TWI619282B - Memory device and operating method for resistive memory cell - Google Patents
Memory device and operating method for resistive memory cell Download PDFInfo
- Publication number
- TWI619282B TWI619282B TW105111713A TW105111713A TWI619282B TW I619282 B TWI619282 B TW I619282B TW 105111713 A TW105111713 A TW 105111713A TW 105111713 A TW105111713 A TW 105111713A TW I619282 B TWI619282 B TW I619282B
- Authority
- TW
- Taiwan
- Prior art keywords
- electrode
- memory cell
- resistive memory
- film
- width
- Prior art date
Links
- 230000015654 memory Effects 0.000 title claims abstract description 113
- 238000011017 operating method Methods 0.000 title 1
- 238000000034 method Methods 0.000 abstract description 24
- 239000000463 material Substances 0.000 description 40
- 239000010936 titanium Substances 0.000 description 8
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 7
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 7
- 229910052751 metal Inorganic materials 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- 239000004065 semiconductor Substances 0.000 description 7
- 229910052719 titanium Inorganic materials 0.000 description 7
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 7
- 230000003647 oxidation Effects 0.000 description 5
- 238000007254 oxidation reaction Methods 0.000 description 5
- 239000000758 substrate Substances 0.000 description 4
- MZLGASXMSKOWSE-UHFFFAOYSA-N tantalum nitride Chemical compound [Ta]#N MZLGASXMSKOWSE-UHFFFAOYSA-N 0.000 description 4
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 3
- 230000015556 catabolic process Effects 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 239000004020 conductor Substances 0.000 description 3
- 238000006731 degradation reaction Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 229910000449 hafnium oxide Inorganic materials 0.000 description 3
- WIHZLLGSGQNAGK-UHFFFAOYSA-N hafnium(4+);oxygen(2-) Chemical compound [O-2].[O-2].[Hf+4] WIHZLLGSGQNAGK-UHFFFAOYSA-N 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 229910044991 metal oxide Inorganic materials 0.000 description 3
- 150000004706 metal oxides Chemical class 0.000 description 3
- 150000004767 nitrides Chemical class 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 229910052723 transition metal Inorganic materials 0.000 description 3
- 150000003624 transition metals Chemical class 0.000 description 3
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 230000001351 cycling effect Effects 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 239000003989 dielectric material Substances 0.000 description 2
- 239000007772 electrode material Substances 0.000 description 2
- 229910052735 hafnium Inorganic materials 0.000 description 2
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 2
- 230000006386 memory function Effects 0.000 description 2
- 238000000059 patterning Methods 0.000 description 2
- 238000005240 physical vapour deposition Methods 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000012795 verification Methods 0.000 description 2
- WJMXTYZCTXTFJM-UHFFFAOYSA-N 1,1,1,2-tetraethoxydecane Chemical compound C(C)OC(C(OCC)(OCC)OCC)CCCCCCCC WJMXTYZCTXTFJM-UHFFFAOYSA-N 0.000 description 1
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 230000001066 destructive effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 229920005591 polysilicon Polymers 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- 229910001936 tantalum oxide Inorganic materials 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C13/00—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
- G11C13/0002—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
- G11C13/0021—Auxiliary circuits
- G11C13/0069—Writing or programming circuits or methods
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C13/00—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
- G11C13/0002—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C13/00—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
- G11C13/0002—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
- G11C13/0007—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements comprising metal oxide memory material, e.g. perovskites
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C13/00—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
- G11C13/0002—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
- G11C13/0021—Auxiliary circuits
- G11C13/0064—Verifying circuits or methods
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B63/00—Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
- H10B63/30—Resistance change memory devices, e.g. resistive RAM [ReRAM] devices comprising selection components having three or more electrodes, e.g. transistors
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N70/00—Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
- H10N70/011—Manufacture or treatment of multistable switching devices
- H10N70/021—Formation of switching materials, e.g. deposition of layers
- H10N70/028—Formation of switching materials, e.g. deposition of layers by conversion of electrode material, e.g. oxidation
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N70/00—Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
- H10N70/20—Multistable switching devices, e.g. memristors
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N70/00—Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
- H10N70/801—Constructional details of multistable switching devices
- H10N70/821—Device geometry
- H10N70/826—Device geometry adapted for essentially vertical current flow, e.g. sandwich or pillar type devices
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N70/00—Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
- H10N70/801—Constructional details of multistable switching devices
- H10N70/841—Electrodes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N70/00—Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
- H10N70/801—Constructional details of multistable switching devices
- H10N70/881—Switching materials
- H10N70/883—Oxides or nitrides
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C11/00—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C11/02—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
- G11C11/14—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using thin-film elements
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C13/00—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
- G11C13/0002—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
- G11C13/0021—Auxiliary circuits
- G11C13/0064—Verifying circuits or methods
- G11C2013/0066—Verify correct writing whilst writing is in progress, e.g. by detecting onset or cessation of current flow in cell and using the detector output to terminate writing
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C2213/00—Indexing scheme relating to G11C13/00 for features not covered by this group
- G11C2213/50—Resistive cell structure aspects
- G11C2213/52—Structure characterized by the electrode material, shape, etc.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Semiconductor Memories (AREA)
Abstract
記憶裝置與電阻式記憶胞的操作方法。記憶裝置包括電阻式記憶胞。電阻式記憶胞包括第一電極、第二電極及記憶膜。記憶膜在第一電極與第二電極之間。第一電極包括底電極部分與從底電極部分向上延伸的壁電極部分。壁電極部分在記憶膜與底電極部分之間。壁電極部分與記憶膜的寬度是小於底電極部分的寬度。 Memory device and method of operation of resistive memory cells. The memory device includes a resistive memory cell. The resistive memory cell includes a first electrode, a second electrode, and a memory film. The memory film is between the first electrode and the second electrode. The first electrode includes a bottom electrode portion and a wall electrode portion extending upward from the bottom electrode portion. The wall electrode portion is between the memory film and the bottom electrode portion. The width of the wall electrode portion and the memory film is smaller than the width of the bottom electrode portion.
Description
本發明是有關於一種記憶胞及其操作方法,且特別是有關於一種電阻式記憶胞及其操作方法。 The present invention relates to a memory cell and a method of operating the same, and more particularly to a resistive memory cell and method of operation thereof.
