TWI618344B - Motor control - Google Patents
Motor control Download PDFInfo
- Publication number
- TWI618344B TWI618344B TW102146593A TW102146593A TWI618344B TW I618344 B TWI618344 B TW I618344B TW 102146593 A TW102146593 A TW 102146593A TW 102146593 A TW102146593 A TW 102146593A TW I618344 B TWI618344 B TW I618344B
- Authority
- TW
- Taiwan
- Prior art keywords
- motor
- command
- magnetic flux
- calculator
- torque
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P21/00—Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
- H02P21/06—Rotor flux based control involving the use of rotor position or rotor speed sensors
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P21/00—Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
- H02P21/14—Estimation or adaptation of machine parameters, e.g. flux, current or voltage
- H02P21/20—Estimation of torque
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P29/00—Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
- H02P29/02—Providing protection against overload without automatic interruption of supply
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P3/00—Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters
- H02P3/06—Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter
- H02P3/08—Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing a dc motor
- H02P3/14—Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing a dc motor by regenerative braking
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P27/00—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
- H02P27/04—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Control Of Ac Motors In General (AREA)
Abstract
本發明之課題在於實現如下之馬達控制裝置:將有磁飽和之馬達之動力運轉時之高速負載旋轉時之扭矩低下改善而縮短加速時間,同時還抑制馬達再生時之過大之扭矩,而防止換流器之過電壓與變換器之過電流,而且沒有扭矩常數之急速變化,可兼顧良好之加速特性與安全之減速特性。動力運轉/再生判別器是使用扭矩電流指令與馬達旋轉速度而判別馬達之動力運轉/再生狀態。限制器是當馬達在動力運轉狀態時使扭矩電流指令通過,在再生狀態時以限制值限制扭矩電流指令之大小而使其通過。激磁電流指令演算器是使用馬達旋轉速度而認識馬達之旋轉狀態,演算與該旋轉狀態對應之激磁電流指令。馬達驅動部(q軸電流控制器、d軸電流控制器、座標轉換器、PWM控制器、功率轉換器)是使用通過限制器後之扭矩電流指令與演算出之激磁電流指令而驅動馬達。 The object of the present invention is to realize a motor control device that improves torque reduction during high-speed load rotation during power operation of a magnetically saturated motor and reduces acceleration time, and also suppresses excessive torque during motor regeneration to prevent replacement. The overvoltage of the current transformer and the overcurrent of the converter, and there is no rapid change of the torque constant, which can take into account good acceleration characteristics and safe deceleration characteristics. The power running / regeneration discriminator determines the power running / regeneration status of the motor using the torque current command and the motor rotation speed. The limiter allows the torque current command to pass when the motor is in a power running state, and limits the magnitude of the torque current command to allow it to pass during a regeneration state. The field current command calculator recognizes the rotation state of the motor by using the rotation speed of the motor, and calculates a field current command corresponding to the rotation state. The motor drive unit (q-axis current controller, d-axis current controller, coordinate converter, PWM controller, power converter) drives the motor using the torque current command passed through the limiter and the calculated exciting current command.
Description
本發明是有關於將感應電機之向量控制之加減速特性改善之馬達控制裝置。 The present invention relates to a motor control device that improves the acceleration and deceleration characteristics of vector control of an induction motor.
工具機之主軸被期望能兼顧低速重切削與高速切削。因此,使用根據磁場減弱(field weakening)之定輸出控制來實現低速旋轉時之高扭矩化與高速旋轉化。進行定輸出控制之馬達控制裝置舉例來說是如以下之構成。 The machine tool spindle is expected to be able to balance both low-speed heavy cutting and high-speed cutting. Therefore, constant output control based on field weakening is used to achieve high torque and high speed rotation during low speed rotation. The motor control device that performs constant output control is configured as follows, for example.
圖12是習知之馬達控制裝置的方塊圖。該馬達控制裝置是進行如以下之動作。 FIG. 12 is a block diagram of a conventional motor control device. This motor control device performs the following operations.
首先,將速度指令與來自速度演算器15之馬達旋轉速度ωm比較,藉由速度控制器20求出q軸電流指令IqC。速度演算器15輸出之馬達旋轉速度ωm是使用由編碼器10檢測出之位置回饋而演算。將q軸電流指令IqC與來自座標轉換器25之q軸電流回饋IqF比較,藉由q軸電流控制器30求出q軸電壓指令VqC。 First, the speed command is compared with the motor rotation speed ωm from the speed calculator 15, and the q-axis current command IqC is obtained by the speed controller 20. The motor rotation speed ωm output from the speed calculator 15 is calculated using position feedback detected by the encoder 10. The q-axis current command IqC is compared with the q-axis current feedback IqF from the coordinate converter 25, and the q-axis voltage command VqC is obtained by the q-axis current controller 30.
另一方面,參考馬達旋轉速度ωm而以磁通量指令φ2C下達必要之磁通量,將磁通量指令φ2C與磁通量演 算器35所求出之磁通量φ2比較,藉由磁通量控制器40求出d軸電流指令IdC。磁通量演算器35輸出之磁通量φ2是使用來自座標轉換器25之d軸電流回饋IdF而演算。將d軸電流指令IdC與來自座標轉換器25之d軸電流回饋IdF比較,藉由d軸電流控制器45求出d軸電壓指令VdC。 On the other hand, referring to the motor rotation speed ωm, the necessary magnetic flux is issued with the magnetic flux command φ2C, and the magnetic flux command φ2C and the magnetic flux are calculated. The magnetic flux φ2 obtained by the calculator 35 is compared, and the d-axis current command IdC is obtained by the magnetic flux controller 40. The magnetic flux φ2 output from the magnetic flux calculator 35 is calculated using the d-axis current feedback IdF from the coordinate converter 25. The d-axis current command IdC is compared with the d-axis current feedback IdF from the coordinate converter 25, and the d-axis voltage command VdC is obtained by the d-axis current controller 45.
轉差頻率演算器50由q軸電流指令IqC與磁通量φ2算出轉差頻率指令ωs。轉差頻率指令ωs是與速度演算器15輸出之馬達旋轉速度ωm相加。以轉差頻率指令ωs與馬達旋轉速度ωm求出一次頻率指令ω1。以積分器55將一次頻率指令ω1積分而求出定子位置指令θmc。 The slip frequency calculator 50 calculates a slip frequency command ωs from the q-axis current command IqC and the magnetic flux φ2. The slip frequency command ωs is added to the motor rotation speed ωm output from the speed calculator 15. A primary frequency command ω1 is obtained from the slip frequency command ωs and the motor rotation speed ωm. The integrator 55 integrates the primary frequency command ω1 to obtain the stator position command θmc.
座標轉換器60是基於定子位置指令θmc對q軸電壓指令VqC、d軸電壓指令VdC進行座標轉換,求出三相電壓指令Vuc、Vvc、Vwc。三相電壓指令Vuc、Vvc、Vwc是透過PWM控制器65、功率轉換器70而供給至馬達80,馬達80因應三相電壓指令Vuc、Vvc、Vwc而驅動。 The coordinate converter 60 performs coordinate conversion on the q-axis voltage command VqC and the d-axis voltage command VdC based on the stator position command θmc to obtain three-phase voltage commands Vuc, Vvc, and Vwc. The three-phase voltage commands Vuc, Vvc, and Vwc are supplied to the motor 80 through the PWM controller 65 and the power converter 70. The motor 80 is driven in response to the three-phase voltage commands Vuc, Vvc, and Vwc.
q軸電流回饋IqF與d軸電流回饋IdF是由座標轉換器25基於定子位置指令θmc對馬達電流Iu、Iv進行座標轉換而求出。 The q-axis current feedback IqF and the d-axis current feedback IdF are obtained by coordinate conversion of the motor currents Iu and Iv based on the stator position command θmc.
磁通量指令φ2C是如圖12之圖表所示,在定扭矩領域是一定,在定輸出領域是與馬達80之旋轉速度之上昇成反比例而減少。藉由使磁通量指令φ2C與馬達80之旋轉速度之上昇成反比例而降低,來進行磁場減弱控制。 The magnetic flux command φ2C is as shown in the graph of FIG. 12. It is constant in the constant torque area and decreases in inverse proportion to the increase in the rotation speed of the motor 80 in the constant output area. The magnetic field weakening control is performed by decreasing the magnetic flux command φ2C in inverse proportion to the increase in the rotation speed of the motor 80.
進行攻牙加工之工具機之主軸為了縮短加工時間,期望小型且慣性小、可高速旋轉之主軸馬達。若為了 實現馬達之小型化與低慣性化而將馬達之鐵心之磁通量密度設計的很高,則會有在動力運轉時之高速高負載旋轉時因為鐵心之飽和而無法確保充分之磁通量、由於無法輸出必要之大扭矩故加速時間變長之問題。 In order to shorten the machining time, the spindle of a machine tool for tapping is desired to have a small spindle motor with small inertia and high-speed rotation. If Realizing the miniaturization and low inertia of the motor and designing the magnetic flux density of the iron core of the motor to be very high, there will be a failure to ensure sufficient magnetic flux due to the saturation of the iron core during high-speed and high-load rotation during power operation. The large torque causes a long acceleration time.
