TWI618957B - A dual-direction optical collimator and a method, backlight and three-dimensional(3d) electronic display using same - Google Patents

A dual-direction optical collimator and a method, backlight and three-dimensional(3d) electronic display using same Download PDF

Info

Publication number
TWI618957B
TWI618957B TW105136135A TW105136135A TWI618957B TW I618957 B TWI618957 B TW I618957B TW 105136135 A TW105136135 A TW 105136135A TW 105136135 A TW105136135 A TW 105136135A TW I618957 B TWI618957 B TW I618957B
Authority
TW
Taiwan
Prior art keywords
light
collimator
bidirectional
horizontal
vertical
Prior art date
Application number
TW105136135A
Other languages
Chinese (zh)
Other versions
TW201818106A (en
Inventor
大衛 A. 費圖
馬明
李雪健
Original Assignee
雷亞有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 雷亞有限公司 filed Critical 雷亞有限公司
Priority to TW105136135A priority Critical patent/TWI618957B/en
Application granted granted Critical
Publication of TWI618957B publication Critical patent/TWI618957B/en
Publication of TW201818106A publication Critical patent/TW201818106A/en

Links

Landscapes

  • Planar Illumination Modules (AREA)

Abstract

本發明提供了一種雙向準直方法以及雙向光學準直器,用以提供非零值傳導角度的雙向準直光。雙向準直器包括用於將光在垂直方向上準直的一垂直準直器,以及用於將垂直地準直的光在水平方向上準直的水平準直器。水平準直器係位在垂直準直器的一輸入部。本發明亦提供了一種三維顯示器,其係包括所述雙向準直器、一平板導光體以及位於平板導光體的表面的多光束繞射格柵陣列,所述的多光束繞射格柵陣列係將平板導光體中引導的雙向準直光耦合出成為對應於三維電子顯示器的不同三維視角的複數條光束。 The present invention provides a bidirectional collimation method and a bidirectional optical collimator for providing bidirectional collimated light of a non-zero value conduction angle. The two-way collimator includes a vertical collimator for collimating light in a vertical direction, and a horizontal collimator for collimating vertically collimated light in a horizontal direction. The horizontal collimator is tied to an input of the vertical collimator. The present invention also provides a three-dimensional display comprising the bidirectional collimator, a flat light guide body and a multi-beam diffraction grating array on a surface of the flat light guide body, the multi-beam diffraction grating The array couples the bidirectional collimated light guided in the planar light guide into a plurality of beams corresponding to different three dimensional views of the three dimensional electronic display.

Description

雙向光學準直器以及使用該雙向光學準直器的方法、背 光板以及三維電子顯示器 Bidirectional optical collimator and method using the bidirectional optical collimator, back Light board and three-dimensional electronic display

本發明屬於一種準直器;特別是一種雙向準直器以及使用該雙向準直器的背光板與三維電子顯示器。 The invention belongs to a collimator; in particular to a bidirectional collimator and a backlight and a three-dimensional electronic display using the bidirectional collimator.

對於種類廣泛的裝置及產品的使用者而言,電子顯示器是一個幾乎無處不在的媒體,用於傳播資訊給使用者。其中最常見的電子顯示器是陰極射線管(cathode ray tube,CRT)、電漿顯示面板(plasma display panels,PDP)、液晶顯示器(liquid crystal displays,LCD)、電致發光顯示器(electroluminescent displays,EL)、有機發光二極體(organic light emitting diode,OLED)和主動式有機發光二極體(active matrix OLEDs,AMOLED)顯示器、電泳顯示器(electrophoretic displays,EP),以及各種採用機電或電流體光調變(例如,數位微鏡裝置、電潤濕顯示器等等)的顯示器。在一般情況下,電子顯示器可以分為主動顯示器(即,會發光的顯示器)或被動顯示器(即,調變由另一個光源提供的光的顯示器)的其中一者。在主動顯示器的分類中,最明顯的例子是CRTs、PDPs及OLEDs/AMOLEDs。在上述以發射光進行分類的情況下,LCDs及EP顯示 器一般是被歸類在被動顯示器的分類中。被動顯示器雖然經常表現出包括但不限於如固有的低功率消耗等具有吸引力的性能特徵,但由於其缺乏發光的能力,被動顯示器在許多實際應用中可能有使用上的限制。 For users of a wide range of devices and products, electronic displays are an almost ubiquitous medium for disseminating information to users. The most common electronic displays are cathode ray tube (CRT), plasma display panels (PDP), liquid crystal displays (LCD), and electroluminescent displays (EL). , organic light emitting diodes (OLEDs) and active organic OLEDs (AMOLED) displays, electrophoretic displays (EP), and various electromechanical or electrohydrodynamic modulations A display (eg, a digital micromirror device, an electrowetting display, etc.). In general, an electronic display can be divided into one of an active display (ie, a display that emits light) or a passive display (ie, a display that modulates light provided by another light source). Among the categories of active displays, the most obvious examples are CRTs, PDPs, and OLEDs/AMOLEDs. LCDs and EP display in the case of classification by emission light Devices are generally classified in the classification of passive displays. Passive displays, while often exhibiting attractive performance characteristics including, but not limited to, inherent low power consumption, may have limitations in use in many practical applications due to their lack of illuminating capabilities.

為了克服被動顯示器與發射光相關聯的使用限制,許多被動顯示器係與一外部光源耦合。耦合光源可使這些被動顯示器發光,並使這些被動顯示器基本上發揮主動顯示器的功能。背光板即為這種耦合光源的例子之一。背光板是放在被動顯示器後面以照亮被動顯示器的光源(通常是面板光源)。舉例來說,背光板可以與LCD或EP顯示器耦合。背光板會發出可以穿過LCD或EP顯示器的光。發出的發射光會由LCD或EP顯示器調變,且經調變後的光會隨後依序地由LCD或EP顯示器射出。通常背光板係發出白色光。濾色器接著會將白光轉化成顯示器中使用的各種顏色的光。舉例來說,濾色器可以被設置在LCD或EP顯示器的輸出處(不太常見的配置),或者可以被設置在背光板和LCD或EP顯示器之間。 To overcome the use limitations associated with passive displays and emitted light, many passive displays are coupled to an external source. The coupled light source allows these passive displays to illuminate and these passive displays essentially function as active displays. The backlight panel is one of the examples of such a coupled light source. A backlight is a light source (usually a panel light source) placed behind a passive display to illuminate a passive display. For example, the backlight can be coupled to an LCD or EP display. The backlight will emit light that can pass through the LCD or EP display. The emitted light emitted will be modulated by the LCD or EP display, and the modulated light will then be sequentially emitted by the LCD or EP display. Usually the backlight panel emits white light. The color filter then converts the white light into light of various colors used in the display. For example, the color filter can be placed at the output of the LCD or EP display (less common configuration) or can be placed between the backlight and the LCD or EP display.

下文的實施例與範例係依據本發明的原理,利用雙向準直提供了一種雙向準直的方法以及顯示器的背光板。尤其,根據與本發明一致的原理的實施例係提供了包括分別在垂直與水平方向上將光準直的將光雙向準直的方法。此外,在某些實施例中,可以將光在垂直方向上準直後,接著再分開地將垂直地準直的光在水平方向上準直。再者,本說明書中所描述的雙向準直的方法,提供了在對應於所述的垂直方向的垂直平面上具有預定的非零值傳導角度的雙向準直光。 The following examples and examples provide a two-way collimation method and a backlight of a display in accordance with the principles of the present invention using bidirectional collimation. In particular, embodiments in accordance with principles consistent with the present invention provide a method of bi-directionally collimating light that collimates light in vertical and horizontal directions, respectively. Moreover, in some embodiments, the light can be collimated in the vertical direction, and then the vertically collimated light can be separately collimated in the horizontal direction. Furthermore, the method of bidirectional collimation described in this specification provides bidirectional collimated light having a predetermined non-zero value conduction angle in a vertical plane corresponding to the vertical direction.

根據本發明的某些實施例,所述的雙向準直方法是由一雙向準直器所提供。所述的雙向準直器係包括耦接於一水平準直器(例如,水平準直反射器)的一輸入部的一垂直準直器(例如,垂直準直反射器)。從光源(例如,多個LED)發出的光可以被耦合進入所述的雙向準直器中,以對光進行雙向準直。根據本發明的某些實施例,由所述的雙向準直器雙向準直的光可以被耦合進入電子顯示器中使用的背光板的導光體(例如,平板導光體)中。舉例來說,所述的背光板可以是一格柵式背光板,且所述格柵式背光板可以包括但不限於具有多光束繞射格柵的格柵式背光板。在某些實施例中,所述的電子顯示器可以是用於顯示三維資訊的三維電子顯示器,例如,立體顯示器或「裸眼」的三維顯示器。 According to some embodiments of the invention, the two-way collimating method is provided by a two-way collimator. The two-way collimator includes a vertical collimator (eg, a vertical collimating reflector) coupled to an input of a horizontal collimator (eg, a horizontal collimating reflector). Light emitted from a light source (eg, a plurality of LEDs) can be coupled into the two-way collimator to bi-directionally collimate the light. In accordance with certain embodiments of the present invention, light bi-directionally collimated by the two-way collimator can be coupled into a light guide (eg, a flat light guide) of a backlight used in an electronic display. For example, the backlight board may be a grid type backlight board, and the grid type backlight board may include, but is not limited to, a grid type backlight board having a multi-beam diffraction grating. In some embodiments, the electronic display can be a three-dimensional electronic display for displaying three-dimensional information, such as a stereoscopic display or a "naked eye" three-dimensional display.

更具體來說,所述的三維顯示器可以使用具有多光束繞射格柵陣列的格柵式背光板。多光束繞射格柵可以用於耦合來自導光體的光,並且可以用於提供對應於三維顯示器的像素的耦合出光束。舉例來說,所述的耦合出光束可以具有彼此不相同的主要角度方向(亦稱為「具有不同定向的光束」)。根據本發明的某些實施例,由所述多光束繞射格柵所產生的這些具有不同定向的光束,可以經調變後作為與「裸眼」三維電子顯示器的三維視角對應的三維像素,藉此展示三維資訊。在這些實施例中,由所述雙向準直器所提光的雙向準直,可以被用於產生輸出雙向準直光,且在此所產生的輸出雙向準直光在導光體中具有大致均勻的分佈(即,不會條帶化)。如此一來,根據本說明書中所述的原理,本發明可以提供一種均勻照明的多光束繞射格柵。 More specifically, the three-dimensional display can use a grid type backlight having a multi-beam diffraction grating array. A multi-beam diffraction grating can be used to couple light from the light guide and can be used to provide a coupled out beam corresponding to a pixel of the three-dimensional display. For example, the coupled out beams may have major angular directions (also referred to as "light beams with different orientations") that are different from each other. According to some embodiments of the present invention, the beams having different orientations generated by the multi-beam diffraction grating may be modulated to serve as voxels corresponding to the three-dimensional view of the "naked eye" three-dimensional electronic display. This shows three-dimensional information. In these embodiments, bi-directional collimation by the bi-directional collimator can be used to generate output bi-directional collimated light, and the resulting output bi-directional collimated light has a rough in the light guide. Uniform distribution (ie, no banding). As such, in accordance with the principles described in this specification, the present invention can provide a multi-beam diffraction grating that is uniformly illuminated.

在本文中,「導光體」被定義為一種在其結構中使用全內部反射來引導光的結構。尤其,導光體可包括一核心,在導光體的操作波長中,該核心基本上是透明的。在各個實施例中,「導光體」一詞一般指的是一介電質的光波導,其係利用全內部反射在導光體的介電質的物質和圍繞導光體的物質或介質之間的界面引導光。根據定義,全內部反射的條件是,該導光體的折射率大於相鄰於導光體物質表面的周圍介質的折射率。在某些實施例中,導光體可以在利用上述的折射率差之外另外包括一塗層,或者利用塗層取代前述的折射率差,藉此進一步促成全內部反射。舉例來說,該塗層可以是反射塗層。根據不同的實施例,導光體可以是數種導光體中的任一種,其可以包括但不限於,一平板或厚板的導光體及一條狀導光體的其中一者或兩者。 As used herein, "light guide" is defined as a structure that uses total internal reflection to direct light in its structure. In particular, the light guide can include a core that is substantially transparent at the operating wavelength of the light guide. In various embodiments, the term "light guide" generally refers to a dielectric optical waveguide that utilizes a substance that totally reflects the dielectric of the light guide and a substance or medium that surrounds the light guide. The interface between the guides the light. By definition, the condition of total internal reflection is that the refractive index of the light guide is greater than the refractive index of the surrounding medium adjacent to the surface of the light guide body. In some embodiments, the light guide may additionally include a coating in addition to the refractive index difference described above, or may replace the aforementioned refractive index difference with a coating, thereby further contributing to total internal reflection. For example, the coating can be a reflective coating. According to various embodiments, the light guide may be any one of several light guides, which may include, but is not limited to, one or both of a flat or thick light guide and a strip of light guides. .

此外,在本文中,當「平板」一詞被應用於導光體中時,如「平板導光體」,其係被定義為一片狀、一差異平面層狀或一薄片,並且在某些情況中被稱為「薄片」導光體。尤其,一平板導光體係被定義為在由導光體的上表面及下表面(換言之,兩個相對的表面)所界定的兩個大致正交的方向上引導光的一導光體。此外,在本說明書的定義中,上表面及下表面兩者間彼此分離,並且根據本發明的某些實施例,至少在區隔的意義上兩者為大致彼此平行的表面。也就是說,在平板導光體的任何不同的小區域內,上表面和下表面是大致上為平行或共面的表面。 In addition, in this paper, when the term "slab" is applied to a light guide, such as "slab light guide", it is defined as a sheet, a difference plane layer or a sheet, and at a certain In some cases, it is called a "slice" light guide. In particular, a flat light guiding system is defined as a light directing body that directs light in two substantially orthogonal directions defined by the upper and lower surfaces of the light guide (in other words, the two opposing surfaces). Moreover, in the definition of the present specification, the upper surface and the lower surface are separated from each other, and according to some embodiments of the present invention, both are surfaces that are substantially parallel to each other, at least in the sense of division. That is, in any of the different small areas of the planar light guide, the upper and lower surfaces are substantially parallel or coplanar surfaces.

在某些實例中,一平板導光體可以具有大致為平坦的結構(即,限制在一個平面上),因而使平板導光體成為平面導光體。在其它實施例中,平板導光體可以具有在一個或兩個正交維度中為彎曲的結構。 例如,平板導光體可以具有在一單一維度中為彎曲的結構,以形成圓柱形的平板導光體。然而,任何曲率都需具有足夠大的曲率半徑,以確保平板導光體中能保持全內部反射來引導光。 In some instances, a flat light guide can have a generally flat configuration (ie, confined on one plane), thereby making the planar light guide a planar light guide. In other embodiments, the planar light guide may have a structure that is curved in one or two orthogonal dimensions. For example, the flat light guide may have a curved structure in a single dimension to form a cylindrical flat light guide. However, any curvature needs to have a sufficiently large radius of curvature to ensure that full internal reflection is maintained in the planar light guide to direct light.

根據本發明中的各個實施例,一繞射格柵(例如,一多光束繞射格柵)可以被用於將光打散,或者將光耦合出導光體(例如,平板導光體)而成為一光束。在此,「繞射格柵」通常被定義為複數個構造特徵(即,繞射結構特徵),用於提供入射於繞射格柵之光的繞射。在某些實施例中,複數個構造特徵可以以週期性或準週期性的方式設置。舉例來說,繞射格柵可以包括佈置在一個一維陣列中之複數個構造特徵(例如,在一材料表面的複數個凹槽)。在其他實例中,繞射格柵可以是構造特徵的二維陣列。舉例來說,繞射格柵可以是在材料表面上的凸部或者在材料表面中的孔洞的二維陣列。 In accordance with various embodiments of the present invention, a diffraction grating (eg, a multi-beam diffraction grating) can be used to break up light or couple light out of a light guide (eg, a flat light guide) And become a beam. Here, a "diffraction grid" is generally defined as a plurality of structural features (i.e., diffractive structural features) for providing diffraction of light incident on the diffraction grating. In some embodiments, the plurality of structural features can be arranged in a periodic or quasi-periodic manner. For example, the diffraction grating can include a plurality of structural features (eg, a plurality of grooves on a surface of a material) disposed in a one-dimensional array. In other examples, the diffraction grating can be a two-dimensional array of construction features. For example, the diffraction grating can be a protrusion on the surface of the material or a two-dimensional array of holes in the surface of the material.

因此,如本說明書中的定義,「繞射格柵」為一種結構,其可以提供入射於繞射格柵之光的繞射。如果光是由一導光體入射到繞射格柵上,其所提供的繞射或者繞射地散射可能導致並且因此可以被稱為「繞射耦合」,繞射耦合可以藉由繞射的方式將光耦合離開導光體。繞射格柵也藉由繞射的方式(即,以一繞射角度)重新定向或改變光的角度。尤其,由於繞射的緣故,離開繞射格柵的光(即,繞射光)通常具有與入射於繞射格柵的光(即,入射光)的傳導方向不同的傳導方向。藉由繞射產生之光的傳導方向上的變化於本文中被稱為「繞射地重新定向」。因此,繞射格柵可被理解為經由繞射方式將入射在繞射格柵上的光重新定向之具有 繞射特徵的結構,以及,如果光是由導光體射出,繞射格柵也可將來自導光體的光繞射地耦合出。 Thus, as defined in this specification, a "diffraction grid" is a structure that provides diffraction of light incident on a diffraction grating. If light is incident on a diffraction grating by a light guide, the diffraction or diffraction scattering provided by it may result in and thus may be referred to as "diffraction coupling", which may be diffracted by diffraction. The way couples the light away from the light guide. The diffraction grating also redirects or changes the angle of the light by means of diffraction (ie, at a diffraction angle). In particular, due to diffraction, light exiting the diffraction grating (ie, diffracted light) typically has a different conduction direction than the direction of conduction of light incident on the diffraction grating (ie, incident light). The change in the direction of conduction of light produced by diffraction is referred to herein as "diffuse reorientation." Thus, a diffraction grating can be understood as having a reorientation of light incident on the diffraction grating via diffraction. The structure of the diffractive features, and if the light is emitted by the light guide, the diffractive grating can also be optically coupled out of the light from the light guide.

