基質(MA)基因區段,其編碼包含衍生自大流行性感冒A H1/N1流行性感冒病毒之病毒1分離物之胺基酸序列SEQ ID NO: 50之M1肽。The vaccine of the present invention may further comprise: c) a matrix (MA) gene segment encoding the amino acid sequence of SEQ ID NO: 50 comprising an isolate of virus 1 derived from influenza A H1 / N1 influenza virus M1 peptide.

在一實施例中,MA基因區段包含由病毒1中區段7之核苷酸序列(SEQ ID NO: 7)編碼之胺基酸序列。In one embodiment, the MA gene segment comprises the amino acid sequence encoded by the nucleotide sequence of segment 7 in virus 1 (SEQ ID NO: 7).

在一些實施例中,基質(MA)基因區段編碼包含衍生自大流行性感冒A H1/N1流行性感冒病毒之病毒1分離物之胺基酸序列SEQ ID NO: 51之M2肽。在一些實施例中,M1肽包含A198P突變。In some embodiments, the matrix (MA) gene segment encodes an M2 peptide comprising the amino acid sequence SEQ ID NO: 51 of the virus 1 isolate derived from influenza A H1 / N1 influenza virus. In some embodiments, the M1 peptide comprises the A198P mutation.

本發明係關於使患者對流行性感冒病毒免疫之方法,其包含將本文所揭示流行性感冒疫苗投與患者之步驟。The present invention relates to a method of immunizing a patient against influenza virus, which includes the step of administering the influenza vaccine disclosed herein to the patient.

本發明係關於使患者對超毒力流行性感冒病毒免疫之方法,其包含將本文所揭示流行性感冒疫苗投與患者之步驟。The present invention relates to a method for immunizing a patient against a hypervirulent influenza virus, which includes the step of administering the influenza vaccine disclosed herein to the patient.

本發明係關於使患者對奧司他韋抗性流行性感冒病毒免疫之方法,其包含將本文所揭示流行性感冒疫苗投與患者之步驟。The present invention relates to a method for immunizing a patient against oseltamivir-resistant influenza virus, which includes the step of administering the influenza vaccine disclosed herein to the patient.

本發明係關於本文所揭示疫苗,其中該疫苗係重分配體疫苗。在一些實施例中,藉由傳統重分配獲得重分配體流行性感冒病毒。The present invention relates to the vaccine disclosed herein, wherein the vaccine is a redistribution vaccine. In some embodiments, redistribution influenza viruses are obtained by traditional redistribution.

本發明係關於本文所揭示疫苗,其係活減毒疫苗或不活化疫苗。在一些實施例中,疫苗經調配以供經口或鼻內投與。The present invention relates to the vaccines disclosed herein, which are live attenuated vaccines or inactivated vaccines. In some embodiments, the vaccine is formulated for oral or intranasal administration.

本發明係關於製備用於使個體對超毒力流行性感冒病毒株免疫之疫苗之方法,其包含混合本文所揭示流行性感冒病毒與載劑及視需要選用之佐劑之步驟。The present invention relates to a method for preparing a vaccine for immunizing an individual against a hyperviral influenza virus strain, which includes the steps of mixing the influenza virus disclosed herein with a carrier and an optional adjuvant as needed.

根據下文結合以下附圖對較佳實施例之說明可明瞭該等及其他態樣,盡但可在其中實施變化及修改,而不背離本揭示內容之新穎概念的精神及範圍。These and other aspects can be understood from the following description of the preferred embodiments in conjunction with the following drawings, but changes and modifications can be implemented therein without departing from the spirit and scope of the novel concepts of the present disclosure.

以下圖式構成本說明書之一部分且經包涵以進一步展示本揭示內容之某些態樣,參照該等圖式中之一或多者以及本文所述具體實施例之詳細說明,可更透徹地理解本發明。本專利或申請案檔案含有至少一個彩色圖式。在提出要求並支付必要費用後,將由專利事務局(Office)提供本專利或專利申請公開案帶彩圖之副本。The following drawings form part of this specification and are included to further demonstrate certain aspects of the disclosure. Refer to one or more of these drawings and the detailed description of specific embodiments described herein for a more thorough understanding this invention. This patent or application file contains at least one color scheme. After requesting and paying the necessary fees, the Patent Office (Office) will provide a copy of this patent or patent application publication with color drawings.

在本發明上下文中及在使用每一術語之具體上下文中,本說明書中所用術語一般具有業內普通含義。下文或說明書中其他地方論述用於闡述本發明之某些術語,其為關注本發明說明之從業人員提供額外指導。為方便起見,可使用(例如)斜體字及/或引號來突出顯示某些術語。使用突出顯示對術語之範圍及含義無影響;在相同上下文中,無論是否突出顯示,術語之範圍及含義皆相同。應瞭解,可以一種以上方式來描述同一對象。In the context of the present invention and in the specific context in which each term is used, the terms used in this specification generally have ordinary meanings in the industry. Some terms used to illustrate the present invention are discussed below or elsewhere in the specification, which provides additional guidance for practitioners concerned with the description of the present invention. For convenience, certain terms may be highlighted using italics and / or quotation marks, for example. The use of highlighting has no effect on the scope and meaning of the term; in the same context, regardless of whether it is highlighted, the scope and meaning of the term are the same. It should be understood that the same object can be described in more than one way.

因此,替代性語言及同義詞可用於本文所論述術語中之任何一或多者,無論術語在本文中是否詳細闡明或論述均不具有任何特殊意義。提供某些術語之同義詞。列舉一或多個同義詞並不排除其他同義詞之使用。本說明書中任一處之實例(包括本文所論述任一術語之實例)的使用僅具有說明性,且決不限制本發明或所例示任一術語之範圍及含義。同樣,本發明並不限於本說明書中給出之各個實施例。Therefore, alternative language and synonyms can be used for any one or more of the terms discussed herein, whether or not the terms are elaborated or discussed in this document in any way. Provide synonyms for certain terms. The listing of one or more synonyms does not exclude the use of other synonyms. The use of examples anywhere in this specification (including examples of any term discussed herein) is illustrative only, and in no way limits the scope and meaning of the invention or of any term exemplified. Likewise, the present invention is not limited to the various embodiments given in this specification.

除非另有說明,否則本文所用所有技術及科學術語皆具有與熟習本發明所屬領域技術者一般所瞭解之意義相同之意義。倘若出現矛盾,則以本文件(包括定義)為准。以下參考文獻為技術人員提供本發明中所用許多術語之一般定義:Singleton等人,Dictionary of Microbiology and Molecular Biology(第2版,1993);The Cambridge Dictionary of Science and Technology(Walker編輯,Cambridge University Press. 1990);The Glossary of Genetics,第5版,R. Rieger等人(編輯),Springer Verlag(1991);及Hale & Margham,The Harper Collins Dictionary of Biology(1991)。Unless otherwise stated, all technical and scientific terms used herein have the same meaning as those generally understood by those skilled in the art to which this invention belongs. In case of conflicts, this document (including definitions) shall prevail. The following references provide technicians with a general definition of many terms used in the present invention: Singleton et al., Dictionary of Microbiology and Molecular Biology (2nd edition, 1993); The Cambridge Dictionary of Science and Technology (Edited by Walker, Cambridge University Press. 1990); The Glossary of Genetics, 5th Edition, R. Rieger et al. (Editor), Springer Verlag (1991); and Hale & Margham, The Harper Collins Dictionary of Biology (1991).

一般而言,與本文所述細胞及組織培養、分子生物學以及蛋白質及寡核苷酸或多核苷酸化學及雜交有關之所用術語及其技術為業內熟知且常用之彼等。重組體DNA、寡核苷酸合成及組織培養及轉化(例如電穿孔、脂質體轉染)使用標準技術。酶促反應及純化技術係依照製造商說明書或如業內常用方法或如本文所述來實施。除非明確指示相反含義,否則本發明之實踐將採用業內熟知之病毒學、免疫學、微生物學、分子生物學及重組體DNA技術之習用方法,其中許多方法出於說明性目的闡述於下文中。該等技術完整闡釋於文獻中。例如,參見Sambrook等人,Molecular Cloning: A Laboratory Manual(第2版,1989);Maniatis等人,Molecular Cloning: A Laboratory Manual(1982);DNA Cloning: A Practical Approach,第I卷及第II卷(D. Glover編輯);Oligonucleotide Synthesis(N. Gait編輯,1984);Nucleic Acid Hybridization(B. Hames及S. Higgins編輯,1985);Transcription and Translation(B. Hames及S. Higgins編輯,1984);Animal Cell Culture(R. Freshney編輯,1986);Perbal,A Practical Guide to Molecular Cloning(1984)。In general, the terms and techniques used in connection with cell and tissue culture, molecular biology, and protein and oligonucleotide or polynucleotide chemistry and hybridization described herein are well known and commonly used in the industry. Standard techniques are used for recombinant DNA, oligonucleotide synthesis, and tissue culture and transformation (eg, electroporation, lipofection). Enzymatic reactions and purification techniques are carried out according to the manufacturer's instructions or as commonly used in the industry or as described herein. Unless explicitly indicated to the contrary, the practice of the present invention will employ conventional methods of virology, immunology, microbiology, molecular biology, and recombinant DNA technology well known in the industry, many of which are described below for illustrative purposes. These techniques are fully explained in the literature. For example, see Sambrook et al., Molecular Cloning: A Laboratory Manual (Second Edition, 1989); Maniatis et al., Molecular Cloning: A Laboratory Manual (1982); DNA Cloning: A Practical Approach, Volume I and Volume II ( (Edited by D. Glover); Oligonucleotide Synthesis (Edited by N. Gait, 1984); Nucleic Acid Hybridization (Edited by B. Hames and S. Higgins, 1985); Transcription and Translation (Edited by B. Hames and S. Higgins, 1984); Animal Cell Culture (edited by R. Freshney, 1986); Perbal, A Practical Guide to Molecular Cloning (1984).

流行性感冒A病毒含有由如下表1中所示8個負義RNA單獨區段組成之基因組。(Steinhauer DA,Skehel JJ.,Genetics of influenza viruses. Ann Rev Genet. 2002 36: 305-332)。循環人類株因其往往年復一年地積累突變且引起流行病而廣為人知。然而,基因組之區段性以使得不同病毒株之間可交換完整基因。流行性感冒病毒之遺傳可塑性亦很可能與疫苗設計、致病性及新病毒自天然儲存庫中出現並引起世界性大流行病之能力有關。Influenza A virus contains a genome consisting of 8 individual segments of negative sense RNA as shown in Table 1 below. (Steinhauer DA, Skehel JJ., Genetics of influenza viruses. Ann Rev Genet. 2002 36: 305-332). Circulating human strains are widely known for accumulating mutations year after year and causing epidemics. However, the genome is segmented so that different virus strains can exchange complete genes. The genetic plasticity of influenza viruses is also likely related to vaccine design, pathogenicity, and the ability of new viruses to emerge from natural reservoirs and cause pandemic diseases worldwide.

藉由細胞培養分離總計950種病毒,經由毛細管測序自該等病毒獲得193種神經胺酸酶(NA)及197種血球凝集素(HA)部分基因序列。由於HA及NA係AH1N1中之最易變序列,因此電腦模擬分析(系譜分析及BLAST)顯示,所有386個(HA及NA序列)可分為20個簇;在454鈦羅氏焦磷酸測序設備(454 Titanium Roche Pyrosequencing equipment,ROCHE)中對每簇中一個代表性成員之完整基因組進行焦磷酸測序。獲得總計20個完整AH1N1基因組,每一AH1N1由8個基因組成。A total of 950 viruses were isolated by cell culture, and 193 neuraminidase (NA) and 197 hemagglutinin (HA) partial gene sequences were obtained from these viruses via capillary sequencing. Because HA and NA are the most variable sequences in AH1N1, computer simulation analysis (genealogy analysis and BLAST) shows that all 386 (HA and NA sequences) can be divided into 20 clusters; In 454 Titanium Roche Pyrosequencing equipment (ROCHE), pyrosequencing was performed on the complete genome of a representative member in each cluster. A total of 20 complete AH1N1 genomes were obtained, each AH1N1 consisting of 8 genes.

測序數據顯示四種具有三種不同突變之病毒分離物:(i)pAH1N1病毒,其在NA(奧司他韋R)、HA(超毒力)及基質區段中具有突變(病毒1);(ii) pAH1N1病毒,起在NA及基質區段中具有突變(病毒2);(iii) pAH1N1病毒,起在基質(MA)區段中具有突變(病毒3);及(iv) pAH1N1病毒,其在神經胺酸酶(NA)區段中具有突變(病毒4)。Sequencing data showed four virus isolates with three different mutations: (i) pAH1N1 virus, which has mutations in NA (oseltamivir R ), HA (supervirulence) and matrix segments (virus 1); ii) pAH1N1 virus, with mutations in the NA and matrix segments (virus 2); (iii) pAH1N1 virus, with mutations in the matrix (MA) segment (virus 3); and (iv) pAH1N1 virus, which There is a mutation in the neuraminidase (NA) segment (virus 4).

血球凝集素HA1基因序列中在對應於222位(H3編號中之225位)之胺基酸處之變化(其中天冬胺酸(D)變為甘胺酸(G))與嚴重臨床結果有關。在2009年4月至11月期間之不同時間點,在基因庫中之H1N1pdm全球分離物中記錄到D222G突變(Chen GW,Shih SR(2009) Genomic signatures of influenza A pandemic(H1N1) 2009 virus. Emerg Infect Dis)。Changes in hemagglutinin HA1 gene sequence at amino acids corresponding to position 222 (position 225 in H3 numbering) (where aspartic acid (D) becomes glycine (G)) are associated with serious clinical outcomes . At different time points between April and November 2009, the D222G mutation was recorded in the H1N1pdm global isolate in the gene pool (Chen GW, Shih SR (2009) Genomic signatures of influenza A pandemic (H1N1) 2009 virus. Emerg Infect Dis).