為了對此進行改善,可以考慮的是使高速旋轉時之磁通量增加。此情況下,有馬達之減速時之扭矩相較於加速時變成過大之問題。馬達減速時,由於馬達之再生功率令功率轉換器之直流電壓變高,施加於馬達之電壓變高,鐵心之飽和受到緩和,故輸出大扭矩。因為過大的扭矩會對機械系統產生不良的影響,故期望能收在規格內。另外,若減速時之扭矩過大,則再生功率變大,會有超過馬達控制裝置容許之再生功率的情形。在以電阻器消耗再生功率之馬達控制裝置是具有換流器之直流電壓上昇而變成過電壓之問題。另外,在使再生功率回歸電源之馬達控制裝置是具有變換器之電流上昇而變成過電流之問題。 In order to improve this, it can be considered to increase the magnetic flux during high-speed rotation. In this case, there is a problem that the torque at the time of deceleration of the motor becomes excessively larger than that at the time of acceleration. When the motor decelerates, the regenerative power of the motor makes the DC voltage of the power converter higher, the voltage applied to the motor becomes higher, and the saturation of the iron core is relaxed, so a large torque is output. Because excessive torque can adversely affect the mechanical system, it is expected to be included in the specification. In addition, if the torque at the time of deceleration is too large, the regenerative power will increase, which may exceed the regenerative power allowed by the motor control device. A motor control device that consumes regenerative power with a resistor has a problem that the DC voltage of the inverter rises and becomes an overvoltage. In addition, the motor control device that returns the regenerative power to the power supply has a problem that the current of the inverter increases and becomes overcurrent.
為了改善該等問題,下述專利文獻1所記載之發明是在動力運轉時與再生時改變磁通量指令。 In order to improve these problems, the invention described in Patent Document 1 below is to change the magnetic flux command during power operation and during regeneration.
專利文獻1 日本特許第4065903號說明書 Patent Document 1 Japanese Patent No. 4065903
然而,在採用上述之專利文獻1所記載之發明的 情況下,有以下的問題:若在動力運轉時與再生時改變磁通量指令,則從動力運轉轉變至再生時磁通量急速變化而扭矩常數改變,在輸出扭矩中的情況下,馬達之輸出扭矩急速變化而對機械系統賦予衝撃。 However, when the invention described in Patent Document 1 is used, In the case, there are the following problems: If the magnetic flux command is changed during power operation and regeneration, the magnetic flux changes rapidly and the torque constant changes during the transition from power operation to regeneration. In the case of output torque, the output torque of the motor changes rapidly. And impulse to the mechanical system.
本發明是為了解除如上述之習知之馬達控制裝置之問題而建構之發明,其目的在於提供如下之馬達控制裝置:將有磁飽和之馬達之動力運轉時之高速負載旋轉時之扭矩低下改善而縮短加速時間,同時還抑制馬達再生時之過大之扭矩,而防止換流器之過電壓與變換器之過電流,而且沒有扭矩常數之急速變化,可兼顧良好之加速特性與安全之減速特性。 The present invention is an invention constructed to solve the problem of the conventional motor control device as described above, and an object thereof is to provide a motor control device that improves the torque reduction at the time of high-speed load rotation during the power operation of a magnetically saturated motor Shorten the acceleration time, at the same time suppress the excessive torque during motor regeneration, and prevent the over-voltage of the inverter and the over-current of the inverter, and there is no rapid change in torque constant, which can take into account good acceleration characteristics and safe deceleration characteristics.
為了達成上述目的之與本發明相關之馬達控制裝置是具有動力運轉/再生判別器、限制器、激磁電流指令演算器及馬達驅動部。 In order to achieve the above object, a motor control device related to the present invention includes a power operation / regeneration discriminator, a limiter, an exciting current command calculator, and a motor driving unit.
動力運轉/再生判別器是使用扭矩電流指令與馬達旋轉速度而判別馬達之動力運轉/再生狀態。限制器是當馬達在動力運轉狀態時使扭矩電流指令通過,在再生狀態時限制扭矩電流指令之大小而使其通過。激磁電流指令演算器是使用馬達旋轉速度而認識馬達之旋轉狀態,演算與該旋轉狀態對應之激磁電流指令。馬達驅動部是使用通過限制器後之扭矩電流指令與演算出之激磁電流指令而驅動馬達。 The power running / regeneration discriminator determines the power running / regeneration status of the motor using the torque current command and the motor rotation speed. The limiter allows the torque current command to pass when the motor is in a power running state, and limits the magnitude of the torque current command to allow it to pass when the motor is in a regenerative state. The field current command calculator recognizes the rotation state of the motor by using the rotation speed of the motor, and calculates a field current command corresponding to the rotation state. The motor drive unit drives the motor using a torque current command passed through the limiter and a calculated excitation current command.
根據如以上地構成之與本發明相關之馬達控制裝置,將有磁飽和之馬達之動力運轉時之高速負載旋轉時之扭矩低下改善而縮短加速時間,同時還抑制馬達再生時之過大之扭矩,而防止換流器之過電壓與變換器之過電流,而且沒有扭矩常數之急速變化,可兼顧良好之加速特性與安全之減速特性。 According to the motor control device related to the present invention configured as described above, the torque at the time of high-speed load rotation during power operation of a magnetically saturated motor is reduced to reduce the acceleration time, and at the same time, the excessive torque at the time of motor regeneration is suppressed, And to prevent the over-voltage of the converter and the over-current of the converter, and there is no rapid change in torque constant, it can take into account both good acceleration characteristics and safe deceleration characteristics.
10、110、210、310‧‧‧編碼器 10, 110, 210, 310‧‧‧ encoder
15、115、215、315‧‧‧速度演算器 15, 115, 215, 315‧‧‧speed calculator
20‧‧‧速度控制器 20‧‧‧speed controller
25、125、225、325‧‧‧座標轉換器 25, 125, 225, 325‧‧‧ coordinate converter
30、130、230、330‧‧‧q軸電流控制器 30, 130, 230, 330‧‧‧q axis current controller
35、235、335‧‧‧磁通量演算器 35, 235, 335‧‧‧ magnetic flux calculator
40、240、340‧‧‧磁通量控制器 40, 240, 340‧‧‧ magnetic flux controller
45、145、245、345‧‧‧d軸電流控制器 45, 145, 245, 345‧‧‧d-axis current controller
50、150、250、350‧‧‧轉差頻率演算器 50, 150, 250, 350‧‧‧Slip frequency calculator
55、155、255、355‧‧‧積分器 55, 155, 255, 355‧‧‧ integrator
60、160、260、360‧‧‧座標轉換器 60, 160, 260, 360‧‧‧ coordinate converter
65、165、265、365‧‧‧PWM控制器 65, 165, 265, 365‧‧‧PWM controller
70、170、270、370‧‧‧功率轉換器 70, 170, 270, 370‧‧‧ power converters
80、180、280、380‧‧‧馬達 80, 180, 280, 380‧‧‧ Motor
100、200、300‧‧‧馬達控制裝置 100, 200, 300‧‧‧ Motor control device
135‧‧‧激磁電流指令演算器 135‧‧‧Excitation current command calculator
157、257、357‧‧‧OSC 157, 257, 357‧‧‧‧OSC
175、275、375‧‧‧動力運轉/再生判別器 175, 275, 375‧‧‧ Power operation / regeneration discriminator
185、285‧‧‧q軸電流限制值算出器 185, 285‧‧‧q axis current limit calculator
190、290、390‧‧‧限制器 190, 290, 390‧‧‧ Limiter
220、320‧‧‧磁通量指令演算器 220, 320‧‧‧ magnetic flux instruction calculator
383‧‧‧最大一次電流指令算出器 383‧‧‧Maximum primary current command calculator
385‧‧‧扭矩限制值演算器 385‧‧‧torque limiter
395‧‧‧q軸電流演算器 395‧‧‧q-axis current calculator
圖1是與實施形態1相關之馬達控制裝置的方塊圖。 FIG. 1 is a block diagram of a motor control device according to the first embodiment.
圖2是顯示圖1之動力運轉/再生判別器之動力運轉及再生之判別手法的圖。 FIG. 2 is a diagram showing a determination method of power operation and regeneration of the power operation / regeneration discriminator of FIG. 1. FIG.
圖3是顯示圖1之q軸電流限制值算出器之馬達旋轉速度ωm與q軸電流指令限制值IqLIM之關係的圖。 FIG. 3 is a diagram showing the relationship between the motor rotation speed ωm of the q-axis current limit value calculator and the q-axis current command limit value IqLIM in FIG. 1.