此外,如本說明書中的定義,繞射格柵的特徵係被稱為「繞射結構特徵」,並且可以是位在一表面、在一個表面之內或在一個表面之上(換言之,「表面」所指的是兩個材料之間的一邊界)的一個以上的繞射結構特徵。該表面可以是平板導光體的一個表面。繞射結構特徵可包括任何種類的光繞射結構,其可以包含但不限於:在表面、在表面內或在表面上的一個以上的凹槽、脊部、孔洞和凸起。例如,繞射格柵可以包括在材料表面內的複數個平行的凹槽。在另一實例中,繞射格柵可以包括自材料表面上升突出的複數個平行的脊部。繞射結構特徵(不論是凹槽、脊部、孔洞、凸部等)可以具有得以提供繞射功能之各種橫截面形狀或輪廓中的任一者,該些橫截面形狀或輪廓係包括但不限於:一正弦狀輪廓、一矩形輪廓(例如,一二元化繞射格柵)、一三角形輪廓和一鋸齒輪廓(例如,一閃耀光柵)的其中一個或多個。 Moreover, as defined in this specification, the features of the diffraction grating are referred to as "diffractive structural features" and may be located on a surface, within a surface, or on a surface (in other words, "surface "refers to more than one diffractive structural feature of a boundary between two materials." The surface may be a surface of a flat light guide. The diffractive structural features can include any kind of light diffractive structure, which can include, but is not limited to, more than one groove, ridge, hole, and protrusion on the surface, in the surface, or on the surface. For example, the diffraction grating can include a plurality of parallel grooves in the surface of the material. In another example, the diffraction grating can include a plurality of parallel ridges that protrude from the surface of the material. The diffractive structural features (whether grooves, ridges, holes, protrusions, etc.) may have any of a variety of cross-sectional shapes or contours that provide a diffractive function, including or not Limited to: one or more of a sinusoidal profile, a rectangular profile (eg, a binary diffraction grating), a triangular profile, and a sawtooth profile (eg, a blazed grating).

根據本說明書中的定義,「多光束繞射格柵」是產生由繞射方式重新定向之光束(例如,繞射地耦合出的光)的繞射格柵。此外,如本說明書中之定義,由多光束繞射格柵所產生的該等光束係具有彼此不同的主要角度方向。更詳而言之,如本發明的定義,由於多光束繞射格柵對入射光進行繞射耦合以及繞射地重新定向的緣故,該等光束中的一光束係具有與該等光束中的另一光束不同的一預定主要角度方向。該等光束可以代表一光場。舉例來說,該等光束可能會包括具有八種不同主要角度方向的八條光束。舉例來說,該八條光束的結合(即,該等光束)可以代表一 光場。根據本發明的各個實施例,各條光束的不同的主要角度方向,是由以下兩個因素的結合所決定,該兩個因素分別為格柵柵距或間隔,以及多光束繞射格柵的繞射結構特徵在各個光束的起始點相對於入射在多光束繞射格柵上的光線的傳導方向的方向性或轉動。 According to the definition in this specification, a "multi-beam diffraction grating" is a diffraction grating that produces a beam that is reoriented by diffraction (eg, diffracted light). Further, as defined in the present specification, the beam beams produced by the multi-beam diffraction grating have major angular directions different from each other. More specifically, as defined by the present invention, one of the beams is associated with the beam due to the diffraction coupling of the incident beam and the reorientation of the diffracted beam by the multi-beam diffraction grating. Another predetermined different angular direction of the other beam. The beams can represent a light field. For example, the beams may include eight beams having eight different major angular directions. For example, the combination of the eight beams (ie, the beams) can represent a Light field. According to various embodiments of the present invention, the different main angular directions of the respective beams are determined by a combination of two factors, namely grid pitch or spacing, and multi-beam diffraction gratings. The diffractive structure features directionality or rotation at the starting point of each beam relative to the direction of conduction of light incident on the multi-beam diffraction grating.

具體而言,根據本文中之定義,由該多光束繞射格柵產生之一光束具有一由角度分量{θ,}給出之主角度方向。角度分量θ在本文中係稱作光束之「仰角分量(elevation component)」或「仰角(elevation angle)」。在本文中,角度分量係稱作光束之「方位分量(azimuth component)」或「方位角(azimuth angle)」。根據定義,仰角θ係為一垂直平面(例如,垂直於多光束繞射格柵之一平面)中之一角度,而方位角係為一水平平面(例如,平行於多光束繞射格柵平面)中之一角度。第1圖顯示了根據本文所述原理之一實例的具有一特定主角度方向之一光束10之角度分量{θ,}。另外,根據本文中之定義,該光束係自一特定點發射或散發。即,根據定義,該光束具有一與多光束繞射格柵內之一特定起點相關聯之中心射線。第1圖也顯示了光束的起點O。在第1圖中,入射光的傳導方向的範例是以粗體箭頭12所顯示。 Specifically, according to the definition herein, one of the beams produced by the multi-beam diffraction grating has an angular component { θ , } gives the main angle direction. The angular component θ is referred to herein as the "elevation component" or "elevation angle" of the beam. In this paper, the angular component It is called the "azimuth component" or "azimuth angle" of the beam. By definition, the elevation angle θ is an angle in a vertical plane (eg, perpendicular to one plane of the multi-beam diffraction grating), and the azimuth angle It is an angle in a horizontal plane (for example, parallel to the plane of the multi-beam diffraction grating). Figure 1 shows an angular component { θ of a beam 10 having a particular principal angular direction, according to one example of the principles described herein. }. Additionally, the beam is emitted or emitted from a particular point in accordance with the definition herein. That is, by definition, the beam has a central ray associated with a particular starting point within the multi-beam diffraction grating. Figure 1 also shows the starting point O of the beam. In Fig. 1, an example of the direction of conduction of incident light is shown by bold arrow 12.

根據本發明的各個實施例,可透過多光束繞射格柵與其結構特徵(即,「繞射特徵」)之特性來控制下列各項其中之一或二者:光束之角度方向性,及多光束繞射格柵相對於一個以上的光束的波長或色彩選擇性。可用於控制角度方向性及波長選擇性之特性包含但不限於如下各項其中之一或多者:格柵長度、格柵間距(結構特徵間隔)、結構特徵的形 狀、特徵的尺寸(例如,凹槽或脊部的寬度),以及格柵的定向。在某些實例中,各種用於控制之特性可為在一光束之起點附近局部處之特性。 According to various embodiments of the present invention, one or both of the following characteristics can be controlled by the characteristics of the multi-beam diffraction grating and its structural features (ie, "diffractive features": the angular directivity of the beam, and more The beam diffraction grating is wavelength or color selective with respect to more than one beam. Characteristics that can be used to control angular directivity and wavelength selectivity include, but are not limited to, one or more of the following: grid length, grid spacing (structural feature spacing), shape of structural features The size of the feature, such as the width of the groove or ridge, and the orientation of the grid. In some instances, various characteristics for control may be localized properties near the beginning of a beam.

根據本說明書中所描述的各個實施例,由繞射格柵(例如,多光束繞射格柵)耦合出導光體的光係代表了電子顯示器的像素。尤其,具有多光束繞射格柵並且用於產生具有不同主要角度方向之光束的導光體,可以是電子顯示器的背光板的一部分,或者,可以是結合電子顯示器一起使用的背光板的一部分。其中,所述的電子顯示器可以包括但不限於「裸眼」的三維電子顯示器(又稱為多視角或全像電子顯示器,或者稱為立體顯示器)。由此可知,透過多光束繞射格柵將導光從導光體中耦合出而產生的具有不同定向的光束,可以是或可以代表三維電子顯示器的「三維像素」。此外,該些三維像素係對應於三維電子顯示器的不同三維視角或三維觀看角度。 In accordance with various embodiments described in this specification, a light system that is coupled out of a light guide by a diffraction grating (eg, a multi-beam diffraction grating) represents a pixel of an electronic display. In particular, a light guide having a multi-beam diffraction grating and used to generate beams having different major angular directions may be part of a backlight of an electronic display or may be part of a backlight used in conjunction with an electronic display. The electronic display may include, but is not limited to, a “naked eye” three-dimensional electronic display (also referred to as a multi-view or holographic electronic display, or a stereoscopic display). It can be seen that the light beams with different orientations generated by coupling the light guides out of the light guide through the multi-beam diffraction grating may be or may represent "three-dimensional pixels" of the three-dimensional electronic display. In addition, the three-dimensional pixels correspond to different three-dimensional viewing angles or three-dimensional viewing angles of the three-dimensional electronic display.

在本文中,「準直」反射器係被定義為具有曲形並且使準直反射器(例如,準直鏡)所反射過的光準直的反射器。舉例來說,準直反射器的反射表面可以具有拋物線曲線或拋物線形狀的特徵。在另一實例中,準直反射器可以為類拋物線形的反射器。「類拋物線形」在此係指拋物線形反射器的曲形反射表面與「真正」的拋物線曲線有所偏離,藉以達到預定的反射特質(例如,準直度)。在某些實施例中,準直反射器可以為連續的反射器(即,具有大致平滑且連續的反射表面),而在其他的實施例中,反射器可以包括用於提供光線準直的菲涅耳反射器(Fresnel reflector)或菲涅耳反射鏡(Fresnel mirror)。根據本發明的各個實施例,由準直反射器所提供的準直量可以在預定的準直程度或準直量之間根據 不同的實施例而有所不同。此外,準直反射器可以被配置為提供一個或兩個正交方向上的準直(例如,一垂直方向以及一水平方向)。換句話說,根據本發明的各個實施例,準直反射器可以具有在一個或兩個正交方向上的拋物線形或類拋物線形。 As used herein, a "collimated" reflector is defined as a reflector that has a curved shape and collimates light reflected by a collimating reflector (eg, a collimating mirror). For example, the reflective surface of the collimating reflector can have the characteristics of a parabolic curve or a parabolic shape. In another example, the collimating reflector can be a parabolic reflector. By "parabolic-like" it is meant herein that the curved reflective surface of the parabolic reflector deviates from the "true" parabolic curve to achieve a predetermined reflective characteristic (eg, collimation). In some embodiments, the collimating reflector can be a continuous reflector (ie, having a substantially smooth and continuous reflective surface), while in other embodiments, the reflector can include a phenanthrene for providing light collimation. Fresnel reflector or Fresnel mirror. According to various embodiments of the present invention, the amount of collimation provided by the collimating reflector may be between a predetermined degree of collimation or a quantity of collimation according to Different embodiments vary. Additionally, the collimating reflector can be configured to provide alignment in one or two orthogonal directions (eg, a vertical direction and a horizontal direction). In other words, in accordance with various embodiments of the present invention, the collimating reflector can have a parabolic or parabolic shape in one or two orthogonal directions.

在本文中,「光源」一詞係被定義為光的來源(例如,提供並且發出光線的裝置或元件)。舉例來說,光源可以為當啟動時會發出光線的發光二極體(light emitting diode,LED)。在此,光源可以為任何一種來源的光或光發射器,其係包括但不限於,一個以上的LED、一雷射、一有機發光二極體(organic light emitting diode,OLED)、高分子發光二極體、等離子光發射器、日光燈、白熾燈,以及任何其他視覺可見的燈光來源。由光源所產生的光線可以具有顏色,或者可以具有一定範圍的波長。由此,「具有不同顏色的多個光源」在本說明書中係被明確地定義為一組或者一群光源,其中,該些光源中的至少一個光源所產生的光的顏色或等同的波長,與該些光源中的至少另一個光源所產生的顏色或波長不同。此外,只要該些光源中有兩個不同顏色的光源(即,在至少兩個光源之間產生不同顏色的光),「具有不同顏色的多個光源」可以包括具有相同或大致類似的顏色的一個以上的光源。因此,根據本文中的定義,具有不同顏色的多個光源可以包括了產生第一顏色的第一光源以及產生第二顏色的第二光源,其中,第一顏色不同於第二顏色。 As used herein, the term "light source" is defined as the source of light (eg, a device or component that provides and emits light). For example, the light source can be a light emitting diode (LED) that emits light when activated. Here, the light source may be any source of light or light emitter, including but not limited to, more than one LED, a laser, an organic light emitting diode (OLED), a polymer light emitting Diodes, plasma light emitters, fluorescent lamps, incandescent lamps, and any other visually visible source of light. The light produced by the light source may have a color or may have a range of wavelengths. Thus, "a plurality of light sources having different colors" are explicitly defined in the present specification as a group or a group of light sources, wherein the color or equivalent wavelength of light generated by at least one of the light sources is At least one of the light sources produces a different color or wavelength. In addition, as long as there are two different color light sources in the light sources (ie, different colors of light are generated between the at least two light sources), "a plurality of light sources having different colors" may include the same or substantially similar colors. More than one light source. Thus, according to the definition herein, a plurality of light sources having different colors may include a first light source that produces a first color and a second light source that produces a second color, wherein the first color is different from the second color.

此外,在本說明書中所使用的冠詞「一」具有專利領域中的普遍含義,即,意指「一個或多個」。例如,「一格柵」指一個或多個格柵,更確切來說,「該格柵」於此意指「該(等)格柵」。此外,任何本 文所指的「頂部」、「底部」、「上部」、「下部」、「上」、「下」、「前」、「後」、「左」、或「右」並非意使其成為任何限制。本文中,當應用到一個值時,除非有另外特別說明,「大約」一詞一般是指用於產生該值的設備的公差範圍內,或在一些實施例中,是指正負10%,或正負5%,或正負1%。此外,舉例來說,「大致」一詞在本文中代表了大多數、幾乎全部或全部,或者代表落於大約51%至大約100%之間的範圍中的值。再者,本說明書中的實施例旨在對本發明進行說明,並且是為了討論之目的呈現,而不應用於限制本發明。 In addition, the article "a" used in the specification has the ordinary meaning in the patent field, that is, means "one or more." For example, "a grid" means one or more grids, and more specifically, "the grid" herein means "the grid". In addition, any of this The terms "top", "bottom", "upper", "lower", "upper", "lower", "front", "back", "left" or "right" are not intended to be any limit. As used herein, when applied to a value, unless specifically stated otherwise, the term "about" generally refers to the tolerance of the device used to produce the value, or in some embodiments, plus or minus 10%, or Positive or negative 5%, or plus or minus 1%. Moreover, by way of example, the term "substantially" is used herein to mean a majority, almost all or all, or a value falling within the range of between about 51% and about 100%. Furthermore, the embodiments of the present invention are intended to be illustrative, and are not intended to limit the invention.