流行性感冒病毒與唾液酸-α2,3-半乳糖(α2,3受體)或唾液酸-α2,6-半乳糖(α2,6受體)之優先結合可決定其向性,此乃因α2,3受體及α2,6受體分別在下呼吸道細胞及上呼吸道細胞上佔主要地位(Shinya K、Ebina M、Yamada S、Ono M、Kasai N、Kawaoka Y. Avian flu: influenza receptors in the human airway. Nature. 2006;440(7083):435-6)。The preferential binding of influenza virus to sialic acid-α2,3-galactose (α2,3 receptor) or sialic acid-α2,6-galactose (α2,6 receptor) can determine its tropism, because α2,3 receptors and α2,6 receptors dominate the lower and upper respiratory tract cells (Shinya K, Ebina M, Yamada S, Ono M, Kasai N, Kawaoka Y. Avian flu: influenza receptors in the human airway. Nature. 2006; 440 (7083): 435-6).

最新聚糖微陣列分析表明,血球凝集素(HA) D222G取代可能引起自α2,6受體特異性至混合α2,3/α2,6受體特異性之變化,此可增強與α2,3受體之結合並提高疾病嚴重性。(Stevens J、Blixt O、Glaser L、Taubenberger JK、PaleseP、Paulson JC等人,Glycan microarray analysis of the hemagglutinins from modern and pandemic influenza viruses reveals different receptor specificities. J Mol Biol. 2006;355(5):1143-55)。此位置似乎影響受體結合特異性,且兩種1918病毒變體(同前)之間之D/G差異與自α2-6連接唾液酸優先性至雙重α2-3/α2-6特異性之變化有關,即其或許可使病毒更易感染氣道更深處(其中表現α2-3受體之細胞更豐富),由此產生超毒力。The latest glycan microarray analysis shows that the replacement of hemagglutinin (HA) D222G may cause a change from α2,6 receptor specificity to mixed α2,3 / α2,6 receptor specificity, which can enhance the relationship with α2,3 Integration of the body and increase the severity of the disease. (Stevens J, Blixt O, Glaser L, Taubenberger JK, PaleseP, Paulson JC and others, Glycan microarray analysis of the hemagglutinins from modern and pandemic influenza viruses reveals different receptor specificities. J Mol Biol. 2006; 355 (5): 1143- 55). This position seems to affect receptor binding specificity, and the D / G difference between the two 1918 virus variants (same as above) is related to the priority of linking sialic acid from α2-6 to dual α2-3 / α2-6 specific The change is related, that is, it may make the virus more susceptible to infection of the airways deeper (where the cells expressing α2-3 receptors are more abundant), thereby producing hypervirulence.

然而,尚未觀察到具有D222G取代之嚴重病例之獨特系譜簇集(Mak GC等人,Association of D222G substitution in hemagglutinin of 2009 pandemic influenza A(H1N1) with severe disease. Eurosurveillance,第15卷,第14期,2010年4月8日)。However, a unique pedigree cluster of severe cases with D222G substitution has not been observed (Mak GC et al., Association of D222G substitution in hemagglutinin of 2009 pandemic influenza A (H1N1) with severe disease. Eurosurveillance, Vol. 15, Issue 14, (April 8, 2010).

所有發現在HA1中222位含有變化之病毒皆屬於以HA1取代S203T(分枝7之特徵)為特徵之大流行性H1N1病毒之亞分枝,該S203T亦由胺基酸袋圍繞且該胺基酸袋暴露為此超毒力株及其餘AH1N1株所特有之抗原性區域。此亞分枝佔歐洲及北半球其餘部分之大流行性病毒之大部分。對於南半球,此亞分枝亦分佈極廣。All viruses found to contain changes at position 222 in HA1 belong to the subbranches of the pandemic H1N1 virus characterized by HA1 replacing S203T (branch 7 feature). The acid bag is exposed to the antigenic region unique to this hypervirulent strain and the remaining AH1N1 strains. This subbranch accounts for most of the pandemic viruses in Europe and the rest of the Northern Hemisphere. For the southern hemisphere, this subbranche is also widely distributed.

基於與WHO共享之當前可得數據,D222G取代之盛行率小於1.8%(在超過2755個HA序列中檢測到52處)。在迄今分析之364個致死病例中,26個病例(7.1%)中之病毒具有D222G取代。關於該等病例中可能的潛在醫學病況之臨床資訊有限。具有D222G取代之大流行性(H1N1) 2009病毒在抗原性上類似於A/California/7/2009(H1N1)病毒(WHO推薦之疫苗病毒)。Based on the currently available data shared with WHO, the prevalence of D222G replacement is less than 1.8% (52 detected in more than 2755 HA sequences). Of the 364 lethal cases analyzed so far, the virus in 26 cases (7.1%) has been replaced by D222G. There is limited clinical information about the possible underlying medical conditions in these cases. The pandemic (H1N1) 2009 virus with D222G substitution is similar in antigenicity to the A / California / 7/2009 (H1N1) virus (a vaccine virus recommended by WHO).

在相同之上述病毒A(H1N1)2009中,發現(i)血球凝集素(HA)中之Gly222突變及(ii)神經胺酸酶(NA)中與對奧司他韋之抗性相關之Tyr275突變(McKimm-Breschkin JL. Resistance of influenza viruses to neuraminidase inhibitors - a review. Antiviral Res 2000;47:1-17;Collins PJ等人,Structural basis for oseltamivir resistance of influenza viruses. Vaccine 27(2009) 6317-6323)。由於兩種突變皆與重要表現型(超毒力及奧司他韋抗性)有關,且抗原性區域與彼等突變相關,故本發明疫苗候選者可有效識別突變體株及AH1N1野生型二者。In the same virus A (H1N1) 2009 above, (i) Gly222 mutation in hemagglutinin (HA) and (ii) Tyr275 in neuraminidase (NA) related to resistance to oseltamivir Mutation (McKimm-Breschkin JL. Resistance of influenza viruses to neuraminidase inhibitors-a review. Antiviral Res 2000; 47: 1-17; Collins PJ et al., Structural basis for oseltamivir resistance of influenza viruses. Vaccine 27 (2009) 6317-6323 ). Since both mutations are related to important phenotypes (supervirulence and oseltamivir resistance), and the antigenic regions are related to their mutations, the vaccine candidate of the present invention can effectively recognize the mutant strain and AH1N1 wild type II By.

三種D222G變體病毒在神經胺酸酶(NA)中載有與奧司他韋抗性相關之H275Y取代。WHO Report. Preliminary review of D222G amino acid substitution in the hemagglutinin of pandemic influenza A(H1N1) 2009 viruses,2009年12月28日(www.who.int/csr/resources/publications/swineflu/cp165_2009_2812_review_d222g_amino_acid_substitution_in_ha_h1n1_viruses.pdf)。The three D222G variant viruses contained H275Y substitutions related to oseltamivir resistance in neuraminidase (NA). WHO Report. Preliminary review of D222G amino acid substitution in the hemagglutinin of pandemic influenza A (H1N1) 2009 viruses, December 28, 2009 (www.who.int/csr/resources/publications/swineflu/cp165_2009_2812_review_d222g_amino_acid_substitution_in_ha_h1n1_viruses.pdf).

當前可得大流行病疫苗亦識別超毒力及奧司他韋抗性突變體,然而,儘管突變位於H1血球凝集素之受體結合腔而非抗原性位點中,但在瑞典傳染病控制研究所(Swedish Institute for Infectious Disease Control)及在吾人之實驗室實施之初步抗原表徵顯示,與野生型大流行性AH1N1株相比,突變體病毒與抗當前大流行病疫苗之抗血清之反應性顯著降低。因此,當前疫苗對該等在世界範圍內快速傳播之新突變體株之識別不如本發明疫苗候選者有效。The currently available pandemic vaccine also recognizes hypervirulent and oseltamivir resistant mutants. However, although the mutation is located in the receptor binding cavity of H1 hemagglutinin rather than an antigenic site, it is controlled in infectious diseases in Sweden The preliminary antigen characterization carried out by the Swedish Institute for Infectious Disease Control and in our laboratory showed that the reactivity of the mutant virus with the antiserum against the current pandemic vaccine compared to the wild-type pandemic AH1N1 strain Significantly reduced. Therefore, the current vaccines are not as effective in identifying these new mutant strains that spread rapidly around the world as vaccine candidates of the present invention.

病毒基因組區段7(基質區段)之3'端中之突變顯示與流行性感冒BM區段之相似性(60%)。先前已報導此突變可提高人類之特異性免疫反應,且其亦可賦予抗流行性感冒B之保護。然而,主要抵抗病毒基質及核蛋白抗原之細胞介導之免疫性並不能保護免於感染,但其係病毒清除及自疾病恢復的關鍵。The mutation in the 3 'end of the viral genome segment 7 (matrix segment) showed similarity to the influenza BM segment (60%). It has been previously reported that this mutation can increase the specific immune response in humans, and it can also confer protection against influenza B. However, cell-mediated immunity that is primarily resistant to viral matrix and nuclear protein antigens cannot protect against infection, but it is the key to virus clearance and recovery from disease.

4種病毒分離物之胺基酸序列係自核苷酸序列測定推斷得出。病毒1在HA、NA及MA蛋白中載有所關注突變。病毒2在NA及MA蛋白中載有所關注突變。病毒3在NA蛋白中載有所關注突變。病毒4在MA蛋白中載有所關注突變。The amino acid sequences of the four virus isolates were deduced from nucleotide sequence determination. Virus 1 contains mutations of interest in HA, NA, and MA proteins. Virus 2 contains mutations of interest in NA and MA proteins. Virus 3 carries the mutation of interest in the NA protein. Virus 4 contains the mutation of interest in the MA protein.

相對於野生型大流行性感冒A H1N1序列分析HA序列中之所關注突變。所有四種分離物皆載有突變P83S及I321V,該等突變似乎在A/H1N1大流行株之分枝7中盛行。The mutations of interest in the HA sequence were analyzed relative to the wild-type influenza A H1N1 sequence. All four isolates carry mutations P83S and I321V, and these mutations appear to be prevalent in branch 7 of the A / H1N1 pandemic strain.

病毒1亦具有(i)分枝7特徵性S203T突變,及(ii)位於HA序列222位處之D222E突變。在222位-223位,病毒1具有E-R胺基酸而非野生型之D-Q。在流行性感冒A病毒(A/Novgorod/01/2009(H1N1)) HA蛋白中發現對病毒1之HA序列之準確匹配。Virus 1 also has (i) the S203T mutation characteristic of branch 7, and (ii) the D222E mutation at position 222 of the HA sequence. At positions 222-223, virus 1 has E-R amino acids instead of wild-type D-Q. In HA protein of influenza A virus (A / Novgorod / 01/2009 (H1N1)), an exact match to the HA sequence of virus 1 was found.

病毒1、2及4相對於野生型A/California/07/2009序列在NA區段(6)之I106V、D248N、Y275H殘基處載有突變。Y275H突變與奧司他韋抗性相關。在該三種分離物中發現之NA序列之準確匹配亦在其他分離物中發現。Viruses 1, 2 and 4 contained mutations at residues I106V, D248N and Y275H in the NA segment (6) relative to the wild-type A / California / 07/2009 sequence. The Y275H mutation is associated with oseltamivir resistance. The exact match of the NA sequences found in these three isolates was also found in other isolates.

當前野生型疫苗對在該等特定位點載有HA及NA突變二者之病毒1之有效性較低。(Puzelli等人,Transmission of Hemagglutinin D222G mutant strain of pandemic(H1N1) 2009 virus. Emerging Infectious Diseases 16(5): 863-865(2010))。由載有超毒力(HA區域中之D222G/E)及奧司他韋抗性(NA區域中之Y275H)二者之病毒(例如病毒1)生成之疫苗客服野生型H1N1大流行病疫苗之低效率並提供抗超毒力及奧司他韋抗性病毒二者之保護。Current wild-type vaccines are less effective against virus 1 carrying both HA and NA mutations at these specific sites. (Puzelli et al., Transmission of Hemagglutinin D222G mutant strain of pandemic (H1N1) 2009 virus. Emerging Infectious Diseases 16 (5): 863-865 (2010)). Vaccines generated from viruses (e.g. virus 1) containing both hypervirulence (D222G / E in the HA area) and oseltamivir resistance (Y275H in the NA area) Inefficient and provides protection against both hypervirulence and oseltamivir resistant viruses.

病毒1、2及3相對於野生型A/California/07/2009序列在M1區域(區段7)中載有突變A198P。此外,該三種分離物缺少對應於M2區域中之D34之殘基。Viruses 1, 2 and 3 carry the mutation A198P in the M1 region (segment 7) relative to the wild-type A / California / 07/2009 sequence. In addition, these three isolates lack residues corresponding to D34 in the M2 region.

已報導此突變可提高細胞介導之免疫性(但並不能保護免於感染)。突變區域與流行性感冒B病毒MA區域具有60%序列相似性且抵抗載有此突變之病毒分離物生成之疫苗可產生抗流行性感冒B之免疫性。This mutation has been reported to increase cell-mediated immunity (but does not protect against infection). The mutation region has 60% sequence similarity to the influenza B virus MA region and a vaccine generated against a virus isolate carrying this mutation can develop immunity against influenza B.

此外,M1突變可用作病毒清除及恢復之治療靶。In addition, M1 mutations can be used as therapeutic targets for virus clearance and recovery.

本發明方法使用本文揭示之流行性感冒病毒抗原針對流行性感冒病毒感染來進行免疫。衍生出抗原之特定病毒可與所提供保護抵抗之特定病毒相同或不同,此乃因已知在流行性感冒病毒、尤其相同病毒亞型內之不同分離物之間存在交叉保護。The method of the present invention uses the influenza virus antigen disclosed herein to immunize against influenza virus infection. The specific virus from which the antigen is derived may be the same as or different from the specific virus that provides protection against it, because cross-protection is known to exist between different isolates within influenza virus, especially the same virus subtype.