圖4是顯示圖1之激磁電流指令演算器之馬達旋轉速度ωm與磁場減弱前之激磁電流指令IdCB之關係的圖。 FIG. 4 is a diagram showing the relationship between the motor rotation speed ωm of the field current command calculator of FIG. 1 and the field current command IdCB before the magnetic field is weakened.
圖5是顯示圖1之激磁電流指令演算器之馬達旋轉速度ωm與激磁電流指令IdC之關係的圖。 FIG. 5 is a diagram showing the relationship between the motor rotation speed ωm of the exciting current command calculator and the exciting current command IdC in FIG. 1.
圖6是與實施形態2相關之馬達控制裝置的方塊圖。 Fig. 6 is a block diagram of a motor control device according to a second embodiment.
圖7是顯示圖6之q軸電流限制值算出部之馬達旋轉速度ωm與磁場減弱前之磁通量指令φ2CB之關係的圖。 FIG. 7 is a diagram showing the relationship between the motor rotation speed ωm of the q-axis current limit value calculation unit in FIG. 6 and the magnetic flux command φ2CB before the magnetic field is weakened.
圖8是顯示圖6之q軸電流限制值算出部之馬達旋轉速度ωm與磁通量指令φ2C之關係的圖。 FIG. 8 is a diagram showing the relationship between the motor rotation speed ωm and the magnetic flux command φ2C of the q-axis current limit value calculation unit in FIG. 6.
圖9是與實施形態3相關之馬達控制裝置的方塊圖。 Fig. 9 is a block diagram of a motor control device according to a third embodiment.
圖10是顯示圖9之動力運轉/再生判別器之動力運轉及 再生之判別手法的圖。 FIG. 10 shows the power operation and the power operation / regeneration discriminator of FIG. 9 and FIG. Diagram of the discrimination method of reproduction.
圖11是顯示圖9之最大一次電流指令演算器之馬達旋轉速度ωm與最大一次電流指令IPC之關係的圖。 FIG. 11 is a diagram showing the relationship between the motor rotation speed ωm of the maximum primary current command calculator and the maximum primary current command IPC of FIG. 9.
圖12是顯示習知之馬達控制裝置之一例的方塊圖。 FIG. 12 is a block diagram showing an example of a conventional motor control device.
與本發明相關之馬達控制裝置是將有磁飽和之馬達之動力運轉時之高速負載旋轉時之扭矩低下改善而縮短加速時間,同時還抑制馬達再生時之過大之扭矩,而防止換流器之過電壓與變換器之過電流,而且沒有扭矩常數之急速變化,兼顧良好之加速特性與安全之減速特性。亦即,與本發明相關之馬達控制裝置是使馬達之加減速特性改善。 The motor control device related to the present invention is to improve the low torque during high-speed load rotation during the power running of a magnetically saturated motor to reduce the acceleration time, and also to suppress the excessive torque when the motor is regenerated, thereby preventing the inverter from being damaged. Over-voltage and over-current of the inverter, and there is no rapid change of torque constant, taking into account good acceleration characteristics and safe deceleration characteristics. That is, the motor control device related to the present invention improves the acceleration and deceleration characteristics of the motor.
接著,一面參考圖式一面將發揮如上述之特性之與本發明相關之馬達控制裝置之實施形態分作[實施形態1]至[實施形態3]來說明。 Next, the embodiments of the motor control device related to the present invention that exhibit the above-mentioned characteristics will be described with reference to the drawings, and will be described as [Embodiment 1] to [Embodiment 3].
[實施形態1] [Embodiment 1]
[馬達控制裝置100之整體構成] [Overall Structure of Motor Control Device 100]
圖1是與實施形態1相關之馬達控制裝置100的方塊圖。 FIG. 1 is a block diagram of a motor control device 100 according to the first embodiment.
馬達控制裝置100具有q軸電流控制器130、動力運轉/再生判別器175、q軸電流限制值算出器185及限制器190作為下達q軸電壓指令VqC之系統。 The motor control device 100 includes a q-axis current controller 130, a power operation / regeneration discriminator 175, a q-axis current limit value calculator 185, and a limiter 190 as a system that issues a q-axis voltage command VqC.
動力運轉/再生判別器175是由扭矩電流指令 IqCB與馬達旋轉速度ωm來判別馬達180在動力運轉狀態或在再生狀態。馬達旋轉速度ωm是由速度演算器115輸出。速度演算器115是使用編碼器110檢測之位置回饋而演算馬達旋轉速度ωm。附帶一提,動力運轉/再生判別器175之詳細動作是在後面陳述。 Power running / regeneration discriminator 175 is commanded by torque current IqCB and the motor rotation speed ωm determine whether the motor 180 is in a power running state or a regeneration state. The motor rotation speed ωm is output from the speed calculator 115. The speed calculator 115 calculates the motor rotation speed ωm using the position feedback detected by the encoder 110. Incidentally, the detailed operation of the power operation / regeneration discriminator 175 will be described later.
q軸電流限制值算出器185是由動力運轉/再生判別器175之動力運轉、再生判別結果與馬達旋轉速度ωm算出q軸電流限制值IqLIM。附帶一提,q軸電流限制值算出器185之詳細動作是在後面陳述。 The q-axis current limit value calculator 185 calculates a q-axis current limit value IqLIM from the power operation and regeneration determination result of the power operation / regeneration discriminator 175 and the motor rotation speed ωm. Incidentally, the detailed operation of the q-axis current limit value calculator 185 will be described later.
限制器190是將q軸電流限制值算出器185所算出之q軸電流限制值IqLIM輸入,對扭矩電流指令IqCB之值進行限制。附帶一提,限制器190之詳細動作是在後面陳述。 The limiter 190 inputs the q-axis current limit value IqLIM calculated by the q-axis current limit value calculator 185, and limits the value of the torque current command IqCB. Incidentally, the detailed operation of the limiter 190 is described later.
q軸電流限制器130是將從透過限制器190而輸入之q軸電流指令IqC減去q軸電流回饋IqF而獲得之電流偏差輸入,算出q軸電壓指令VqC。q軸電流回饋IqF是由座標轉換器125輸出。q軸電流回饋IqF是座標轉換器125基於後述之定子位置指令θmc對馬達電流Iu、Iv進行座標轉換而求出。q軸電流控制器130是以比例積分控制器構成。 The q-axis current limiter 130 calculates a q-axis voltage command VqC by subtracting a q-axis current feedback IqF from a q-axis current command IqC input through the limiter 190. The q-axis current feedback IqF is output by the coordinate converter 125. The q-axis current feedback IqF is obtained by performing coordinate conversion on the motor currents Iu and Iv based on a stator position command θmc described later. The q-axis current controller 130 is configured as a proportional-integral controller.
另外,馬達控制裝置100具有磁通量電流指令演算器135、d軸電流控制器145作為下達d軸電壓指令VdC之系統。 The motor control device 100 includes a magnetic flux current command calculator 135 and a d-axis current controller 145 as a system for issuing a d-axis voltage command VdC.
激磁電流指令演算器135是將馬達旋轉速度ωm輸入,演算用於改善馬達180之加減速特性之最佳之q軸電 流指令IdC。附帶一提,激磁電流指令演算器135之詳細動作是在後面陳述。 The excitation current command calculator 135 is inputting the motor rotation speed ωm, and calculates the optimal q-axis power for improving the acceleration and deceleration characteristics of the motor 180. Flow instruction IdC. Incidentally, the detailed operation of the exciting current command calculator 135 will be described later.
d軸電流控制器145是將從激磁電流指令演算器135所輸出之q軸電流指令IdC減去d軸電流回饋IdF而獲得之電流偏差輸入,算出d軸電壓指令VdC。d軸電流回饋IdF是由座標轉換器125輸出。d軸電流回饋IdF是座標轉換器125基於後述之定子位置指令θmc對馬達電流Iu、Iv進行座標轉換而求出。d軸電流控制器145是以比例積分控制器構成。 The d-axis current controller 145 calculates the d-axis voltage command VdC by inputting a current deviation obtained by subtracting the d-axis current feedback IdF from the q-axis current command IdC output from the exciting current command calculator 135. The d-axis current feedback IdF is output by the coordinate converter 125. The d-axis current feedback IdF is obtained by performing coordinate conversion on the motor currents Iu and Iv based on the stator position command θmc described later. The d-axis current controller 145 is configured as a proportional-integral controller.
再者,馬達控制裝置100具有轉差頻率演算器150、積分器155、OSC157、座標轉換器125、160作為用於進行座標轉換之系統。 The motor control device 100 includes a slip frequency calculator 150, an integrator 155, an OSC157, and coordinate converters 125 and 160 as a system for performing coordinate conversion.
轉差頻率演算器150是將q軸電流指令IqC與由激磁電流指令演算器135輸出之d軸電流指令IdC輸入,算出轉差頻率指令ωs。附帶一提,轉差頻率演算器150之詳細動作是在後面陳述。 The slip frequency calculator 150 inputs the q-axis current command IqC and the d-axis current command IdC output from the exciting current command calculator 135 to calculate the slip frequency command ωs. Incidentally, the detailed operation of the slip frequency calculator 150 will be described later.