10‧‧‧光束 10‧‧‧ Beam

12‧‧‧粗體箭頭 12‧‧‧bold arrow

100‧‧‧雙向光學準直器 100‧‧‧Two-way optical collimator

102‧‧‧光/接收光 102‧‧‧Light/receiving light

104‧‧‧準直光/雙向準直光 104‧‧‧ Collimated light / bidirectional collimated light

104’‧‧‧垂直地準直的光 104’‧‧‧Vertically collimated light

110‧‧‧垂直準直器 110‧‧‧Vertical collimator

110a‧‧‧第一垂直準直器 110a‧‧‧First vertical collimator

110b‧‧‧第二垂直準直器 110b‧‧‧Second vertical collimator

112‧‧‧光學反射器/類拋物線形反射器 112‧‧‧Optical Reflector/Parabolic Reflector

112’‧‧‧光學反射器 112’‧‧‧Optical reflector

120‧‧‧水平準直器 120‧‧‧Horizontal collimator

120a‧‧‧第一邊緣 120a‧‧‧ first edge

120b‧‧‧第二邊緣 120b‧‧‧ second edge

122‧‧‧光學反射器/類拋物線形反射器 122‧‧‧Optical Reflector/Parabolic Reflector

122’‧‧‧子反射器 122'‧‧‧Sub reflector

122’a‧‧‧子反射器/第一子反射器 122'a‧‧‧Sub-reflector / first sub-reflector

122’b‧‧‧子反射器/第二子反射器 122'b‧‧‧Sub-reflector / second sub-reflector

200‧‧‧背光板 200‧‧‧Backlight board

202‧‧‧光/接收光 202‧‧‧Light/receiving light

204‧‧‧雙向準直光/導光束 204‧‧‧Two-way collimated light/guide beam

204’‧‧‧光/垂直地準直的光 204'‧‧‧Light/vertically collimated light

206‧‧‧發射光/光束 206‧‧‧ emitted light/beam

210‧‧‧雙向光學準直器/雙向準直器 210‧‧‧Two-way optical collimator/two-way collimator

212‧‧‧垂直準直器 212‧‧‧Vertical collimator

214‧‧‧水平準直器 214‧‧‧Horizontal collimator

220‧‧‧平板導光體 220‧‧‧Slab light guide

222‧‧‧黏著層 222‧‧‧Adhesive layer

230‧‧‧光源 230‧‧‧Light source

232‧‧‧光源/第一光源 232‧‧‧Light source / first light source

234‧‧‧光源/第二光源 234‧‧‧Light source/second light source

236‧‧‧光源/第三光源 236‧‧‧Light source/third light source

240‧‧‧多光束繞射格柵 240‧‧‧Multi-beam diffraction grating

240a‧‧‧繞射結構特徵 240a‧‧‧Diffraction structural features

240’‧‧‧第一端 240’‧‧‧ first end

240”‧‧‧第二端 240”‧‧‧second end

300‧‧‧三維電子顯示器 300‧‧‧3D electronic display

306‧‧‧光束 306‧‧‧ Beam

306’‧‧‧調變光束 306'‧‧‧ modulated beam

310‧‧‧雙向準直器/雙向光學準直器 310‧‧‧Two-way collimator/two-way optical collimator

320‧‧‧平板導光體 320‧‧‧Slab light guide

330‧‧‧多光束繞射格柵 330‧‧‧Multi-beam diffraction grating

340‧‧‧光源 340‧‧‧Light source

350‧‧‧光閥陣列 350‧‧‧Light Valve Array

400‧‧‧將光雙向準直的方法 400‧‧‧Method of bidirectional collimation of light

410‧‧‧步驟 410‧‧‧Steps

420‧‧‧步驟 420‧‧ steps

430‧‧‧步驟 430‧‧ steps

500‧‧‧三維電子顯示器的操作方法 500‧‧‧Three-dimensional electronic display operation method

510‧‧‧步驟 510‧‧ steps

d‧‧‧繞射間隔 d ‧‧‧Diagram interval

F‧‧‧焦點 F ‧‧‧ focus

H‧‧‧水平平面 H ‧‧‧ horizontal plane

{θ,}‧‧‧角度分量/主要角度方向 { θ , }‧‧‧Angle component/main angle direction

θ‧‧‧仰角 θ ‧‧‧ elevation angle

θ'‧‧‧非零值傳導角度/傾斜角度 θ '‧‧‧Non-zero conduction angle/tilt angle

‧‧‧方位角/方位分量 ‧‧‧Azimuth/Azimuth component

‧‧‧方位角 ‧‧Azimuth

按照此說明書中所描述的原理之各種示例性特徵,在參考附圖並結合下面的詳細描述下可以被更容易地理解,其中,相似的標號表示相似的結構元件,且該些附圖包括:第1圖為根據與本發明所描述的原理一致的一範例,顯示了具有主要角度方向的一光束的角度分量{θ,}的示意圖;第2A圖為根據與本發明所描述的原理一致的實施例,顯示了一雙向光學準直器的範例的立體圖;第2B圖為根據與本發明所描述的原理一致的實施例,顯示了一雙向光學準直器的範例的俯視圖;第2C圖為根據與本發明所描述的原理一致的實施例,顯示了第2B圖中的雙向光學準直器的剖視圖;第3圖為根據與本發明所描述的原理一致的實施例,顯示了具有傾斜角度的光學反射器的範例的示意代表圖; 第4A圖為根據與本發明所描述的原理一致的實施例,顯示了一雙向光學準直器的俯視圖;第4B圖為根據與本發明所描述的原理一致的另一實施例,顯示了一雙向光學準直器的範例的俯視圖;第4C圖為根據與本發明所描述的原理一致的再一實施例,顯示了一雙向光學準直器的範例的俯視圖;第5A圖為根據與本發明所描述的原理一致的實施例,顯示了一背光板的範例的俯視圖;第5B圖為根據與本發明所描述的原理一致的實施例,顯示了一背光板的範例的剖視圖;第5C圖為根據與本發明所描述的原理一致的實施例,顯示了一背光板的一部分的範例的剖視圖;第6A圖為根據與本發明所描述的原理一致的實施例,顯示了具有多光束繞射格柵的背光板的一部分的範例的剖視圖;第6B圖為根據與本發明所描述的原理一致的另一實施例,顯示了具有多光束繞射格柵的背光板的一部分的範例的剖視圖;第6C圖為根據與本發明所描述的原理一致的實施例,顯示了第6A圖或第6B圖中具有多光束繞射格柵的背光板部分的範例的剖視圖;第7圖為根據與本發明所描述的原理一致的實施例,顯示了一三維電子顯示器的範例的方塊圖;第8圖為根據與本發明所描述的原理一致的實施例,顯示了將光雙向準直的方法的範例的流程圖;以及第9圖為根據與本發明所描述的原理一致的實施例,顯示了三維電子顯示器的操作方法的範例的流程圖。 The various features of the principles described in the specification, which are in the 1 is an illustration of an angular component { θ of a light beam having a main angular direction, in accordance with an example consistent with the principles described herein. 2A is a perspective view showing an example of a bidirectional optical collimator according to an embodiment consistent with the principles described in the present invention; FIG. 2B is an embodiment consistent with the principles described in the present invention. A top view showing an example of a bidirectional optical collimator; FIG. 2C is a cross-sectional view showing the bidirectional optical collimator in Fig. 2B according to an embodiment consistent with the principles described in the present invention; A schematic representation of an example of an optical reflector having an oblique angle is shown in accordance with an embodiment consistent with the principles described herein; FIG. 4A is a diagram consistent with an embodiment of the present invention, showing a two-way a top view of an optical collimator; FIG. 4B is a top plan view showing an example of a bidirectional optical collimator in accordance with another embodiment consistent with the principles described herein; FIG. 4C is a view in accordance with the present invention A further embodiment consistent with the principle, showing a top view of an example of a bidirectional optical collimator; FIG. 5A is a diagram showing a backlight in accordance with an embodiment consistent with the principles described herein A top view of an example of a board; FIG. 5B is a cross-sectional view showing an example of a backlight panel in accordance with an embodiment consistent with the principles described herein; FIG. 5C is an embodiment consistent with the principles described herein, A cross-sectional view showing an example of a portion of a backlight panel; FIG. 6A is a cross-sectional view showing an example of a portion of a backlight panel having a multi-beam diffraction grating, in accordance with an embodiment consistent with the principles described herein; BRIEF DESCRIPTION OF THE DRAWINGS FIG. 6 is a cross-sectional view showing an example of a portion of a backlight having a multi-beam diffraction grating, in accordance with another embodiment consistent with the principles described herein; FIG. 6C is a diagram consistent with the principles described herein. Embodiments showing a cross-sectional view of an example of a backlight portion having a multi-beam diffraction grating in FIG. 6A or FIG. 6B; FIG. 7 is a view showing a three-dimensional embodiment in accordance with the principles described in the present invention A block diagram of an example of an electronic display; FIG. 8 is a flow chart showing an example of a method of bidirectionally collimating light in accordance with an embodiment consistent with the principles described herein; Figure 9 is a flow chart showing an example of a method of operation of a three-dimensional electronic display in accordance with an embodiment consistent with the principles described herein.

某些特定的例子可能會具有其他相較於上述圖式中的特徵而言相同、額外或者可以將之取代的特徵。在下文中將參照圖式針對這些特徵以及其他的特徵進行詳細說明。 Certain specific examples may have other features that are the same, additional, or can be substituted for features in the above figures. These and other features will be described in detail below with reference to the drawings.

根據本說明書的某些實施例,本發明係提供了一種雙向光學準直器。第2A圖為根據與本發明所描述的原理一致的實施例,顯示了一雙向光學準直器的範例的立體圖。第2B圖為根據與本發明所描述的原理一致的實施例,顯示了一雙向光學準直器的範例的俯視圖。第2C圖為根據與本發明所描述的原理一致的實施例,顯示了第2B圖中的雙向光學準直器的剖視圖。根據本發明的各個實施例,雙向光學準直器100係用於將所接收到的光在至少兩個不同方向上準直,或者將所接收到的光相對於至少兩個不同方向準直。 In accordance with certain embodiments of the present specification, the present invention provides a bidirectional optical collimator. 2A is a perspective view showing an example of a bidirectional optical collimator in accordance with an embodiment consistent with the principles described herein. 2B is a top plan view showing an example of a bidirectional optical collimator in accordance with an embodiment consistent with the principles described herein. 2C is a cross-sectional view showing the bidirectional optical collimator of FIG. 2B in accordance with an embodiment consistent with the principles described herein. In accordance with various embodiments of the present invention, the bi-directional optical collimator 100 is for collimating received light in at least two different directions or collimating the received light relative to at least two different directions.

更具體來說,如第2A圖以及第2C圖所示,雙向光學準直器100係用於接收光102。在某些實例中,由雙向光學準直器100所接收的光102可以大致為非準直的光。舉例來說,光102可以由大致非準直的光源(未顯示)所提供,且由雙向光學準直器100所接收的光是來自該大致非準直的光源。在另一實例中,所接收到的光102可以為部分準直的光(例如,由包括透鏡或者使用某些其他的局部準直裝置的光源所提供)。 More specifically, as shown in FIGS. 2A and 2C, the bidirectional optical collimator 100 is for receiving light 102. In some examples, light 102 received by bi-directional optical collimator 100 can be substantially non-collimated light. For example, light 102 can be provided by a substantially non-collimated light source (not shown), and the light received by bidirectional optical collimator 100 is from the substantially non-collimated light source. In another example, the received light 102 can be partially collimated light (eg, provided by a light source that includes a lens or using some other local collimating device).

第2A圖-第2B圖中顯示的雙向光學準直器100,係用於準直所接收的光102,並且在雙向光學準直器100的一輸出部(例如,輸入埠、輸出平面、輸出表面等)提供準直光104。根據本發明的各個實施例,提 供於雙向光學準直器的輸出部的準直光104係至少在兩個方向上被準直或至少大致地被準直。由此,準直光104可以被稱為「雙向」準直光。 The bidirectional optical collimator 100 shown in Figures 2A-B is used to collimate the received light 102 and is at an output of the bidirectional optical collimator 100 (e.g., input 埠, output plane, output) The surface, etc.) provides collimated light 104. According to various embodiments of the present invention, The collimated light 104 for the output of the bi-directional optical collimator is collimated or at least substantially collimated in at least two directions. Thus, collimated light 104 can be referred to as "two-way" collimated light.

尤其,根據本說明書中的定義,雙向準直光104係在大致與雙向準直光104的傳導方向正交的兩個方向上被準直。此外,根據本文中的定義,所述的兩個準直方向係彼此互相正交。舉例來說,雙向準直光104可以被在一水平方向(例如,在x-y平面上)或者相對於所述的水平方向上被準直,並且可以在一垂直方向(例如,z方向)或者相對於所述的垂直方向上被準直。在此,由雙向光學準直器100所提供的雙向準直光104,係透過範例而非限制的方式同時被水平地準直及垂直地準直,或者,在水平方向與垂直方向上被等同地準直(即,舉例來說,水平方向與垂直方向可以相對於任何的參考框架所決定)。 In particular, bidirectional collimated light 104 is collimated in two directions that are substantially orthogonal to the direction of conduction of bidirectional collimated light 104, as defined in this specification. Moreover, according to the definition herein, the two collimating directions are orthogonal to each other. For example, the bi-directional collimated light 104 can be collimated in a horizontal direction (eg, on the xy plane) or relative to the horizontal direction, and can be in a vertical direction (eg, z-direction) or relative It is collimated in the vertical direction. Here, the bidirectional collimated light 104 provided by the bidirectional optical collimator 100 is simultaneously collimated and vertically collimated horizontally by way of example and not limitation, or is equivalent in horizontal and vertical directions. Ground alignment (ie, for example, the horizontal and vertical directions may be determined relative to any reference frame).

此外,根據本發明的各個實施例,雙向光學準直器100係用以在雙向光學準直器的輸出部以非零值傳導角度提供雙向準直光104。舉例來說,所述的非零值傳導角度可以是相對於雙向光學準直器100的一水平平面的相對角度,或者可以是相對於該水平平面所定義的角度。如本說明書中的定義,所述的「非零值傳導角度」是相對於一平面(例如,水平平面或x-y平面)的角度,或者,如同本說明書中所述,是相對於等同導光體的一表面的角度。在某些實例中,雙向準直光104的非零值傳導角度可以藉於大約10度與大約50度之間;或者,在某些實例中,可以介於大約20度以及大約40度之間;或者,可以介於大約25度以及大約35度之間。舉例來說,所述的非零值傳導角度可以為大約30度。在其他的實例中,所述的非零值傳導角度可以大約為20度,或者大約為25度,或者大約為35 度。此外,如下文中所述,根據本發明的某些實施例,所述的非零值傳導角度係同時大於零並且小於導光體中的完全內部反射的關鍵角度。 Moreover, in accordance with various embodiments of the present invention, the bi-directional optical collimator 100 is operative to provide bi-directional collimated light 104 at a non-zero value conduction angle at the output of the bi-directional optical collimator. For example, the non-zero value conduction angle may be a relative angle with respect to a horizontal plane of the bidirectional optical collimator 100, or may be an angle defined relative to the horizontal plane. As defined in this specification, the "non-zero value conduction angle" is an angle relative to a plane (eg, a horizontal plane or an xy plane) or, as described in this specification, relative to an equivalent light guide. The angle of a surface. In some examples, the non-zero value conduction angle of the bi-directional collimated light 104 can be between about 10 degrees and about 50 degrees; or, in some instances, between about 20 degrees and about 40 degrees. Or, it can be between about 25 degrees and about 35 degrees. For example, the non-zero value conduction angle can be approximately 30 degrees. In other examples, the non-zero value conduction angle may be approximately 20 degrees, or approximately 25 degrees, or approximately 35 degrees. degree. Moreover, as described below, in accordance with certain embodiments of the present invention, the non-zero value conduction angle is simultaneously greater than zero and less than a critical angle of total internal reflection in the light guide.

如第2A圖與第2C圖所示,雙向光學準直器100係包括一垂直準直器110。所述的垂直準直器110係用於將光往一垂直方向(即,z方向)上準直。第2C圖為根據與本發明所描述的原理一致的實施例,顯示了垂直準直器110的剖視圖。此外,在第2C圖中,接收的光102係以進入垂直準直器110的箭頭顯示,作為範例,所述的箭頭係位於垂直準直器110的一輸入部。在垂直方向上被準直之後成為「垂直的」準直光104的離開垂直準直器110的光,在第2C圖中係以另一個箭頭顯示(即,第2B圖與第2C圖中所顯示的虛線箭頭)。根據本發明的各個實施例,垂直準直器110可以包括各種準直器種類中的任一種,其可以包括但不限於,準直光學反射器、準直透鏡以及被配置以提供準直效果的繞射格柵。 As shown in Figures 2A and 2C, the bidirectional optical collimator 100 includes a vertical collimator 110. The vertical collimator 110 is used to collimate light in a vertical direction (ie, the z direction). 2C is a cross-sectional view showing the vertical collimator 110 in accordance with an embodiment consistent with the principles described herein. Moreover, in FIG. 2C, the received light 102 is shown as an arrow entering the vertical collimator 110, which is exemplified by an input portion of the vertical collimator 110. The light exiting the vertical collimator 110 that becomes "vertical" collimated light 104 after being collimated in the vertical direction is shown by another arrow in FIG. 2C (ie, in FIGS. 2B and 2C) The dotted arrow shown). Vertical collimator 110 may include any of a variety of collimator categories, including, but not limited to, collimating optical reflectors, collimating lenses, and configured to provide a collimating effect, in accordance with various embodiments of the present invention. Diffraction grille.

尤其,如第2C圖所示,垂直準直器110可以包括具有拋物線形狀的光學反射器112。光學反射器112的拋物線形狀係被配置以提供垂直方向的準直。在某些實施例中,光學反射器112的拋物線形狀可以具有所謂的「純粹」的拋物線形。在其他的實施例中,可以對光學反射器112的拋物線形狀進行調整、最佳化或者「塑形」,藉此增強或改變光學反射器112的準直特性。舉例來說,光學準直器112的拋物線形狀可以被調整為類拋物線形的反射器,藉此將從光源接收的具有某些方向性失真或局部(儘管是非理想或不需要的)準直的光102的垂直準直最佳化。因此,光學反射器112可以被稱為「類」拋物線形反射器112。此外,類拋物線形反射器112可以在垂直方向及水平方向上被塑形(例如,藉以控制垂直準 直或者將垂直準直最佳化)或者具有最佳化的形狀。舉例來說,除了在垂直方向上塑形以外,類拋物線形反射器112也可以在水平方向上具有最佳化的形狀,藉此決定垂直地準直的光104’在水平方向上的分佈,或者對其提供控制。儘管如此,為了方便在本文中進行說明,除非有必要特別進行明確區分的情況以外,不論光學反射器112係具有純粹的拋物線形狀或者為類拋物線形反射器112,垂直準直器110的光學反射器112通稱為具有「拋物線形狀」。 In particular, as shown in FIG. 2C, the vertical collimator 110 can include an optical reflector 112 having a parabolic shape. The parabolic shape of the optical reflector 112 is configured to provide collimation in the vertical direction. In some embodiments, the parabolic shape of the optical reflector 112 can have a so-called "pure" parabola shape. In other embodiments, the parabolic shape of the optical reflector 112 can be adjusted, optimized, or "shaped", thereby enhancing or changing the collimating characteristics of the optical reflector 112. For example, the parabolic shape of the optical collimator 112 can be adjusted to a parabolic-like reflector whereby certain directional distortions or partial (albeit non-ideal or unwanted) collimation received from the source are received. The vertical collimation of light 102 is optimized. Thus, optical reflector 112 can be referred to as a "like" parabolic reflector 112. In addition, the parabolic reflector 112 can be shaped in the vertical and horizontal directions (eg, to control vertical alignment) Straight or optimize vertical alignment) or have an optimized shape. For example, in addition to shaping in the vertical direction, the parabolic reflector 112 can also have an optimized shape in the horizontal direction, thereby determining the horizontal distribution of the vertically collimated light 104', Or provide control over it. Nonetheless, for ease of explanation herein, optical reflections of the vertical collimator 110, whether the optical reflector 112 has a pure parabolic shape or is a parabolic reflector 112, unless otherwise specifically distinguished. The device 112 is generally referred to as having a "parabolic shape."

此外,在某些實施例中(例如,如第2C圖所示),垂直準直器110的光學反射器可以具有一傾斜角度(即,光學反射器112係以所述的傾斜角度傾斜)。所述的傾斜角度可以用於提供垂直地準直的光104’的非零值傳導角度,並且作為延伸,可以用於提供雙向準直光104的非零值傳導角度(或者至少提供該角度的一部分)。換言之,光學反射器112本身是以傾斜的方式設置。在某些實例中,除了將光學反射器112以傾斜方式設置以外,可以額外透過對類拋物線形反射器112進行塑形來提供所述的傾斜角度,或者可以透過上述方式取代傾斜設置的方式。在另一實例中,可以透過相對於光學反射器112的拋物線形的焦點移動提供接收光102的光源的位置來提供所述的傾斜角度。此外,根據本發明的各個實施例,當使用另一種類的準直器時(例如,準直透鏡或繞射格柵),可以將其他種類的準直器「傾斜」設置以提供所述的傾斜角度。 Moreover, in some embodiments (e.g., as shown in Figure 2C), the optical reflector of the vertical collimator 110 can have an oblique angle (i.e., the optical reflector 112 is tilted at the angle of inclination described). The angle of inclination can be used to provide a non-zero value conduction angle of the vertically collimated light 104' and, as an extension, can be used to provide a non-zero value conduction angle of the bidirectional collimated light 104 (or at least provide the angle) portion). In other words, the optical reflector 112 itself is disposed in an inclined manner. In some instances, in addition to arranging the optical reflector 112 in an oblique manner, the angle of inclination can be additionally provided by shaping the parabolic reflector 112 to provide the angle of inclination, or the manner of tilting can be replaced by the above. In another example, the angle of inclination can be provided by moving the position of the source providing the received light 102 relative to the parabolic focus of the optical reflector 112. Moreover, in accordance with various embodiments of the present invention, when another type of collimator (eg, a collimating lens or a diffraction grating) is used, other types of collimators may be "tilted" to provide the slope.

第3圖為根據與本發明所描述的原理一致的實施例,顯示了具有傾斜角度的光學反射器的範例的示意代表圖。更具體來說,如第3圖所示,光學反射器112係以對應於或者用於提供具有非零值傳導角度θ'的 垂直地準直的光104’的傾斜角度向下傾斜。第3圖也顯示了代表水平平面H的虛線,上述的非零值傳導角度θ'係相對於水平平面H所定義。此外,作為本發明的範例而非限制,第3圖中透過另一(加粗的)虛線顯示了沒有傾斜設置的光學反射器112’,藉此顯示出傾斜的光學反射器112的傾斜角度θ'與非零值傳導角度θ'為相同的角度。值得一提的是,如圖中所示,作為本發明的範例而非限制,傾斜的光學反射器112的傾斜角度θ'與非零值傳導角度θ'為彼此相同的角度。從光源所接收到的位於光學反射器112的焦點F附近的光102,在第3圖中係顯示為一對分散並且入射於光學反射器112上的光線(即,實線箭頭)。相似地,離開光學反射器112的垂直地準直的光104’係顯示為一對彼此間大致平行的光線(即,虛線箭頭)。此外,垂直地準直的光104’在圖中係顯示為具有由光學反射器的傾斜角度所提供的非零值傳導角度θ'。 Figure 3 is a schematic representation of an example of an optical reflector having an angle of inclination, in accordance with an embodiment consistent with the principles described herein. More specifically, as shown in FIG. 3, the optical reflector 112 is tilted downwardly at an oblique angle corresponding to or for providing vertically collimated light 104' having a non-zero value conduction angle θ '. FIG 3 also shows a dashed line represents the horizontal plane H, the above-described non-zero value of conduction angle θ 'with respect to the horizontal plane H based defined. Further, as an example and not limitation of the present invention, in FIG. 3, an optical reflector 112' having no oblique arrangement is shown by another (bold) broken line, thereby showing the inclination angle θ of the inclined optical reflector 112. 'The same angle as the non-zero value conduction angle θ '. It is to be noted that, as shown in the drawings, as an example and not limitation of the present invention, the inclination angle θ ' of the inclined optical reflector 112 and the non-zero value conduction angle θ ' are the same angles with each other. The light 102 received from the light source near the focus F of the optical reflector 112 is shown in Fig. 3 as a pair of rays that are scattered and incident on the optical reflector 112 (i.e., solid arrows). Similarly, the vertically collimated light 104' exiting the optical reflector 112 is shown as a pair of rays that are substantially parallel to one another (i.e., dashed arrows). Furthermore, the vertically collimated light 104' is shown in the figure as having a non-zero value conduction angle θ ' provided by the tilt angle of the optical reflector.