當前使用之流行性感冒疫苗命名為全病毒(WV)疫苗或亞病毒粒子(SV)(亦稱作「裂解」或「純化表面抗原」)。WV疫苗含有完整不活化病毒,而SV疫苗含有經清潔劑分裂之純化病毒,該清潔劑溶解含脂質病毒外套膜,之後將殘留病毒化學不活化。抗流行性感冒之減毒病毒疫苗亦在研發中。對習用疫苗之製備方法之論述可參見Wright,P. F.及Webster,R. G.,FIELDS VIROLOGY,第4版(Knipe,D. M.等人編輯),1464-65(2001)。The currently used influenza vaccines are named whole virus (WV) vaccines or subviral particles (SV) (also known as "lysed" or "purified surface antigens"). The WV vaccine contains intact non-activated virus, while the SV vaccine contains purified virus split by a cleaning agent that dissolves the lipid-containing virus coat and then chemically deactivates the remaining virus. Attenuated virus vaccines against influenza are also under development. For a discussion of the preparation methods of conventional vaccines, see Wright, PF and Webster, RG., FIELDS VIROLOGY, 4th edition (edited by Knipe, DM, etc.), 1464-65 (2001).

倘若疫苗包括一種以上流行性感冒株,則不同株通常係分開生長且在已收穫病毒且已製備抗原後混合。或者,可合併流行性感冒病毒之不同分離物之不同區段以產生多潛能疫苗。本發明方法中使用之流行性感冒病毒可係重分配體株,及/或可藉由反向遺傳學技術來獲得。病毒可係減毒病毒。病毒可係溫度敏感性病毒。病毒可係適冷性病毒。可使用包括來自致病株之HA及/或NA病毒區段及來自非致病株之其餘6或7個區段之重分配體株。If the vaccine includes more than one influenza strain, the different strains are usually grown separately and mixed after the virus has been harvested and the antigen has been prepared. Alternatively, different segments of different isolates of influenza virus can be combined to produce a pluripotent vaccine. The influenza virus used in the method of the present invention can be a redistributive strain, and / or can be obtained by reverse genetics techniques. The virus can be an attenuated virus. The virus can be a temperature-sensitive virus. The virus can be a cold virus. Redistributive strains including HA and / or NA virus segments from pathogenic strains and the remaining 6 or 7 segments from non-pathogenic strains can be used.

本發明免疫原性組合物中所用流行性感冒病毒抗原可呈活病毒或較佳不活化病毒形式。病毒不活化通常涉及用諸如福馬林(formalin)或β-丙內酯等化學物質處理。倘若使用不活化病毒,則抗原可係全病毒、裂解病毒或病毒次單元。裂解病毒係藉由用清潔劑(例如乙醚、聚山梨醇酯80、去氧膽酸鹽、三-N-丁基磷酸鹽、Triton X-100、Triton N101、溴化十六烷基三甲基銨等)處理病毒粒子以產生亞病毒粒子製劑來獲得。次單元疫苗包含流行性感冒表面抗原血球凝集素及神經胺酸酶中之一者或兩者。流行性感冒抗原亦可以病毒體形式來呈遞。The influenza virus antigen used in the immunogenic composition of the present invention may be in the form of live virus or preferably inactivated virus. Viral inactivation usually involves treatment with chemicals such as formalin or β-propiolactone. If inactivated virus is used, the antigen can be whole virus, split virus or virus subunit. Virus lysis is achieved by using detergents (e.g. diethyl ether, polysorbate 80, deoxycholate, tri-N-butyl phosphate, Triton X-100, Triton N101, cetyltrimethyl bromide (Ammonium, etc.) obtained by treating viral particles to produce a subviral particle preparation. The subunit vaccine contains one or both of the influenza surface antigen hemagglutinin and neuraminidase. Influenza antigens can also be presented in the form of virions.

倘若抗原係自流行性感冒病毒製備(即並非係在不涉及流行性感冒病毒生長之重組體或合成系統中產生),則病毒可在卵上或在細胞培養中生長。在無特定病原體之胚胎卵中生長係使流行性感冒病毒生長以供產生疫苗之傳統途徑,且細胞培養係更新研發方法。倘若使用細胞培養,則流行性感冒病毒疫苗通常將在哺乳動物細胞(例如MDCK細胞、VERO細胞或PER.C6細胞)上生長。該等細胞系隨處可得,例如得自美國細胞培養收藏中心(American Type Cell Culture(ATCC) collection),或得自科裏爾細胞庫(Coriell Cell Repositories)。舉例而言,ATCC以目錄號CCL-81、CCL-81.2、CRL-1586及CRL-1587供應各種不同VERO細胞,且其以目錄號CCL-34供應MDCK細胞。亦可在禽類細胞系(包括源自母雞之細胞系,例如雞胚纖維母細胞(CEF))上生長。If the antigen is prepared from influenza virus (ie not produced in a recombinant or synthetic system that does not involve influenza virus growth), the virus can grow on eggs or in cell culture. Growing in embryonated eggs without specific pathogens is a traditional way to grow influenza virus for vaccine production, and cell culture is a new development method. If cell culture is used, the influenza virus vaccine will usually grow on mammalian cells (such as MDCK cells, VERO cells, or PER.C6 cells). Such cell lines are available everywhere, for example from the American Type Cell Culture (ATCC) collection, or from Coriell Cell Repositories. For example, ATCC supplies various VERO cells under catalog numbers CCL-81, CCL-81.2, CRL-1586 and CRL-1587, and it supplies MDCK cells under catalog numbers CCL-34. It can also be grown on avian cell lines, including cell lines derived from hens, such as chicken embryo fibroblasts (CEF).

本發明免疫原性及藥劑組合物適合投與患者。此可藉由多種方式來達成,包括(但不限於):皮內注射;經皮投與;及局部投與。該等方式可結合(例如)藉由金剛砂紙或藉由使用微磨料產生之皮膚擦傷來使用。The immunogenicity and pharmaceutical composition of the present invention are suitable for administration to patients. This can be achieved in a variety of ways, including (but not limited to): intradermal injection; transdermal administration; and local administration. These methods can be used in conjunction with, for example, skin abrasions by emery paper or by using micro-abrasives.

本發明免疫原性及藥劑組合物較佳以疫苗形式存在。The immunogenicity and pharmaceutical composition of the present invention preferably exist in the form of a vaccine.

本發明組合物可包括佐劑。流行性感冒疫苗中已使用之佐劑包括鋁鹽、幾丁聚糖、CpG寡去氧核苷酸(例如CpG 7909)、水包油乳液(例如MF59)、水包油包水乳液、大腸桿菌(E.coli)不耐熱毒素及其去毒突變體、單磷醯脂質A及其3-O-去醯化衍生物、百日咳(pertussis)毒素突變體、胞壁醯二肽等。The composition of the present invention may include an adjuvant. Adjuvants used in influenza vaccines include aluminum salts, chitosan, CpG oligodeoxynucleotides (e.g. CpG 7909), oil-in-water emulsions (e.g. MF59), water-in-oil emulsions, E. coli ( E.coli ) Heat-labile toxin and its detoxified mutant, monophosphoryl lipid A and its 3- O -deamidated derivative, pertussis toxin mutant, cell wall acetyl dipeptide, etc.

血球凝集素(HA)係不活化流行性感冒疫苗中之主要免疫原,且疫苗劑量係參照HA含量標準化,通常係藉由單向輻射免疫擴散(SRID)分析所量測。肌內注射用疫苗通常含有約15 μg HA/株,但亦可使用較低劑量(例如用於兒童,或在大流行病形勢中)且已使用分次劑量,例如1/2(即7.5 μg HA/株)、1/4及1/8劑量。本發明組合物通常每流行性感冒株將包括介於0.1 μg與8 μg之間之HA,較佳例如約7.5、約5、約3、約2.5、約2、約1.5、約1、約0.75、約0.5、約0.4、約0.2 μg等。Hemagglutinin (HA) is the main immunogen in inactivated influenza vaccine, and the vaccine dose is standardized with reference to HA content, usually measured by one-way radiation immunodiffusion (SRID) analysis. Vaccines for intramuscular injection usually contain about 15 μg HA / strain, but lower doses can also be used (eg for children, or in a pandemic situation) and divided doses have been used, such as 1/2 (ie 7.5 μg HA / strain), 1/4 and 1/8 doses. The composition of the present invention will generally comprise between 0.1 μg and 8 μg of HA per influenza strain, preferably for example about 7.5, about 5, about 3, about 2.5, about 2, about 1.5, about 1, about 0.75 , About 0.5, about 0.4, about 0.2 μg, etc.

肌內注射用疫苗通常具有0.5 ml之體積。組合物可包括防腐劑,例如硫柳汞(thiomersal)或2-苯氧基乙醇。然而,組合物較佳應實質上不含(即少於1 μg/ml)含汞材料,例如不含硫柳汞。不含汞之疫苗更佳。Vaccines for intramuscular injection usually have a volume of 0.5 ml. The composition may include a preservative, such as thiomersal or 2-phenoxyethanol. However, the composition should preferably be substantially free (ie, less than 1 μg / ml) of mercury-containing materials, such as thimerosal. A mercury-free vaccine is better.

倘若流行性感冒病毒已在細胞培養物上生長,則本發明組合物較佳含有少於100 pg殘留宿主細胞DNA/劑量,但可能存在痕量宿主細胞DNA。可在疫苗製備期間使用諸如層析等標準純化程序來移除污染性DNA。殘留宿主細胞DNA之移除可藉由核酸酶處理(例如藉由使用BenzonaseDNase)來增強。含有<100 pg宿主細胞DNA/10 μg血球凝集素之疫苗較佳,含有<100 pg宿主細胞DNA/0.25 ml體積之疫苗亦較佳。含有<100 pg宿主細胞DNA/50 μg血球凝集素之疫苗更佳,含有<100 pg宿主細胞DNA/ml體積之疫苗亦更佳。If influenza virus has grown on cell culture, the composition of the present invention preferably contains less than 100 pg residual host cell DNA / dose, but trace amounts of host cell DNA may be present. Standard purification procedures such as chromatography can be used to remove contaminating DNA during vaccine preparation. Residual host cell DNA can be removed by nuclease treatment (for example by using Benzonase DNase) to enhance. Vaccines containing <100 pg host cell DNA / 10 μg hemagglutinin are preferred, and vaccines containing <100 pg host cell DNA / 0.25 ml volume are also preferred. Vaccines containing <100 pg host cell DNA / 50 μg hemagglutinin are better, and vaccines containing <100 pg host cell DNA / ml volume are also better.

本發明疫苗可按照單劑量免疫方案來遞送。或者,其可作為初免-加強方案(意指在第一次免疫後,在數週或數月內第二次注射類似抗原性)之初免元素來遞送。The vaccine of the present invention can be delivered according to a single dose immunization schedule. Alternatively, it can be delivered as the priming element of the priming-boosting regimen (meaning that after the first immunization, a second injection of similar antigenicity within weeks or months).

測試流行性感冒疫苗之免疫原性之方法為業內所熟知。一種方法涉及以下程序:(a)在即將疫苗接種之前,自患者(通常自手臂)取10 ml靜脈血樣用於循環抗HA抗體之基線滴定;(b)之後,患者立即接受1劑量疫苗,該疫苗若投與手臂則應給予取血臂之異側臂;(c)在疫苗接種後約3週,應自患者取10 ml血樣。自血樣分離血清並儲存(若需要)在-20℃下。藉由血球凝集抑制(HI)或單向輻射溶血(SRH)分析血清之抵抗相關株之抗血球凝集素抗體。可自公共基準實驗室獲得陽性及陰性血清以及參照製劑。以一式兩份實施抗體滴定,且同時滴定疫苗接種前血清及疫苗接種後血清。賦予每一樣品之滴定值係兩次獨立測定之幾何平均值(但出於計算目的,在標準條件下任何<10(=不可檢測)之HI結果皆表示為5且任何陰性SRH結果皆表示為4 mm2)。Methods for testing the immunogenicity of influenza vaccines are well known in the industry. One method involves the following procedures: (a) Immediately before vaccination, a 10 ml venous blood sample is taken from the patient (usually from the arm) for baseline titration of circulating anti-HA antibodies; (b) After that, the patient immediately receives a dose of vaccine If the vaccine is administered to the arm, it should be given to the opposite arm of the blood-drawing arm; (c) A blood sample of 10 ml should be taken from the patient approximately 3 weeks after vaccination. Separate the serum from the blood sample and store (if necessary) at -20 ° C. The anti-hemagglutinin antibodies against the relevant strains of the serum were analyzed by hemagglutination inhibition (HI) or unidirectional radiation hemolysis (SRH). Positive and negative sera and reference preparations can be obtained from public reference laboratories. Antibody titration was performed in duplicate, and the pre-vaccination serum and post-vaccination serum were titrated simultaneously. The titration value assigned to each sample is the geometric mean of two independent determinations (but for calculation purposes, under standard conditions, any HI results <10 (= undetectable) are expressed as 5 and any negative SRH results are expressed as 4 mm 2 ).