積分器155是將由轉差頻率演算器150輸出之轉差頻率指令ωs與由速度演算器115輸出之馬達旋轉速度ωm相加而獲得之一次頻率指令ω1輸入,將一次頻率指令ω1積分而求出定子位置指令θmc。定子位置指令θmc是透過OSC157而朝座標轉換器125、160輸出。 The integrator 155 is a primary frequency command ω1 obtained by adding the slip frequency command ωs output by the slip frequency calculator 150 and the motor rotation speed ωm output by the speed calculator 115, and integrating the primary frequency command ω1 to obtain it. Stator position command θmc. The stator position command θmc is output to the coordinate converters 125 and 160 through OSC157.
座標轉換器160是基於輸入之定子位置指令θmc而對q軸電壓指令VqC、d軸電壓指令VdC進行座標轉換,求出三相電壓指令Vuc、Vvc、Vwc。 The coordinate converter 160 performs coordinate conversion on the q-axis voltage command VqC and the d-axis voltage command VdC based on the input stator position command θmc to obtain three-phase voltage commands Vuc, Vvc, and Vwc.
座標轉換器125是基於輸入之定子位置指令θmc而對馬達電流Iu、Iv進行座標轉換,求出q軸電流回饋IqF、d軸電流回饋IdF。 The coordinate converter 125 performs coordinate conversion on the motor currents Iu and Iv based on the input stator position command θmc, and obtains q-axis current feedback IqF and d-axis current feedback IdF.
再者,馬達控制裝置100具有PWM控制器165、功率轉換器170作為用於使馬達180驅動之系統。附帶一提,藉由PWM控制器165、功率轉換器170、q軸電流控制器130、d軸電流控制器145、座標轉換器160而形成馬達驅動部。 The motor control device 100 includes a PWM controller 165 and a power converter 170 as a system for driving the motor 180. Incidentally, the motor driving unit is formed by the PWM controller 165, the power converter 170, the q-axis current controller 130, the d-axis current controller 145, and the coordinate converter 160.
PWM控制器165是將由座標轉換器160輸出之三相電壓指令Vuc、Vvc、Vwc輸入,基於輸入之三相電壓指令Vuc、Vvc、Vwc而輸出用於使功率轉換器170開關之PWM訊號。 The PWM controller 165 inputs the three-phase voltage commands Vuc, Vvc, and Vwc output by the coordinate converter 160, and outputs a PWM signal for switching the power converter 170 based on the input three-phase voltage commands Vuc, Vvc, and Vwc.
功率轉換器170是將由PWM控制器165輸出之PWM訊號輸入而將在內部具有之半導體開關元件予以開關,將馬達180驅動。 The power converter 170 inputs a PWM signal output from the PWM controller 165, switches a semiconductor switching element included therein, and drives the motor 180.
[動力運轉/再生判別器175之動作] [Operation of Power Operation / Regeneration Discriminator 175]
如前述,動力運轉/再生判別器175是由扭矩電流指令IqCB與馬達旋轉速度ωm來判別馬達180在動力運轉狀態或在再生狀態。 As described above, the power running / regeneration discriminator 175 determines whether the motor 180 is in a power running state or a regeneration state based on the torque current command IqCB and the motor rotation speed ωm.
動力運轉、再生判別是考慮馬達180之損失與編碼器110之量化誤差所造成之速度漣波,如圖2所示地使用馬達旋轉速度閾值ωA、扭矩電流指令閾值IqA來進行。馬達旋轉速度閾值ωA是考慮編碼器110之量化誤差而決定,令動力運轉、再生判別結果在馬達180之無負載運轉時不 震顫(chattering)。扭矩電流指令閾值IqA是考慮馬達180之損失而決定,以成為馬達180之再生功率-馬達損失=0時之扭矩電流指令IqCB之值來設定。 The determination of power running and regeneration is made by considering the speed ripple caused by the loss of the motor 180 and the quantization error of the encoder 110 as shown in FIG. 2 using the motor rotation speed threshold ωA and the torque current command threshold IqA. The motor rotation speed threshold ωA is determined in consideration of the quantization error of the encoder 110, so that the power running and regenerative determination results do not occur during the no-load running of the motor 180. Chattering. The torque current command threshold IqA is determined in consideration of the loss of the motor 180, and is set to a value of the torque current command IqCB when the regenerative power of the motor 180-motor loss = 0.
動力運轉/再生判別器175是如圖2所示,在ωm ≧ωA且IqCB≦-IqA、或是ωm≦-ωA且IqCB≧IqA之條件的情況下判定在再生狀態,在該等條件以外之條件的情況下判斷在動力運轉狀態。 The power running / regeneration discriminator 175 is shown in FIG. When conditions ≧ ωA and IqCB ≦ -IqA, or ωm ≦ -ωA and IqCB ≧ IqA, it is determined to be in a regeneration state, and in conditions other than these conditions, it is determined to be in a power running state.
[q軸電流限制值算出器185之動作] [Operation of q-axis current limit value calculator 185]
如前述,q軸電流限制值算出器185是由動力運轉/再生判別器175之動力運轉、再生判別結果與馬達旋轉速度ωm算出q軸電流限制值IqLIM。具體而言,q軸電流限制值算出器185在動力運轉狀態的情況下不限制q軸電流IqC,在再生狀態的情況下則如圖3所示地限制q軸電流IqC。 As described above, the q-axis current limit value calculator 185 calculates the q-axis current limit value IqLIM from the power operation and regeneration determination result of the power operation / regeneration discriminator 175 and the motor rotation speed ωm. Specifically, the q-axis current limit value calculator 185 does not limit the q-axis current IqC in the case of the power running state, and limits the q-axis current IqC as shown in FIG. 3 in the case of the regeneration state.
q軸電流指令限制值IqLIM=Iqmax q-axis current command limit value IqLIM = Iqmax
(0≦|ωm|≦ω1時) (When 0 ≦ | ωm | ≦ ω1)
q軸電流限制值IqLIM=Iqmax-KLIM.(|ωm|-ω1) q-axis current limit value IqLIM = Iqmax-KLIM. (| ωm | -ω1)
(ω1<|ωm|時) (when ω1 <| ωm |)
在此,ω1:q軸電流之限制開始旋轉速度 Here, ω1: the limit of the q-axis current starts the rotation speed
ω1是基底速度以上之值,基於馬達180減速時之扭矩特性而調整。 ω1 is a value higher than the base speed, and is adjusted based on the torque characteristics when the motor 180 is decelerated.
KLIM:決定高速旋轉時之q軸電流指令限制值之降低量的係數 KLIM: Coefficient that determines the reduction amount of the q-axis current command limit value during high-speed rotation
[限制器190之動作] [Action of Limiter 190]
如前述,限制器190是將q軸電流限制值算出器185所 算出之q軸電流限制值IqLIM輸入,對扭矩電流指令IqCB之值進行限制。限制器190是通過扭矩電流指令IqCB,求出限制後之q軸電流指令Iqc。 As described above, the limiter 190 is a unit that calculates the q-axis current limit value calculator 185 The calculated q-axis current limit value IqLIM is input to limit the value of the torque current command IqCB. The limiter 190 obtains the q-axis current command Iqc after the limitation through the torque current command IqCB.
[激磁電流指令演算器135之動作] [Operation of the field current command calculator 135]
如前述,激磁電流指令演算器135是演算用於改善馬達180之加減速特性之最佳之激磁電流指令IdC。 As described above, the field current command calculator 135 calculates an optimal field current command IdC for improving the acceleration / deceleration characteristics of the motor 180.
圖4是顯示圖1之激磁電流指令演算器135之馬達旋轉速度ωm與磁場減弱前之激磁電流指令IdCB之關係的圖。激磁電流指令演算器135是演算與馬達旋轉速度ωm對應之磁場減弱前之激磁電流指令IdCB。另外,圖5是顯示圖1之激磁電流指令演算器135之馬達旋轉速度ωm與激磁電流指令IdC之關係的圖。激磁電流指令演算器135是演算與馬達旋轉速度ωm對應之激磁電流指令IdC。 FIG. 4 is a diagram showing the relationship between the motor rotation speed ωm of the field current command calculator 135 of FIG. 1 and the field current command IdCB before the magnetic field is weakened. The exciting current command calculator 135 calculates the exciting current command IdCB before the magnetic field weakening corresponding to the motor rotation speed ωm. 5 is a diagram showing the relationship between the motor rotation speed ωm of the field current command calculator 135 and the field current command IdC in FIG. 1. The field current command calculator 135 calculates a field current command IdC corresponding to the motor rotation speed ωm.