請再次參照第2A圖-第2B圖,雙向光學準直器100係進一步包括一水平準直器120。水平準直器120係用於將光往水平方向準直(即,如圖中所示,在x-y平面上),其中,水平方向係大致正交於所述的垂直方向(即,如圖中所示,z方向)。根據本發明的各個實施例,水平準直器120係設置在可以從垂直準直器110接收垂直地準直的光104’的位置。尤其,如第2A圖-第2B圖所示,水平準直器120是位在靠近垂直準直器110的輸出部的位置。水平準直器120係用於將來自垂直準直器110的垂直地準直的光104’水平地準直,藉此在雙向光學準直器100的輸出部提供雙向準直光104。 Referring again to FIGS. 2A-2B, the bidirectional optical collimator 100 further includes a horizontal collimator 120. The horizontal collimator 120 is for collimating light in a horizontal direction (ie, as shown in the figure, on the xy plane), wherein the horizontal direction is substantially orthogonal to the vertical direction (ie, as shown in the figure) Shown in the z direction). In accordance with various embodiments of the present invention, the horizontal collimator 120 is disposed at a position that can receive vertically collimated light 104' from the vertical collimator 110. In particular, as shown in FIGS. 2A-2B, the horizontal collimator 120 is located near the output of the vertical collimator 110. Horizontal collimator 120 is used to horizontally collimate vertically collimated light 104' from vertical collimator 110, thereby providing bidirectional collimated light 104 at the output of bidirectional optical collimator 100.

第2B圖中顯示了水平準直器120的俯視圖,圖中顯示了垂直地準直的光104’作為光線(即,如虛線箭頭所示)離開垂直準直器110並且撞擊水平準直器120。離開水平準直器120而成為雙向準直光104(即,水平地準直與垂直地準直)的光,在圖中係顯示為多條大致平行並且往遠離水平準直器120的方向傳導的光線。根據本發明的各個實施例,水平準直器120可以包括各種類型的準直器中的任一種,其可以包括但不限於,準直光學反射器、準直透鏡以及經配置以提供準直效果的繞射格柵。 A top view of the horizontal collimator 120 is shown in FIG. 2B, which shows vertically collimated light 104' as light (ie, as indicated by the dashed arrow) exiting the vertical collimator 110 and striking the horizontal collimator 120. . Light exiting the horizontal collimator 120 to become bi-directional collimated light 104 (i.e., horizontally collimated and vertically collimated) is shown in the figure as being substantially parallel and conducting away from the horizontal collimator 120. The light. According to various embodiments of the invention, the horizontal collimator 120 may include any of various types of collimators, which may include, but are not limited to, collimating optical reflectors, collimating lenses, and configured to provide collimation effects The diffraction grating.

更具體來說,如第2A圖與第2B圖所示,水平準直器120可以包括具有拋物線形狀的一光學反射器122。光學反射器122的拋物線形狀係被配置以提供水平方向的準直。與垂直準直器110的光學反射器112相同,在某些實施例中,水平準直器120的光學反射器122的拋物線形狀可以具有所謂的「純粹」的拋物線形。在其他的實施例中,可以對光學反射器122的拋物線形狀進行調整、最佳化或者「塑形」,藉此增強或改變光學反射器122的準直特性。尤其,光學準直器122的拋物線形狀可以被調整為類拋物線形的反射器,藉此將從光源接收的垂直地準直的光104’中具有某些方向性失真或其他非理想或不需要的光水平準直最佳化。因此,水平準直器120的光學反射器122可以被稱為「類」拋物線形反射器122。為了方便在本文中進行說明,除非有必要特別進行明確區分的情況以外,不論光學反射器122係具有純粹的拋物線形狀或者為類拋物線形反射器122,水平準直器120的光學反射器122通稱為具有「拋物線形狀」。 More specifically, as shown in FIGS. 2A and 2B, the horizontal collimator 120 may include an optical reflector 122 having a parabolic shape. The parabolic shape of the optical reflector 122 is configured to provide collimation in the horizontal direction. As with the optical reflector 112 of the vertical collimator 110, in some embodiments, the parabolic shape of the optical reflector 122 of the horizontal collimator 120 can have a so-called "pure" parabola shape. In other embodiments, the parabolic shape of the optical reflector 122 can be adjusted, optimized, or "shaped", thereby enhancing or changing the collimating characteristics of the optical reflector 122. In particular, the parabolic shape of the optical collimator 122 can be adjusted to a parabolic-like reflector whereby some of the vertically aligned light 104' received from the source has some directional distortion or other non-ideal or unwanted The light level collimation is optimized. Thus, the optical reflector 122 of the horizontal collimator 120 can be referred to as a "like" parabolic reflector 122. For convenience of explanation herein, the optical reflector 122 of the horizontal collimator 120 is generally referred to as an optical reflector 122, whether it has a pure parabolic shape or a parabolic reflector 122, unless it is necessary to specifically distinguish it. It has a "parabolic shape".

此外,在某些實施例中(未顯示於圖中),水平準直器120的光學反射器122可以具有一傾斜角度。在某些實施例中,所述的傾斜角 度可以用於提供雙向準直光104的非零值傳導角度。在其他實施例中,所述的傾斜角度可以被配置以提供非零值傳導角度的一部分,藉此增加垂直準直器110所提供的非零值傳導角度。換言之,光學反射器122本身是以傾斜的方式設置,或者等同的光學反射器122的拋物線形係以傾斜的方式設置。在某些實例中,除了將光學反射器122以傾斜方式設置以外,可以額外透過對類拋物線形反射器122進行塑形來提供所述的傾斜角度,或者可以透過上述方式取代傾斜設置的方式。在另一實例中,可以透過相對於水平準直器120的光學反射器122的拋物線形的焦點移動垂直準直器110的位置,來提供所述的傾斜角度。此外,根據本發明的各個實施例,當使用另一種種類的準直器時(例如,準直透鏡或繞射格柵),可以將其他種類的準直器「傾斜」設置以提供所述的傾斜角度。 Moreover, in some embodiments (not shown), the optical reflector 122 of the horizontal collimator 120 can have an angle of inclination. In some embodiments, the tilt angle The degree can be used to provide a non-zero value conduction angle for the bidirectional collimated light 104. In other embodiments, the tilt angle can be configured to provide a portion of a non-zero value conduction angle, thereby increasing the non-zero value conduction angle provided by the vertical collimator 110. In other words, the optical reflector 122 itself is disposed in an inclined manner, or the parabolic shape of the equivalent optical reflector 122 is disposed in an inclined manner. In some instances, in addition to arranging the optical reflector 122 in an oblique manner, the angle of inclination can be additionally provided by shaping the parabolic reflector 122 to provide the angle of inclination, or the manner of tilting can be replaced by the above. In another example, the angle of inclination can be provided by moving the position of the vertical collimator 110 relative to the parabolic focus of the optical reflector 122 of the horizontal collimator 120. Moreover, in accordance with various embodiments of the present invention, when another type of collimator (eg, a collimating lens or a diffraction grating) is used, other types of collimators may be "tilted" to provide the slope.

如第2A圖以及第2B圖所示,水平準直器120的光學反射器122可以被配置為大致橫跨雙向光學準直器100的輸出孔。在某些實施例中,水平準直器120係被配置以提供具有大致橫跨輸出孔均勻的分佈的雙向準直光104。尤其,光學反射器122可以橫跨所述的輸出孔,藉此提供大致均勻分布的雙向準直光104。 As shown in FIGS. 2A and 2B, the optical reflector 122 of the horizontal collimator 120 can be configured to span substantially the output aperture of the bi-directional optical collimator 100. In some embodiments, the horizontal collimator 120 is configured to provide bi-directional collimated light 104 having a uniform distribution across the output aperture. In particular, optical reflector 122 can span the output apertures thereby providing substantially evenly distributed bidirectional collimated light 104.

在某些實施例中,水平準直器120的光學反射器122可以具有多個子反射器122’。更具體而言,子反射器122’可以以彼此結合的形式橫跨雙向光學準直器100的輸出孔。根據本發明的各個實施例,各個子反射器122’可以具有拋物線形的反射表面。舉例來說,光學反射器122可以是菲涅耳反射器。 In some embodiments, the optical reflector 122 of the horizontal collimator 120 can have a plurality of sub-reflectors 122'. More specifically, the sub-reflectors 122' may span the output apertures of the bi-directional optical collimator 100 in combination with one another. According to various embodiments of the invention, each sub-reflector 122' may have a parabolic reflective surface. For example, optical reflector 122 can be a Fresnel reflector.

第4A圖為根據與本發明所描述的原理一致的實施例,顯示了一雙向光學準直器100的範例的俯視圖。更具體來說,第4A圖中顯示的水平準直器120的光學反射器122為具有多個子反射器122’的菲涅耳反射器。第4A圖中同時顯示了垂直準直器110以及雙向準直光104。 4A is a top plan view showing an example of a bidirectional optical collimator 100 in accordance with an embodiment consistent with the principles described herein. More specifically, the optical reflector 122 of the horizontal collimator 120 shown in Figure 4A is a Fresnel reflector having a plurality of sub-reflectors 122'. Vertical collimator 110 and bidirectional collimated light 104 are also shown in Figure 4A.

第4B圖為根據與本發明所描述的原理一致的另一實施例,顯示了一雙向光學準直器100的範例的俯視圖。更具體來說,第4B圖中顯示的雙向光學準直器100包括了具有多個子反射器122’的水平準直器120,以及多個垂直準直器110。如第4B圖所示,水平準直器的該些子反射器中的第一子反射器122’a,係用以接收來自該些垂直準直器中位於水平準直器120的第一邊緣120a的第一垂直準直器110a的垂直地準直的光104’。此外,水平反射器的該些子反射器中的第二子反射器122’b,係用以接收來自該些垂直準直器中位於水平準直器120的第二邊緣120b的第二垂直準直器110b的垂直地準直的光104’。如圖中所示,第二邊緣120b係在對應於水平方向的水平平面中與第一邊緣120a相對。此外,第4B圖中也以範例的方式顯示了離開雙向光學準直器100的輸出孔的雙向準直光104的光線。 FIG. 4B is a top plan view showing an example of a bidirectional optical collimator 100 in accordance with another embodiment consistent with the principles described herein. More specifically, the bidirectional optical collimator 100 shown in Fig. 4B includes a horizontal collimator 120 having a plurality of sub-reflectors 122', and a plurality of vertical collimators 110. As shown in FIG. 4B, the first sub-reflector 122'a of the sub-reflectors of the horizontal collimator is for receiving the first edge from the vertical collimators at the horizontal collimator 120. The vertically collimated light 104' of the first vertical collimator 110a of 120a. In addition, the second sub-reflector 122'b of the plurality of sub-reflectors of the horizontal reflector is configured to receive a second vertical alignment from the second edge 120b of the horizontal collimator 120 of the vertical collimators. The vertically collimated light 104' of the straightener 110b. As shown in the figure, the second edge 120b is opposed to the first edge 120a in a horizontal plane corresponding to the horizontal direction. In addition, the light of the bidirectional collimated light 104 exiting the output aperture of the bidirectional optical collimator 100 is also shown by way of example in FIG. 4B.

第4C圖為根據與本發明所描述的原理一致的再一實施例,顯示了一雙向光學準直器100的範例的俯視圖。更具體來說,第4C圖中顯得雙向光學準直器100係包括了具有多個子反射器122’的水平準直器,以及多個垂直準直器110。如第4C圖所示,水平準直器的該些子反射器中的第一子反射器122’a,係用以接收來自該些垂直準直器中位在與第一子反射器122’a相對位置處的水平準直器120的第二邊緣120b的第二垂直準直器 110b的垂直地準直的光104’。此外,水平反射器的該些子反射器中的第二子反射器122’b,係用以接收來自該些垂直準直器中位在與第二子反射器122’b相對位置處的水平準直器120的第一邊緣120a的第一垂直準直器110a的垂直地準直的光104’。換言之,相較於第4B圖中所顯示的雙向光學準直器100來說,第4C圖中的子反射器122’a、122’b係用以接收水平準直器120的各個相對邊緣的垂直地準直的光104’。再者,如同在第4C圖中進一步所示,第4C圖中的雙向光學準直器100係將雙向準直光104提供於雙向光學準直器100的輸出孔。 FIG. 4C is a top plan view showing an example of a bidirectional optical collimator 100 in accordance with yet another embodiment consistent with the principles described herein. More specifically, the bidirectional optical collimator 100 is shown in Fig. 4C to include a horizontal collimator having a plurality of sub-reflectors 122', and a plurality of vertical collimators 110. As shown in FIG. 4C, the first sub-reflector 122'a of the sub-reflectors of the horizontal collimator is configured to receive a position from the vertical collimators and the first sub-reflector 122'. a second vertical collimator of the second edge 120b of the horizontal collimator 120 at a relative position Vertically collimated light 104' of 110b. In addition, the second sub-reflector 122'b of the sub-reflectors of the horizontal reflector is configured to receive a level from the vertical collimator at a position opposite to the second sub-reflector 122'b. The vertically collimated light 104' of the first vertical collimator 110a of the first edge 120a of the collimator 120. In other words, the sub-reflectors 122'a, 122'b in FIG. 4C are used to receive the respective opposite edges of the horizontal collimator 120, as compared to the bi-directional optical collimator 100 shown in FIG. 4B. Vertically collimated light 104'. Furthermore, as further shown in FIG. 4C, the bidirectional optical collimator 100 of FIG. 4C provides bidirectional collimated light 104 to the output aperture of the bidirectional optical collimator 100.

雖然圖中並未明確顯示,雙向光學準直器100可以包括具有兩個以上的子反射器122’的子反射器。相似地,垂直準直器110可以包括具有兩個以上的單獨的垂直準直器110的多個垂直準直器110。舉例來說,第4A圖-第4C圖中所示的兩個子反射器122’、122’a、122’b中的每一者可以被進一步分為兩個以上的子反射器(例如多個子次反射器)。此外,包括兩個以上的單獨的垂直準直器110的多個垂直準直器110,可以被用於將垂直地準直的光104’提供至兩個以上的子反射器(例如,每一個子次反射器對一個垂直準直器)。再者,可以對不同顏色的接收光102使用不同的垂直準直器110,藉此將不同顏色的垂直地準直的光104’提供至水平準直器120的光學反射器122(即,包括子反射器122’)。 Although not explicitly shown in the figures, the bidirectional optical collimator 100 can include a sub-reflector having more than two sub-reflectors 122'. Similarly, vertical collimator 110 can include a plurality of vertical collimators 110 having more than two separate vertical collimators 110. For example, each of the two sub-reflectors 122', 122'a, 122'b shown in Figures 4A-4C can be further divided into more than two sub-reflectors (eg multiple Sub-reflector). Furthermore, a plurality of vertical collimators 110 comprising more than two separate vertical collimators 110 can be used to provide vertically collimated light 104' to more than two sub-reflectors (eg, each The sub-reflector is for a vertical collimator). Moreover, different vertical collimators 110 can be used for different colors of received light 102, thereby providing vertically aligned light 104' of different colors to optical reflector 122 of horizontal collimator 120 (ie, including Sub-reflector 122').

更具體來說,在不脫離本發明所述的原理的範疇的條件下,可以採用子反射器/垂直準直器的多種不同配置中的任一者。此外,根據本發明的某些實施例,採用多種不同的子反射器/垂直準直器的配置,可 以促成橫跨輸出孔的雙向準直光104的掃描,並且可以提供增強亮度的雙向準直光104(例如,使用多個光源)。 More specifically, any of a variety of different configurations of sub-reflectors/vertical collimators may be employed without departing from the scope of the principles described herein. Moreover, in accordance with certain embodiments of the present invention, a plurality of different sub-reflector/vertical collimator configurations are employed To facilitate scanning of the bi-directional collimated light 104 across the output aperture, and to provide bi-directional collimated light 104 that enhances brightness (eg, using multiple sources).

在某些實施例中,垂直準直器110與水平準直器120的其中之一者,或者垂直準直器110與水平準直器120兩者可以包括大致為光學透明的材料。此外,在某些實施例中,雙向光學準直器100位於垂直準直器110與水平準直器120之間的部分,以及位於水平準直器120與雙向光學準直器100的輸出孔之間的部分,可以包括大致為光學透明的材料。所述的光學透明材料可以具有各種介電材料中的任何一種,或者可以由各種介電材料中的任何一種所製成,該些介電材料可以包括但不限於,一種以上的各種玻璃(例如,二氧化矽玻璃(silica glass)、鹼鋁矽酸鹽玻璃(alkali-aluminosilicate glass)、硼矽酸鹽玻璃(borosilicate glass)等),以及大致為光學透明的塑膠或聚合物(例如,聚甲基丙烯酸甲酯(poly(methyl methacrylate)或「壓克力玻璃」、聚碳酸酯(polycarbonate)等)。舉例來說,垂直準直器110以及水平準直器120的其中之一或兩者同時可以包括形成為具有拋物線形表面的光學透明材料。接著,作為示例,可以將拋物線形表面金屬化或者將其塗覆反射材料,藉此提供所述的光學反射器112、122。作為示例,用於塗覆拋物線形表面的反射材料可以包括但不限於,鋁、鉻、鎳、銀及金。此外,根據某些實施例,垂直準直器110可以是水平準直器120的一體,並且可以包括水平準直器的材料。第2A圖中以範例而非限制的方式顯示的雙向光學準直器100,其具有由常見的光學透明材料所形成之一體的垂直準直器110與水平準直器120。 In some embodiments, one of the vertical collimator 110 and the horizontal collimator 120, or both the vertical collimator 110 and the horizontal collimator 120, can comprise a substantially optically transparent material. Moreover, in some embodiments, the bi-directional optical collimator 100 is located between the vertical collimator 110 and the horizontal collimator 120, and is located at the output aperture of the horizontal collimator 120 and the bi-directional optical collimator 100. The intervening portion may comprise a substantially optically transparent material. The optically transparent material may have any of a variety of dielectric materials, or may be made of any of a variety of dielectric materials, including but not limited to more than one of a variety of glasses (eg, , silica glass, alkali-aluminosilicate glass, borosilicate glass, etc., and substantially optically transparent plastic or polymer (eg, polymethyl Methyl methacrylate ("acryl methacrylate", "polycarbonate", etc.). For example, one or both of the vertical collimator 110 and the horizontal collimator 120 are simultaneously An optically transparent material formed to have a parabolic surface may be included. Next, as an example, the parabolic surface may be metallized or coated with a reflective material, thereby providing the optical reflectors 112, 122. As an example, The reflective material applied to the parabolic surface may include, but is not limited to, aluminum, chromium, nickel, silver, and gold. Further, according to some embodiments, the vertical collimator 110 may be The horizontal collimator 120 is integral and may include the material of a horizontal collimator. The bidirectional optical collimator 100 shown in FIG. 2A by way of example and not limitation, having a body formed from a common optically transparent material Vertical collimator 110 and horizontal collimator 120.