在HI測試中,血清轉化率對應於 40之免疫前與免疫後效價比及抗體效價之顯著(例如至少4倍)增加。在SRH測試中,血清轉化率對應於 25 MM 2 之疫苗接種後面積,及相對於疫苗接種前面積至少50%之面積。實例 In the HI test, the serum conversion rate corresponds to The pre-immunization and post-immunization titer ratios of 40 and the antibody titer increased significantly (eg at least 4 times). In the SRH test, the seroconversion rate corresponds to The area of 25 MM 2 after vaccination and at least 50% of the area before vaccination. Examples

不期望限制本發明之範圍,下文給出本發明實施例之實例性儀器、裝置、方法及其相關結果。注意,為方便讀者,實例中可使用標題或副標題,其絕不應限制本發明之範圍。另外,本文中提出並揭示某些理論;然而,不論其正確或錯誤,其絕不應限制本發明之範圍,只要本發明係根據本發明來實踐即可,不考慮任何特定作用理論或方案。Without wishing to limit the scope of the present invention, the following gives example instruments, devices, methods and related results of embodiments of the present invention. Note that for the convenience of the reader, the title or subtitle can be used in the examples, which should in no way limit the scope of the present invention. In addition, certain theories are proposed and disclosed herein; however, regardless of whether they are correct or incorrect, they should in no way limit the scope of the present invention, as long as the present invention is practiced according to the present invention, without considering any specific theory or scheme of action.

實例1:細胞系Example 1: Cell line

VERO細胞係經充分研究之細胞系,其首先自非洲綠猴腎(草原猴(Cercopithecus aethiops))分離,且已廣泛用於微生物學、細胞生物學及病毒學研究。其在美國已獲批用於病毒疫苗生產(輪狀病毒(rotavirus)及脊髓灰白質炎病毒(polivirus)),其亦已經測試且在一些情形中獲批用於抵抗狂犬病(Rabies)、裏奧病毒(reovirus)及日本腦炎(Japanese encephalitis)之疫苗生產。由於此細胞系對共感染易感且其能在發酵罐或生物反應器中以工業規模生長(此係疫苗生產之合意特徵),故選擇此細胞系。The VERO cell line is a well-studied cell line that was first isolated from the African green monkey kidney ( Cercopithecus aethiops ) and has been widely used in microbiology, cell biology, and virology research. It has been approved for the production of viral vaccines (rotavirus and polivirus) in the United States, it has also been tested and in some cases approved for the fight against rabies (Rabies), Rio Production of vaccines for reovirus and Japanese encephalitis. This cell line was chosen because it is susceptible to co-infection and it can grow on a commercial scale in a fermentor or bioreactor (this is a desirable feature of vaccine production).

所用VERO細胞系購自ATCC,且用二甲亞碸(DMSO)保持在-70℃下。根據CORNING說明書使細胞解凍。The VERO cell line used was purchased from ATCC, and maintained at -70 ° C with dimethyl sulfoxide (DMSO). Thaw cells according to CORNING instructions.

實例2:無菌條件Example 2: Aseptic conditions

吾人在BSLIII之所有設施皆經謹慎處理及監測以避免污染,有規律地實施房間、材料、試劑及設備無菌度測試。每個月對細胞培養區域進行規律性地清潔及消毒,且每24、48及72小時使用苯亞甲基(Benzal)、70%乙醇及5%氯進行若干輪消毒。在該等消毒結束時實施無菌度測試,亦藉由在巰基乙酸鹽液體培養基中培養等份試樣來測試所有試劑之污染。All of our facilities at BSLIII are carefully handled and monitored to avoid contamination, and room, material, reagent, and equipment sterility tests are conducted regularly. The cell culture area is cleaned and disinfected regularly every month, and benzyl, 70% ethanol, and 5% chlorine are used for several rounds of disinfection every 24, 48, and 72 hours. At the end of these sterilizations, a sterility test was carried out, and all reagents were also tested for contamination by culturing aliquots in thioglycollate liquid medium.

實例3:細胞增殖Example 3: Cell proliferation

Vero細胞增殖係在適宜物理及化學條件(例如在聚苯乙烯細胞培養燒瓶(25 cm2,50 cm2及75 cm2)中儲存)下進行。該等燒瓶亦經γ輻照以降低疏水性。該等容器容許有效細胞黏附且因而容許形成單層。為促進細胞繁殖,使用生長培養基M199或DMEM(達爾伯克氏改良培養基,Dulbecco's Modified Medium)且補充10%胎牛血清(BFS)(SIGMA-Aldrich);藉由使用Phenol Red來監測生理pH之維持。添加抗微生物混合物(青黴素(penicillin)、鏈黴素(streptomycin)及兩性黴素B(amphotericin B)),且為抑制真菌污染,亦添加抗PPLO。Vero cell proliferation is performed under suitable physical and chemical conditions (for example, storage in polystyrene cell culture flasks (25 cm 2 , 50 cm 2 and 75 cm 2 )). These flasks were also irradiated with gamma to reduce hydrophobicity. Such containers allow effective cell adhesion and thus monolayer formation. To promote cell reproduction, use growth medium M199 or DMEM (Dulbecco's Modified Medium) supplemented with 10% fetal bovine serum (BFS) (SIGMA-Aldrich); monitor the maintenance of physiological pH by using Phenol Red . Antimicrobial mixtures (penicillin, streptomycin and amphotericin B) are added, and anti-PPLO is also added to suppress fungal contamination.

在35℃/5% CO2/5%濕度下培育細胞培養物。藉由相位差顯微術監測細胞品質及生長,此使得可棄去彼等呈現細菌或真菌污染之培養物。The cell culture was incubated at 35 ° C / 5% CO 2 /5% humidity. Cell quality and growth are monitored by phase contrast microscopy, which makes it possible to discard their cultures showing bacterial or fungal contamination.

如下所述對呈現完全鋪滿之燒瓶實施細胞繼代培養:The subculture of the completely filled flask is performed as follows:

1. 移除且棄去培養基。1. Remove and discard the medium.

2. 用0.25%(w/v)胰蛋白酶-0.53 mM EDTA溶液短暫沖洗細胞層以移除所有含有胰蛋白酶抑制劑之血清之痕跡。2. Rinse the cell layer briefly with 0.25% (w / v) trypsin-0.53 mM EDTA solution to remove all traces of serum containing trypsin inhibitor.

3. 向燒瓶中添加2.0 ml至3.0 ml胰蛋白酶-EDTA溶液且在倒裝顯微鏡下觀察細胞直至細胞層分散(通常在5至15分鐘內)。3. Add 2.0 ml to 3.0 ml of trypsin-EDTA solution to the flask and observe the cells under an inverted microscope until the cell layer is dispersed (usually within 5 to 15 minutes).

4. 添加6.0 ml至8.0 ml完全生長培養基且藉由緩慢吸液來吸出細胞。4. Add 6.0 ml to 8.0 ml of complete growth medium and aspirate the cells by slowly pipetting.

5. 向新培養器皿中添加適當等份之細胞懸浮液。5. Add a suitable aliquot of cell suspension to the new culture vessel.

6. 在37℃下培育培養物。6. Cultivate the culture at 37 ° C.

在觀察到80%鋪滿時,用1x106 p AHN1病毒接種細胞。此鋪滿程度最適於觀察由流行性感冒病毒A/H1N1引起之致細胞病變效應。When 80% confluence was observed, cells were inoculated with 1x10 6 p AHN1 virus. This degree of coverage is most suitable for observing the cytopathic effect caused by influenza virus A / H1N1.

實例4:病毒分離Example 4: Virus isolation

在接種有VERO細胞(80%鋪滿)之25 cm2燒瓶中進行病毒分離,在病毒分離中,移除生長培養基,對細胞實施三次離心及再懸浮以棄去細胞碎片。在細胞培養物中接種得自臨床診斷帶有流行性感冒AH1N1且藉由即時PCR確認之患者之50 μl拭子樣品,且培育30分鐘以使病毒可附著至細胞表面。此後,向M199中補充BFS 1%且以40℃/40 min培育。Virus isolation was performed in a 25 cm 2 flask seeded with VERO cells (80% confluent). In the virus isolation, the growth medium was removed, the cells were centrifuged and resuspended three times to discard cell debris. A 50 μl swab sample from a patient clinically diagnosed with influenza AH1N1 and confirmed by real-time PCR was inoculated in cell culture and incubated for 30 minutes to allow virus to attach to the cell surface. Thereafter, M199 was supplemented with 1% BFS and incubated at 40 ° C / 40 min.

藉由相位差顯微術監測經接種培養物中細胞病變效應之存在。同時,藉由即時PCR來測定病毒負荷。在達到1x106時,將培養物在-80℃下冷凍(DMSO 10%)且儲存以供進一步研究。The presence of cytopathic effects in the inoculated culture was monitored by phase contrast microscopy. At the same time, the viral load was measured by real-time PCR. Upon reaching 1x10 6, the cultures were frozen at -80 ℃ (DMSO 10%) and stored for further study.

實例5:藉由即時RT-PCR對病毒感染進行確認及定量。Example 5: Confirm and quantify virus infection by real-time RT-PCR.

如先前所述藉由使用市售套組(ROCHE)自VERO細胞培養物提取病毒RNA,此後,藉由分光光度法使用NanoDrop設備對RNA進行定量。在Light Cycler 480溫度循環機(ROCHE)中藉由即時PCR實施用於AH1N1檢測之CDC方案,其包括流行性感冒用以進行定量之標準品(選殖於質粒中之H1基因的101至106個拷貝)。病毒負荷測定係基於對每一樣品之交叉點格式之計算。圖1顯示病毒負荷定量之實例。Viral RNA was extracted from VERO cell culture by using a commercial kit (ROCHE) as described previously, and thereafter, RNA was quantified by spectrophotometry using a NanoDrop device. The CDC protocol for AH1N1 detection was implemented by real-time PCR in the Light Cycler 480 temperature cycler (ROCHE), which included influenza influenza for quantification of the standard (101 to 106 H1 genes selected in the plasmid) copy). The viral load measurement is based on the calculation of the crosspoint format for each sample. Figure 1 shows an example of quantitative viral load.

實例6:樣品選擇Example 6: Sample selection

來自3760個pAH1N1陽性樣品之總計193個測序用樣品係基於臨床及大流行病學數據。臨床選擇標準係:感染嚴重性、抗藥性及非典型臨床環境。大流行病學標準係基於位置、性別及年齡。在自2009年3月至11月報導之4次爆發高峰期間收集所選樣品。使樣品再懸浮於2.5 mL病毒傳送培養基中,分配500 μl等份試樣且儲存在-70℃下。A total of 193 samples for sequencing from 3760 pAH1N1 positive samples were based on clinical and epidemiological data. The clinical selection criteria are: severity of infection, drug resistance and atypical clinical environment. The epidemiological criteria are based on location, gender and age. Selected samples were collected during the four peak bursts reported from March to November 2009. The samples were resuspended in 2.5 mL of virus delivery medium, 500 μl aliquots were dispensed and stored at -70 ° C.

實例7:核酸提取Example 7: Nucleic acid extraction

根據製造商說明書,使用MagNA Pure LC總核酸分離套組(Roche)在MagNA Pure LC儀器(Roche)上藉由外部溶胞(External Lysis)方案分離臨床樣品之總核酸且使其再懸浮於去離子水(100 μ)中,簡言之:將500 μL樣品置於MagnaPure核酸柱中並添加一體積溶胞緩衝液,此後,設置所有參數並開始分離。將所提取RNA置於-70℃下以供進一步分析。According to the manufacturer's instructions, use the MagNA Pure LC Total Nucleic Acid Isolation Kit (Roche) to separate the total nucleic acid of the clinical sample by the External Lysis protocol on the MagNA Pure LC instrument (Roche) and resuspend it in deionization In water (100 μ), in short: place 500 μL of sample on a MagnaPure nucleic acid column and add a volume of lysis buffer. After that, set all parameters and start separation. The extracted RNA was placed at -70 ° C for further analysis.

實例8:流行性感冒p/AH1N1即時PCR檢測Example 8: Influenza p / AH1N1 real-time PCR detection

藉由兩種方法來實施對大流行性感冒AH1N1/09之檢測:即時即用型流行性感冒A/H1N1檢測組(Roche),使用即時即用型RNA病毒主套組(Roche)。在Light Cycler 2.0儀器(Roche)上在以下條件下實施熱循環:在50℃下30 min;在95℃下15 min;45個在94℃下15 s之循環;及在60℃下30 s。The detection of pandemic influenza AH1N1 / 09 is carried out by two methods: real-time influenza A / H1N1 detection group (Roche), and real-time RNA virus master set (Roche). Thermal cycling was performed on the Light Cycler 2.0 instrument (Roche) under the following conditions: 30 min at 50 ° C; 15 min at 95 ° C; 45 cycles of 15 s at 94 ° C; and 30 s at 60 ° C.

第二種方法係用於流行性感冒A(H1N1)之即時RT-PCR CDC方案,其使用上述方案中所述之引物及探針以及一步式RT-PCR Invitrogen SuperScriptTMIII Platinum一步式定量套組。在Light Cycler 2.0儀器上(Roche)在以下條件下實施熱循環:在50℃下50 min;在95℃下2 min;45個在95℃下15 s之循環;及在55℃下30 s。The second method is for the real-time RT-PCR CDC protocol for influenza A (H1N1), which uses the primers and probes described in the above protocol and the one-step RT-PCR Invitrogen SuperScript TM III Platinum One-step quantitative kit. Thermal cycling was performed on the Light Cycler 2.0 instrument (Roche) under the following conditions: 50 min at 50 ° C; 2 min at 95 ° C; 45 cycles of 15 s at 95 ° C; and 30 s at 55 ° C.

兩種方法中之所有反應皆係根據製造商說明書使用存於20 μL總反應體積中之5 μL總RNA來實施。在兩種檢測方法中,包括內部對照(用於Roche方法之人類肌肉生長抑制素(Myostatin)基因及用於CDC方案之RnaseP)。All reactions in both methods were performed using 5 μL of total RNA in a total reaction volume of 20 μL according to the manufacturer's instructions. Among the two detection methods, there are internal controls (human myostatin gene for Roche method and RnaseP for CDC protocol).

測試每一樣品且即時PCR分開使用以下探針:流行性感冒A(InfA)、通用豬(SwFlu A)、H1豬(SwH1)及用於人類核酸RNaseP(RP)之內部對照。引入陽性及陰性對照。Each sample was tested and the following probes were used separately for real-time PCR: Influenza A (InfA), Universal Swine (SwFlu A), H1 Swine (SwH1) and internal controls for human nucleic acid RNaseP (RP). Introduce positive and negative controls.