圖4及圖5顯示著相對於馬達旋轉速度ωm之激磁電流指令特性。圖4是顯示磁場減弱前之激磁電流指令IdCB,圖5是顯示激磁電流指令IdC。 4 and 5 show the excitation current command characteristics with respect to the motor rotation speed ωm. FIG. 4 shows the excitation current command IdCB before the magnetic field is weakened, and FIG. 5 shows the excitation current command IdC.
如圖4所示,磁場減弱前之激磁電流指令IdCB在馬達旋轉速度ωm從0至ω0是維持電流I0而不變。若馬達旋轉速度超過ω0,則激磁電流指令IdCB是因應馬達旋轉速度ωm之增加而從電流I0以一定斜率上昇。 As shown in FIG. 4, the excitation current command IdCB before the magnetic field weakens is the sustain current I0 without changing at the motor rotation speed ωm from 0 to ω0. If the motor rotation speed exceeds ω0, the excitation current command IdCB rises from the current I0 with a certain slope in response to an increase in the motor rotation speed ωm.
另外,如圖5所示,激磁電流指令IdC在馬達旋轉速度ωm從0至ω0是維持電流I0而不變。若馬達旋轉速度超過ω0,則與馬達旋轉速度ωm之增加成反比例而下降。 In addition, as shown in FIG. 5, the excitation current command IdC is a maintenance current I0 that does not change at a motor rotation speed ωm from 0 to ω0. When the motor rotation speed exceeds ω0, it decreases in inverse proportion to the increase in the motor rotation speed ωm.
激磁電流指令演算器135是藉由下面之式子來求 出磁場減弱前之激磁電流指令IdCB。 The field current command calculator 135 is obtained by the following formula The excitation current command before the magnetic field weakens is IdCB.
IdCB=I0 IdCB = I0
(0≦|ωm|≦ω0時) (When 0 ≦ | ωm | ≦ ω0)
IdCB=φ0+K0.(|ωm|-ω0) IdCB = φ0 + K0. (| ωm | -ω0)
(ω0<|ωm|時)...(1) (when ω0 <| ωm |) ... (1)
在此,ω0:基底速度 Here, ω0: basal velocity
I0:基底速度之激磁電流 I0: Excitation current of substrate velocity
φ0:基底速度之磁通量 φ0: magnetic flux of base velocity
K0:使高速旋轉時之激磁電流指令上昇之係數 K0: Coefficient for increasing the magnetizing current command during high-speed rotation
若將馬達旋轉速度ωm代入上述之式子(1)而將磁場減弱前之激磁電流指令IdCB可視化,則成為如圖4之圖表。 If the motor rotation speed ωm is substituted into the above formula (1) to visualize the exciting current command IdCB before the magnetic field is weakened, it will become a graph as shown in FIG. 4.
藉由使高速旋轉時之激磁電流上昇之係數K0,馬達180之高速旋轉時之激磁電流指令增大,即便有磁飽和亦可使磁通量不變小,可改善加減速特性。關於K0之最佳值,可藉由嘗試錯誤法之實驗來求出,或是藉由模擬來求出。 By increasing the coefficient K0 of the exciting current during high-speed rotation, the exciting current command during the high-speed rotation of the motor 180 is increased. Even with magnetic saturation, the magnetic flux can not be reduced, and the acceleration and deceleration characteristics can be improved. The optimal value of K0 can be obtained through experiments of trial and error method, or through simulation.
激磁電流指令演算器135在如上述地求出磁場減弱前之激磁電流指令IdCB後,藉由下面之式子求出激磁電流指令IdC。 After the field current command calculator 135 obtains the field current command IdCB before the magnetic field is weakened as described above, the field current command IdC is obtained by the following formula.
IdC=IdCB IdC = IdCB
(0≦|ωm|≦ω0時) (When 0 ≦ | ωm | ≦ ω0)
IdC=IdCB.ω0/|ωm| IdC = IdCB. ω0 / | ωm |
(ω0<|ωm|時)...(2) (when ω0 <| ωm |) ... (2)
若將馬達旋轉速度ωm代入上述之式子(2)而將激磁電 流指令IdC可視化,則成為如圖5之圖表。 If the motor rotation speed ωm is substituted into the above formula (2), The visualization of the flow command IdC becomes a graph as shown in FIG. 5.
激磁電流指令演算器135是因應馬達旋轉速度ωm,在進行式子(1)之演算而求出磁場減弱前之激磁電流指令IdCB後,對磁場減弱前之激磁電流指令IdCB進行式子(2)之演算,將激磁電流指令IdC往d軸電流控制器145輸出。 According to the motor rotation speed ωm, the exciting current command calculator 135 calculates the exciting current command IdCB before the magnetic field weakening by performing the calculation of the formula (1), and then formulates the exciting current command IdCB before the magnetic field weakening (2) In the calculation, the excitation current command IdC is output to the d-axis current controller 145.
[轉差頻率演算器150之動作] [Operation of slip frequency calculator 150]
轉差頻率演算器150是如下述之式子所示,由通過限制器190後之q軸電流指令IqC與d軸電流指令IdC算出轉差頻率指令ωs。轉差頻率指令ωs是藉由下面之式子而求出。 The slip frequency calculator 150 calculates the slip frequency command ωs from the q-axis current command IqC and the d-axis current command IdC after passing through the limiter 190, as shown in the following formula. The slip frequency command ωs is obtained by the following formula.
ωs=R2/L2.(IqC/IdC)...(3) ωs = R2 / L2. (IqC / IdC) ... (3)
R2:二次電阻 R2: secondary resistance
L2:二次電感 L2: secondary inductance
[馬達控制裝置100之動作] [Operation of Motor Control Device 100]
首先,藉由限制器190對輸入之扭矩電流指令IqCB進行限制,將由限制器190所輸出之q軸電流IqC與來自座標轉換器125之q軸電流回饋IqF比較,藉由q軸電流控制器130求出q軸電壓指令VqC。 First, the input torque current command IqCB is limited by the limiter 190. The q-axis current IqC output by the limiter 190 is compared with the q-axis current feedback IqF from the coordinate converter 125. The q-axis current controller 130 Find the q-axis voltage command VqC.
另一方面,將激磁電流指令演算器135使用上述之式子(1)及式子(2)而由馬達旋轉速度ωm所求出之d軸電流指令IdC與來自座標轉換器125之d軸電流回饋IdF比較,藉由d軸電流控制器145求出d軸電壓指令VdC。 On the other hand, the d-axis current command IdC obtained from the motor rotation speed ωm and the d-axis current from the coordinate converter 125 are used by the exciting current command calculator 135 using the above formulas (1) and (2). The feedback IdF is compared, and the d-axis voltage command VdC is obtained by the d-axis current controller 145.
轉差頻率演算器150使用上述之式子(3)而由q軸電流指令IqC與激磁電流指令IdC算出轉差頻率指令ωs。轉 差頻率指令ωs是與速度演算器115輸出之馬達旋轉速度ωm相加。以轉差頻率指令ωs與馬達旋轉速度ωm求出一次頻率指令ω1。以積分器155將一次頻率指令ω1積分而求出定子位置指令θmc。 The slip frequency calculator 150 calculates the slip frequency command ωs from the q-axis current command IqC and the exciting current command IdC using the above formula (3). turn The difference frequency command ωs is added to the motor rotation speed ωm output from the speed calculator 115. A primary frequency command ω1 is obtained from the slip frequency command ωs and the motor rotation speed ωm. The integrator 155 integrates the primary frequency command ω1 to obtain the stator position command θmc.
座標轉換器160是基於定子位置指令θmc對q軸電壓指令VqC、d軸電壓指令VdC進行座標轉換,求出三相電壓指令Vuc、Vvc、Vwc。三相電壓指令Vuc、Vvc、Vwc是透過PWM控制器165、功率轉換器170而供給至馬達180,馬達180因應三相電壓指令Vuc、Vvc、Vwc而驅動。 The coordinate converter 160 performs coordinate conversion on the q-axis voltage command VqC and the d-axis voltage command VdC based on the stator position command θmc to obtain three-phase voltage commands Vuc, Vvc, and Vwc. The three-phase voltage commands Vuc, Vvc, and Vwc are supplied to the motor 180 through the PWM controller 165 and the power converter 170, and the motor 180 is driven in response to the three-phase voltage commands Vuc, Vvc, and Vwc.
q軸電流回饋IqF與d軸電流回饋IdF是由座標轉換器125基於定子位置指令θmc對馬達電流Iu、Iv進行座標轉換而求出。 The q-axis current feedback IqF and the d-axis current feedback IdF are obtained by coordinate conversion of the motor currents Iu and Iv based on the stator position command θmc.