在某些實施例中,雙向光學準直器100的材料可以作為導光體,以透過完全內部反射引導光。根據本發明的某些實施例,所述的導光體可以在垂直準直器110與水平準直器120之間引導光。第2C圖中顯示的垂直地準直的光104’,係透過完全內部反射在雙向光學準直器100相鄰於垂直準直器110的材料以及位於該材料外部的另一材料(例如,空氣)之間的介面被反射。圖中顯示的反射代表了垂直地準直的光104’在第2C圖中顯示的雙向光學準直器100的一部分中的引導,其中,該引導是從垂直準直器110的光學反射器112朝向水平準直器120(未顯示於第2C圖中)的方向進行。在某些實施例中(例如,如第2A圖所示),該材料可以從水平準直器120(例如,光學反射器122)往輸出孔延伸。所述的材料係作為導光體將垂直地準直的光104’與雙向準直光104引導至輸出孔。 In some embodiments, the material of the bi-directional optical collimator 100 can act as a light guide to direct light through complete internal reflection. According to some embodiments of the invention, the light guide may direct light between the vertical collimator 110 and the horizontal collimator 120. The vertically collimated light 104' shown in FIG. 2C is a material that is completely internally reflected in the bidirectional optical collimator 100 adjacent to the vertical collimator 110 and another material that is external to the material (eg, air) The interface between them is reflected. The reflections shown in the figures represent the guidance of the vertically collimated light 104' in a portion of the bidirectional optical collimator 100 shown in FIG. 2C, wherein the guidance is from the optical reflector 112 of the vertical collimator 110. The direction is toward the horizontal collimator 120 (not shown in FIG. 2C). In some embodiments (eg, as shown in FIG. 2A), the material can extend from the horizontal collimator 120 (eg, optical reflector 122) to the output aperture. The material is used as a light guide to direct vertically collimated light 104' and bidirectional collimated light 104 to the output aperture.

根據與本說明書所述原理一致的某些實施例,本發明係提供了一種採用雙向準直方法的背光板。第5A圖為根據與本發明所描述的原理一致的實施例,顯示了一背光板200的範例的俯視圖。第5B圖為根據與本發明所描述的原理一致的實施例,顯示了一背光板200的範例的剖視圖。如第5A圖-第5B圖所示,背光板200包括了一雙向光學準直器210。 In accordance with certain embodiments consistent with the principles described herein, the present invention provides a backlight panel that employs a two-way collimation method. FIG. 5A is a top plan view showing an example of a backlight 200 in accordance with an embodiment consistent with the principles described herein. Figure 5B is a cross-sectional view showing an example of a backlight 200 in accordance with an embodiment consistent with the principles described herein. As shown in FIGS. 5A-5B, the backlight 200 includes a bidirectional optical collimator 210.

在某些實施例中,雙向光學準直器210可以與上文中所述的雙向光學準直器100大致相似。尤其,雙向光學準直器210係包括了一垂直準直器212以及一水平準直器214,其中,各個準直器係分別與雙向光學準直器100的各個垂直準直器110與水平準直器120大致相似。舉例來說,與第5A圖中的雙向光學準直器210相關聯的虛線輪廓可以代表第4B圖中所示的雙向光學準直器100。根據本發明的各個實施例,如第5B圖所 示,雙向光學準直器210係用於接收光202(例如,從一光源230,如下文中所述),並且在雙向光學準直器210的輸出部提供雙向準直光204。此外,所提供的雙向準直光204相對於水平x-y平面係具有一非零值傳導角度。 In some embodiments, the bi-directional optical collimator 210 can be substantially similar to the bi-directional optical collimator 100 described above. In particular, the bi-directional optical collimator 210 includes a vertical collimator 212 and a horizontal collimator 214, wherein each collimator is associated with a respective vertical collimator 110 of the bi-directional optical collimator 100 The straighteners 120 are generally similar. For example, the dashed outline associated with the bi-directional optical collimator 210 in FIG. 5A may represent the bi-directional optical collimator 100 shown in FIG. 4B. According to various embodiments of the present invention, as shown in Figure 5B Bi-directional optical collimator 210 is shown for receiving light 202 (eg, from a light source 230, as described below) and provides bi-directional collimated light 204 at the output of bi-directional optical collimator 210. In addition, the bidirectional collimated light 204 is provided with a non-zero value conduction angle relative to the horizontal x-y plane.

如第5A圖-第5B圖所示,背光板200進一步包括一平板導光體220,耦接(例如,光學性耦接)於雙向光學準直器210的輸出部。如第5B圖所示,平板導光體220係用於接收雙向準直光204,並且以非零值傳導角度引導雙向準直光204。根據本發明的各個實施例,平板導光體220係進一步將經引導的雙向準直光204的一部分從平板導光體220的一表面射出。在第5B圖中,發射光206係以多條從平板導光體的表面延伸的光線(箭頭)的形式顯示。 As shown in FIGS. 5A-5B, the backlight 200 further includes a flat light guide 220 coupled (eg, optically coupled) to the output of the bidirectional optical collimator 210. As shown in FIG. 5B, the planar light guide 220 is configured to receive the bidirectional collimated light 204 and direct the bidirectional collimated light 204 at a non-zero value conduction angle. In accordance with various embodiments of the present invention, the planar light guide 220 further ejects a portion of the guided bidirectional collimated light 204 from a surface of the planar light guide 220. In Fig. 5B, the emitted light 206 is displayed in the form of a plurality of rays (arrows) extending from the surface of the flat light guide.

在某些實施例中,平板導光體220可以為片狀或板狀的光波導,且該光波導可以包括一加長且大致為平面薄板狀的光學透明介電材料。所述的大致為平面薄板狀的介電材料,係透過完全內部反射將雙向準直光204從雙向光學準直器210引導為導光束204。所述的介電材料具有一第一折射係數,環繞介電光波導的一介質具有一第二折射係數,其中,第一折射係數係大於第二折射係數。作為示例,透過兩個材料的折射係數的差異,可以讓導光束204根據平板導光體220之一個以上的引導模式達到完全內部反射。 In some embodiments, the planar light guide 220 can be a sheet or plate shaped optical waveguide, and the optical waveguide can include an elongated and substantially planar thin plate of optically transparent dielectric material. The substantially planar thin plate-like dielectric material directs the bidirectional collimated light 204 from the bidirectional optical collimator 210 to the guided beam 204 by total internal reflection. The dielectric material has a first index of refraction, and a medium surrounding the dielectric optical waveguide has a second index of refraction, wherein the first index of refraction is greater than the second index of refraction. As an example, the difference in refractive index of the two materials allows the guided beam 204 to achieve complete internal reflection according to more than one guiding mode of the planar light guide 220.

根據本發明的各個實施例,平板導光體220的光學透明材料可以包括各種不同的介電材料或者可以由各種不同的介電材料所形成,其中,該等介電材料可以包括但不限於,一種以上之各種種類的玻璃(例如, 矽玻璃、鹼性矽酸鋁玻璃、硼矽玻璃等),以及大致為光學透明的塑膠或高分子材料(例如,聚甲基丙烯酸甲酯或「壓克力玻璃」、聚碳酸等)。在某些實例中,平板導光體220可以進一步包括設置於平板導光體220的一表面(例如,頂部表面以及底部表面兩者的其中之一或者同時設置於上述兩者上)的至少一部分上的一披覆層(未顯示於圖中)。根據本發明的某些實例,披覆層可以被用於進一步促成上述的完全內部反射。 According to various embodiments of the present invention, the optically transparent material of the planar light guide 220 may comprise a variety of different dielectric materials or may be formed from a variety of different dielectric materials, wherein the dielectric materials may include, but are not limited to, More than one type of glass (for example, Glass, alkaline aluminum silicate glass, borosilicate glass, etc., and substantially optically transparent plastic or polymer materials (for example, polymethyl methacrylate or "acrylic glass", polycarbonate, etc.). In some examples, the planar light guide 220 can further include at least a portion disposed on a surface of the planar light guide 220 (eg, one of the top surface and the bottom surface or both) A coating on the top (not shown in the figure). According to some examples of the invention, the cladding layer can be used to further contribute to the complete internal reflection described above.

在某些實施例中(例如,如第5A圖所示),平板導光體220可以為雙向光學準直器210的一體。尤其,平板導光體220以及雙向光學準直器210可以由相同的材料所形成,因此也包含了相同的材料。舉例來說,平板導光體220可以為延伸於或連接水平準直器以及雙向光學準直器210的輸出孔之間的導光體的延伸。在其他的實施例中(例如,如第5B圖所示),雙向光學準直器210以及平板導光體220為分離的元件,而兩者間的耦接(例如,光學性耦接或機械性耦接的其中一種或同時透過兩種方式耦接)是由膠或黏著層、另一介質材料甚或由平板導光體220的輸入部與輸出孔之間的空氣所提供。舉例來說,雙向光學準直器210可以包括一聚合材料或塑膠材料,且平板導光體220可以包括玻璃。如第5B圖中以範例的方式所示,雙向光學準直器210以及平板導光體220可以透過適合的黏著層222(例如,光學性相符的膠)彼此固定。 In some embodiments (eg, as shown in FIG. 5A), the planar light guide 220 can be an integral body of the bidirectional optical collimator 210. In particular, the planar light guide 220 and the bidirectional optical collimator 210 can be formed from the same material and therefore also comprise the same material. For example, the planar light guide 220 can be an extension of the light guide extending between or connecting the horizontal collimator and the output aperture of the bi-directional optical collimator 210. In other embodiments (eg, as shown in FIG. 5B), the bidirectional optical collimator 210 and the planar light guide 220 are separate components with coupling therebetween (eg, optical coupling or mechanical One or both of the couplings are coupled by a glue or adhesive layer, another dielectric material, or even air between the input and output apertures of the planar light guide 220. For example, the bi-directional optical collimator 210 can comprise a polymeric or plastic material, and the planar light guide 220 can comprise glass. As shown by way of example in FIG. 5B, the bi-directional optical collimator 210 and the planar light guide 220 can be secured to each other by a suitable adhesive layer 222 (eg, an optically compatible glue).

根據本發明的某些實施例,背光板200可以進一步包括一光源230。光源230係用以將光提供至雙向準直器210。更具體來說,光源230係位在與雙向光學準直器210的垂直準直器212相鄰的位置(例如,下方,如第5B圖中所示),且光源230係將光202提供至垂直準直器212的輸入部 成為接收光202。在本發明的各個實施例中,光源230可以大致包括任何來源的光,其係包括但不限於,一個以上的LED。在某些實例中,光源230可以產生具有較窄光譜並且由特定顏色所表示之大致為單色的光。尤其,單向光的顏色可以為特定色彩空間或色彩模型(例如,紅-綠-藍(Red-Green-Blue,RGB)色彩模型)中的一主要顏色。 According to some embodiments of the present invention, the backlight 200 may further include a light source 230. Light source 230 is used to provide light to bidirectional collimator 210. More specifically, light source 230 is positioned adjacent to vertical collimator 212 of bi-directional optical collimator 210 (eg, below, as shown in FIG. 5B), and light source 230 provides light 202 to Input portion of vertical collimator 212 It becomes the received light 202. In various embodiments of the invention, light source 230 may comprise substantially any source of light including, but not limited to, more than one LED. In some examples, light source 230 can produce substantially monochromatic light having a narrower spectrum and represented by a particular color. In particular, the color of the unidirectional light may be a dominant color in a particular color space or color model (eg, a Red-Green-Blue (RGB) color model).

在某些實施例中,光源230可以包括多個不同的光源,用以提供不同顏色的光(即,「不同顏色」的光源)。舉例來說,該些不同的光源係以彼此偏移的方式設置。根據本發明的某些實施例,偏移的不同光源可以用於提供對應於各個不同顏色的光的不同、顏色特定的雙向準直光204的非零值傳導角度。更具體來說,光源的偏移可以為雙向準直器210所提供的非零值傳導角度增加額外的非零值傳導角度的組成。 In some embodiments, light source 230 can include a plurality of different light sources to provide different colors of light (ie, "different colors" of light sources). For example, the different light sources are arranged offset from each other. According to some embodiments of the invention, the different light sources of the offset may be used to provide a non-zero valued conduction angle of the different, color-specific bidirectional collimated light 204 corresponding to the respective different colors of light. More specifically, the offset of the light source may be an increase in the non-zero value conduction angle provided by the bidirectional collimator 210 to add an additional non-zero value conduction angle.

第5C圖為根據與本發明所描述的原理一致的實施例,顯示了一背光板200的一部分的範例的剖視圖。作為範例,第5C圖中顯示的背光板200的該部分係大致與第2C圖中顯示的雙向光學準直器的該部分相似。更具體來說,第5C圖中顯示的背光板200的該部分係包括了垂直準直器212以及具有多個不同光源的光源230。如第5C圖所示,光源230中的該些不同光源係包括了用以提供第一顏色(例如,紅色)的一第一光源232,用以提供第二顏色(例如,綠色)的第二光源234,以及用以提供第三顏色(例如,藍色)的第三光源236。作為範例,光源230中的第一光源232、第二光源234以及第三光源236可以分別包括一紅色LED、一綠色LED以及一藍色LED。光源230中的各個不同光源232、234、236係如圖中所示以彼此偏移的方式設置。 Figure 5C is a cross-sectional view showing an example of a portion of a backlight 200 in accordance with an embodiment consistent with the principles described herein. As an example, the portion of the backlight 200 shown in FIG. 5C is substantially similar to the portion of the bidirectional optical collimator shown in FIG. 2C. More specifically, the portion of the backlight 200 shown in FIG. 5C includes a vertical collimator 212 and a light source 230 having a plurality of different light sources. As shown in FIG. 5C, the different light sources in the light source 230 include a first light source 232 for providing a first color (eg, red) to provide a second color (eg, green). A light source 234, and a third light source 236 to provide a third color (eg, blue). As an example, the first light source 232, the second light source 234, and the third light source 236 in the light source 230 may include a red LED, a green LED, and a blue LED, respectively. The respective different light sources 232, 234, 236 in the light source 230 are arranged offset from one another as shown in the figures.

更具體來說,第5C圖中顯示的不同的光源232、234、236係彼此在垂直地準直的光204’的傳導方向上偏移。因此,所述的偏移會造成不同的光源232、234、236所產生的光202在離開垂直準直器212成為垂直地準直的光204’時具有不同的非零值傳導角度。由於各個不同的光源232、234、236所產生的光具有不同的顏色,垂直地準直的光204’係包括三種不同的光束,且各個光束具有不同、顏色特定的非零值傳導角度,如第5C圖所示。值得一提的是,在第5C圖中,不同的線條種類(例如,虛線、實線等)代表了不同顏色的光202、204’。 More specifically, the different light sources 232, 234, 236 shown in Figure 5C are offset from each other in the direction of conduction of the vertically collimated light 204'. Thus, the offset causes the light 202 produced by the different light sources 232, 234, 236 to have different non-zero value conduction angles when leaving the vertical collimator 212 to become vertically collimated light 204'. Since the light produced by each of the different light sources 232, 234, 236 has a different color, the vertically collimated light 204' includes three different beams, and each beam has a different, color-specific non-zero value conduction angle, such as Figure 5C shows. It is worth mentioning that in Figure 5C, different line types (e.g., dashed lines, solid lines, etc.) represent different colors of light 202, 204'.

根據本發明的某些實施例(例如,如第5B圖中所示),背光板200可以進一步包括位於平板導光體220的一表面上的多光束繞射格柵240。多光束繞射格柵240係用以將經引導的雙向準直光204的一部分從平板導光體220中繞射耦合出成為多條光束206。該等光束206(即,第5B圖中顯示的該些光線(箭頭))代表了發射光206。在本發明的各個實施例中,該等光束中的其中一光束206具有與該等光束中的其他光束206不相同的主要角度方向。 According to some embodiments of the present invention (for example, as shown in FIG. 5B), the backlight 200 may further include a multi-beam diffraction grating 240 on a surface of the flat light guide 220. The multi-beam diffraction grating 240 is used to couple a portion of the guided bidirectional collimated light 204 from the planar light guide 220 into a plurality of beams 206. The beams 206 (i.e., the rays (arrows) shown in Figure 5B) represent the emitted light 206. In various embodiments of the invention, one of the beams 206 has a major angular orientation that is different from the other beams 206 of the beams.

在某些實施例中,多光束繞射格柵240是一多光束繞射格柵陣列中的成員,或者係設置在多光束繞射格柵240的陣列中。在某些實施例中,背光板200是三維電子顯示器的背光板,且光束206的主要角度方向係對應於該三維電子顯示器的觀看方向。 In some embodiments, the multi-beam diffraction grating 240 is a member of a multi-beam diffraction grating array or is disposed in an array of multi-beam diffraction gratings 240. In some embodiments, backlight 200 is a backlight of a three-dimensional electronic display, and the primary angular orientation of beam 206 corresponds to the viewing direction of the three-dimensional electronic display.

第6A圖為根據與本發明所描述的原理一致的實施例,顯示了具有多光束繞射格柵240的背光板200的一部分的範例的剖視圖。第6B圖為根據與本發明所描述的原理一致的另一實施例,顯示了具有多光束繞 射格柵240的背光板200的一部分的範例的剖視圖。第6C圖為根據與本發明所描述的原理一致的實施例,顯示了第6A圖或第6B圖中具有多光束繞射格柵240的背光板部分的範例的剖視圖。作為本發明的範例而非限制,第6A圖中顯示的多光束繞射格柵240包括了位於平板導光體220的表面中的凹槽。第6B圖中顯示的多光束繞射格柵240係包括從平板導光體表面突出的脊部。 6A is a cross-sectional view showing an example of a portion of a backlight 200 having a multi-beam diffraction grating 240, in accordance with an embodiment consistent with the principles described herein. Figure 6B is a diagram showing a multi-beam winding in accordance with another embodiment consistent with the principles described herein. A cross-sectional view of an example of a portion of the backlight 200 of the grille 240. Figure 6C is a cross-sectional view showing an example of a portion of a backlight having a multi-beam diffraction grating 240 in Figure 6A or Figure 6B, in accordance with an embodiment consistent with the principles described herein. As an example and not limitation of the present invention, the multi-beam diffraction grating 240 shown in FIG. 6A includes a groove in the surface of the flat light guide 220. The multi-beam diffraction grating 240 shown in Fig. 6B includes ridges that protrude from the surface of the flat light guide.