反應混合物含有0.8 μM每一引物、0.2 μM每一探針、1X PCR緩衝液及0.5 U of SuperScript III/Platinum Taq混合劑(Invitrogen)。The reaction mixture contained 0.8 μM each primer, 0.2 μM each probe, 1X PCR buffer, and 0.5 U of SuperScript III / Platinum Taq mix (Invitrogen).

樣品配置之實例展示於圖2中。An example of sample configuration is shown in Figure 2.

擴增條件如下:The amplification conditions are as follows:

逆轉錄-50℃/30 minReverse transcription -50 ℃ / 30 min

不活化-15℃/2 minInactive -15 ℃ / 2 min

延長-95℃/15個循環及55℃/30個循環。Extend -95 ℃ / 15 cycles and 55 ℃ / 30 cycles.

實例9:數據分析Example 9: Data analysis

根據WHO標準如下所述分析結果:Analyze the results according to the WHO standard as follows:

1.-陰性對照中應不存在螢光。1.- There should be no fluorescence in the negative control.

2.-實驗樣品應存在RP探針之螢光。2.- The fluorescence of the RP probe should be present in the experimental sample.

3.-人類核酸對照應不發射InfA、SwFluA及SwH1探針之螢光。3.- The human nucleic acid control should not emit the fluorescence of InfA, SwFluA and SwH1 probes.

4.-陽性對照(A/H1N1核酸)應發射所有引物及探針之螢光。4.- The positive control (A / H1N1 nucleic acid) should emit the fluorescence of all primers and probes.

5.-若滿足所有標準,樣品應視為陽性。5.-If all criteria are met, the sample should be considered positive.

圖3A及3B顯示Light Cycler 2.0即時溫度循環機介面之圖形視窗,其顯示螢光曲線。圖3A)臨床樣品。圖3B)RNAseP(RP)檢測。Figures 3A and 3B show the graphical window of the Light Cycler 2.0 real-time temperature cycler interface, which shows the fluorescence curve. Figure 3A) Clinical samples. Figure 3B) RNAseP (RP) detection.

實例10:測序Example 10: Sequencing

藉由細胞培養分離總計950種病毒,在ABI 3100測序機(Applied Biosystems)中經由毛細管測序自其獲得193個神經胺酸酶(NA)及197個血球凝集素(HA)部分基因序列。由於HA及NA係AH1N1中之最易變序列,因此電腦模擬分析(系譜分析及BLAST)顯示,所有386個(HA及NA序列)可分為20個簇;在454鈦羅氏焦磷酸測序設備(454 Titanium Roche Pyrosequencing equipment,ROCHE)中對每簇中一個代表性成員之完整基因組進行焦磷酸測序。A total of 950 viruses were isolated by cell culture, from which 193 neuraminidase (NA) and 197 hemagglutinin (HA) partial gene sequences were obtained by capillary sequencing in an ABI 3100 sequencer (Applied Biosystems). Because HA and NA are the most variable sequences in AH1N1, computer simulation analysis (genealogy analysis and BLAST) shows that all 386 (HA and NA sequences) can be divided into 20 clusters; In 454 Titanium Roche Pyrosequencing equipment (ROCHE), pyrosequencing was performed on the complete genome of a representative member in each cluster.

實例11:流行性感冒病毒在雞胚胎中之增殖Example 11: Proliferation of influenza virus in chicken embryos

業內已若干次嘗試使流行性感冒疫苗之建議候選者在VERO細胞中增殖。然而,該等嘗試最初因所回收病毒量即使在3次繼代後仍極低而失敗。慮及此事件,在SPF(無特定病原體)雞胚胎中實施一次或兩次繼代。以每個候選者0.1 mL將該等候選者接種至羊水中。亦包括40種先前在流感大流行期間分離之其他病毒,且每種病毒使用兩個卵進行接種。There have been several attempts in the industry to propagate proposed candidates for influenza vaccines in VERO cells. However, these attempts initially failed because the amount of recovered virus was extremely low even after 3 passages. Taking this event into consideration, one or two subcultures were performed in SPF (Specific Pathogen Free) chicken embryos. Each candidate was inoculated into amniotic fluid with 0.1 mL of each candidate. It also includes 40 other viruses previously isolated during the influenza pandemic, and each virus is vaccinated using two eggs.

在35℃下三天後,自每一經感染胚胎收穫羊水,將所收集液體以3000 x g離心以移除細胞碎片,且藉由qRT-PCR分析上清液並儲存在-80℃下。所有程序皆係在BSL III中遵循所需標準來實施以避免生物安全性風險。After three days at 35 ° C, amniotic fluid was harvested from each infected embryo, the collected liquid was centrifuged at 3000 x g to remove cell debris, and the supernatant was analyzed by qRT-PCR and stored at -80 ° C. All procedures are implemented in BSL III in accordance with the required standards to avoid biosecurity risks.

在繼代後,有三株之胚胎中之病毒負荷極高,其中之一係病毒候選者。亦藉由RT-PCR測試來檢測另外十個分離株,但顯示低病毒負荷。因此,將其在另一SPF雞胚胎中再次接種,但在此情形下接種至尿囊液中。在遵循上述相同條件接種72 hr後,藉由僅收集尿囊液來收穫病毒。藉由使用RT-PCR分析較小體積,且將剩餘部分儲存在-80℃下。結果顯示,10個病毒分離物中有6個能以高效率複製,從而現實高病毒負荷。After subsequent generations, there are three embryos with very high viral load, one of which is a virus candidate. Ten other isolates were also tested by RT-PCR test, but showed low viral load. Therefore, it was inoculated again in another SPF chicken embryo, but in this case inoculated into the allantoic fluid. After 72 hr of inoculation following the same conditions as above, the virus was harvested by collecting only allantoic fluid. The smaller volume was analyzed by using RT-PCR, and the remaining portion was stored at -80 ° C. The results show that 6 out of 10 virus isolates can replicate with high efficiency, thus realizing a high virus load.

來自Karolinska研究所之序列之證明Proof of the sequence from the Karolinska Institute

在雞胚胎增殖前,將病毒株cDNA寄至Karolinska研究所以藉由使用454焦磷酸測序儀系統ROCHE來驗證序列。生物資訊學分析確認先前在吾人實驗室中測定之序列。Before the chicken embryos proliferated, the virus strain cDNA was sent to Karolinska for research so the sequence was verified by using the 454 pyrosequencing system ROCHE. Bioinformatics analysis confirmed the sequence previously determined in our laboratory.

主種(master seed)鑒定Master seed identification

將流行性感冒疫苗之病毒候選者命名為HZFLUJAL。The virus candidate for influenza vaccine was named HZFLUJAL.

流行性感冒病毒對在VERO細胞系上生長之適應Influenza virus adaptation to growth on VERO cell line

將自胚胎收穫之病毒候選者(HZFLUJAL)及另外兩種病毒接種於VERO細胞系上。為達成適應,實施若干次繼代,且在感染7至10天後收集培養物上清液。使用每種上清液來感染新VERO細胞繼代。對每次繼代之病毒負荷進行定量。圖4A顯示相同病毒在胚胎及各別繼代培養物中之病毒負荷之間之差異。在該圖中顯示,直至四次繼代後,病毒達成對此組織細胞系之適應。The virus candidate (HZFLUJAL) harvested from the embryo and the other two viruses were inoculated on the VERO cell line. To achieve adaptation, several passages were performed and the culture supernatant was collected 7 to 10 days after infection. Each supernatant was used to infect new VERO cell passages. Quantify the viral load of each subculture. Figure 4A shows the difference between the viral load of the same virus in embryos and various subcultures. The figure shows that until four passages, the virus has achieved adaptation to this tissue cell line.

流行性感冒病毒對在MDCK細胞系上生長之適應Adaptation of influenza virus to growth on MDCK cell line

不僅VERO細胞系被評定為流行性感冒病毒之基質,且亦使用MDCK細胞系來使病毒增殖。在MDCK細胞中實施用於達成對VERO細胞之適應之相同程序。初步結果顯示對此細胞系之更佳適應,此乃因似乎僅需三次繼代即可獲得大於雞胚胎之病毒負荷(圖4B)。Not only is the VERO cell line evaluated as a substrate for influenza virus, but the MDCK cell line is also used to propagate the virus. The same procedure used to achieve adaptation to VERO cells was performed in MDCK cells. Preliminary results show a better adaptation to this cell line because it seems that only three passages are needed to obtain a viral load larger than that of chicken embryos (Figure 4B).

使病毒增殖以獲得主種HZFLUJALMultiply the virus to obtain the main species HZFLUJAL

對於預先已適應在VERO細胞系上生長之病毒之增殖,使1個冷凍管之VERO細胞上之第四次繼代解凍且在175 cm2燒瓶上用其感染VERO細胞。在33℃下於CO2培育器中10天後,獲得120 mL主種,其顯示病毒負荷大於107個病毒顆粒數/mL(約107.7)。獲得120個含有1 mL主種之冷凍管。For the proliferation of viruses that had previously been adapted to grow on VERO cell lines, the fourth passage on VERO cells in 1 cryotube was thawed and used to infect VERO cells on 175 cm 2 flasks. At 33 ℃ CO 2 incubator at 10 days, to obtain 120 mL of the main species, showing viral load of greater than 10 7 viral particle count / mL (7.7 to about 10). Obtain 120 freezing tubes containing 1 mL of main species.

主種之品質控制Main species quality control

對主種實施無菌度測試及血球凝集測試。對於第一個測試,使4個冷凍管之主種解凍,使用兩個冷凍管來接種兩個含有100 mL液體巰基乙酸鹽培養基NIH之燒瓶,且利用另兩個冷凍管來接種無抗生素DMEM培養基。將兩種培養基在35℃下培育8至15天。在培育期後於培養基中未觀察到生長及變化,因此將其視為無菌(不含細菌、真菌及原生動物)。Perform sterility test and hemagglutination test on the main species. For the first test, the main species of 4 cryovials were thawed, two cryovials were used to inoculate two flasks containing 100 mL of liquid thioglycolate medium NIH, and the other two cryovials were used to inoculate antibiotic-free DMEM . Both media were incubated at 35 ° C for 8 to 15 days. No growth or changes were observed in the medium after the incubation period, so it was considered sterile (free of bacteria, fungi and protozoa).

實施血球凝集測試以確定主種中血球凝集素之效價。在此分析中,在96孔U形微量板中之PBS(pH=7.4)中製備主種之1:2至1:1024之連續稀釋液。將相同體積之存於PBS中之0.5%(v/v)人類O紅血球懸浮液添加至每一稀釋液中。將微量板在4℃下培育2小時,且結果顯示血球凝集效價為1:8。Perform a hemagglutination test to determine the potency of hemagglutinin in the main species. In this analysis, serial dilutions of 1: 2 to 1: 1024 of the main species were prepared in PBS (pH = 7.4) in a 96-well U-shaped microplate. The same volume of 0.5% (v / v) human O red blood cell suspension in PBS was added to each dilution. The microplate was incubated at 4 ° C for 2 hours, and the results showed that the hemagglutination titer was 1: 8.

實例12:使用HZFLUJAL疫苗之臨床前之前導試驗(Pre-Example 12: Preclinical pilot trials using the HZFLUJAL vaccine (Pre- preclinical trial)preclinical trial) 用於臨床前之前導試驗之病毒之不活化Inactivation of virus used in preclinical pilot tests

為實施臨床前之前導試驗,使1個冷凍管之主種解凍,且在33℃下於CO2培育器中7天後在80 cm2燒瓶上用其感染VERO培養物。在35℃下藉由最終濃度為0.02%(v/v)之福馬林將培養物不活化18 h。在48 h中藉由對DMEM透析四次來清除福馬林。此後,對血球凝集素效價進行定量,其再一次為1:8。將不活化病毒懸浮液調節至106個病毒顆粒數/25 μL且在以下組中用作疫苗。To conduct a preclinical pilot test, the main species of one cryotube was thawed and used to infect a VERO culture on an 80 cm 2 flask after 7 days in a CO 2 incubator at 33 ° C. The culture was not activated by formalin at a final concentration of 0.02% (v / v) at 35 ° C for 18 h. Formalin was cleared by dialysis against DMEM four times in 48 h. Thereafter, the hemagglutinin titer was quantified, which was once again 1: 8. The inactivated virus suspension was adjusted to 10 6 number of viral particles / 25 μL and used as a vaccine in the group.

臨床前之前導試驗之動物模型Animal model of pre-clinical pilot test

在臨床前之前導試驗中利用7至8週之雌性BALB/c小鼠。將每組置於具有籠Hepa濾蓋之架上。所有動物之操作皆應避免不必要之痛苦。在方案完成時,將所有小鼠安樂死。Female BALB / c mice from 7 to 8 weeks were used in preclinical pilot trials. Place each group on a rack with a cage Hepa filter cover. All animal operations should avoid unnecessary pain. At the completion of the protocol, all mice were euthanized.

臨床前之前導試驗中之血清轉化率分析Analysis of serum conversion rate in pre-clinical pilot trials

在9組(每組5只小鼠)中實施血清轉化率分析。Seroconversion analysis was performed in 9 groups (5 mice per group).