如以上所說明,激磁電流指令演算器135是求出與馬達旋轉速度和基底速度之差成比例地使激磁電流增加之值,基於該值實施磁場減弱,再者,在磁場減弱領域是與q軸電流指令Iqc成比例地將磁通量降低。亦即,激磁電流指令演算器135是輸出用於改善馬達180之加減速特性之最佳之激磁電流指令IdC。 As described above, the field current command calculator 135 finds a value that increases the field current in proportion to the difference between the motor rotation speed and the base speed, and performs magnetic field weakening based on this value. Furthermore, in the field weakening field, it is equal to q The shaft current command Iqc reduces the magnetic flux in proportion. That is, the exciting current command calculator 135 outputs an optimal exciting current command IdC for improving the acceleration / deceleration characteristics of the motor 180.
因此,根據與實施形態1相關之馬達控制裝置100,將有磁飽和之馬達之動力運轉時之高速負載旋轉時之扭矩低下改善而縮短加速時間,同時還抑制馬達再生時之過大之扭矩,而防止換流器之過電壓與變換器之過電流,而且沒有扭矩常數之急速變化,可兼顧良好之加速特性與安全之減速特性。 Therefore, according to the motor control device 100 related to the first embodiment, the torque reduction at the time of high-speed load rotation during power operation of the magnetically saturated motor is improved to shorten the acceleration time, and at the same time, the excessive torque at the time of motor regeneration is suppressed, and It can prevent the over-voltage of the inverter and the over-current of the converter, and there is no rapid change of the torque constant. It can take into account both good acceleration characteristics and safe deceleration characteristics.
附帶一提,與實施形態1相關之馬達控制裝置100亦可於將q軸電壓指令VqC、d軸電壓指令VdC輸出之系統設非干渉控制器,控制d軸及q軸之干渉。另外,亦可藉由三相電流控制系統構成d軸及q軸之電流控制系統之內部。再者,亦可使激磁電流指令不是從基底速度上昇,而是從任意之旋轉速度上昇。 Incidentally, the motor control device 100 related to the first embodiment can also be provided with a non-drying controller in a system that outputs the q-axis voltage command VqC and the d-axis voltage command VdC to control the d-axis and the q-axis. In addition, the inside of the d-axis and q-axis current control systems can also be constituted by a three-phase current control system. Furthermore, the excitation current command may not be raised from the base speed, but may be raised from an arbitrary rotation speed.
[實施形態2] [Embodiment 2]
[馬達控制裝置200之整體構成] [Overall Structure of Motor Control Device 200]
圖6是與實施形態2相關之馬達控制裝置200的方塊圖。與實施形態2相關之馬達控制裝置200是在與實施形態1相關之馬達控制裝置100之構成加上磁通量控制器與磁通量演算器,取代激磁電流指令演算器135而設有磁通量指令演算器。 FIG. 6 is a block diagram of a motor control device 200 according to the second embodiment. The motor control device 200 according to the second embodiment is configured by adding a magnetic flux controller and a magnetic flux calculator to the configuration of the motor control device 100 according to the first embodiment. Instead of the field current command calculator 135, a magnetic flux command calculator is provided.
馬達控制裝置200具有q軸電流控制器230、動力運轉/再生判別器275、q軸電流限制值算出器285及限制器290作為下達q軸電壓指令VqC之系統。q軸電流控制器230、動力運轉/再生判別器275、q軸電流限制值算出器285及限制器290是與實施形態1之q軸電流控制器130、動力運轉/再生判別器175、q軸電流限制值算出器185及限制器190相同。 The motor control device 200 includes a q-axis current controller 230, a power operation / regeneration discriminator 275, a q-axis current limit value calculator 285, and a limiter 290 as a system that issues a q-axis voltage command VqC. The q-axis current controller 230, the power operation / regeneration discriminator 275, the q-axis current limit value calculator 285, and the limiter 290 are the q-axis current controller 130, the power operation / regeneration discriminator 175, and the q-axis of the first embodiment. The current limit value calculator 185 and the limiter 190 are the same.
另外,馬達控制裝置200具有磁通量指令演算器220、磁通量控制器240、d軸電流控制器245作為下達d軸電壓指令VdC之系統。 The motor control device 200 includes a magnetic flux command calculator 220, a magnetic flux controller 240, and a d-axis current controller 245 as a system for issuing a d-axis voltage command VdC.
磁通量指令演算器220是將馬達旋轉速度ωm輸 入,演算用於改善馬達280之加減速特性之最佳之磁通量指令φ2C。附帶一提,磁通量指令演算器220之詳細動作是在後面陳述。 The magnetic flux command calculator 220 outputs the motor rotation speed ωm. The optimal magnetic flux command φ2C for improving the acceleration and deceleration characteristics of the motor 280 is calculated. Incidentally, the detailed operation of the magnetic flux instruction calculator 220 will be described later.
磁通量控制器240是將從磁通量指令演算器220所輸出之磁通量指令φ2C減去磁通量φ2而獲得之磁通量偏差輸入,算出d軸電流指令IdC。磁通量φ2是由磁通量演算器235輸出。磁通量控制器240是以比例積分控制器構成。 The magnetic flux controller 240 calculates the d-axis current command IdC by inputting a magnetic flux deviation obtained by subtracting the magnetic flux φ2 from the magnetic flux command φ2C output from the magnetic flux command calculator 220. The magnetic flux φ2 is output from the magnetic flux calculator 235. The magnetic flux controller 240 is configured as a proportional-integral controller.
磁通量演算器235是使用座標轉換器225輸出之d軸電流回饋IdF而演算磁通量φ2。磁通量演算器235之詳細動作是在後面陳述。 The magnetic flux calculator 235 calculates the magnetic flux φ2 by using the d-axis current output from the coordinate converter 225 to feed back IdF. The detailed operation of the magnetic flux calculator 235 will be described later.
d軸電流控制器245是將從磁通量控制器240所輸出之d軸電流指令Idc減去d軸電流回饋IdF而獲得之電流偏差輸入,算出d軸電壓指令VdC。d軸電流回饋IdF是由座標轉換器225輸出。d軸電流回饋IdF是座標轉換器225基於後述之定子位置指令θmc對馬達電流Iu、Iv進行座標轉換而求出。d軸電流控制器245是以比例積分控制器構成。 The d-axis current controller 245 calculates the d-axis voltage command VdC by inputting a current deviation obtained by subtracting the d-axis current feedback IdF from the d-axis current command Idc output from the magnetic flux controller 240. The d-axis current feedback IdF is output by the coordinate converter 225. The d-axis current feedback IdF is obtained by performing coordinate conversion on the motor currents Iu and Iv based on a stator position command θmc described later. The d-axis current controller 245 is configured as a proportional-integral controller.
再者,馬達控制裝置200具有轉差頻率演算器250、積分器255、OSC257、座標轉換器225、260作為用於進行座標轉換之系統。 The motor control device 200 includes a slip frequency calculator 250, an integrator 255, an OSC257, and coordinate converters 225 and 260 as a system for performing coordinate conversion.
轉差頻率演算器250是將輸入之q軸電流指令IqC與由磁通量演算器235輸出之磁通量φ2輸入,算出轉差頻率指令ωs。附帶一提,轉差頻率演算器250之詳細動作是在後面陳述。 The slip frequency calculator 250 inputs the input q-axis current command IqC and the magnetic flux φ2 output from the magnetic flux calculator 235 to calculate the slip frequency command ωs. Incidentally, the detailed operation of the slip frequency calculator 250 will be described later.
積分器255、OSC257、座標轉換器225、260是 與實施形態1之積分器155、OSC157、座標轉換器125、160相同。 Integrator 255, OSC257, coordinate converters 225, 260 Yes It is the same as the integrator 155, OSC157, and coordinate converters 125 and 160 of the first embodiment.
再者,馬達控制裝置200具有PWM控制器265、功率轉換器270作為用於使馬達280驅動之系統。PWM控制器265、功率轉換器270是與實施形態1之PWM控制器165、功率轉換器170相同。附帶一提,藉由PWM控制器265、功率轉換器270、q軸電流控制器230、d軸電流控制器245、座標轉換器260而形成馬達驅動部。 The motor control device 200 includes a PWM controller 265 and a power converter 270 as a system for driving the motor 280. The PWM controller 265 and the power converter 270 are the same as the PWM controller 165 and the power converter 170 of the first embodiment. Incidentally, the motor driving unit is formed by the PWM controller 265, the power converter 270, the q-axis current controller 230, the d-axis current controller 245, and the coordinate converter 260.
[磁通量指令演算器220之動作] [Operation of the magnetic flux instruction calculator 220]
如前述,磁通量指令演算器220是演算用於改善馬達280之加減速特性之最佳之磁通量指令φ2C。 As described above, the magnetic flux command calculator 220 calculates an optimal magnetic flux command φ2C for improving the acceleration / deceleration characteristics of the motor 280.