如第6A圖-第6B圖所示,所述的多光束繞射格柵240係一啁啾式繞射格柵。尤其,繞射結構特徵240a在多光束繞射格柵240的第一端240’係比在第二端240”而言彼此更為靠近。此外,圖中所示的繞射結構特徵240a之繞射間隔d從第一端240’到第二端240”隨著距離變化。在某些實例中,多光束繞射格柵240的啁啾式繞射格柵可能具有或者可能會展示出隨著距離而線性變化之啁啾的繞射間隔d。如此一來,多光束繞射格柵240的啁啾式繞射格柵可以被稱為「線性啁啾式」繞射格柵。 As shown in FIGS. 6A-6B, the multi-beam diffraction grating 240 is a one-way diffraction grating. In particular, the diffractive structural features 240a are closer to each other at the first end 240' of the multi-beam diffraction grating 240 than at the second end 240". Furthermore, the diffraction structure features 240a are shown. The shot interval d varies from the first end 240' to the second end 240" with distance. In some examples, the 绕-type diffraction grating of the multi-beam diffraction grating 240 may have or may exhibit a mean diffraction interval d that varies linearly with distance. As such, the 绕-type diffraction grating of the multi-beam diffraction grating 240 may be referred to as a "linear 啁啾" diffraction grating.

在另一實例中(未顯示於圖中),多光束繞射格柵240的啁啾式繞射格柵可能會展現出繞射間隔d的非線性啁啾。用於實現啁啾式繞射格柵的各種非線性啁啾可以包括但不限於,指數啁啾、對數啁啾,或者改變的啁啾、大致不平均,或者隨機但單調的方式分布之啁啾。本發明中亦可以使用非單調式的啁啾,其係包括但不限於,正弦啁啾、三角啁啾或鋸齒啁啾。本發明中亦可以在多光束繞射格柵240中使用上述任何種類之啁啾的組合。 In another example (not shown), the 绕-type diffraction grating of the multi-beam diffraction grating 240 may exhibit a nonlinear 啁啾 of the diffraction interval d . The various nonlinearities used to implement the 绕-type diffraction grating may include, but are not limited to, an index 啁啾, a logarithm 啁啾, or a modified 啁啾, a substantially uneven, or a random but monotonous distribution. . Non-monotonic crucibles may also be used in the present invention, including but not limited to, sinusoidal, triangular or serrated. Combinations of any of the above types of crucibles can also be used in the multi-beam diffraction grating 240 in the present invention.

如第6C圖所示,多光束繞射格柵240可以在平板導光體220的啁啾且彎曲的表面(即,多光束繞射格柵240為彎曲的啁啾式繞射格柵) 上、中設置有繞射結構特徵240a(例如,凹槽或脊部)。如第6A圖-第6C圖中的粗線箭頭所示,導光束204具有相對於多光束繞射格柵240以及平板導光體220的入射方向。該圖中亦顯示了多個耦合出或者發射出的光束206在平板導光體220的表面指向遠離多光束繞射格柵240的方向。圖中所示的光束206係往多個不同的預定主要角度方向射出。更詳而言之,如圖所示,所發出之光束206的不同的預定主要角度方向之仰角以及方位角都不同(例如,藉此形成一光場)。 As shown in FIG. 6C, the multi-beam diffraction grating 240 may be on the curved and curved surface of the flat light guide 220 (ie, the multi-beam diffraction grating 240 is a curved 绕-type diffraction grating) Diffractive structural features 240a (eg, grooves or ridges) are provided in the upper and middle portions. The guide beam 204 has an incident direction with respect to the multi-beam diffraction grating 240 and the plate light guide 220 as indicated by the thick arrows in FIGS. 6A to 6C. Also shown in the figure is a plurality of coupled or emitted light beams 206 directed away from the multi-beam diffraction grating 240 at the surface of the planar light guide 220. The beam 206 shown in the figure is directed toward a plurality of different predetermined major angular directions. More specifically, as shown, the elevation angles and azimuths of the different predetermined major angular directions of the emitted beam 206 are different (e.g., thereby forming a light field).

根據本發明的各個實例,繞射結構特徵240a之預先定義的啁啾以及繞射結構特徵240a的曲度,皆對各個所發出之光束206的不同的預定主角度方向做出貢獻。舉例來說,由於彎曲的關係,多光束繞射格柵240中的繞射結構特徵240a可以具有相對於平板導光體220中的導光束204的入射方向而言不相同的方位。尤其,繞射結構特徵240a位於一第一點的方位或者位於多光束繞射格柵240中的方位,與繞射結構特徵240a位於其他點或位置的方位不相同。相對於耦合出或者發射出的光束206而言,光束206的主要角度方向{θ,}的方位分量,可以由繞射結構特徵240a在光束206的起點(即,入射的導光束204被耦合出的點)的方位角所決定。如此一來,至少以其各自的方位分量而言,在多光束繞射格柵240中的繞射結構特徵240a的改變方位會產生具有不同主要角度方向{θ,}之不同的光束206。 In accordance with various examples of the present invention, the predefined chirps of the diffractive structural features 240a and the curvature of the diffractive structural features 240a contribute to different predetermined principal angular directions of the emitted beams 206. For example, due to the curved relationship, the diffractive structural features 240a in the multi-beam diffraction grating 240 may have different orientations relative to the direction of incidence of the guided beam 204 in the planar light guide 220. In particular, the orientation of the diffractive structural feature 240a at a first point or orientation in the multi-beam diffraction grating 240 is not the same as the orientation of the diffractive structural feature 240a at other points or locations. The main angular direction of the beam 206 is { θ relative to the beam 206 that is coupled or emitted. Azimuth component of } Azimuth of the diffraction structure feature 240a at the beginning of the beam 206 (i.e., the point at which the incident beam 204 is coupled out) Determined. In this way, at least with their respective azimuthal components In this case, the changing orientation of the diffractive structural features 240a in the multi-beam diffraction grating 240 will have different main angular directions {θ, Different beam 206 of }.

尤其,在沿著繞射結構特徵240a的曲線上的不同點處,多光束繞射格柵240中與彎曲的繞射結構特徵240a相關聯的「底層繞射格柵」係具有不同的方位角。在本說明書中,「底層繞射格柵」意指疊加設置 的多個非彎曲繞射格柵中的繞射格柵,產生了多光束繞射格柵240的繞射結構特徵240a。因此,在沿著繞射結構特徵240a之曲線上的一定點處,該曲線會具有與沿著該等繞射結構特徵240a之曲線上的另一點大致不同的特定方位角。此外,該特定方位角會造成從該點發出的光束206的主角度方向{θ,}之對應的方位分量。在某些實例中,繞射結構特徵240a(例如,凹槽、脊部等)的曲線係代表了一圓形的區段。該圓形可以與導光體表面共面。在其他的實例中,舉例來說,曲線亦可以代表與導光體表面共面的一橢圓形或者其他彎曲形狀的一區段。 In particular, at different points along the curve along the diffractive structure feature 240a, the "bottom diffraction grating" associated with the curved diffractive structure feature 240a in the multi-beam diffraction grating 240 has a different azimuth . In the present specification, "underlying diffraction grating" means a diffraction grating in a plurality of non-bent diffraction gratings arranged in a superimposed manner, and a diffraction structure feature 240a of the multi-beam diffraction grating 240 is produced. Thus, at a certain point along the curve along the diffractive structure feature 240a, the curve will have a particular azimuth that is substantially different from another point on the curve along the diffractive structure feature 240a. . In addition, the specific azimuth Will cause the main angular direction of the beam 206 emitted from this point { θ , Azimuth component of } . In some examples, the curve of the diffractive structural feature 240a (eg, grooves, ridges, etc.) represents a circular segment. The circle can be coplanar with the surface of the light guide. In other examples, for example, the curve may also represent a section of an elliptical or other curved shape that is coplanar with the surface of the light guide.

在其他的實施例中,多光束繞射格柵240可以具有「片段」彎曲的繞射結構特徵240a。尤其,雖然繞射結構特徵240a的本身不一定為大致平順或者延續的曲線,但在多光束繞射格柵240中沿著繞射結構特徵240a的不同點處,繞射結構特徵240a仍然可以具有相對於導光束204的入射方向而言不同的角度的方位。舉例來說,繞射結構特徵240a可以為包含有多段大致為直線區段的凹槽,且其中各個區段具有與相鄰之區段不相同的方位。綜而觀之,根據本發明的各個實例,該些區段的不同的角度會近似於一曲線(例如,圓形的一區段)。然而,在本發明的其他實例中,繞射結構特徵240a可能會僅僅在多光束繞射格柵240中的不同位置處具有相對於導光束的入射方向而言不相同的方位,但其並不會近似於特定的曲線(例如,圓形或者橢圓形)。 In other embodiments, the multi-beam diffraction grating 240 may have a "fragment" curved diffractive structural feature 240a. In particular, although the diffractive structural feature 240a itself is not necessarily a substantially smooth or continuous curve, the diffractive structural feature 240a may still have a different point along the diffractive structural feature 240a in the multi-beam diffraction grating 240. The orientation of the different angles relative to the direction of incidence of the guided beam 204. For example, the diffractive structural feature 240a can be a groove that includes a plurality of substantially straight segments, and wherein each segment has an orientation that is different from the adjacent segments. In summary, according to various examples of the invention, the different angles of the segments may approximate a curve (eg, a segment of a circle). However, in other examples of the invention, the diffractive structure features 240a may only have different orientations at different locations in the multi-beam diffraction grating 240 relative to the direction of incidence of the beam, but it is not Will approximate a specific curve (for example, a circle or an ellipse).

在某些實施例中,形成繞射結構特徵240a的該些凹槽或脊部是透過蝕刻、銑銷或者模製方式形成或者施加在平板導光體的表面上。如此一來,多光束繞射格柵240的材料可以包括平板導光體220的材料。舉 例來說,如第6B圖所示,多光束繞射格柵240係包括從平板導光體220的表面突出的多個脊部,其中,該些脊部係大致與彼此平行。在第6A圖中(以及在第5B圖中),多光束繞射格柵240係包括穿透平板導光體220表面的凹槽,其中,該些凹槽可以大致地與彼此平行。在其他實例中,多光束繞射格柵240可以包括施加於或者固定在導光體表面上的薄膜或層。由多光束繞射格柵240所提供的具有不同主要角度方向的該些光束,會形成電子顯示器在觀看方向上的一光場。尤其,採用雙向準直方法的背光板200係提供對應於電子顯示器的像素的資訊,例如,三維資訊。 In some embodiments, the grooves or ridges forming the diffractive structural features 240a are formed by etching, milling, or molding or applied to the surface of the planar light guide. As such, the material of the multi-beam diffraction grating 240 may include the material of the flat light guide 220. Lift For example, as shown in FIG. 6B, the multi-beam diffraction grating 240 includes a plurality of ridges protruding from the surface of the flat light guide body 220, wherein the ridge portions are substantially parallel to each other. In FIG. 6A (and in FIG. 5B), the multi-beam diffraction grating 240 includes grooves that penetrate the surface of the planar light guide 220, wherein the grooves may be substantially parallel to each other. In other examples, multi-beam diffraction grating 240 can include a film or layer applied to or secured to the surface of the light guide. The light beams having different main angular directions provided by the multi-beam diffraction grating 240 form a light field of the electronic display in the viewing direction. In particular, the backlight 200 using the two-way collimation method provides information corresponding to pixels of an electronic display, for example, three-dimensional information.

根據與本說明書中所述原理一致的某些實施例,本發明係提供了一種三維電子顯示器。第7圖為根據與本發明所描述的原理一致的實施例,顯示了一三維電子顯示器300的範例的方塊圖。根據本發明的各個實施例,三維電子顯示器300係用於提供包含有不同主要角度方向的經調變的定向光,並且,在某些實施例中,同時具有多種不同的顏色。舉例來說,三維電子顯示器300可以提供或產生多條不同的光束306,該些光束306係往遠離三維電子顯示器300的方向以不同的預定主要角度方向定向(例如,成為一光場)。此外,不同的光束306可以包括具有不同顏色的光或光束306。接著,可以將該些光束306調變為調變光束306’,藉此促成包含彩色資訊的資訊顯示(例如,當光束306為彩色光束時)。 In accordance with certain embodiments consistent with the principles described in this specification, the present invention provides a three-dimensional electronic display. Figure 7 is a block diagram showing an example of a three-dimensional electronic display 300 in accordance with an embodiment consistent with the principles described herein. In accordance with various embodiments of the present invention, three-dimensional electronic display 300 is used to provide modulated directional light that includes different primary angular directions, and, in some embodiments, multiple different colors at the same time. For example, three-dimensional electronic display 300 can provide or generate a plurality of different light beams 306 that are oriented in a different predetermined primary angular direction (eg, into a light field) away from the three-dimensional electronic display 300. Moreover, different beams 306 can include light or beams 306 having different colors. The beams 306 can then be modulated into a modulated beam 306', thereby facilitating the display of information containing color information (e.g., when the beam 306 is a colored beam).

在某些實施例中,具有不同的預定主要角度方向的調變光束306’係形成三維電子顯示器300的多個像素。在某些實例中,三維彩色電子顯示器300可以是一般稱為裸眼的三維電子顯示器(例如,多視角、全像或自動立體顯示器),其中,調變光束306’係對應於與三維電子顯示器 300的不同「視角」相關聯的像素。作為範例,調變光束306’在第7圖中係以虛線箭頭的形式顯示,而在調變之前的不同的光束306在第7圖是由實線箭頭顯示。 In some embodiments, modulated beam 306' having a different predetermined primary angular orientation forms a plurality of pixels of three-dimensional electronic display 300. In some examples, the three-dimensional color electronic display 300 can be a three-dimensional electronic display (eg, a multi-view, holographic, or auto-stereoscopic display), generally referred to as a naked eye, wherein the modulated beam 306' corresponds to a three-dimensional electronic display. The pixels associated with the different "views" of 300. By way of example, modulated beam 306' is shown in the form of a dashed arrow in Figure 7, and the different beams 306 prior to modulation are shown by solid arrows in Figure 7.

第7圖中的三維電子顯示器300係包括了一雙向光學準直器310。所述的雙向光學準直器310係用以提供具有垂直準直與水平準直的雙向準直光。更具體來說,垂直準直與水平準直指的是相對於雙向光學準直器310的一垂直方向(例如,z方向)或一垂直平面(例如,y-z平面)以及一水平方向(例如,x方向)或一水平平面(例如,x-y平面)的準直。此外,雙向光學準直器310係相對於雙向光學準直器310的水平平面以非零值傳導角度提供雙向準直光。 The three-dimensional electronic display 300 in FIG. 7 includes a bidirectional optical collimator 310. The bidirectional optical collimator 310 is configured to provide bidirectional collimated light having vertical collimation and horizontal collimation. More specifically, vertical collimation and horizontal collimation refer to a vertical direction (eg, z-direction) or a vertical plane (eg, yz plane) relative to the bi-directional optical collimator 310 and a horizontal direction (eg, Collimation in the x direction) or a horizontal plane (eg, the xy plane). In addition, the bi-directional optical collimator 310 provides bi-directional collimated light at a non-zero value conduction angle relative to the horizontal plane of the bi-directional optical collimator 310.

在某些實施例中,雙向光學準直器310係大致與上文中所述的雙向光學準直器100相似。更具體來說,雙向準直器310係包括了一垂直準直器以及一水平準直器。水平準直器係位在與垂直準直器的輸出部相鄰的位置。此外,根據本發明的某些實施例,垂直準直器可以大致相似於上文中針對雙向光學準直器100所描述的垂直準直器110,而水平準直器可以大致相似於上文中針對雙向光學準直器100所描述的水平準直器120。 In certain embodiments, the bi-directional optical collimator 310 is substantially similar to the bi-directional optical collimator 100 described above. More specifically, the two-way collimator 310 includes a vertical collimator and a horizontal collimator. The horizontal collimator is positioned adjacent to the output of the vertical collimator. Moreover, in accordance with certain embodiments of the present invention, the vertical collimator can be substantially similar to the vertical collimator 110 described above for the bidirectional optical collimator 100, while the horizontal collimator can be substantially similar to the above for bidirectional The horizontal collimator 120 described by the optical collimator 100.

舉例來說,雙向準直器310的垂直準直器可以包括具有拋物線形狀以及傾斜角度的一光學反射器。所述的傾斜角度係被配置以決定雙向光學準直器的輸出部的雙向準直光的非零值傳導角度。此外,舉例來說,雙向準直器310的水平準直器可以包括具有拋物線形的光學反射器。作為範例,水平準直器的光學反射器可以大致橫跨雙向光學準直器的輸出 孔,並且可以提供具有大致橫跨該輸出孔均勻分布的雙向準直光。再者,雙向準直器310可以包括以各種其他包含子反射器以及多個垂直準直器之配置的垂直準直器與水平準直器,例如,與上文中針對雙向光學準直器100的垂直準直器110與水平準直器120所進行的說明相同的配置。 For example, the vertical collimator of the two-way collimator 310 can include an optical reflector having a parabolic shape and an angle of inclination. The angle of inclination is configured to determine a non-zero value conduction angle of the bidirectional collimated light of the output of the bidirectional optical collimator. Further, for example, the horizontal collimator of the two-way collimator 310 can include a parabolic optical reflector. As an example, an optical reflector of a horizontal collimator can span substantially the output of a bidirectional optical collimator A hole, and can provide bidirectional collimated light having a uniform distribution across the output aperture. Furthermore, the bi-directional collimator 310 can include a vertical collimator and a horizontal collimator in various other configurations including sub-reflectors and a plurality of vertical collimators, for example, with the bi-directional optical collimator 100 described above. The vertical collimator 110 is configured the same as that described for the horizontal collimator 120.

如第7圖所示,三維電子顯示器300係進一步包括一平板導光體320。平板導光體320係以非零值傳導角度將雙向準直光引導為導光束。更具體來說,導光束可以被相對於平板導光體320的一表面(例如,相對於頂部表面與底部表面的其中之一者,或同時相對於兩個表面)以非零值傳導角度引導。在某些實施例中,該表面可以與所述的水平平面平行。根據本發明的某些實施例,所述的平板導光體320可以與上文中針對背光板200所描述的平板導光體220大致相似。 As shown in FIG. 7, the three-dimensional electronic display 300 further includes a flat light guide 320. The planar light guide 320 directs the bidirectional collimated light into a guided beam at a non-zero value conduction angle. More specifically, the light guide can be directed at a non-zero conduction angle relative to a surface of the planar light guide 320 (eg, relative to one of the top and bottom surfaces, or both) . In some embodiments, the surface can be parallel to the horizontal plane. According to some embodiments of the present invention, the flat light guide 320 may be substantially similar to the flat light guide 220 described above for the backlight 200.