組1具有106個病毒顆粒之疫苗+轉移因子+舌下投與Group having 1 10 6 + vaccinia virus particle of transfer factor + sublingual administration

組2具有106個病毒顆粒之疫苗+轉移因子+肌內投與Group 2 vaccine with 10 6 virus particles + transfer factor + intramuscular administration

組3具有106個病毒顆粒之疫苗+舌下投與Vaccine group 3 with 106 viral particles of sublingual administration +

組4具有106個病毒顆粒之疫苗+肌內投與Group 4 vaccine with 10 6 virus particles + intramuscular administration

組5市售疫苗+舌下投與Group 5 commercial vaccine + sublingual administration

組6市售疫苗+肌內投與Group 6 commercially available vaccine + intramuscular administration

組7無胎牛血清之DMEM+舌下投與Group 7 DMEM + sublingual administration of fetal bovine serum

組8無胎牛血清之DMEM+肌內投與Group 8 DMEM + intramuscular administration without fetal bovine serum

組9未治療Group 9 untreated

臨床前之前導試驗中之劑量反應分析Analysis of dose response in preclinical pilot trials

在5組(每組3只小鼠)中實施劑量反應分析。Dose response analysis was performed in 5 groups (3 mice per group).

組A具有107個病毒顆粒之疫苗+轉移因子+舌下投與Group A vaccine with 10 7 virus particles + transfer factor + sublingual administration

組B具有105個病毒顆粒之疫苗+轉移因子+舌下投與Group B vaccine with 10 5 virus particles + transfer factor + sublingual administration

組C具有104個病毒顆粒之疫苗+轉移因子+舌下投與Group C vaccine with 10 4 viral particles + transfer factor + sublingual administration

組D具有103個病毒顆粒之疫苗+轉移因子+舌下投與Group D vaccine with 10 3 virus particles + transfer factor + sublingual administration

組E具有102個病毒顆粒之疫苗+轉移因子+舌下投與Vaccine Group E with 102 viral particles of transfer factor + sublingual administration +

自免疫方案開始,將所有小鼠在用於實施免疫分析之具有生物安全性要求之動物實驗房間中維持4天。在適應時間後,記錄諸如體重及外觀等臨床數據,且在免疫前自每只小鼠提取無抗凝劑血樣。此後,藉由使用各別投與途徑來接種每一組。在免疫後7、14、21及28天自每只小鼠獲得四個血樣。From the beginning of the immunization protocol, all mice were maintained in the animal experiment room with biological safety requirements for immunoassay for 4 days. After the acclimation time, clinical data such as body weight and appearance were recorded, and blood samples without anticoagulant were taken from each mouse before immunization. Thereafter, each group is inoculated by using separate administration routes. Four blood samples were obtained from each mouse at 7, 14, 21 and 28 days after immunization.

藉由離心血樣獲得血清,且將其用於檢測抗流行性感冒A H1N1病毒之IgG2抗體。另外,自小鼠收集分泌樣品以供檢測所分泌之免疫球蛋白A(1gA)。Serum was obtained by centrifuging blood samples and used to detect IgG2 antibodies against influenza A H1N1 virus. In addition, secretory samples were collected from mice for detection of secreted immunoglobulin A (1gA).

實例13:由CIATEJ/OPKO/疫苗生成之抗流行性感冒p/AH1N1抗體之檢測Example 13: Detection of anti-influenza p / AH1N1 antibody produced by CIATEJ / OPKO / vaccine

在VERO細胞中產生本文闡述為CIATEJ/OPKO/疫苗之實例性疫苗,且測試生成抗大流行性感冒AH1N1抗體之能力。在使用VERO細胞中由CIATEJ/OPKO產生之抗原作為小鼠中之疫苗時,其能誘導抗體產生。The example vaccines described herein as CIATEJ / OPKO / vaccines were produced in VERO cells, and the ability to generate anti-influenza AH1N1 antibodies was tested. When an antigen produced by CIATEJ / OPKO in VERO cells is used as a vaccine in mice, it can induce antibody production.

由CIATEJ/OPKO抗原誘導之抗體之效價大於市售疫苗。圖5顯示藉由ELISA檢測之抗流行性感冒p/AH1N1之總抗體。CIATEJ/OPKO/疫苗係在VERO細胞中產生,TF=轉移因子。在7至8週齡BALB/c雌性小鼠中實施免疫。免疫係經舌下或肌內實施。The titer of antibodies induced by CIATEJ / OPKO antigen is greater than that of commercially available vaccines. Figure 5 shows the total antibodies against influenza p / AH1N1 detected by ELISA. The CIATEJ / OPKO / vaccine line is produced in VERO cells, TF = transfer factor. Immunization was performed in 7-8 week old BALB / c female mice. The immunization is carried out sublingually or intramuscularly.

圖6A顯示藉由ELISA在血清中檢測之抗流行性感冒p/AH1N1之IgM抗體。CIATEJ/OPKO/疫苗係在VERO細胞中產生,TF=轉移因子。在7至8週齡BALB/c雌性小鼠中實施免疫。免疫係經肌內實施。Figure 6A shows the IgM antibody against influenza p / AH1N1 detected in serum by ELISA. The CIATEJ / OPKO / vaccine line is produced in VERO cells, TF = transfer factor. Immunization was performed in 7-8 week old BALB / c female mice. The immunization is carried out intramuscularly.

在將轉移因子添加至疫苗CIATEJ/OPKO中時,其使IgG抗體含量提高5倍,且在免疫第一週期間,轉移因子以相同方式使IgM抗體效價提高3倍。圖6B顯示藉由ELISA在血清中檢測之抗流行性感冒p/AH1N1之IgG抗體。CIATEJ/OPKO/疫苗係在VERO細胞中產生,TF=轉移因子。在7至8週齡BALB/c雌性小鼠中實施免疫。免疫係經肌內實施。When the transfer factor was added to the vaccine CIATEJ / OPKO, it increased the IgG antibody content by 5 times, and during the first week of immunization, the transfer factor increased the IgM antibody titer by 3 times in the same manner. Figure 6B shows IgG antibodies against influenza p / AH1N1 detected in serum by ELISA. The CIATEJ / OPKO / vaccine line is produced in VERO cells, TF = transfer factor. Immunization was performed in 7-8 week old BALB / c female mice. The immunization is carried out intramuscularly.

肌內投與疫苗CIATEJ/OPKO顯示誘導之IgG2A抗體多於舌下投與。圖7A顯示藉由ELISA在血清中檢測之抗流行性感冒p/AH1N1之IgG2A抗體。CIATEJ/OPKO/疫苗係在VERO細胞中產生,TF=轉移因子。在7至8週齡BALB/c雌性小鼠中實施免疫。免疫係經舌下或肌內實施。Intramuscular administration of CIATEJ / OPKO showed that more IgG 2A antibodies were induced than sublingual administration. Figure 7A shows the IgG 2A antibody against influenza p / AH1N1 detected in serum by ELISA. The CIATEJ / OPKO / vaccine line is produced in VERO cells, TF = transfer factor. Immunization was performed in 7-8 week old BALB / c female mice. The immunization is carried out sublingually or intramuscularly.

圖7B顯示藉由ELISA在血清中檢測之抗流行性感冒p/AH1N1之IgG2A劑量依賴性。CIATEJ/OPKO/疫苗係在VERO細胞中產生,TF=轉移因子。在7至8週齡BALB/c雌性小鼠中實施免疫。免疫係經舌下實施。Figure 7B shows the dose dependence of IgG 2A against influenza p / AH1N1 detected in serum by ELISA. The CIATEJ / OPKO / vaccine line is produced in VERO cells, TF = transfer factor. Immunization was performed in 7-8 week old BALB / c female mice. The immunization is administered sublingually.

肌內投與疫苗CIATEJ/OPKO顯示誘導之IgA抗體含量與舌下投與相當。圖8A顯示藉由ELISA在呼吸黏膜中檢測之抗流行性感冒p/AH1N1之IgA抗體。CIATEJ/OPKO/疫苗係在VERO細胞中產生,TF=轉移因子。在7至8週齡BALB/c雌性小鼠中實施免疫。免疫係經舌下或肌內實施(在免疫後第21天)。The intramuscular administration of CIATEJ / OPKO showed that the level of induced IgA antibody was comparable to that of sublingual administration. Figure 8A shows the IgA antibody against influenza p / AH1N1 detected by ELISA in respiratory mucosa. The CIATEJ / OPKO / vaccine line is produced in VERO cells, TF = transfer factor. Immunization was performed in 7-8 week old BALB / c female mice. The immunization was performed sublingually or intramuscularly (on the 21st day after immunization).

圖8B顯示藉由ELISA在呼吸黏膜中檢測之抗流行性感冒p/AH1N1之IgA劑量依賴性。CIATEJ/OPKO/疫苗係在VERO細胞中產生,TF=轉移因子。在7至8週齡BALB/c雌性小鼠中實施免疫。免疫係經舌下或肌內實施(在免疫後第21天)。Figure 8B shows the dose-dependent IgA of influenza p / AH1N1 detected in respiratory mucosa by ELISA. The CIATEJ / OPKO / vaccine line is produced in VERO cells, TF = transfer factor. Immunization was performed in 7-8 week old BALB / c female mice. The immunization was performed sublingually or intramuscularly (on the 21st day after immunization).

參考文獻references

Magna Pure LC Total Nucleic Acid Isolation Kit. 2008年12月版,Kit for isolation of total viral nucleic acids from mammalian serum,plasma and whole blood,目錄號03 038 505 001。Magna Pure LC Total Nucleic Acid Isolation Kit. December 2008 edition, Kit for isolation of total viral nucleic acids from mammalian serum, plasma and whole blood, catalog number 03 038 505 001.

SuperScript III Platinum One Step Quantitative RT-PCR System.目錄號11738-088。SuperScript III Platinum One Step Quantitative RT-PCR System. Catalog number 11738-088.

World Health Organization. CDC protocol of Real time for Influenza A(H1N1). 2009年4月29日。World Health Organization. CDC protocol of Real time for Influenza A (H1N1). April 29, 2009.

CENAVECE-InDRE. Lineamientos para la red Nacional de laboratorios de salud pblica e institutos nacionales de salud para vigilancia de influenza en Mexico 2009。CENAVECE-InDRE. Lineamientos para la red Nacional de laboratorios de salud p blica e institutos nacionales de salud para vigilancia de influenza en Mexico 2009.

Ammerman N.、Beier M.及Azad F. 2008 Growth and Maintenance of VERO Cell Lines. Curr Protoc Microbiol.,第1-10頁。Ammerman N., Beier M. and Azad F. 2008 Growth and Maintenance of VERO Cell Lines. Curr Protoc Microbiol., Pages 1-10.

Erlich H.、Mller M.、Helen M.、Tambyah P.、Joukhadar M.、Montomoli M.、Fisher D.、Berezuk D.、Fritsch M.、Lw-Baselli A.、Vartian N.、Bobrovsky R.、Borislava G.、Pavlova、Pllabauer E.、Kistner O.及Barrett N. 2008 A Clinical Trial of a Whole-Virus H5N1 Vaccine Derived from Cell Culture for the Baxter H5N1 Pandemic Influenza Vaccine Clinical Study Team. N. Engl. J. Med. 358;24.,第2573-2584頁。Erlich H., M ller M., Helen M., Tambyah P., Joukhadar M., Montomoli M., Fisher D., Berezuk D., Fritsch M., L w-Baselli A., Vartian N., Bobrovsky R., Borislava G., Pavlova, P llabauer E., Kistner O. and Barrett N. 2008 A Clinical Trial of a Whole-Virus H5N1 Vaccine Derived from Cell Culture for the Baxter H5N1 Pandemic Influenza Vaccine Clinical Study Team. N. Engl. J. Med. 358; 24., Pages 2573-2584.

Institu to de Medicina Tropical「Pedro Kouri」. 2003. Manual de procedimientos para el diagnostico de laboratorio de la infecciones respiratyorias agudas de etiologa viral. Organizacin panamricana de la salud. Organizacin mundial de la salud。Institu to de Medicina Tropical "Pedro Kouri". 2003. Manual de procedimientos para el diagnostico de laboratorio de la infecciones respiratyorias agudas de etiolog a viral. Organizaci n panam ricana de la salud. Organizaci n mundial de la salud.

Kistner O.、Howard K.、Spruth M.、Wodal W.、Brhl P.、Gerencer M.、Crowe B.、Savidis H.、Livey I.、Reiter M.、Mayerhofer I.、Tauer C.、Grillberger L.、Mundt G.、Falkner F.及P. Noel. 2007 Cell culture(Vero) derived whole virus(H5N1) vaccine based on wild-type virus strain induces cross-protective immune responses. Baxter AG,Biomedical Research Center,Uferstrasse,Austria. Vaccine. 2007 10;25(32).第6028-6036頁。Kistner O., Howard K., Spruth M., Wodal W., Br hl P., Gerencer M., Crowe B., Savidis H., Livey I., Reiter M., Mayerhofer I., Tauer C., Grillberger L., Mundt G., Falkner F. and P. Noel. 2007 Cell culture (Vero) derived whole virus (H5N1) vaccine based on wild-type virus strain induces cross-protective immune responses. Baxter AG, Biomedical Research Center, Uferstrasse, Austria. Vaccine. 2007 10; 25 (32). No. 6028-6036 page.

Reina J.、Fernndez V.、Blanco I. y Munar M. 1997. Comparison of Madin-Darby Canine Kidney Cells(MDCK)with a Green Monkey Continuous Cell Line(Vero) and Human Lung Embryonated Cells(MRC-5) in the Isolation of Influenza A Virus from Nasopharyngeal Aspirates by Shell Vial Culture. American Society for Microbiology第35卷,第7期,第1900-1901頁。Reina J., Fern ndez V., Blanco I. y Munar M. 1997. Comparison of Madin-Darby Canine Kidney Cells (MDCK) with a Green Monkey Continuous Cell Line (Vero) and Human Lung Embryonated Cells (MRC-5) in the Isolation of Influenza A Virus from Nasopharyngeal Aspirates by Shell Vial Culture. American Society for Microbiology Volume 35, Number 7, page 1900-1901.

Ryan John. Ph. D. Introduction to animal cell culture. Corning Incorporated Life Sciences 900 Chelmsford St. Lowell,Bulletin Technical. MA 01851,第1-24頁。Ryan John. Ph. D. Introduction to animal cell culture. Corning Incorporated Life Sciences 900 Chelmsford St. Lowell, Bulletin Technical. MA 01851, pages 1-24.