隨著半導體技術的進步,電子元件的微縮能力不斷提高,使得電子產品能夠在維持固定大小,甚至更小的體積之下,能夠擁有更多的功能。而隨著資訊的處理量愈來愈高,對於大容量、小體積的記憶體需求也日益殷切。 With the advancement of semiconductor technology, the shrinking capability of electronic components has been increasing, enabling electronic products to have more functions while maintaining a fixed size or even a smaller volume. As the processing volume of information becomes higher and higher, the demand for large-capacity and small-volume memory is also growing.
目前的可讀寫記憶體係以電晶體結構配合記憶單元作資訊的儲存,但是此種記憶體架構隨著製造技術的進步,可微縮性(scalability)已經達到一個瓶頸。因此先進的記憶體架構不斷的被提出,例如相變化隨機存取記憶體(phase change random access memory,PCRAM)、磁性隨機存取記憶體(magnetic random access memory,MRAM)、電阻式隨機存取記憶體(resistive random access memory,RRAM)。其中RRAM具有讀寫速度快、非破壞性讀取、對於極端溫度的耐受性強,並可與現有CMOS(complementary metal oxide semiconductor,CMOS)製程整合等優點,被視為具有能夠取代現今所有儲存媒體潛力的新興記 憶體技術。 The current readable and writable memory system uses a transistor structure in conjunction with a memory unit for information storage, but this memory architecture has reached a bottleneck with the advancement of manufacturing technology. Therefore, advanced memory architectures have been proposed, such as phase change random access memory (PCRAM), magnetic random access memory (MRAM), and resistive random access memory. Resistive random access memory (RRAM). Among them, RRAM has the advantages of fast reading and writing speed, non-destructive reading, strong tolerance to extreme temperatures, and integration with existing CMOS (complementary metal oxide semiconductor) (CMOS) processes. It is considered to have the ability to replace all current storage. Emerging memories of media potential Recalling technology.
本發明係有關於一種記憶裝置及電阻式記憶胞的操作方法。電阻式記憶胞可具有大且穩定的切換窗,可靠性佳。 The present invention relates to a memory device and a method of operating a resistive memory cell. The resistive memory cell can have a large and stable switching window with good reliability.
根據本揭露之一實施例,提出一種記憶裝置,其包括電阻式記憶胞。電阻式記憶胞包括第一電極、第二電極及記憶膜。記憶膜在第一電極與第二電極之間。第一電極包括底電極部分與從底電極部分向上延伸的壁電極部分。壁電極部分在記憶膜與底電極部分之間。壁電極部分與記憶膜的寬度是小於底電極部分的寬度。 In accordance with an embodiment of the present disclosure, a memory device is provided that includes a resistive memory cell. The resistive memory cell includes a first electrode, a second electrode, and a memory film. The memory film is between the first electrode and the second electrode. The first electrode includes a bottom electrode portion and a wall electrode portion extending upward from the bottom electrode portion. The wall electrode portion is between the memory film and the bottom electrode portion. The width of the wall electrode portion and the memory film is smaller than the width of the bottom electrode portion.
根據本揭露之另一實施例,提出一種記憶裝置,其包括電阻式記憶胞。電阻式記憶胞包括第一電極、第二電極及記憶膜。記憶膜在第一電極與第二電極之間。第一電極包括氮化鈦。記憶膜包括氮氧化鈦。第二電極包括氮化鈦。 In accordance with another embodiment of the present disclosure, a memory device is provided that includes a resistive memory cell. The resistive memory cell includes a first electrode, a second electrode, and a memory film. The memory film is between the first electrode and the second electrode. The first electrode includes titanium nitride. The memory film includes titanium oxynitride. The second electrode includes titanium nitride.
根據本揭露之又另一實施例,提出一種電阻式記憶胞的操作方法,其包括以下步驟。寫入步驟,其包括以第一寬度的脈波或第一次數的射擊寫入電阻式記憶胞。在寫入步驟之後,驗證電阻式記憶胞是否達到一預定電阻或電流。若電阻式記憶胞未達到預定電阻或電流,驗證第一寬度或第一次數是否達到最大寬度或最大次數。若第一寬度或第一次數未達到最大寬度或最大次數,以第二寬度的脈波或第二次數的射擊寫入電阻式記憶胞。第二次數大於第一次數。第二寬度大於第一寬度。 According to still another embodiment of the present disclosure, a method of operating a resistive memory cell is provided, which includes the following steps. A writing step includes writing a resistive memory cell with a first width pulse or a first number of shots. After the writing step, it is verified whether the resistive memory cell reaches a predetermined resistance or current. If the resistive memory cell does not reach the predetermined resistance or current, verify whether the first width or the first number of times reaches the maximum width or the maximum number of times. If the first width or the first number does not reach the maximum width or the maximum number of times, the pulse wave of the second width or the second number of shots is written into the resistive memory cell. The second number is greater than the first number. The second width is greater than the first width.
為了對本發明之上述及其他方面有更佳的瞭解,下文特舉較佳實施例,並配合所附圖式,作詳細說明如下: In order to better understand the above and other aspects of the present invention, the preferred embodiments are described below, and in conjunction with the drawings, the detailed description is as follows:
102、102A、102B‧‧‧第一電極 102, 102A, 102B‧‧‧ first electrode
104‧‧‧記憶膜 104‧‧‧ memory film
106‧‧‧材料膜 106‧‧‧Material film
108‧‧‧第二電極 108‧‧‧second electrode
110‧‧‧底電極部分 110‧‧‧ bottom electrode section
112‧‧‧壁電極部分 112‧‧‧ wall electrode section
128‧‧‧底結構 128‧‧‧ bottom structure
130‧‧‧半導體基底 130‧‧‧Semiconductor substrate
131‧‧‧電晶體 131‧‧‧Optoelectronics
132‧‧‧源/汲極 132‧‧‧Source/Bungee
133‧‧‧介電層 133‧‧‧ dielectric layer
134‧‧‧閘結構 134‧‧ ‧ gate structure
135‧‧‧閘介電層 135‧‧‧gate dielectric layer
136‧‧‧導電層 136‧‧‧ Conductive layer
137‧‧‧閘電極層 137‧‧‧ gate electrode layer
138‧‧‧硬遮罩層 138‧‧‧hard mask layer
140‧‧‧開口 140‧‧‧ openings
142‧‧‧犧牲層 142‧‧‧ sacrificial layer
144‧‧‧導電層 144‧‧‧ Conductive layer
270、272、274、276、278、280、282、284、286‧‧‧步驟 270, 272, 274, 276, 278, 280, 282, 284, 286 ‧ ‧ steps
H1、H2‧‧‧高度 H1, H2‧‧‧ height
L1、L2‧‧‧寬度 L1, L2‧‧‧ width
第1圖繪示根據一實施例之電阻式記憶胞的剖面圖。 1 is a cross-sectional view of a resistive memory cell in accordance with an embodiment.