根據本發明的各個實施例以及第7圖中所示的內容,三維電子顯示器300係進一步包括為在平板導光體320的表面上的多光束繞射格柵330的陣列。根據本發明的某些實施例,多光束繞射格柵330的陣列可以與上文中針對背光板200所描述的多光束繞射格柵240大致相似。更具體來說,多光束繞射格柵330的陣列係將導光束的一部份繞射耦合出成為具有不同主要角度方向的代表光束306的複數條耦合出光束。此外,根據本發明的各個實施例,由多光束繞射格柵330所耦合出的該些光束306的不同的主要角度方向,係對應於三維電子顯示器300的不同的三維視角。在某些實施例中,多光束繞射格柵330係包括具有彎曲的繞射結構特徵的啁啾式繞射格柵。在某些實施例中,啁啾式繞射格柵的啁啾為線性啁啾。 In accordance with various embodiments of the present invention and what is shown in FIG. 7, three-dimensional electronic display 300 further includes an array of multi-beam diffraction gratings 330 on the surface of planar light guide 320. According to some embodiments of the invention, the array of multi-beam diffraction gratings 330 may be substantially similar to the multi-beam diffraction grating 240 described above for backlight 200. More specifically, the array of multi-beam diffraction gratings 330 couples a portion of the beam of light into a plurality of coupled beams of representative beams 306 having different major angular directions. Moreover, in accordance with various embodiments of the present invention, the different principal angular directions of the beams 306 coupled by the multi-beam diffraction grating 330 correspond to different three-dimensional viewing angles of the three-dimensional electronic display 300. In some embodiments, the multi-beam diffraction grating 330 includes a 绕-type diffraction grating having curved diffractive structural features. In some embodiments, the turns of the 绕-type diffraction grating are linear turns.

在某些實施例中,三維電子顯示器300(例如,第7圖中所示)進一步包括一光源340,用以將光提供至雙向光學準直器310的輸入部。在某些實施例中,光源340可以大致與上文中針對背光板200所描述的光源230相似。更具體來說,光源340可以包括用以提供不同顏色的光的多個不同的LED(為了便於說明,將其稱為「不同顏色的LED」)。在某些實施例中,不同顏色的LED係以彼此偏移的方式設置(例如,橫向偏移)。不同顏色的LED的偏移,係被配置以提供來自雙向光學準直器310的不同、顏色特定的雙向準直光的非零值傳導角度。此外,不同的、顏色特定的非零值傳導角度可以對應於光源340所提供的各個不同顏色的光。 In some embodiments, three-dimensional electronic display 300 (eg, shown in FIG. 7) further includes a light source 340 for providing light to an input of bi-directional optical collimator 310. In some embodiments, light source 340 can be substantially similar to light source 230 described above for backlight 200. More specifically, light source 340 can include a plurality of different LEDs to provide different colors of light (referred to as "different color LEDs" for ease of illustration). In some embodiments, LEDs of different colors are arranged offset from each other (eg, laterally offset). The offset of the different colored LEDs is configured to provide a non-zero value conduction angle of the different, color-specific bidirectional collimated light from the bi-directional optical collimator 310. Moreover, different, color-specific non-zero value conduction angles may correspond to respective different colors of light provided by source 340.

在某些實施例中(未顯示於圖中),不同顏色的光可以包括RGB色彩模型中的紅色、綠色以及藍色。此外,平板導光體320係將不同顏色的光在平板導光體320中以不同的顏色特定的傳導角度引導。舉例來說,根據本發明的某些實施例,第一顏色導光束(例如,紅色光束)可以被以第一顏色特定傳導角度引導,第二顏色導光束(例如,綠色光束)可以被以第二顏色特定傳導角度引導,而第三顏色導光束(例如,藍色光束)可以被以第三顏色特定傳導角度引導。 In some embodiments (not shown), light of different colors may include red, green, and blue in an RGB color model. In addition, the flat light guide body 320 directs light of different colors in the flat light guide body 320 at different conduction angles of different colors. For example, in accordance with certain embodiments of the present invention, a first color light guide (eg, a red light beam) can be directed at a first color specific conduction angle, and a second color light guide (eg, a green light beam) can be The two color specific conduction angles are directed while the third color guide beam (eg, the blue light beam) can be directed at a particular conduction angle of the third color.

如第7圖所示,三維電子顯示器300可以進一步包括一光閥陣列350。根據本發明的各個實施例,光閥陣列350係將該些光束的耦合出光束306調變為調變光束306’,藉此形成或構成對應於三維電子顯示器300的不同三維視角的三維像素。在某些實施例中,光閥陣列350可以包括多個液晶光閥。在其他的實施例中,舉例來說,光閥陣列350可以包括 其他的光閥,其可以包括但不限於,電潤濕光閥、電泳光閥、上述光閥的組合,或者液晶光閥其他種類的光閥的組合。 As shown in FIG. 7, the three-dimensional electronic display 300 can further include a light valve array 350. In accordance with various embodiments of the present invention, light valve array 350 modulates the coupled out beams 306 of the beams into modulated beams 306', thereby forming or constituting voxels corresponding to different three-dimensional views of three-dimensional electronic display 300. In some embodiments, the light valve array 350 can include a plurality of liquid crystal light valves. In other embodiments, for example, the light valve array 350 can include Other light valves may include, but are not limited to, electrowetting light valves, electrophoretic light valves, combinations of the above-described light valves, or combinations of other types of light valves for liquid crystal light valves.

根據本說明書中所描述之原理的其他實施例,本發明係提供了一種將光雙向準直的方法。第8圖為根據與本發明所描述的原理一致的實施例,顯示了將光雙向準直的方法400的範例的流程圖。如第8圖所示,將光雙向準直的方法400包括了步驟410:利用垂直準直器將光在垂直方向上準直,藉此提供垂直地準直的光。在某些實施例中,垂直準直器係與上文中針對雙向光學準直器100所描述的垂直準直器110大致相似。舉例來說,步驟410中在將光準直時使用的垂直準直器所使用的可以包含具有拋物線形狀的光學反射器。 In accordance with other embodiments of the principles described in this specification, the present invention provides a method of bi-directionally collimating light. Figure 8 is a flow chart showing an example of a method 400 of bi-directionally collimating light in accordance with an embodiment consistent with the principles described herein. As shown in FIG. 8, the method 400 of bi-directionally collimating light includes the step 410 of collimating light in a vertical direction using a vertical collimator, thereby providing vertically collimated light. In certain embodiments, the vertical collimator is substantially similar to the vertical collimator 110 described above for the bi-directional optical collimator 100. For example, the vertical collimator used in collimating the light in step 410 may comprise an optical reflector having a parabolic shape.

將光雙向準直的方法400係進一步包括步驟420:利用位在與垂直準直器的輸入部相鄰位置處的一水平準直器將垂直地準直的光在水平的方向上準直,藉此產生同時垂直地準直與水平地準直的雙向準直光。在某些實施例中,水平準直器係大致與上文中針對雙向光學準直器100所描述的水平準直器120相似。舉例來說,在步驟420中用來進一步將垂直地準直的光準直的水平準直器,可以包括具有另一拋物線形狀的另一光學反射器。在某些實施例中,水平準直器的光學反射器可以大致橫跨水平準直器的輸出孔,藉此產生具有橫跨輸出孔大致均勻的分布的雙向準直光。 The method 400 of bidirectionally collimating light further includes the step 420 of collimating the vertically collimated light in a horizontal direction with a horizontal collimator positioned adjacent the input of the vertical collimator, Thereby, bidirectional collimated light that is simultaneously vertically collimated and horizontally collimated is generated. In certain embodiments, the horizontal collimator is substantially similar to the horizontal collimator 120 described above for the bi-directional optical collimator 100. For example, the horizontal collimator used to further collimate the vertically collimated light in step 420 may include another optical reflector having another parabolic shape. In some embodiments, the optical reflector of the horizontal collimator can span substantially the output aperture of the horizontal collimator, thereby producing bi-directional collimated light having a substantially uniform distribution across the output aperture.

第8圖中所示的將光雙向準直的方法400係進一步包括步驟430:在雙向準直光中建立一非零值傳導角度,其中,所述的非零值傳導角度係在一垂直平面中對應於所述的垂直方向(或者,等同地,相對於水平平面的角度)。作為範例,非零值傳導角度可以與上文中針對雙向光學 準直器100所述的非零值傳導角度大致相似。更具體來說,在某些實施例中,非零值傳導角度可以由垂直準直器或水平準直器的其中之一的光學反射器的傾斜角度所提供,或者,可以同時由垂直準直器與水平準直器的光學反射器的傾斜角度所提供。 The method 400 of bidirectionally collimating light shown in FIG. 8 further includes the step 430 of establishing a non-zero value conduction angle in the bidirectional collimated light, wherein the non-zero value transmission angle is in a vertical plane The corresponding to the vertical direction (or, equivalently, the angle with respect to the horizontal plane). As an example, a non-zero value conduction angle can be used with bidirectional optics above The non-zero value conduction angles described by collimator 100 are substantially similar. More specifically, in some embodiments, the non-zero value conduction angle may be provided by the tilt angle of the optical reflector of one of the vertical collimator or the horizontal collimator, or may be vertically collimated simultaneously The angle of inclination of the optical reflector with the horizontal collimator is provided.

根據與本發明所述原理一致的另一實施例,本發明係提供了一種三維電子顯示器的操作方法。第9圖為根據與本發明所描述的原理一致的實施例,顯示了三維電子顯示器的操作方法500的範例的流程圖。如第9圖所示,三維電子顯示器的操作方法500係包括了步驟510:提供具有非零值傳導角度的雙向準直光。根據本發明的各個實施例,可以透過雙向準直器來提供所述的雙向準直光。雙向準直器可以與上文中所描述的雙向光學準直器100大致相似。在某些實施例中,可以根據上文中所述的將光雙向準直的方法來進行提供雙向準直光的步驟510。舉例來說,提供雙向準直光的步驟510可以在使用垂直準直器之後,接著透過設置於垂直準直器的輸出部的水平準直器進行。 In accordance with another embodiment consistent with the principles of the present invention, the present invention provides a method of operating a three-dimensional electronic display. FIG. 9 is a flow chart showing an example of a method 500 of operating a three-dimensional electronic display in accordance with an embodiment consistent with the principles described herein. As shown in FIG. 9, the method of operation 500 of a three-dimensional electronic display includes step 510 of providing bidirectional collimated light having a non-zero value conduction angle. According to various embodiments of the present invention, the bidirectional collimated light may be provided through a two-way collimator. The two-way collimator can be substantially similar to the bi-directional optical collimator 100 described above. In some embodiments, step 510 of providing bidirectional collimated light can be performed in accordance with the method of bidirectionally collimating light as described above. For example, the step 510 of providing bidirectional collimated light can be performed after the vertical collimator is used, followed by a horizontal collimator disposed at the output of the vertical collimator.

三維電子顯示器的操作方法500進一步包括步驟520:在平板導光體中引導雙向準直光。更具體來說,雙向準直光在步驟520中係非零值傳導角度在平板導光體中被引導。根據本發明的某些實施例,平板導光體可以與上文中針對背光板200所述的平板導光體220大致相似。 The method of operating a three-dimensional electronic display 500 further includes the step 520 of directing bidirectional collimated light in the planar light guide. More specifically, the bidirectional collimated light is guided in step 520 by a non-zero value conduction angle in the planar light guide. According to some embodiments of the present invention, the planar light guide may be substantially similar to the planar light guide 220 described above for the backlight 200.

第9圖中所述的三維電子顯示器的操作方法500進一步包括步驟530:利用一多光束繞射格柵將經引導的雙向準直光的一部分繞射耦合出以產生多條光束。根據本發明的某些實施例,多光束繞射格柵係位在平板導光體的一表面。根據本發明的各個實施例,將經引導的部分雙向準 直光繞射耦合出的步驟530,係用以提供往遠離平板導光體的方向以不同的主要角度方向定向的多條光束。更具體來說,該些不同的主要角度方向係對應於三維顯示器的不同三維視角的方向。根據本發明的某些實施例,多光束繞射格柵係與多光束繞射格柵240大致相似,且步驟530中的該些光束中的繞射耦合出的光束,係對應於上文中針對背光板200所述的光束206或針對三維顯示器300所述的光束306。 The method of operation 500 of the three-dimensional electronic display described in FIG. 9 further includes a step 530 of diffracting a portion of the guided bidirectional collimated light with a multi-beam diffraction grating to produce a plurality of beams. According to some embodiments of the invention, the multi-beam diffraction grating is tied to a surface of the planar light guide. According to various embodiments of the present invention, the guided part is bidirectionally The direct light diffraction coupling step 530 is for providing a plurality of light beams oriented in different major angular directions away from the planar light guide. More specifically, the different primary angular directions correspond to the directions of different three-dimensional views of the three-dimensional display. According to some embodiments of the present invention, the multi-beam diffraction grating system is substantially similar to the multi-beam diffraction grating 240, and the diffracted light beams of the light beams in step 530 correspond to the above The light beam 206 described by the backlight panel 200 or the light beam 306 described for the three-dimensional display 300.

根據本發明的各個實施例,第9圖中顯示的三維電子顯示器的操作方法500進一步包括步驟540:利用光閥陣列調變該些光束中的光束。根據本發明的各個實施例,在步驟540中調變的光束係形成三維電子顯示器在三維觀看方向上的三維像素。在某些實施例中,光閥陣列可以與上文中針對三維電子顯示器300所述的光閥陣列350大致相似。 In accordance with various embodiments of the present invention, the method of operation 500 of the three-dimensional electronic display shown in FIG. 9 further includes the step 540 of modulating the light beams of the plurality of beams with a light valve array. In accordance with various embodiments of the present invention, the modulated beam of light in step 540 forms a voxel of the three-dimensional electronic display in a three-dimensional viewing direction. In some embodiments, the light valve array can be substantially similar to the light valve array 350 described above for the three-dimensional electronic display 300.

在某些實施例中(未顯示於圖中),三維電子顯示器的操作方法500係進一步包括提供待雙向準直的光。舉例來說,可以將未準直的光提供至雙向光學準直器,例如,提供至步驟510中提供雙向準直光所使用的雙向準直器。作為範例,可以利用設置在垂直準直器的輸入部的光源來提供所述的光。此外,在某些實施例中,光源可以與上文中針對背光板200所述的光源230大致相似。 In some embodiments (not shown), the method of operation 500 of a three-dimensional electronic display further includes providing light to be bi-directionally collimated. For example, uncollimated light can be provided to the bi-directional optical collimator, for example, to the bi-directional collimator used to provide bi-directional collimated light in step 510. As an example, the light can be provided using a light source disposed at the input of the vertical collimator. Moreover, in some embodiments, the light source can be substantially similar to the light source 230 described above for backlight 200.

因此,本發明中提供了雙向光學準直器、採用雙向光學準直器的背光板、將光雙向準直的方法以及採雙向準直方法的三維電子顯示器的操作方法的實例。熟知該領域的技術人士應當瞭解,上文中所敘述的實例僅為代表本發明之原理的眾多實例與實施例中的說明性範例。顯然地, 熟知該領域的技術人士可以在不脫離本發明的申請專利範圍所限定之範疇的條件下做出多種其他的配置。 Accordingly, the present invention provides an example of a bidirectional optical collimator, a backlight panel using a bidirectional optical collimator, a method of bidirectionally collimating light, and a method of operating a three-dimensional electronic display employing a bidirectional collimation method. Those skilled in the art should understand that the examples described above are merely illustrative examples of numerous examples and embodiments that are representative of the principles of the invention. Apparently, A variety of other configurations can be made by those skilled in the art without departing from the scope of the invention as defined by the scope of the invention.

Claims (24)