Ryan John. Ph. D. Subculturing Monolayer cell cultures Protocol Corning Incorporated Life Sciences 900 Chelmsford St. Lowell,MA 01851,第1-5頁。Sheets R. 2000 History and Characterization of the VERO Cell Line. Vaccines and Related Biological Products Advisory Committee Meeting to be held。Ryan John. Ph. D. Subculturing Monolayer cell cultures Protocol Corning Incorporated Life Sciences 900 Chelmsford St. Lowell, MA 01851, pages 1-5. Sheets R. 2000 History and Characterization of the VERO Cell Line. Vaccines and Related Biological Products Advisory Committee Meeting to be held.

本說明書中引用之所有出版物及專利申請案皆以引用方式併入本文中,如同每一個別出版物或專利申請案明確且個別地指明以引用方式併入一般。All publications and patent applications cited in this specification are incorporated herein by reference, as if each individual publication or patent application clearly and individually indicated to be incorporated by reference.

儘管上文已出於理解清楚之目的藉助圖解及實例較詳細地闡述了本發明,但彼等熟習此項技術者鑒於本發明之教示可容易地瞭解,可對本發明進行某些改變及修改,且不背離隨附申請專利範圍之精神或範圍。Although the present invention has been explained in more detail with the help of illustrations and examples for the purpose of understanding clearly, those skilled in the art can easily understand the teaching of the present invention and can make certain changes and modifications to the present invention, Without departing from the spirit or scope of the accompanying patent application.

圖1顯示藉由即時PCR對病毒負荷進行定量之實例。Figure 1 shows an example of quantification of viral load by real-time PCR.

圖2顯示AH1N1即時PCR檢測之樣品配置。Figure 2 shows the sample configuration for AH1N1 real-time PCR detection.

圖3A及3B顯示Light Cycler 2.0即時溫度循環機介面之圖形視窗,其顯示螢光曲線。圖3A)臨床樣品。圖3B)RNAseP(RP)檢測。Figures 3A and 3B show the graphical window of the Light Cycler 2.0 real-time temperature cycler interface, which shows the fluorescence curve. Figure 3A) Clinical samples. Figure 3B) RNAseP (RP) detection.

圖4A顯示流行性感冒病毒HZFLUJAL在VERO細胞系中之適應。該病毒能在VERO細胞中有效複製,直至4次繼代培養。圖4B顯示流行性感冒病毒HZFLUJAL在MDCK細胞系中之適應階段。在3次繼代培養後,流行性感冒病毒HZFLUJA能在MDCK細胞中有效複製。Figure 4A shows the adaptation of influenza virus HZFLUJAL in the VERO cell line. The virus can effectively replicate in VERO cells until 4 subcultures. Figure 4B shows the adaptation stage of influenza virus HZFLUJAL in the MDCK cell line. After three subcultures, the influenza virus HZFLUJA can effectively replicate in MDCK cells.

圖5顯示藉由ELISA檢測之抗流行性感冒p/AH1N1之總抗體。Figure 5 shows the total antibodies against influenza p / AH1N1 detected by ELISA.

圖6A顯示藉由ELISA在血清中檢測之抗流行性感冒p/AH1N1之IgM抗體。Figure 6A shows the IgM antibody against influenza p / AH1N1 detected in serum by ELISA.

圖6B顯示藉由ELISA在血清中檢測之抗流行性感冒p/AH1N1之IgG抗體。Figure 6B shows IgG antibodies against influenza p / AH1N1 detected in serum by ELISA.

圖7A顯示藉由ELISA在血清中檢測之抗流行性感冒p/AH1N1之IgG2A抗體。圖7B顯示藉由ELISA在血清中檢測之抗流行性感冒p/AH1N1之IgG2A劑量依賴性。Figure 7A shows the IgG 2A antibody against influenza p / AH1N1 detected in serum by ELISA. Figure 7B shows the dose dependence of IgG 2A against influenza p / AH1N1 detected in serum by ELISA.

圖8A顯示藉由ELISA在呼吸黏膜中檢測之抗流行性感冒p/AH1N1之IgA抗體。圖8B顯示藉由ELISA在呼吸黏膜中檢測之抗流行性感冒p/AH1N1之IgA劑量依賴性。Figure 8A shows the IgA antibody against influenza p / AH1N1 detected by ELISA in respiratory mucosa. Figure 8B shows the dose-dependent IgA of influenza p / AH1N1 detected in respiratory mucosa by ELISA.

<110><110>

<120> 抗大流行性感冒病毒A/H1N1之新穎疫苗<120> New vaccine against pandemic influenza virus A / H1N1

<130> P-75578-PC<130> P-75578-PC

<140> 100140015<140> 100140015

<141> 2011-11-02<141> 2011-11-02

<150> 61/409,303<150> 61 / 409,303

<151> 2010-11-02<151> 2010-11-02

<160> 52<160> 52

<170> PatentIn version 3.5<170> PatentIn version 3.5

<210> 1<210> 1

<211> 2293<211> 2293

<212> DNA<212> DNA

<213> H1N1豬流行性感冒病毒<213> H1N1 swine influenza virus

<400> 1<400> 1

<210> 2<210> 2

<211> 2303<211> 2303

<212> DNA<212> DNA

<213> H1N1豬流行性感冒病毒<213> H1N1 swine influenza virus

<400> 2<400> 2

<210> 3<210> 3

<211> 2172<211> 2172

<212> DNA<212> DNA

<213> H1N1豬流行性感冒病毒<213> H1N1 swine influenza virus

<400> 3<400> 3

<210> 4<210> 4

<211> 1751<211> 1751

<212> DNA<212> DNA

<213> H1N1豬流行性感冒病毒<213> H1N1 swine influenza virus

<400> 4<400> 4

<210> 5<210> 5

<211> 1546<211> 1546

<212> DNA<212> DNA

<213> H1N1豬流行性感冒病毒<213> H1N1 swine influenza virus

<400> 5<400> 5

<210> 6<210> 6

<211> 1410<211> 1410

<212> DNA<212> DNA

<213> H1N1豬流行性感冒病毒<213> H1N1 swine influenza virus

<400> 6<400> 6

<210> 7<210> 7

<211> 1368<211> 1368

<212> DNA<212> DNA

<213> H1N1豬流行性感冒病毒<213> H1N1 swine influenza virus

<400> 7<400> 7

<210> 8<210> 8

<211> 851<211> 851

<212> DNA<212> DNA

<213> H1N1豬流行性感冒病毒<213> H1N1 swine influenza virus

<400> 8<400> 8

<210> 9<210> 9

<211> 2293<211> 2293

<212> DNA<212> DNA

<213> H1N1豬流行性感冒病毒<213> H1N1 swine influenza virus

<400> 9<400> 9

<210> 10<210> 10

<211> 2303<211> 2303

<212> DNA<212> DNA

<213> H1N1豬流行性感冒病毒<213> H1N1 swine influenza virus

<400> 10<400> 10

<210> 11<210> 11

<211> 2172<211> 2172

<212> DNA<212> DNA

<213> H1N1豬流行性感冒病毒<213> H1N1 swine influenza virus

<400> 11<400> 11

<210> 12<210> 12

<211> 1735<211> 1735

<212> DNA<212> DNA

<213> H1N1豬流行性感冒病毒<213> H1N1 swine influenza virus

<400> 12<400> 12

<210> 13<210> 13

<211> 1546<211> 1546

<212> DNA<212> DNA

<213> H1N1豬流行性感冒病毒<213> H1N1 swine influenza virus

<400> 13<400> 13

<210> 14<210> 14

<211> 1410<211> 1410

<212> DNA<212> DNA

<213> H1N1豬流行性感冒病毒<213> H1N1 swine influenza virus

<400> 14<400> 14

<400> 15<400> 15

<210> 16<210> 16

<211> 851<211> 851

<212> DNA<212> DNA

<213> H1N1豬流行性感冒病毒<213> H1N1 swine influenza virus

<400> 16<400> 16

<210> 17<210> 17

<211> 2293<211> 2293

<212> DNA<212> DNA

<213> H1N1豬流行性感冒病毒<213> H1N1 swine influenza virus

<400> 17<400> 17

<210> 18<210> 18

<211> 2303<211> 2303

<212> DNA<212> DNA

<213> H1N1豬流行性感冒病毒<213> H1N1 swine influenza virus

<400> 18<400> 18

<210> 19<210> 19

<211> 2172<211> 2172

<212> DNA<212> DNA

<213> H1N1豬流行性感冒病毒<213> H1N1 swine influenza virus

<400> 19<400> 19

<210> 20<210> 20

<211> 1735<211> 1735

<212> DNA<212> DNA

<213> H1N1豬流行性感冒病毒<213> H1N1 swine influenza virus

<400> 20<400> 20

<210> 21<210> 21

<211> 1546<211> 1546

<212> DNA<212> DNA

<213> H1N1豬流行性感冒病毒<213> H1N1 swine influenza virus

<400> 21<400> 21

<210> 22<210> 22

<211> 1414<211> 1414

<212> DNA<212> DNA

<213> H1N1豬流行性感冒病毒<213> H1N1 swine influenza virus

<400> 22<400> 22

<210> 23<210> 23

<211> 1368<211> 1368

<212> DNA<212> DNA

<213> H1N1豬流行性感冒病毒<213> H1N1 swine influenza virus

<400> 23<400> 23

<210> 24<210> 24

<211> 851<211> 851

<212> DNA<212> DNA

<213> H1N1豬流行性感冒病毒<213> H1N1 swine influenza virus

<400> 24<400> 24

<210> 25<210> 25

<211> 2293<211> 2293

<212> DNA<212> DNA

<213> H1N1豬流行性感冒病毒<213> H1N1 swine influenza virus

<400> 25<400> 25

<210> 26<210> 26

<211> 2303<211> 2303

<212> DNA<212> DNA

<213> H1N1豬流行性感冒病毒<213> H1N1 swine influenza virus

<400> 26<400> 26

<210> 27<210> 27

<211> 2172<211> 2172

<212> DNA<212> DNA

<213> H1N1豬流行性感冒病毒<213> H1N1 swine influenza virus

<400> 27<400> 27

<210> 28<210> 28

<211> 1735<211> 1735

<212> DNA<212> DNA

<213> H1N1豬流行性感冒病毒<213> H1N1 swine influenza virus

<400> 28<400> 28

<210> 29<210> 29

<211> 1546<211> 1546

<212> DNA<212> DNA

<213> H1N1豬流行性感冒病毒<213> H1N1 swine influenza virus

<400> 29<400> 29

<210> 30<210> 30

<211> 1410<211> 1410

<212> DNA<212> DNA

<213> H1N1豬流行性感冒病毒<213> H1N1 swine influenza virus

<400> 30<400> 30

<210> 31<210> 31

<211> 987<211> 987

<212> DNA<212> DNA

<213> H1N1豬流行性感冒病毒<213> H1N1 swine influenza virus

<400> 31<400> 31

<210> 32<210> 32

<211> 851<211> 851

<212> DNA<212> DNA

<213> H1N1豬流行性感冒病毒<213> H1N1 swine influenza virus

<400> 32<400> 32

<210> 33<210> 33

<211> 566<211> 566

<212> PRT<212> PRT

<213> 流行性感冒A病毒<213> Influenza A virus

<400> 33<400> 33

<210> 34<210> 34

<211> 566<211> 566

<212> PRT<212> PRT

<213> H1N1豬流行性感冒病毒<213> H1N1 swine influenza virus

<400> 34<400> 34

<210> 35<210> 35

<211> 566<211> 566

<212> PRT<212> PRT

<213> H1N1豬流行性感冒病毒<213> H1N1 swine influenza virus

<400> 35<400> 35

<210> 36<210> 36

<211> 566<211> 566

<212> PRT<212> PRT

<213> H1N1豬流行性感冒病毒<213> H1N1 swine influenza virus

<400> 36<400> 36

<210> 37<210> 37

<211> 566<211> 566

<212> PRT<212> PRT

<213> H1N1豬流行性感冒病毒<213> H1N1 swine influenza virus

<400> 37<400> 37

<210> 38<210> 38

<211> 469<211> 469

<212> PRT<212> PRT

<213> 流行性感冒A病毒<213> Influenza A virus

<400> 38<400> 38

<210> 39<210> 39

<211> 469<211> 469

<212> PRT<212> PRT

<213> H1N1豬流行性感冒病毒<213> H1N1 swine influenza virus

<400> 39<400> 39

<210> 40<210> 40

<211> 469<211> 469

<212> PRT<212> PRT

<213> H1N1豬流行性感冒病毒<213> H1N1 swine influenza virus

<400> 40<400> 40

<210> 41<210> 41

<211> 469<211> 469

<212> PRT<212> PRT

<213> H1N1豬流行性感冒病毒<213> H1N1 swine influenza virus

<400> 41<400> 41

<210> 42<210> 42

<211> 469<211> 469

<212> PRT<212> PRT

<213> H1N1豬流行性感冒病毒<213> H1N1 swine influenza virus

<400> 42<400> 42

<210> 43<210> 43

<211> 252<211> 252

<212> PRT<212> PRT

<213> 流行性感冒A病毒<213> Influenza A virus

<400> 43<400> 43

<210> 44<210> 44

<211> 97<211> 97

<212> PRT<212> PRT

<213> 流行性感冒A病毒<213> Influenza A virus

<400> 44<400> 44

<210> 45<210> 45

<211> 252<211> 252

<212> PRT<212> PRT

<213> H1N1豬流行性感冒病毒<213> H1N1 swine influenza virus

<400> 45<400> 45

<210> 46<210> 46

<211> 96<211> 96

<212> PRT<212> PRT

<213> H1N1豬流行性感冒病毒<213> H1N1 swine influenza virus

<400> 46<400> 46

<210> 47<210> 47

<211> 252<211> 252

<212> PRT<212> PRT

<213> H1N1豬流行性感冒病毒<213> H1N1 swine influenza virus

<400> 47<400> 47

<210> 48<210> 48

<211> 96<211> 96

<212> PRT<212> PRT

<213> H1N1豬流行性感冒病毒<213> H1N1 swine influenza virus

<400> 48<400> 48

<210> 49<210> 49

<211> 252<211> 252

<212> PRT<212> PRT

<213> H1N1豬流行性性感冒病毒<213> H1N1 swine influenza virus

<400> 49<400> 49

<210> 50<210> 50

<211> 96<211> 96

<212> PRT<212> PRT

<213> H1N1豬流行性感冒病毒<213> H1N1 swine influenza virus

<400> 50<400> 50

<210> 51<210> 51

<211> 252<211> 252

<212> PRT<212> PRT

<213> H1N1豬流行性感冒病毒<213> H1N1 swine influenza virus

<400> 51<400> 51

<210> 52<210> 52

<211> 97<211> 97

<212> PRT<212> PRT

<213> H1N1豬流行性感冒病毒<213> H1N1 swine influenza virus

<400> 52<400> 52

Claims (20)