第2A圖繪示根據一實施例之電阻式記憶胞的剖面圖。 2A is a cross-sectional view of a resistive memory cell in accordance with an embodiment.
第2B圖繪示根據一實施例之電阻式記憶胞的剖面圖。 2B is a cross-sectional view of a resistive memory cell in accordance with an embodiment.
第3圖至第13圖繪示根據一些實施例之記憶裝置的製造方法。 3 through 13 illustrate a method of fabricating a memory device in accordance with some embodiments.
第14圖為根據一實施例之電阻式記憶胞在設定(SET)狀態與重置(RESET)狀態之電阻與機率的關係。 Figure 14 is a graph showing the relationship between resistance and probability of a resistive memory cell in a set (SET) state and a reset (RESET) state, according to an embodiment.
第15圖為電阻式記憶胞在設定狀態與重置狀態之操作循環次數(cycling count)與記憶胞電阻(cell resistance)的關係。 Figure 15 is the relationship between the cycling count and the cell resistance of the resistive memory cell in the set state and the reset state.
第16圖為電阻式記憶胞以增階型脈衝程式化(ISPP)方法操作的結果。 Figure 16 shows the results of the operation of the resistive memory cell by the Enhanced Pulse Stylization (ISPP) method.
第17圖為電阻式記憶胞在重置狀態下寫入時序(write timing)與電阻特性。 Figure 17 shows the write timing and resistance characteristics of the resistive memory cell in the reset state.
第18圖為電阻式記憶胞在設定狀態下寫入時序與電阻特性。 Figure 18 shows the write timing and resistance characteristics of the resistive memory cell in the set state.
第19圖繪示根據一實施例之電阻式記憶胞的操作方法。 Figure 19 illustrates a method of operating a resistive memory cell in accordance with an embodiment.
第20圖顯示實施例與比較例之電阻式記憶胞的操作結果。 Fig. 20 shows the results of the operation of the resistive memory cells of the examples and the comparative examples.
此揭露內容之實施例係提出一種記憶裝置及電阻式記憶胞的操作方法。電阻式記憶胞可具有大且穩定的切換窗,可 靠性佳。 The embodiment of the disclosure proposes a memory device and a method of operating a resistive memory cell. Resistive memory cells can have large and stable switching windows Good dependability.
須注意的是,本揭露並非顯示出所有可能的實施例,未於本揭露提出的其他實施態樣也可能可以應用。再者,圖式上的尺寸比例並非按照實際產品等比例繪製。因此,說明書和圖示內容僅作敘述實施例之用,而非作為限縮本揭露保護範圍之用。另外,實施例中之敘述,例如細部結構、製程步驟和材料應用等等,僅為舉例說明之用,並非對本揭露欲保護之範圍做限縮。實施例之步驟和結構各之細節可在不脫離本揭露之精神和範圍內根據實際應用製程之需要而加以變化與修飾。 It should be noted that the disclosure does not show all possible embodiments, and other embodiments not disclosed in the disclosure may also be applied. Furthermore, the dimensional ratios on the drawings are not drawn in proportion to the actual product. Therefore, the description and illustration are for illustrative purposes only and are not intended to be limiting. In addition, the description in the embodiments, such as the detailed structure, the process steps, the material application, and the like, are for illustrative purposes only and are not intended to limit the scope of the disclosure. The details of the steps and the details of the embodiments may be varied and modified in accordance with the needs of the actual application process without departing from the spirit and scope of the disclosure.
根據實施例,電阻式記憶胞包括第一電極、第二電極及記憶膜,其中記憶膜在第一電極與第二電極之間。材料膜可在記憶膜與第二電極之間。實施例中可透過電阻式記憶胞的材料及結構設計達到優異的電性。 According to an embodiment, the resistive memory cell includes a first electrode, a second electrode, and a memory film, wherein the memory film is between the first electrode and the second electrode. A material film can be between the memory film and the second electrode. In the embodiment, the material and structure design of the permeable memory cell can achieve excellent electrical properties.
第1圖繪示根據一實施例之電阻式記憶胞的剖面圖。電阻式記憶胞包括第一電極102、第一電極102上的記憶膜104、記憶膜104上的材料膜106、及材料膜106上的第二電極108。 1 is a cross-sectional view of a resistive memory cell in accordance with an embodiment. The resistive memory cell includes a first electrode 102, a memory film 104 on the first electrode 102, a material film 106 on the memory film 104, and a second electrode 108 on the material film 106.
一實施例中,材料膜106包括記憶材料的組成。實施例中,記憶膜104與材料膜106之記憶材料的組成包括具有不同電阻(高電阻狀態與低電阻狀態)的材料,其中電阻可透過提供至記憶膜104與材料膜106之記憶材料的偏壓改變。記憶膜104的組成可不同於材料膜106。一實施例中,舉例來說,電阻式記 憶胞為電阻式隨機存取記憶體(RRAM、ReRAM),其中第一電極102包括氮化鈦(TiN),記憶膜104包括氮氧化鈦(TiOxNy),材料膜106包括氧化鈦(TiOx),第二電極108包括氮化鈦,此材料設計使得電阻式記憶胞具有大的切換窗(switching window),且可靠度佳,例如記憶功能在250℃下維持3小時以上。 In one embodiment, material film 106 comprises the composition of a memory material. In an embodiment, the composition of the memory material of the memory film 104 and the material film 106 includes materials having different resistances (high resistance state and low resistance state), wherein the resistance is permeable to the memory material provided to the memory film 104 and the material film 106. The pressure changes. The composition of the memory film 104 can be different from the material film 106. In one embodiment, for example, the resistive memory cell is a resistive random access memory (RRAM, ReRAM), wherein the first electrode 102 includes titanium nitride (TiN), and the memory film 104 includes titanium oxynitride (TiO x ) N y ), the material film 106 comprises titanium oxide (TiO x ), and the second electrode 108 comprises titanium nitride. The material is designed such that the resistive memory cell has a large switching window and has good reliability, such as memory function. Maintain at 250 ° C for more than 3 hours.