一種雙向光學準直器:包括光學反射器的一垂直準直器,用以將光往一垂直方向上準直;包括光學反射器的一水平準直器,用以將光往大致與該垂直方向正交的一水平方向上準直,該水平準直器係位在該垂直準直器以及該雙向光學準直器的一輸出孔之間,並且位在與該垂直準直器的一輸出部相鄰的位置,以將該垂直準直器垂直地準直的光水平地準直,藉此在該雙向光學準直器的該輸出孔提供一雙向準直光;其中,該雙向光學準直器係以與該水平方向對應的一水平平面相對的一非零值傳導角度提供該雙向準直光。 A bidirectional optical collimator comprising: a vertical collimator comprising an optical reflector for collimating light in a vertical direction; a horizontal collimator comprising an optical reflector for directing light substantially perpendicular thereto Compensating in a horizontal direction orthogonal to the direction, the horizontal collimator being positioned between the vertical collimator and an output aperture of the bidirectional optical collimator and positioned at an output with the vertical collimator An adjacent position horizontally collimating light vertically collimating the vertical collimator, thereby providing a bidirectional collimated light in the output aperture of the bidirectional optical collimator; wherein the bidirectional optical quasi The straightener provides the bidirectional collimated light at a non-zero value conduction angle opposite a horizontal plane corresponding to the horizontal direction. 根據申請專利範圍第1項所述之雙向光學準直器,其中,該垂直準直器的該光學反射器係包括一拋物線形以及一傾斜角度,該傾斜角度係被配置以提供該雙向準直光的該非零值傳導角度。 The bidirectional optical collimator of claim 1, wherein the optical reflector of the vertical collimator comprises a parabolic shape and an oblique angle configured to provide the bidirectional collimation This non-zero value of light conducts the angle. 根據申請專利範圍第1項所述之雙向光學準直器,其中,該水平準直器的該光學反射器係包括一拋物線形,該水平準直器的該光學反射器係大致橫跨該雙向光學準直器的該輸出孔,且該雙向準直光具有橫跨該輸出孔大致均勻的分佈。 The bidirectional optical collimator of claim 1, wherein the optical reflector of the horizontal collimator comprises a parabolic shape, the optical reflector of the horizontal collimator substantially spanning the bidirectional The output aperture of the optical collimator, and the bi-directional collimated light has a substantially uniform distribution across the output aperture. 根據申請專利範圍第1項所述之雙向光學準直器,其中,該水平準直器的該光學反射器包括複數個子反射器,該等子反射器係彼此結合並且大致橫跨該雙向光學準直器的該輸出孔,且該等子反射器中的每一者係包括一拋物線形表面。 The bidirectional optical collimator of claim 1, wherein the optical reflector of the horizontal collimator comprises a plurality of sub-reflectors that are coupled to each other and substantially span the bidirectional optical alignment The output aperture of the straightener, and each of the sub-reflectors includes a parabolic surface. 根據申請專利範圍第4項所述之雙向光學準直器,其中,該水平準直器的該光學反射器係一菲涅耳反射器(Fresnel reflector)。 The bidirectional optical collimator of claim 4, wherein the optical reflector of the horizontal collimator is a Fresnel reflector. 根據申請專利範圍第4項所述之雙向光學準直器,其中,該等子反射器中的一第一子反射器係用於接收來自位於該水平準直器的一第一邊緣的一第一垂直準直器的垂直地準直的光,該等子反射器中的一第二子反射器係用於接收來自位於該水平準直器的一第二邊緣的一第二垂直準直器的垂直地準直的光,該第二邊緣係在對應於該水平方向的該水平平面上相對於該第一邊緣。 The bidirectional optical collimator of claim 4, wherein a first sub-reflector of the sub-reflectors is for receiving a first edge from a horizontal edge of the horizontal collimator Vertically collimated light of a vertical collimator, a second sub-reflector of the sub-reflectors for receiving a second vertical collimator from a second edge of the horizontal collimator Vertically collimated light, the second edge being relative to the first edge in the horizontal plane corresponding to the horizontal direction. 根據申請專利範圍第1項所述之雙向光學準直器,其中,該垂直準直器為該水平準直器的材料的一體,且該垂直準直器係包括該水平準器的材料。 The bidirectional optical collimator of claim 1, wherein the vertical collimator is an integral material of the horizontal collimator, and the vertical collimator comprises a material of the level. 一種包括申請專利範圍第1項所述之雙向光學準直器的背光板,其中,該背光板進一步包括:一平板導光體,耦接於該雙向光學準直器的該輸出孔,該平板導光體係用於接收該雙向準直光並且將該雙向準直光以該非零值傳導角度引導;其中,該平板導光體係進一步從該平板導光體的一表面射出經引導的該雙向準直光。 A backlight board comprising the bidirectional optical collimator of claim 1, wherein the backlight further comprises: a flat light guide body coupled to the output hole of the bidirectional optical collimator, the flat plate a light guiding system is configured to receive the bidirectional collimated light and direct the bidirectional collimated light at the non-zero value conduction angle; wherein the flat light guiding system further emits the guided bidirectional quasi from a surface of the flat light guiding body Straight light. 根據申請專利範圍第8項所述的背光板,進一步包括用於提供光至該雙向光學準直器的一光源,該光源係位在相鄰於該垂直準直器的位置,並且係用於將光提供至該垂直準直器的一輸入部。 The backlight of claim 8, further comprising a light source for providing light to the bidirectional optical collimator, the light source being positioned adjacent to the vertical collimator and used for Light is provided to an input of the vertical collimator. 根據申請專利範圍第9項所述的背光板,其中,該光源包括用於提供不同顏色的光的複數個不同光源,該等不同光源彼此相互偏移,其中,該等不同光源之間的偏移係被配置以提供對應於各個不同顏色的光的不同、顏色特定的該雙向準直光的該非零值傳導角度。 The backlight panel of claim 9, wherein the light source comprises a plurality of different light sources for providing different colors of light, the different light sources being offset from each other, wherein a deviation between the different light sources The shifting system is configured to provide a different, color-specific, non-zero valued conduction angle of the bi-directional collimated light corresponding to the respective different colors of light. 根據申請專利範圍第8項所述的背光板,進一步包括一多光束繞射格柵,該多光束繞射格柵係用於將經引導的該雙向準直光的一部分從該平板導光體繞射耦合出成為從該平板導光體的表面射出的複數條光束,該等光束中的其中一光束具有與該等光束中的其他光束不相同的一主要角度方向。 The backlight of claim 8, further comprising a multi-beam diffraction grating for guiding a portion of the bidirectional collimated light guided from the flat light guide The diffraction is coupled out into a plurality of beams emerging from the surface of the planar light guide, one of the beams having a major angular direction that is different from the other of the beams. 一種包括申請專利範圍第11項的背光板的三維電子顯示器,該三維電子顯示器進一步包括:一光閥,用於調變該等光束中的一光束,該光閥係相鄰於該多光束繞射格柵;其中,該光束的該主要角度方向係對應於該三維顯示器的一觀看方向,經調變的光束係代表該三維電子顯示器在該觀看方向上的一像素。 A three-dimensional electronic display comprising a backlight of claim 11 , the three-dimensional electronic display further comprising: a light valve for modulating a light beam of the light beams, the light valve being adjacent to the multiple light beam a radiation grid; wherein the main angular direction of the light beam corresponds to a viewing direction of the three-dimensional display, and the modulated light beam represents a pixel of the three-dimensional electronic display in the viewing direction. 一種三維電子顯示器,包括:一雙向光學準直器,包括一垂直準直器以及一水平準直器,該水平準直器係位在與該垂直準直器的一輸出部相鄰的位置並且位在該雙向光學準直器的一輸出孔前方,該雙向光學準直器係用於提供雙向準直光,其中,該雙向準直光具有相對於一水平平面以一非零值傳導角度的垂直準直與水平準直; 一平板導光體,用以將該雙向準直光以該非零值傳導角度引導成為一導光束;一多光束繞射格柵陣列,位於該平板導光體的一表面上,該多光束繞射格柵陣列中的一多光束繞射格柵係用以將該導光束的一部分繞射耦合出成為複數條耦合出光束,該等耦合出光束具有對應於該三維電子顯示器的不同三維視角的各個方向的不同的主要角度方向。 A three-dimensional electronic display comprising: a bidirectional optical collimator comprising a vertical collimator and a horizontal collimator, the horizontal collimator being positioned adjacent to an output of the vertical collimator and Positioned in front of an output aperture of the bidirectional optical collimator for providing bidirectional collimated light, wherein the bidirectional collimated light has an angle of conduction with a non-zero value relative to a horizontal plane Vertical alignment and horizontal alignment; a flat light guide body for guiding the bidirectional collimated light to a guiding light beam at the non-zero value conduction angle; a multi-beam diffraction grating array located on a surface of the flat light guiding body, the multi-beam winding A multi-beam diffraction grating in the array of grating grids is used to couple a portion of the beam into a plurality of coupled beams, the coupled beams having different three-dimensional views corresponding to the three-dimensional electronic display. Different main angular directions in all directions. 根據申請專利範圍第13項所述的三維電子顯示器,其中,該垂直準直器係包括具有一拋物線形以及一傾斜角度的一光學反射器,該傾斜角度係用以決定該雙向準直光在該雙向光學準直器的該輸出孔的該非零值傳導角度。 The three-dimensional electronic display of claim 13, wherein the vertical collimator comprises an optical reflector having a parabolic shape and an oblique angle, wherein the oblique angle is used to determine the bidirectional collimated light The non-zero value of the output aperture of the bi-directional optical collimator conducts an angle. 根據申請專利範圍第13項所述之三維電子顯示器,其中,該水平準直器係包括具有一拋物線形的一光學反射器,該光學反射器係大致橫跨該雙向光學準直器的該輸出孔,藉此提供具有橫跨該輸出孔大致均勻的分佈的該雙向準直光。 The three-dimensional electronic display of claim 13, wherein the horizontal collimator comprises an optical reflector having a parabolic shape, the optical reflector substantially spanning the output of the bidirectional optical collimator The apertures thereby provide the bidirectional collimated light having a substantially uniform distribution across the output aperture. 根據申請專利範圍第13項所述之三維電子顯示器,其中,該水平準直器具有一第一邊緣以及相對於該第一邊緣的一第二邊緣,該水平準直器包括具有複數個子反射器的一光學反射器,該等子反射器係彼此結合並且大致橫跨該雙向光學準直器的該輸出孔,其中,該等子反射器中的一第一子反射器係用於接收來自位於該水平準直器的該第一邊緣的一第一垂直準直器的垂直地準直的光,該等子反射器中的一第二子反射器係用於接收來自位於該水平準直器的該第二邊緣的 一第二垂直準直器的垂直地準直的光,該第二邊緣係在對應於該水平方向的該水平平面上相對於該第一邊緣。 The three-dimensional electronic display of claim 13, wherein the horizontal collimator has a first edge and a second edge relative to the first edge, the horizontal collimator comprising a plurality of sub-reflectors An optical reflector, the sub-reflectors are coupled to each other and substantially across the output aperture of the bi-directional optical collimator, wherein a first sub-reflector of the sub-reflectors is for receiving from Vertically collimated light of a first vertical collimator of the first edge of the horizontal collimator, a second sub-reflector of the sub-reflectors for receiving light from the horizontal collimator The second edge Vertically collimated light of a second vertical collimator that is relative to the first edge in the horizontal plane corresponding to the horizontal direction. 根據申請專利範圍第13項所述之三維電子顯示器,其中,該多光束繞射格柵係包括具有彎曲的繞射結構特徵的一啁啾式繞射格柵。 A three-dimensional electronic display according to claim 13 wherein the multi-beam diffraction grating comprises a meander diffraction grating having curved diffractive structural features. 根據申請專利範圍第17項所述之三維電子顯示器,其中,該啁啾式繞射格柵係一線性啁啾式繞射格柵。 The three-dimensional electronic display of claim 17, wherein the 绕-type diffraction grating is a linear 绕-type diffraction grating. 根據申請專利範圍第13項所述之三維電子顯示器,進一步包括:一光源,用以將光提供至該雙向光學準直器的一輸入部;以及一光閥陣列,用以選擇性地將該等耦合出光束調變成為對應於該三維電子顯示器的不同三維視角的三維像素。 The three-dimensional electronic display of claim 13, further comprising: a light source for supplying light to an input of the bidirectional optical collimator; and a light valve array for selectively The coupled beam is modulated into a voxel corresponding to a different three-dimensional view of the three-dimensional electronic display. 根據申請專利範圍第19項所述之三維電子顯示器,其中,該光閥陣列包括複數個液晶光閥。 The three-dimensional electronic display of claim 19, wherein the light valve array comprises a plurality of liquid crystal light valves. 根據申請專利範圍第19項所述之三維電子顯示器,其中,該光源包括了用以提供不同顏色的光的不同的複數個發光二極體(light emitting diode,LED),該等LED係彼此相互偏移,其中,該等不同LED之間的偏移係被配置以提供不同、顏色特定且具有非零值傳導角度的該雙向準直光,不同、顏色特定的非零值傳導角度係對應於各個不同顏色的光。 The three-dimensional electronic display of claim 19, wherein the light source comprises a plurality of different light emitting diodes (LEDs) for providing different colors of light, the LEDs being mutually connected to each other An offset, wherein the offset between the different LEDs is configured to provide the bidirectional collimated light that is different, color specific, and has a non-zero value conduction angle, the different, color-specific non-zero value conduction angles corresponding to Light of different colors. 一種將光雙向準直的方法,該方法包括: 利用包括光學反射器的一垂直準直器將光往一垂直方向準直,藉此提供垂直地準直的光;利用位在與該垂直準直器的一輸入部相鄰位置處、介於該垂直準直器以及該雙向光學準直器的該輸入孔之間並且包括光學反射器的一水平準直器進一步將垂直地準直的光往一水平方向準直,藉此提供垂直地準直以及水平地準直的雙向準直光;以及在該雙向準直光中建立一非零值傳導角度,該非零值傳導角度係在一垂直平面中對應於該垂直方向。 A method of bidirectionally collimating light, the method comprising: Using a vertical collimator comprising an optical reflector to collimate light in a vertical direction, thereby providing vertically collimated light; utilizing a position adjacent to an input of the vertical collimator, The vertical collimator and a horizontal collimator including the optical reflector between the vertical collimator and the optical collimator further collimate the vertically collimated light in a horizontal direction, thereby providing a vertical alignment Straight and horizontally collimated bidirectional collimated light; and establishing a non-zero value conduction angle in the bidirectional collimated light, the non-zero value conduction angle corresponding to the vertical direction in a vertical plane. 根據申請專利範圍第22項所述之將光雙向準直的方法,其中,該垂直準直器的該光學反射器係包括一拋物線形以及一傾斜角度,該傾斜角度係被配置以提供該雙向準直光的該非零值傳導角度;其中,該水平準直器係的該光學反射器具有另一拋物線形並且係橫跨該輸出孔,藉此產生具有橫跨該輸出孔均勻的分佈的該雙向準直光。 The method of bidirectionally collimating light according to claim 22, wherein the optical reflector of the vertical collimator comprises a parabolic shape and an oblique angle configured to provide the bidirectional The non-zero value conduction angle of the collimated light; wherein the optical reflector of the horizontal collimator has another parabolic shape and spans the output aperture, thereby creating a uniform distribution across the output aperture Two-way collimated light. 一種包括了根據申請專利範圍第22項所述之將光雙向準直的方法的三維電子顯示器的操作方法,其中,所述的三維電子顯示器的操作方法進一步包括以下步驟:將該雙向準直光在一平板導光體中以該非零值傳導角度引導,該雙向準直光係從該輸出孔所接收;利用位於該平板導光體的一表面的一多光束繞射格柵將經引導的該雙向準直光的一部分繞射耦合出,藉此產生往遠離該平板導光體的方向以不同的複數個主要角度方向定向的複數條光束,其中,不同的 該等主要角度方向係對應於一三維電子顯示器的不同三維視角的方向;以及利用一光閥陣列調變該等光束中的光束,經調變的光束係在三維觀看方向上形成該三維電子顯示器的三維像素。 An operation method of a three-dimensional electronic display comprising the method of bidirectionally collimating light according to claim 22, wherein the method of operating the three-dimensional electronic display further comprises the step of: collimating the bidirectional light Guided by the non-zero value conduction angle in a planar light guide, the bidirectional collimated light system is received from the output aperture; guided by a multi-beam diffraction grating located on a surface of the planar light guide a portion of the bidirectional collimated light is coupled out by diffraction, thereby generating a plurality of beams directed in a plurality of major angular directions away from the planar light guide, wherein different The main angular directions correspond to directions of different three-dimensional viewing angles of a three-dimensional electronic display; and the light beams in the light beams are modulated by a light valve array, and the modulated light beam system forms the three-dimensional electronic display in a three-dimensional viewing direction. The voxel.
TW105136135A 2016-11-07 2016-11-07 A dual-direction optical collimator and a method, backlight and three-dimensional(3d) electronic display using same TWI618957B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW105136135A TWI618957B (en) 2016-11-07 2016-11-07 A dual-direction optical collimator and a method, backlight and three-dimensional(3d) electronic display using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW105136135A TWI618957B (en) 2016-11-07 2016-11-07 A dual-direction optical collimator and a method, backlight and three-dimensional(3d) electronic display using same

Publications (2)

Publication Number Publication Date
TWI618957B true TWI618957B (en) 2018-03-21
TW201818106A TW201818106A (en) 2018-05-16

Family

ID=62189154

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105136135A TWI618957B (en) 2016-11-07 2016-11-07 A dual-direction optical collimator and a method, backlight and three-dimensional(3d) electronic display using same

Country Status (1)

Country Link
TW (1) TWI618957B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI838394B (en) * 2018-08-24 2024-04-11 盧森堡商喜瑞爾工業公司 Light guiding device and illumination device and display device having the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023039903A1 (en) * 2021-09-18 2023-03-23 华域视觉科技(上海)有限公司 Optical transflection system of vehicle lamp lighting device, and vehicle lamp lighting device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4755826A (en) * 1983-01-10 1988-07-05 The United States Of America As Represented By The Secretary Of The Navy Bicollimated offset Gregorian dual reflector antenna system
US20070211487A1 (en) * 2004-09-20 2007-09-13 Koninklijke Philips Electronics, N.V. Led collimator element with a semiparabolic reflector
TW201213731A (en) * 2010-06-15 2012-04-01 Dialight Corp Highly collimating reflector lens optic and light emitting diodes
US20140268867A1 (en) * 2013-03-13 2014-09-18 Hewlett-Packard Development Company, L.P. Backlight having Dual Collimating Reflectors
US20150036068A1 (en) * 2013-07-30 2015-02-05 Leia Inc. Multibeam diffraction grating-based backlighting

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4755826A (en) * 1983-01-10 1988-07-05 The United States Of America As Represented By The Secretary Of The Navy Bicollimated offset Gregorian dual reflector antenna system
US20070211487A1 (en) * 2004-09-20 2007-09-13 Koninklijke Philips Electronics, N.V. Led collimator element with a semiparabolic reflector
TW201213731A (en) * 2010-06-15 2012-04-01 Dialight Corp Highly collimating reflector lens optic and light emitting diodes
US20140268867A1 (en) * 2013-03-13 2014-09-18 Hewlett-Packard Development Company, L.P. Backlight having Dual Collimating Reflectors
US20150036068A1 (en) * 2013-07-30 2015-02-05 Leia Inc. Multibeam diffraction grating-based backlighting

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI838394B (en) * 2018-08-24 2024-04-11 盧森堡商喜瑞爾工業公司 Light guiding device and illumination device and display device having the same

Also Published As

Publication number Publication date
TW201818106A (en) 2018-05-16

Similar Documents

Publication Publication Date Title
TWI722260B (en) Mode-selectable backlight, method, and display employing directional scattering features
US10345505B2 (en) Multibeam diffraction grating-based color backlighting
JP7023381B2 (en) Mode-switchable backlights, displays, and methods
TWI659250B (en) Mode-switchable backlight, privacy display, and method
JP6986568B2 (en) How to use a one-sided backlight, a multi-view display, and a tilted grating
TWI620972B (en) Dual light guide grating-based backlight and electronic display using same
JP6887447B2 (en) Diffractive multi-beam element backlight
TWI572955B (en) Unidirectional grating-based backlighting employing an angularly selective reflective layer
TWI598646B (en) Multibeam diffraction grating-based color backlighting, three-dimensional color electronic display and method of three-dimensional color electronic display operation
US10725226B2 (en) Dual-direction collimator
JP6987044B2 (en) Two-sided collimator and 3D electronic display with grid-based rear lighting using the collimator
CN108604019A (en) Backlight based on multi-beam element and the display using the backlight
TW201734594A (en) Polychromatic grating-coupled backlight, electronic display, and method of backlight operation
JP7061186B2 (en) How to utilize lattice-coupled optical waveguides, display systems, and condensing
JP6971324B2 (en) How to use a backlight, multi-view display, and tapered collimator
JP7066693B2 (en) Transparent display and method
TW201734510A (en) Grating-based backlight, electronic display and method employing reflective grating islands
JP6922067B2 (en) Multi-beam element-based backlight with microlens and display using it
JP2021536588A (en) Multi-view display, system, and method with user tracking
JP2022504643A (en) Backlights with grid spreaders, multi-view displays, and methods
TWI618957B (en) A dual-direction optical collimator and a method, backlight and three-dimensional(3d) electronic display using same
TW202120975A (en) Multiview backlight, display, and method having a multibeam element within a light guide
TWI740584B (en) Collimated backlight, electronic display, and method employing an absorption collimator
TWI747533B (en) Multibeam backlight, multiview display, and method having shaped-edge multibeam elements