一種流行性感冒病毒疫苗,其包含流行性感冒病毒,該病毒包含:a)突變神經胺酸酶(NA)基因區段,其在胺基酸殘基275位置具有點突變,其中該點突變為Tyr275,及b)突變血球凝集素(HA)基因區段,其包含D222E突變。An influenza virus vaccine comprising an influenza virus, the virus comprising: a) a mutant neuraminidase (NA) gene segment, which has a point mutation at amino acid residue 275, wherein the point mutation is Tyr275, and b) mutant hemagglutinin (HA) gene segment, which contains the D222E mutation. 如請求項1之疫苗,其中該HA基因區段包含大流行性感冒A H1/N1流行性感冒病毒之分枝7特異性HA序列。The vaccine according to claim 1, wherein the HA gene segment comprises a branched 7-specific HA sequence of influenza A H1 / N1 influenza virus. 如請求項1之疫苗,其中該HA基因區段相對於野生型大流行性感冒A H1/N1流行性感冒病毒包含S203T突變。The vaccine of claim 1, wherein the HA gene segment contains the S203T mutation relative to the wild-type influenza A H1 / N1 influenza virus. 如請求項1之疫苗,其中該HA基因區段進一步包含P83S突變、I321V突變;P83S突變及I321V突變。The vaccine according to claim 1, wherein the HA gene segment further comprises P83S mutation, I321V mutation; P83S mutation and I321V mutation. 如請求項1之疫苗,其中該HA基因區段包含由病毒1之區段4之核苷酸序列(SEQ ID NO:4)編碼之胺基酸序列。The vaccine of claim 1, wherein the HA gene segment comprises the amino acid sequence encoded by the nucleotide sequence of segment 4 of virus 1 (SEQ ID NO: 4). 如請求項1之疫苗,其中該NA基因區段包含由病毒1中區段6之核苷酸序列(SEQ ID NO:6)編碼之胺基酸序列。The vaccine of claim 1, wherein the NA gene segment comprises the amino acid sequence encoded by the nucleotide sequence of segment 6 in virus 1 (SEQ ID NO: 6). 如請求項1之疫苗,其進一步包含:c)基質(MA)基因區段,其編碼M1肽,該M1肽包含A198P突變。The vaccine of claim 1, further comprising: c) a matrix (MA) gene segment, which encodes an M1 peptide, the M1 peptide comprising an A198P mutation. 如請求項7之疫苗,其中該M1肽包含衍生自大流行性感冒A H1/N1流行性感冒病毒之病毒1分離物之胺基酸序列SEQ ID NO:50。The vaccine of claim 7, wherein the M1 peptide comprises an amino acid sequence SEQ ID NO: 50 derived from a virus 1 isolate of influenza A H1 / N1 influenza virus. 如請求項7之疫苗,其中該MA基因區段包含由病毒1中區段7之核苷酸序列(SEQ ID NO:7)編碼之胺基酸序列。The vaccine of claim 7, wherein the MA gene segment comprises the amino acid sequence encoded by the nucleotide sequence of segment 7 in virus 1 (SEQ ID NO: 7). 如請求項7之疫苗,其中該基質(MA)基因區段進一步編碼M2肽,該M2肽包含衍生自大流行性感冒A H1/N1流行性感冒病毒之病毒1分離物之胺基酸序列SEQ ID NO:51。The vaccine according to claim 7, wherein the matrix (MA) gene segment further encodes an M2 peptide, the M2 peptide comprising the amino acid sequence SEQ ID NO: ID NO: 51. 如請求項1之疫苗,其中該突變血球凝集素(HA)基因區段編碼一蛋白質,其包含如SEQ ID NO:34所示之胺基酸序列。The vaccine of claim 1, wherein the mutant hemagglutinin (HA) gene segment encodes a protein that includes the amino acid sequence shown in SEQ ID NO: 34. 如請求項1之疫苗,其中該突變神經胺酸酶(NA)基因區段編碼一蛋白質,其包含如SEQ ID NO:39所示之胺基酸序列。The vaccine of claim 1, wherein the mutant neuraminidase (NA) gene segment encodes a protein that includes the amino acid sequence shown in SEQ ID NO: 39. 如請求項1至12中任一項之疫苗,其中該疫苗係重分配體疫苗。The vaccine according to any one of claims 1 to 12, wherein the vaccine is a redistribution vaccine. 如請求項13之疫苗,其中該重分配體流行性感冒病毒係藉由傳統重分配法獲得。The vaccine of claim 13, wherein the redistribution influenza virus is obtained by traditional redistribution method. 如請求項1至12中任一項之疫苗,其中該疫苗係活減毒疫苗或不活化疫苗。The vaccine according to any one of claims 1 to 12, wherein the vaccine is a live attenuated vaccine or an inactivated vaccine. 如請求項15之疫苗,其中該疫苗經調配以供經口或經鼻內投與。The vaccine of claim 15, wherein the vaccine is formulated for oral or intranasal administration. 一種如請求項1至12中任一項之流行性感冒病毒疫苗之用途,其用於製造使患者對流行性感冒病毒免疫之藥劑。A use of an influenza virus vaccine according to any one of claims 1 to 12 for the manufacture of a medicament for immunizing patients against influenza virus. 一種如請求項1至12中任一項之流行性感冒病毒疫苗之用途,其用於製造使患者對超毒力流行性感冒病毒免疫之藥劑。A use of the influenza virus vaccine according to any one of claims 1 to 12, for the manufacture of a medicament for immunizing a patient against a hyperviral influenza virus. 一種如請求項1至12中任一項之流行性感冒病毒疫苗之用途,其用於製造使患者對奧司他韋(oseltamivir)抗性流行性感冒病毒免疫之藥劑。Use of an influenza virus vaccine according to any one of claims 1 to 12 for the manufacture of an agent that immunizes a patient against oseltamivir resistant influenza virus. 一種製備使個體對超毒力流行性感冒病毒株免疫之疫苗之方法,其包括混合如請求項1至12中任一項所定義之流行性感冒病毒與載劑及視需要選用之佐劑之步驟。A method for preparing a vaccine that immunizes an individual against a hypervirulent influenza virus strain, which includes mixing influenza virus as defined in any one of claims 1 to 12 with a carrier and an adjuvant optionally selected step.
TW100140015A 2010-11-02 2011-11-02 Novel vaccines against pandemic influenza virus a/h1n1 TWI620819B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US40930310P 2010-11-02 2010-11-02
US61/409,303 2010-11-02

Publications (2)

Publication Number Publication Date
TW201249996A TW201249996A (en) 2012-12-16
TWI620819B true TWI620819B (en) 2018-04-11

Family

ID=46025035

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100140015A TWI620819B (en) 2010-11-02 2011-11-02 Novel vaccines against pandemic influenza virus a/h1n1

Country Status (3)

Country Link
MX (1) MX2013004975A (en)
TW (1) TWI620819B (en)
WO (1) WO2012061239A2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112013010830A2 (en) * 2010-11-02 2017-12-12 Hector Manuel Zepeda Lopez Innovative vaccine against the pandemic influenza a / h1n1 virus
US10022434B2 (en) 2013-03-15 2018-07-17 The Trustees Of The University Of Pennsylvania Influenza nucleic acid molecules and vaccines made therefrom

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090175909A1 (en) * 2004-05-25 2009-07-09 Medimmune, Llc Influenza Hemagglutinin And Neuraminidase Variants

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090175909A1 (en) * 2004-05-25 2009-07-09 Medimmune, Llc Influenza Hemagglutinin And Neuraminidase Variants

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
Niina Ikonen,"Genetic Diversity of the 2009 Pandemic Influenza A(H1N1) Viruses in Finland" PLoS One 2010, 5 (10), e13329.
Niina Ikonen,"Genetic Diversity of the 2009 Pandemic Influenza A(H1N1) Viruses in Finland" PLoS One 2010, 5 (10), e13329. Sebastian Maurer-Stroh.,"Mapping the sequence mutations of the 2009 H1N1 influenza A virus neuraminidase relative to drug and antibody binding sites" Biology Direct 2009, 4, discussion 18. 摘要、第1頁右欄第2段、圖示5 Varsha A. Potdar.,"Genetic Characterization of the Influenza A Pandemic (H1N1) 2009 Virus Isolates from India" PLoS One. 2010, 5(3), e9693. 摘要、表2-3 TOSHIHIRO ITO.,"Evolutionary Analysis of the Influenza A Virus M Gene with Comparison of the MI and M2 Proteins" J. Virol. 1991, 65(10), 5491-5498. 摘要、第4頁左欄第3段、表1、圖示2 *
Sebastian Maurer-Stroh.,"Mapping the sequence mutations of the 2009 H1N1 influenza A virus neuraminidase relative to drug and antibody binding sites" Biology Direct 2009, 4, discussion 18. 摘要、第1頁右欄第2段、圖示5
TOSHIHIRO ITO.,"Evolutionary Analysis of the Influenza A Virus M Gene with Comparison of the MI and M2 Proteins" J. Virol. 1991, 65(10), 5491-5498. 摘要、第4頁左欄第3段、表1、圖示2
Varsha A. Potdar.,"Genetic Characterization of the Influenza A Pandemic (H1N1) 2009 Virus Isolates from India" PLoS One. 2010, 5(3), e9693. 摘要、表2-3

Also Published As

Publication number Publication date
WO2012061239A2 (en) 2012-05-10
WO2012061239A3 (en) 2012-06-28
TW201249996A (en) 2012-12-16
MX2013004975A (en) 2014-01-17

Similar Documents

Publication Publication Date Title
Chen et al. Advances in development and application of influenza vaccines
Lee et al. H9N2 avian influenza virus-like particle vaccine provides protective immunity and a strategy for the differentiation of infected from vaccinated animals
Mooney et al. Recombinant parainfluenza virus 5 vaccine encoding the influenza virus hemagglutinin protects against H5N1 highly pathogenic avian influenza virus infection following intranasal or intramuscular vaccination of BALB/c mice
US9505806B2 (en) DNA vaccine, method of inducing the immune response, method of immunisation, antibodies specifically recognising the H5 haemagglutinin of an influenza virus and use of the DNA vaccine
US11065326B2 (en) Live-attenuated vaccine having mutations in viral polymerase for the treatment and prevention of canine influenza virus
EP2650362A9 (en) Novel vaccines against the a/h1n1 pandemic flu virus
KR20090088944A (en) Method for replicating influenza virus in culture
Oladunni et al. Equine influenza virus and vaccines
WO2007118284A1 (en) Influenza virus vaccine
US20200188506A1 (en) Vectors for eliciting immune responses to non-dominant epitopes in the hemagglutinin (ha) protein
AU2016202693B2 (en) Attenuated swine influenza vaccines and methods of making the use thereof
Itoh et al. A vaccine prepared from a non-pathogenic H5N1 avian influenza virus strain confers protective immunity against highly pathogenic avian influenza virus infection in cynomolgus macaques
RU2757723C2 (en) Recombinant virus-like particles (vlp) using a protein of the bovine immunodeficiency virus group antigen (gag)
Sączyńska et al. A novel hemagglutinin protein produced in bacteria protects chickens against H5N1 highly pathogenic avian influenza viruses by inducing H5 subtype-specific neutralizing antibodies
RU2315101C2 (en) Vaccine strain of influenza virus a/17/california/04/6 (h3n2) and attenuation donor a/leningrad/134/17/k7/57 (h2n2) for its preparing
TWI620819B (en) Novel vaccines against pandemic influenza virus a/h1n1
Rekstin et al. Live attenuated influenza H7N3 vaccine is safe, immunogenic and confers protection in animal models
Wen et al. Efficacy of a high-growth reassortant H1N1 influenza virus vaccine against the classical swine H1N1 subtype influenza virus in mice and pigs
Hu et al. Baculovirus-derived influenza virus-like particle confers complete protection against lethal H7N9 avian influenza virus challenge in chickens and mice
Song et al. Investigation of the biological indicator for vaccine efficacy against highly pathogenic avian influenza (HPAI) H5N1 virus challenge in mice and ferrets
WO2011108999A1 (en) Vaccines and vaccine compositions, and methods for the manufacture thereof
Kuruppuarachchi et al. Evaluation of Efficacy of Oil Adjuvanted H5N6 Inactivated Vaccine against Highly Pathogenic H5N6 and H5N1 Influenza Viruses Infected Chickens
CN107151659B (en) Influenza virus strain and application thereof
Desheva Preparing Live Influenza Vaccines against Potential Pandemic Influenza Using Nonpathogenic Avian Influenza Viruses and Cold-Adapted Master Donor Strain
Bouback et al. Approaches toward the development of DNA vaccine for influenza virus