另一實施例中,材料膜106包括電極材料。第二電極108的材質可不同於材料膜106。一實施例中,舉例來說,電阻式記憶胞為電阻式隨機存取記憶體,其中第一電極102包括氮化鈦(TiN),記憶膜104包括氮氧化鈦(TiOxNy),材料膜106包括鈦(Ti),第二電極108包括氮化鈦,此材料設計使得電阻式記憶胞具有大的切換窗,且可靠度佳,例如記憶功能在250℃下維持3小時以上。 In another embodiment, the material film 106 comprises an electrode material. The material of the second electrode 108 may be different from the material film 106. In one embodiment, for example, the resistive memory cell is a resistive random access memory, wherein the first electrode 102 includes titanium nitride (TiN), and the memory film 104 includes titanium oxynitride (TiO x N y ). The film 106 comprises titanium (Ti) and the second electrode 108 comprises titanium nitride. The material is designed such that the resistive memory cell has a large switching window and is highly reliable, for example, the memory function is maintained at 250 ° C for more than 3 hours.
一些實施例中,氧化鈦材料膜106可能是在沉積鈦材料膜106之後在大氣環境下氧化所造成的薄膜。一些實施例中,是對鈦材料膜106進行額外的氧化步驟而形成氧化鈦材料膜106。 In some embodiments, the titanium oxide material film 106 may be a film caused by oxidation in an atmospheric environment after depositing the titanium material film 106. In some embodiments, the titanium material film 106 is subjected to an additional oxidation step to form a titanium oxide material film 106.
本揭露之電阻式記憶胞的材質並不限於上述所舉的例子。其他實施例中,第一電極102、第二電極108與材料膜106的電極材料可使用其他合適的導電材質,例如金屬或金屬氮化物,包括過渡金屬或其氮化物,例如鉭(Ta)、氮化鉭(TaN)、鉿(Hf)、氮化鉿(HfN)等等。在各種實施例中,記憶膜104與材料膜106的記憶材料可使用其他合適的記憶材質,例如應用於電阻式記憶 材質的金屬氧化物或金屬氮氧化物。舉例來說,金屬氧化物包括含有過渡金屬的氧化物,例如氧化鉭(TaOx)、氧化鉿(HfOx)、等等。舉例來說,金屬氮氧化物包括含有過渡金屬的氮氧化物,例如氮氧化鉭(TaOxNy)、氮氧化鉿(HfOxNy)等等。 The material of the resistive memory cell of the present disclosure is not limited to the above-mentioned examples. In other embodiments, the electrode material of the first electrode 102, the second electrode 108 and the material film 106 may use other suitable conductive materials, such as metal or metal nitride, including a transition metal or a nitride thereof, such as tantalum (Ta), Tantalum nitride (TaN), hafnium (Hf), tantalum nitride (HfN), and the like. In various embodiments, the memory material of memory film 104 and material film 106 may use other suitable memory materials, such as metal oxides or metal oxynitrides for resistive memory materials. For example, the metal oxide comprises an oxide of a transition metal such as tantalum oxide (TaO x), hafnium oxide (HfO x), and the like. For example, metal oxynitrides include transition metal-containing oxynitrides such as lanthanum oxynitride (TaO x N y ), bismuth oxynitride (HfO x N y ), and the like.
第2A圖與第2B圖繪示根據其它實施例之電阻式記憶胞的剖面圖,其與第1圖之電阻式記憶胞的差異說明如下。第一電極102包括底電極部分110與從底電極部分110向上延伸的壁電極部分112。壁電極部分112在記憶膜104與底電極部分110之間。壁電極部分112與記憶膜104的寬度是小於底電極部分110的寬度,並可小於材料膜106與第二電極108的寬度。壁電極部分112與記憶膜104可具有實質上相同的寬度。材料膜106與第二電極108可具有實質上相同的寬度。實施例中,記憶膜104的高度H1小於第一電極102的高度H2。舉例來說,0<H1/H2<0.1。第一電極102與記憶膜104可構成一L形狀。實施例中,第一電極102構成L形狀之底電極部分110與壁電極部分112之間的夾角可介於135度至90度。 2A and 2B are cross-sectional views showing resistive memory cells according to other embodiments, and the differences from the resistive memory cells of Fig. 1 are explained below. The first electrode 102 includes a bottom electrode portion 110 and a wall electrode portion 112 that extends upward from the bottom electrode portion 110. The wall electrode portion 112 is between the memory film 104 and the bottom electrode portion 110. The width of the wall electrode portion 112 and the memory film 104 is smaller than the width of the bottom electrode portion 110 and may be smaller than the width of the material film 106 and the second electrode 108. The wall electrode portion 112 and the memory film 104 may have substantially the same width. The material film 106 and the second electrode 108 may have substantially the same width. In the embodiment, the height H1 of the memory film 104 is smaller than the height H2 of the first electrode 102. For example, 0 < H1/H2 < 0.1. The first electrode 102 and the memory film 104 may constitute an L shape. In an embodiment, the angle between the bottom electrode portion 110 and the wall electrode portion 112 of the L-shaped first electrode 102 may be between 135 degrees and 90 degrees.
第3圖至第13圖繪示根據一些實施例之記憶裝置的製造方法。 3 through 13 illustrate a method of fabricating a memory device in accordance with some embodiments.