圖7是顯示圖6之磁通量指令演算器220之馬達旋轉速度ωm與磁場減弱前之磁通量指令φ2CB之關係的圖。磁通量指令演算器220是演算與馬達旋轉速度ωm對應之磁場減弱前之磁通量指令φ2CB。另外,圖8是顯示圖6之磁通量指令演算器220之馬達旋轉速度ωm與磁通量指令φ2C之關係的圖。磁通量指令演算器220是演算與馬達旋轉速度ωm對應之磁通量指令φ2C。 FIG. 7 is a diagram showing the relationship between the motor rotation speed ωm of the magnetic flux command calculator 220 of FIG. 6 and the magnetic flux command φ2CB before the magnetic field is weakened. The magnetic flux command calculator 220 calculates a magnetic flux command φ2CB before the magnetic field weakening corresponding to the motor rotation speed ωm. 8 is a diagram showing the relationship between the motor rotation speed ωm and the magnetic flux command φ2C of the magnetic flux command calculator 220 of FIG. 6. The magnetic flux command calculator 220 calculates a magnetic flux command φ2C corresponding to the motor rotation speed ωm.
圖7及圖8顯示著相對於馬達旋轉速度ωm之磁通量φ0之磁通量指令特性。圖7是顯示磁場減弱前之磁通量指令φ2CB,圖8是顯示磁通量指令φ2C。 7 and 8 show the magnetic flux command characteristics of the magnetic flux φ0 with respect to the motor rotation speed ωm. FIG. 7 shows the magnetic flux command φ2CB before the magnetic field is weakened, and FIG. 8 shows the magnetic flux command φ2C.
如圖7所示,磁場減弱前之磁通量指令φ2CB在馬達旋轉速度ωm從0至ω0是維持磁通量φ0而不變。若馬達旋轉速度超過ω0,則磁通量指令φ2CB是從磁通量φ0以一 定斜率上昇。 As shown in FIG. 7, the magnetic flux command φ2CB before the magnetic field is weakened maintains the magnetic flux φ0 at the motor rotation speed ωm from 0 to ω0. If the motor rotation speed exceeds ω0, the magnetic flux command φ2CB The fixed slope rises.
另外,如圖8所示,磁通量指令φ2C在馬達旋轉速度ωm從0至ω0是維持磁通量φ0而不變。若馬達旋轉速度超過ω0,則磁通量指令φ2C是從磁通量φ0與馬達旋轉速度ωm之增加成反比例而下降。 In addition, as shown in FIG. 8, the magnetic flux command φ2C maintains the magnetic flux φ0 without changing the motor rotation speed ωm from 0 to ω0. If the motor rotation speed exceeds ω0, the magnetic flux command φ2C decreases from the magnetic flux φ0 to an increase in inverse proportion to the motor rotation speed ωm.
磁通量指令演算器220是藉由下面之式子來求出磁場減弱前之磁通量指令φ2CB。 The magnetic flux command calculator 220 obtains the magnetic flux command φ2CB before the magnetic field is weakened by the following formula.
φ2CB=φ0 φ2CB = φ0
(0≦|ωm|≦ω0時) (When 0 ≦ | ωm | ≦ ω0)
φ2CB=φ0+K0.(|ωm|-ω0) φ2CB = φ0 + K0. (| ωm | -ω0)
(ω0<|ωm|時)...(4) (when ω0 <| ωm |) ... (4)
在此,ω0:基底速度 Here, ω0: basal velocity
φ0:基底速度之磁通量 φ0: magnetic flux of base velocity
K0:使高速旋轉時之磁通量上昇之係數 K0: Coefficient for increasing magnetic flux during high-speed rotation
若將馬達旋轉速度ωm代入上述之式子(4)而將磁通量指令φ2CB可視化,則成為如圖7之圖表。 If the motor rotation speed ωm is substituted into the above formula (4) and the magnetic flux command φ2CB is visualized, it becomes a graph as shown in FIG. 7.
可藉由使高速旋轉時之磁通量上昇之係數K0而將高速旋轉輕負載旋轉之磁通量指令φ2CB的值增大,馬達180之高速旋轉時之激磁電流指令增大,即便有磁飽和亦可使磁通量不變小,可改善加減速特性。關於K0之最佳值,可藉由嘗試錯誤法之實驗來求出,或是藉由模擬來求出。 The value of the magnetic flux command φ2CB at high speed and light load rotation can be increased by the coefficient K0 that increases the magnetic flux at high speed. It does not become smaller, which can improve the acceleration and deceleration characteristics. The optimal value of K0 can be obtained through experiments of trial and error method, or through simulation.
磁通量指令演算器220在如上述地求出磁場減弱前之磁通量指令後,藉由下面之式子求出磁通量指令 φ2C。 The magnetic flux command calculator 220 obtains the magnetic flux command before the magnetic field is weakened as described above, and then obtains the magnetic flux command by the following formula. φ2C.
φ2C=φ2CB φ2C = φ2CB
(0≦|ωm|≦ω0時) (When 0 ≦ | ωm | ≦ ω0)
φ2C=φ2CB.ω0/|ωm| φ2C = φ2CB. ω0 / | ωm |
(ω0<|ωm|時)...(5) (when ω0 <| ωm |) ... (5)
若將馬達旋轉速度ωm代入上述之式子(5)而將磁通量指令φ2C可視化,則成為如圖8之圖表。 If the motor rotation speed ωm is substituted into the above formula (5) and the magnetic flux command φ2C is visualized, it becomes a graph as shown in FIG. 8.
磁通量指令演算器220是因應馬達旋轉速度ωm,在進行式子(4)之演算而求出磁場減弱前之磁通量指令φ2CB後,對磁通量指令φ2CB進行式子(5)之演算,將磁通量指令φ2C往磁通量控制器240輸出。 The magnetic flux command calculator 220 calculates the magnetic flux command φ2CB before the magnetic field weakening by performing the calculation of the formula (4) in accordance with the rotation speed ωm of the motor, and then performs the calculation of the magnetic flux command φ2CB in the formula (5) to calculate the magnetic flux command φ2C. It is output to the magnetic flux controller 240.
[轉差頻率演算器250之動作] [Operation of slip frequency calculator 250]
轉差頻率演算器250是如下述之式子所示,由q軸電流指令Iqc與磁通量φ2算出轉差頻率指令ωs。轉差頻率指令ωs是藉由下面之式子而求出。 The slip frequency calculator 250 calculates the slip frequency command ωs from the q-axis current command Iqc and the magnetic flux φ2 as shown in the following formula. The slip frequency command ωs is obtained by the following formula.
ωs=M.R2/L2.(Iqc/φ2)...(6) ωs = M. R2 / L2. (Iqc / φ2) ... (6)
R2:二次電阻 R2: secondary resistance
φ2:二次磁通量 φ2: secondary magnetic flux
L2:二次電感 L2: secondary inductance
M:互感 M: Mutual inductance
[磁通量演算器235之動作] [Operation of the magnetic flux calculator 235]
磁通量演算器235是如下述之式子所示,由d軸電流回饋IdF求出磁通量φ2。 The magnetic flux calculator 235 obtains the magnetic flux φ2 from the d-axis current feedback IdF as shown in the following formula.
φ2=1/(1+L2/R2.S).M.IdF...(7) φ2 = 1 / (1 + L2 / R2.S). M. IdF ... (7)
S:轉差 S: slip
IdF:q軸電流回饋 IdF: q-axis current feedback
[馬達控制裝置200之動作] [Operation of the motor control device 200]
首先,藉由限制器290對輸入之扭矩電流指令IqCB進行限制,將由限制器290所輸出之q軸電流IqC與來自座標轉換器225之q軸電流回饋IqF比較,藉由q軸電流控制器230求出q軸電壓指令VqC。 First, the input torque current command IqCB is limited by the limiter 290, and the q-axis current IqC output by the limiter 290 is compared with the q-axis current feedback IqF from the coordinate converter 225. The q-axis current controller 230 Find the q-axis voltage command VqC.
另一方面,以磁通量指令φ2C下達磁通量指令演算器220使用上述之式子(4)及式子(5)而由馬達旋轉速度ωm所算出之磁通量,與磁通量演算器235使用上述之式子(7)所算出之磁通量φ2比較,藉由磁通量控制器240求出d軸電流指令IdC。將d軸電流指令IdC與來自座標轉換器225之d軸電流回饋IdF比較,藉由d軸電流控制器245求出d軸電壓指令VdC。 On the other hand, the magnetic flux command calculator 220 that issues the magnetic flux command φ2C uses the above formula (4) and formula (5) to calculate the magnetic flux from the motor rotation speed ωm, and the magnetic flux calculator 235 uses the above formula ( 7) The calculated magnetic flux φ2 is compared, and the d-axis current command IdC is obtained by the magnetic flux controller 240. The d-axis current command IdC is compared with the d-axis current feedback IdF from the coordinate converter 225, and the d-axis voltage command VdC is obtained by the d-axis current controller 245.