請參照第3圖,提供如圖所示的底結構128,其包括形成在半導體基底130上的電晶體131、介電層133與導電層136。半導體基底130可包括矽或其他合適的半導體材料。電晶體131包括源/汲極132與閘結構134。源/汲極132可包括以摻雜 半導體基底130的方式所形成的重摻雜區,例如N+摻雜區。閘結構134可包括閘介電層135及閘介電層135上的閘電極層137。閘介電層135可包括氧化物,例如氧化矽,或其它合適的介電材質。閘電極層137可包括多晶矽,或其它合適的導電材質。 Referring to FIG. 3, a bottom structure 128 is provided as shown, including a transistor 131, a dielectric layer 133, and a conductive layer 136 formed on the semiconductor substrate 130. Semiconductor substrate 130 can include germanium or other suitable semiconductor material. The transistor 131 includes a source/drain 132 and a gate structure 134. Source/drain 132 may include doping A heavily doped region formed by the manner of the semiconductor substrate 130, such as an N+ doped region. The gate structure 134 can include a gate dielectric layer 135 and a gate electrode layer 137 on the gate dielectric layer 135. Gate dielectric layer 135 can include an oxide, such as hafnium oxide, or other suitable dielectric material. The gate electrode layer 137 may comprise polysilicon or other suitable electrically conductive material.
穿過介電層133的導電層136可包括金屬插塞(plug),電性連接至源/汲極132。介電層133可包括氧化物、氮化物、氮氧化物,例如氧化矽、氮化矽、氮氧化矽,或其它合適的介電材質。導電層136可包括金屬,例如鎢,或其它合適的導電材質。一實施例中,第3圖所示的底結構128可為進行化學機械研磨平坦化後的結構。 The conductive layer 136 that passes through the dielectric layer 133 can include a metal plug electrically connected to the source/drain 132. Dielectric layer 133 may comprise an oxide, a nitride, an oxynitride such as hafnium oxide, tantalum nitride, hafnium oxynitride, or other suitable dielectric material. Conductive layer 136 can comprise a metal, such as tungsten, or other suitable electrically conductive material. In one embodiment, the bottom structure 128 shown in FIG. 3 may be a structure that is planarized by chemical mechanical polishing.
請參照第4圖,於底結構128上形成硬遮罩層138。一實施例中,硬遮罩層138包括氮化矽(SiN)。其他實施例中,硬遮罩層138可使用其他合適的材質。一實施例中,舉例來說,硬遮罩層138的厚度可為1000Å至2000Å,例如1500Å。 Referring to FIG. 4, a hard mask layer 138 is formed on the bottom structure 128. In one embodiment, the hard mask layer 138 comprises tantalum nitride (SiN). In other embodiments, the hard mask layer 138 can use other suitable materials. In one embodiment, for example, the hard mask layer 138 may have a thickness of 1000 Å to 2000 Å, such as 1500 Å.
請參照第5A圖,圖案化硬遮罩層138以形成開口140。開口140角度並不限於如第5A圖所示的90度夾角。其他實施例中,開口140角度可大於90度,如第5B圖所示。 Referring to FIG. 5A, the hard mask layer 138 is patterned to form the opening 140. The angle of the opening 140 is not limited to the angle of 90 degrees as shown in Fig. 5A. In other embodiments, the opening 140 may have an angle greater than 90 degrees, as shown in FIG. 5B.
請參照第6圖,形成第一電極102A在硬遮罩層138的上表面,與開口140露出之硬遮罩層138的側壁與介電層133及導電層136的上表面。一實施例中,舉例來說,第一電極102A的厚度可為50Å至200Å,例如100Å。 Referring to FIG. 6, the first electrode 102A is formed on the upper surface of the hard mask layer 138, the sidewall of the hard mask layer 138 exposed to the opening 140, and the upper surfaces of the dielectric layer 133 and the conductive layer 136. In one embodiment, for example, the first electrode 102A may have a thickness of 50 Å to 200 Å, such as 100 Å.
請參照第7圖,圖案化第一電極102A,以留下具有 階梯形狀的第一電極102B,其覆蓋導電層136及鄰近導電層136的部分硬遮罩層138與介電層133。透過此圖案化步驟,也露出了部分介電層133與鄰近介電層133的硬遮罩層138。 Referring to FIG. 7, the first electrode 102A is patterned to leave The stepped first electrode 102B covers the conductive layer 136 and a portion of the hard mask layer 138 and the dielectric layer 133 adjacent to the conductive layer 136. Through the patterning step, a portion of the dielectric layer 133 and the hard mask layer 138 adjacent to the dielectric layer 133 are also exposed.
請參照第8圖,形成犧牲層142在硬遮罩層138、第一電極102B上,與開口140中。一實施例中,犧牲層142可包括氧化物例如以沉積法形成的四乙氧基矽烷(TEOS)。其他實施例中,犧牲層142可使用其他合適的材質。 Referring to FIG. 8, a sacrificial layer 142 is formed on the hard mask layer 138, the first electrode 102B, and the opening 140. In one embodiment, the sacrificial layer 142 can include an oxide such as tetraethoxydecane (TEOS) formed by deposition. In other embodiments, the sacrificial layer 142 can use other suitable materials.
請參照第9圖,移除犧牲層142與第一電極102B的上部分,留下開口140中的犧牲層142與具有L形狀的第一電極102。一實施例中,可利用化學機械研磨方法進行此移除步驟,其可設計停止在硬遮罩層138上。 Referring to FIG. 9, the sacrificial layer 142 and the upper portion of the first electrode 102B are removed, leaving the sacrificial layer 142 in the opening 140 and the first electrode 102 having an L shape. In one embodiment, this removal step can be performed using a chemical mechanical polishing method that can be designed to stop on the hard mask layer 138.
請參照第10圖,對露出的第一電極102的上部分進行氧化,以形成氧化物記憶膜104。記憶膜104的高度(H1,第2A圖、第2B圖)可透過氧化製程控制。氧化方法包括化學氣相沉積(CVD)方法或物理氣相沉積(PVD)方法。一實施例中,舉例來說,第一電極102包括氮化鈦(TiN),記憶膜104包括透過氧化步驟所形成的氮氧化鈦(TiOxNy)。 Referring to FIG. 10, the exposed upper portion of the first electrode 102 is oxidized to form the oxide memory film 104. The height of the memory film 104 (H1, 2A, 2B) can be controlled by an oxidation process. The oxidation method includes a chemical vapor deposition (CVD) method or a physical vapor deposition (PVD) method. In one embodiment, for example, the first electrode 102 includes titanium nitride (TiN), and the memory film 104 includes titanium oxynitride (TiO x N y ) formed through the oxidation step.
請參照第11圖,形成材料膜106在記憶膜104、犧牲層142及硬遮罩層138上。一實施例中,材料膜106的厚度可為5Å至50Å,例如10Å。第二電極108形成在材料膜106上。一實施例中,第二電極108的厚度可為50Å至500Å,例如400Å。 Referring to FIG. 11, a material film 106 is formed on the memory film 104, the sacrificial layer 142, and the hard mask layer 138. In one embodiment, the thickness of the material film 106 can range from 5 Å to 50 Å, such as 10 Å. The second electrode 108 is formed on the material film 106. In one embodiment, the second electrode 108 may have a thickness of 50 Å to 500 Å, such as 400 Å.
請參照第12A圖,對犧牲層142、硬遮罩層138、 材料膜106、第二電極108進行圖案化步驟。 Referring to FIG. 12A, the sacrificial layer 142, the hard mask layer 138, The material film 106 and the second electrode 108 perform a patterning step.
請參照第12A圖與第12B圖,電阻式記憶胞的第一電極102藉由導電層136電性連接至電晶體131的源/汲極132,例如電性連接至汲極。一實施例中,舉例來說,圖案化的材料膜106、第二電極108的寬度為5000Å。實施例中,第一電極102的壁電極部分112的寬度L1小於導電層136的寬度L2。例如0<L1/L2<0.5。一實施例中,舉例來說,壁電極部分112的寬度L1是10Å至200Å,例如100Å。導電層136的寬度L2是1000Å至5000Å,例如3000Å。 Referring to FIGS. 12A and 12B , the first electrode 102 of the resistive memory cell is electrically connected to the source/drain 132 of the transistor 131 via the conductive layer 136 , for example, electrically connected to the drain. In one embodiment, for example, the patterned material film 106 and the second electrode 108 have a width of 5000 Å. In the embodiment, the width L1 of the wall electrode portion 112 of the first electrode 102 is smaller than the width L2 of the conductive layer 136. For example, 0 < L1/L2 < 0.5. In one embodiment, for example, the width L1 of the wall electrode portion 112 is 10 Å to 200 Å, for example, 100 Å. The width L2 of the conductive layer 136 is 1000 Å to 5000 Å, for example, 3,000 Å.
請參照第13圖,形成導電層144在導電層136、第二電極108上。導電層144可包括金屬(例如M1)線路。 Referring to FIG. 13, a conductive layer 144 is formed on the conductive layer 136 and the second electrode 108. Conductive layer 144 can include a metal (eg, M1) line.
第14圖為根據一實施例之記憶裝置(電阻式記憶胞)其設定(set)狀態與重置(reset)狀態之電阻(resistance)與機率(probability)的關係,其中顯示出電阻式記憶胞具有大的切換窗,即電阻差異大,因此可輕易分辨設定或重置的狀態。 Figure 14 is a diagram showing the relationship between the resistance and the probability of the set state and the reset state of the memory device (resistive memory cell) according to an embodiment, wherein the resistive memory cell is shown. It has a large switching window, that is, the resistance difference is large, so the state of setting or reset can be easily distinguished.
在本揭露中,發明人發現電阻式記憶胞(不限於本揭露所述的電阻式記憶胞結構)在循環(cycling)操作之後,有電阻切換窗不穩定的問題(如第15圖所示),這會導致切換失效及可靠性降低。此外,在記憶體單元操作期間是難以監測到失效的單元。失效的問題並無法透過增階型脈衝程式化(incremental step pulse programming;ISPP)方法(如第16圖所示)解決。發明人利用所發現的寫入時序(write timing)與電阻特性(如第17圖之重置特性, 或第18圖的設定特性)發展出新的記憶裝置的操作方法,能用以監控電阻式記憶胞在循環操作後劣化的情況。 In the present disclosure, the inventors have found that a resistive memory cell (not limited to the resistive memory cell structure described in the present disclosure) has a problem that the resistance switching window is unstable after the cycling operation (as shown in FIG. 15). This will result in switching failure and reduced reliability. In addition, it is difficult to monitor the failed unit during operation of the memory unit. The problem of failure cannot be solved by the incremental step pulse programming (ISPP) method (as shown in Figure 16). The inventors utilized the found write timing and resistance characteristics (such as the reset feature of Figure 17). Or the setting characteristics of Fig. 18) The development of a new memory device operation method can be used to monitor the deterioration of the resistive memory cell after the cycle operation.
以下說明根據實施例之記憶裝置的操作方法,其例如能用以監控電阻式記憶胞的劣化情況或健康狀態。操作方法包括具有劣化偵測設計的演算法,能夠提升電阻式記憶胞的可靠性。 The following describes a method of operating a memory device according to an embodiment, which can be used, for example, to monitor degradation or health of a resistive memory cell. The method of operation includes an algorithm with a degradation detection design that improves the reliability of the resistive memory cell.
第19圖繪示根據一實施例之記憶胞陣列中電阻式記憶胞的操作方法。從步驟270開始。在步驟272中,載入寫入電阻式記憶胞的條件。 FIG. 19 illustrates an operation method of a resistive memory cell in a memory cell array according to an embodiment. Beginning at step 270. In step 272, the condition for writing the resistive memory cell is loaded.
在步驟274中,執行設定步驟,包括設定電阻式記憶胞的寫入脈波寬度或射擊(shot)次數。一實施例中,是先設定為第一寬度的脈波或第一次數的射擊。舉例來說,N次射擊表示有N個寫入脈波。 In step 274, a setting step is performed, including setting a write pulse width or a shot count of the resistive memory cell. In one embodiment, the pulse is first set to a first width or the first number of shots. For example, N shots indicate that there are N write pulses.
在步驟276中,執行寫入步驟,包括以在步驟274中設定的(第一)寬度的脈波或(第一)次數的射擊寫入電阻式記憶胞。實施例中,在執行寫入步驟276的過程中並未執行任何驗證步驟。舉例來說,在多次射擊之間並未執行任何驗證步驟。 In step 276, a writing step is performed, including writing a resistive memory cell with a (first) width pulse or a (first) number of shots set in step 274. In an embodiment, no verification steps are performed during the execution of the write step 276. For example, no verification steps are performed between multiple shots.
在寫入步驟276之後,進行步驟278,執行驗證步驟,包括驗證經寫入後的電阻式記憶胞是否達到預定電阻或電流。若電阻式記憶胞未達到預定電阻或電流,則進行至步驟280,驗證(第一)寬度或(第一)次數是否達到最大寬度或最大次數。若在步驟280驗證出未達到最大寬度或最大次數,則進行至步驟282: 提高寫入脈波的寬度或射擊次數,亦即將寫入脈波從第一寬度提高至第二寬度,或將射擊次數從第一次數提高至第二次數。然後以提高後所得的(第二)寬度或(第二)次數進行設定步驟274,再執行如第19圖所示的流程。一實施例中,能利用虛框中的步驟280、步驟282偵測電阻式記憶胞的劣化情況。 After the writing step 276, step 278 is performed to perform the verifying step, including verifying whether the written resistive memory cell reaches a predetermined resistance or current. If the resistive memory cell does not reach the predetermined resistance or current, then proceed to step 280 to verify if the (first) width or (first) number of times has reached the maximum width or maximum number of times. If it is verified in step 280 that the maximum width or maximum number of times has not been reached, then proceed to step 282: Increasing the width or number of shots of the write pulse, that is, increasing the write pulse from the first width to the second width, or increasing the number of shots from the first number to the second number. Then, the setting step 274 is performed with the (second) width or (second) number obtained after the increase, and the flow as shown in Fig. 19 is executed. In one embodiment, the degradation of the resistive memory cell can be detected by using steps 280 and 282 in the virtual frame.
在步驟278中,若驗證電阻式記憶胞達到預定電阻或電流,則進行至結束步驟284。此外,若在步驟280驗證出已達到最大寬度或最大次數,則進行至步驟286,標記寫入失效,並進行至結束步驟284。 In step 278, if it is verified that the resistive memory cell has reached a predetermined resistance or current, then proceed to end step 284. Further, if it is verified in step 280 that the maximum width or maximum number of times has been reached, then proceeding to step 286, the flag write fails and proceeds to end step 284.
第20圖顯示實施例(以實線表示)與比較例(以虛線表示)之電阻式記憶胞的操作結果。實施例的操作方法包括如第19圖所示的監測步驟280、282。比較例的操作步驟則省略步驟280、282。根據第20圖可發現,實施例的操作方法能使電阻式記憶胞在循環操作之後仍維持穩定的電阻切換窗。 Fig. 20 shows the results of the operation of the resistive memory cells of the embodiment (indicated by the solid line) and the comparative example (indicated by the broken line). The method of operation of an embodiment includes monitoring steps 280, 282 as shown in FIG. The operational steps of the comparative example omit steps 280, 282. It can be seen from Fig. 20 that the method of operation of the embodiment enables the resistive memory cell to maintain a stable resistance switching window after the cyclic operation.
根據實施例之電阻式記憶胞具有大的切換窗,且可靠度佳。此外,根據實施例之操作方法能使電阻式記憶胞具有穩定的切換窗。 The resistive memory cell according to the embodiment has a large switching window and is excellent in reliability. Furthermore, the method of operation according to the embodiment enables the resistive memory cell to have a stable switching window.
綜上所述,雖然本發明已以較佳實施例揭露如上,然其並非用以限定本發明。本發明所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾。因此,本發明之保護範圍當視後附之申請專利範圍所界定者為準。 In conclusion, the present invention has been disclosed in the above preferred embodiments, and is not intended to limit the present invention. A person skilled in the art can make various changes and modifications without departing from the spirit and scope of the invention. Therefore, the scope of the invention is defined by the scope of the appended claims.
Claims (5)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201662280713P | 2016-01-20 | 2016-01-20 | |
US62/280,713 | 2016-01-20 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201740583A TW201740583A (en) | 2017-11-16 |
TWI619282B true TWI619282B (en) | 2018-03-21 |
Family
ID=59297929
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW105111713A TWI619282B (en) | 2016-01-20 | 2016-04-14 | Memory device and operating method for resistive memory cell |
Country Status (3)
Country | Link |
---|---|
US (1) | US9711217B1 (en) |
CN (1) | CN106992248B (en) |
TW (1) | TWI619282B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10811602B2 (en) * | 2017-12-08 | 2020-10-20 | Macronix International Co., Ltd. | Tungsten oxide RRAM with barrier free structure |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060226411A1 (en) * | 2005-04-06 | 2006-10-12 | Samsung Electronics Co., Ltd. | Multi-bit memory device having resistive material layers as storage node and methods of manufacturing and operating the same |
US20070173019A1 (en) * | 2006-01-09 | 2007-07-26 | Macronix International Co., Ltd. | Programmable Resistive Ram and Manufacturing Method |
US20090096568A1 (en) * | 2006-04-28 | 2009-04-16 | Yasunari Hosoi | Variable resistance element, and its manufacturing method |
US20090101879A1 (en) * | 2007-10-22 | 2009-04-23 | Macronix International Co., Ltd. | Method for Making Self Aligning Pillar Memory Cell Device |
US20090184310A1 (en) * | 2008-01-18 | 2009-07-23 | Macronix International Co., Ltd. | Memory cell with memory element contacting an inverted t-shaped bottom electrode |
US20120074507A1 (en) * | 2010-09-29 | 2012-03-29 | Crossbar, Inc. | Integration of an amorphous silicon resistive switching device |
Family Cites Families (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US752985A (en) * | 1904-02-23 | Acetylene-gas generator | ||
JP2004356614A (en) * | 2003-05-08 | 2004-12-16 | Renesas Technology Corp | Semiconductor storage device |
US7732800B2 (en) * | 2006-05-30 | 2010-06-08 | Macronix International Co., Ltd. | Resistor random access memory cell with L-shaped electrode |
US7820997B2 (en) * | 2006-05-30 | 2010-10-26 | Macronix International Co., Ltd. | Resistor random access memory cell with reduced active area and reduced contact areas |
US7527985B2 (en) * | 2006-10-24 | 2009-05-05 | Macronix International Co., Ltd. | Method for manufacturing a resistor random access memory with reduced active area and reduced contact areas |
JP2008166379A (en) * | 2006-12-27 | 2008-07-17 | Oki Electric Ind Co Ltd | Semiconductor storage device and its manufacturing method |
KR20080066476A (en) * | 2007-01-12 | 2008-07-16 | 삼성전자주식회사 | Resistive random access memory device and method of manufacturing the same |
US7989790B2 (en) * | 2007-01-18 | 2011-08-02 | Macronix International Co., Ltd. | Resistance random access memory |
US7989251B2 (en) * | 2007-05-14 | 2011-08-02 | Micron Technology, Inc. | Variable resistance memory device having reduced bottom contact area and method of forming the same |
KR20110103160A (en) * | 2010-03-12 | 2011-09-20 | 삼성전자주식회사 | Semiconductor device and method of fabricating the same |
US8729521B2 (en) * | 2010-05-12 | 2014-05-20 | Macronix International Co., Ltd. | Self aligned fin-type programmable memory cell |
US8507353B2 (en) * | 2010-08-11 | 2013-08-13 | Samsung Electronics Co., Ltd. | Method of forming semiconductor device having self-aligned plug |
KR101835709B1 (en) * | 2010-11-16 | 2018-03-08 | 삼성전자주식회사 | Semiconductor device Including buffer electrode and method of fabricating the same, and an electronic system including the same |
KR101819595B1 (en) * | 2011-02-28 | 2018-01-18 | 삼성전자주식회사 | Semiconductor memory devices and methods for forming the same |
KR101778719B1 (en) * | 2011-03-04 | 2017-09-14 | 삼성전자주식회사 | Method of manufacturing Variable Resistance Memory Device |
KR101802434B1 (en) * | 2011-05-17 | 2017-11-28 | 삼성전자주식회사 | Variable Resistance memory device and method of forming the same |
KR20130042975A (en) * | 2011-10-19 | 2013-04-29 | 삼성전자주식회사 | Method of forming non-volatile memory device having small contact and related device |
KR20130043533A (en) * | 2011-10-20 | 2013-04-30 | 삼성전자주식회사 | Non-volatile memory device having conductive buffer pattern and method of forming the same |
KR101900853B1 (en) * | 2012-04-13 | 2018-09-20 | 삼성전자주식회사 | Variable Resistance memory device and method of forming the same |
CN102945923A (en) * | 2012-10-26 | 2013-02-27 | 清华大学 | Complementary type resistive random access memory and production method thereof |
CN104617218B (en) * | 2013-11-04 | 2018-12-11 | 华邦电子股份有限公司 | Resistive memory device and preparation method thereof |
-
2016
- 2016-04-14 TW TW105111713A patent/TWI619282B/en active
- 2016-04-20 CN CN201610246584.XA patent/CN106992248B/en active Active
- 2016-04-21 US US15/134,438 patent/US9711217B1/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060226411A1 (en) * | 2005-04-06 | 2006-10-12 | Samsung Electronics Co., Ltd. | Multi-bit memory device having resistive material layers as storage node and methods of manufacturing and operating the same |
US20070173019A1 (en) * | 2006-01-09 | 2007-07-26 | Macronix International Co., Ltd. | Programmable Resistive Ram and Manufacturing Method |
US20090096568A1 (en) * | 2006-04-28 | 2009-04-16 | Yasunari Hosoi | Variable resistance element, and its manufacturing method |
US20090101879A1 (en) * | 2007-10-22 | 2009-04-23 | Macronix International Co., Ltd. | Method for Making Self Aligning Pillar Memory Cell Device |
US20090184310A1 (en) * | 2008-01-18 | 2009-07-23 | Macronix International Co., Ltd. | Memory cell with memory element contacting an inverted t-shaped bottom electrode |
US20120074507A1 (en) * | 2010-09-29 | 2012-03-29 | Crossbar, Inc. | Integration of an amorphous silicon resistive switching device |
Also Published As
Publication number | Publication date |
---|---|
US9711217B1 (en) | 2017-07-18 |
CN106992248B (en) | 2019-05-03 |
TW201740583A (en) | 2017-11-16 |
CN106992248A (en) | 2017-07-28 |
US20170206960A1 (en) | 2017-07-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106252505B (en) | RRAM device and method | |
TWI686926B (en) | Resistive random access memory device and method of forming thereof | |
JP5339716B2 (en) | Resistive memory device and manufacturing method thereof | |
CN110323331B (en) | Semiconductor device and method for manufacturing the same | |
CN110957343B (en) | Integrated chip and method for forming integrated chip | |
US8869436B2 (en) | Resistive switching random access memory structure and method to recreate filament and recover resistance window | |
US9680095B2 (en) | Resistive RAM and fabrication method | |
KR101127236B1 (en) | Method for fabricating resistance memory device | |
US9595670B1 (en) | Resistive random access memory (RRAM) cell and method for forming the RRAM cell | |
TW201730922A (en) | Ferroelectric capacitor, ferroelectric field effect transistor, and method used in forming an electronic component comprising conductive material and ferroelectric material | |
US20080083916A1 (en) | Nonvolatile Memory Device and Fabrication Method Thereof | |
JP2006060232A (en) | Nonvolatile memory element and its manufacturing method | |
US10504903B1 (en) | Semiconductor device and manufacturing method thereof | |
JP2008135752A (en) | Resistive memory element containing dopant, and method for manufacturing the same | |
US9419057B2 (en) | Resistive random access memory device and manufacturing methods | |
US9923028B1 (en) | Resistive memory and method for manufacturing the same | |
WO2015006104A1 (en) | All around electrode for novel 3d rram applications | |
CN101542728A (en) | Nonvolatile storage device | |
US9543516B2 (en) | Method for forming a doped metal oxide for use in resistive switching memory elements | |
KR20150064709A (en) | Method for forming resistive switching memory elements with improved switching behavior | |
CN107403822B (en) | Resistive random access memory and method of manufacturing the same | |
TW201638946A (en) | Resistive random access memory | |
TWI619282B (en) | Memory device and operating method for resistive memory cell | |
TWI602178B (en) | Resistive random access memory | |
JP6073836B2 (en) | Memory device and method for forming the same |