轉差頻率演算器250使用上述之式子(6)而由q軸電流指令IqC與磁通量φ2算出轉差頻率指令ωs。轉差頻率指令ωs是與速度演算器215輸出之馬達旋轉速度ωm相加。以轉差頻率指令ωs與馬達旋轉速度ωm求出一次頻率指令ω1。以積分器255將一次頻率指令ω1積分而求出定子位置指令θmc。 The slip frequency calculator 250 calculates the slip frequency command ωs from the q-axis current command IqC and the magnetic flux φ2 using the above formula (6). The slip frequency command ωs is added to the motor rotation speed ωm output from the speed calculator 215. A primary frequency command ω1 is obtained from the slip frequency command ωs and the motor rotation speed ωm. The integrator 255 integrates the primary frequency command ω1 to obtain the stator position command θmc.
座標轉換器260是基於定子位置指令θmc對q軸電壓指令VqC、d軸電壓指令VdC進行座標轉換,求出三相電壓指令Vuc、Vvc、Vwc。三相電壓指令Vuc、Vvc、Vwc是透過PWM控制器265、功率轉換器270而供給至馬達 280,馬達280因應三相電壓指令Vuc、Vvc、Vwc而驅動。 The coordinate converter 260 performs coordinate conversion on the q-axis voltage command VqC and the d-axis voltage command VdC based on the stator position command θmc to obtain the three-phase voltage commands Vuc, Vvc, and Vwc. The three-phase voltage commands Vuc, Vvc, and Vwc are supplied to the motor through the PWM controller 265 and the power converter 270. 280. The motor 280 is driven in response to the three-phase voltage commands Vuc, Vvc, and Vwc.
q軸電流回饋IqF與d軸電流回饋IdF是由座標轉換器225基於定子位置指令θmc對馬達電流Iu、Iv進行座標轉換而求出。 The q-axis current feedback IqF and the d-axis current feedback IdF are obtained by coordinate conversion of the motor currents Iu and Iv based on the stator position command θmc by the coordinate converter 225.
如以上所說明,磁通量指令演算器220是求出與馬達旋轉速度和基底速度之差成比例地使磁通量增加之值,基於該值實施磁場減弱,再者,在磁場減弱領域是與扭矩電流指令Iqc成比例地將磁通量降低。亦即,磁通量控制器240是輸出用於改善馬達280之加減速特性之最佳之激磁電流指令IdC。 As described above, the magnetic flux command calculator 220 finds a value that increases the magnetic flux in proportion to the difference between the rotation speed of the motor and the base speed, and performs magnetic field weakening based on the value. Furthermore, in the field of magnetic field weakening, it is related to the torque current command. Iqc reduces the magnetic flux proportionally. That is, the magnetic flux controller 240 outputs an optimal exciting current command IdC for improving acceleration / deceleration characteristics of the motor 280.
因此,根據與實施形態2相關之馬達控制裝置200,將有磁飽和之馬達之動力運轉時之高速負載旋轉時之扭矩低下改善而縮短加速時間,同時還抑制馬達再生時之過大之扭矩,而防止換流器之過電壓與變換器之過電流,而且沒有扭矩常數之急速變化,可兼顧良好之加速特性與安全之減速特性。 Therefore, according to the motor control device 200 related to the second embodiment, the torque reduction at the time of high-speed load rotation during power operation of the magnetically saturated motor is improved to shorten the acceleration time, and at the same time, the excessive torque at the time of motor regeneration is suppressed, and It can prevent the over-voltage of the inverter and the over-current of the converter, and there is no rapid change of the torque constant. It can take into account both good acceleration characteristics and safe deceleration characteristics.
附帶一提,與實施形態2相關之馬達控制裝置200亦可於將q軸電壓指令VqC、d軸電壓指令VdC輸出之系統設非干渉控制器,控制d軸及q軸之干渉。另外,亦可藉由三相電流控制系統構成d軸及q軸之電流控制系統之內部。再者,亦可使激磁電流指令不是從基底速度上昇,而是從任意之旋轉速度上昇。 Incidentally, the motor control device 200 related to Embodiment 2 may also be provided with a non-drying controller in a system that outputs the q-axis voltage command VqC and the d-axis voltage command VdC to control the d-axis and q-axis. In addition, the inside of the d-axis and q-axis current control systems can also be constituted by a three-phase current control system. Furthermore, the excitation current command may not be raised from the base speed, but may be raised from an arbitrary rotation speed.
[實施形態3] [Embodiment 3]
[馬達控制裝置300之整體構成] [Overall Structure of Motor Control Device 300]
圖9是與實施形態3相關之馬達控制裝置300的方塊圖。與實施形態3相關之馬達控制裝置300是在與實施形態2相關之馬達控制裝置200之構成加上最大一次電流指令算出器、扭矩限制值演算器及q軸電流演算器。 FIG. 9 is a block diagram of a motor control device 300 according to the third embodiment. The motor control device 300 according to the third embodiment is configured by adding a maximum primary current command calculator, a torque limit value calculator, and a q-axis current calculator to the configuration of the motor control device 200 according to the second embodiment.
馬達控制裝置300具有q軸電流控制器330、動力運轉/再生判別器375、最大一次電流指令算出器383、扭矩限制值演算器385、限制器390及q軸電流演算器395作為下達q軸電壓指令VqC之系統。q軸電流控制器330及動力運轉/再生判別器375是與實施形態2之q軸電流控制器230及動力運轉/再生判別器275相同。 The motor control device 300 includes a q-axis current controller 330, a power operation / regeneration discriminator 375, a maximum primary current command calculator 383, a torque limit value calculator 385, a limiter 390, and a q-axis current calculator 395 as the q-axis voltage. Command VqC system. The q-axis current controller 330 and the power operation / regeneration discriminator 375 are the same as the q-axis current controller 230 and the power operation / regeneration discriminator 275 of the second embodiment.
最大一次電流指令算出器383是算出朝馬達380供給之一次電流指令的最大值,作為最大一次電流指令IPC朝扭矩限制值演算器385輸出。最大一次電流指令算出器383之詳細動作是在後面陳述。 The maximum primary current command calculator 383 calculates the maximum value of the primary current command supplied to the motor 380, and outputs the maximum primary current command IPC to the torque limit value calculator 385. The detailed operation of the maximum primary current command calculator 383 will be described later.
扭矩限制值演算器385是由磁通量演算器335輸出之磁通量φ2、磁通量控制器340輸出之d軸電流指令IdC、最大一次電流指令IPC演算扭矩限制值TLIM。扭矩限制值演算器385之詳細動作是在後面陳述。 The torque limit value calculator 385 calculates the torque limit value TLIM by the magnetic flux φ2 output from the magnetic flux calculator 335, the d-axis current command IdC outputted by the magnetic flux controller 340, and the maximum primary current command IPC. The detailed operation of the torque limit value calculator 385 will be described later.
限制器390是將扭矩限制值演算器385輸出之扭矩限制值TLIM輸入,對扭矩指令TCB之值進行限制。限制器390之詳細動作是在後面陳述。 The limiter 390 inputs the torque limit value TLIM output from the torque limit value calculator 385 and limits the value of the torque command TCB. The detailed operation of the limiter 390 will be described later.
q軸電流演算器395是使用透過限制器390而輸入之扭矩指令TCB來演算q軸電流IqC。q軸電流演算器395之詳細動作是在後面陳述。 The q-axis current calculator 395 calculates the q-axis current IqC using the torque command TCB input through the limiter 390. The detailed operation of the q-axis current calculator 395 will be described later.
另外,馬達控制裝置300具有磁通量指令演算器320、磁通量控制器340、d軸電流控制器345作為下達d軸電壓指令VdC之系統。磁通量指令演算器320、磁通量控制器340、d軸電流控制器345是與實施形態2之磁通量指令演算器220、磁通量控制器240、d軸電流控制器245相同。 In addition, the motor control device 300 includes a magnetic flux command calculator 320, a magnetic flux controller 340, and a d-axis current controller 345 as a system for issuing a d-axis voltage command VdC. The magnetic flux command calculator 320, the magnetic flux controller 340, and the d-axis current controller 345 are the same as the magnetic flux command calculator 220, the magnetic flux controller 240, and the d-axis current controller 245 of the second embodiment.
再者,馬達控制裝置300具有轉差頻率演算器350、積分器355、OSC357、座標轉換器325、360作為用於進行座標轉換之系統。轉差頻率演算器350、積分器355、OSC357、座標轉換器325、360是與實施形態2之轉差頻率演算器250、積分器255、OSC257、座標轉換器225、260相同。 The motor control device 300 includes a slip frequency calculator 350, an integrator 355, an OSC357, and coordinate converters 325 and 360 as a system for performing coordinate conversion. The slip frequency calculator 350, integrator 355, OSC357, and coordinate converters 325 and 360 are the same as the slip frequency calculator 250, integrator 255, OSC257, and coordinate converters 225 and 260 in the second embodiment.
再者,馬達控制裝置300具有PWM控制器365、功率轉換器370作為用於使馬達380驅動之系統。PWM控制器365、功率轉換器370是與實施形態2之PWM控制器265、功率轉換器270相同。附帶一提,藉由PWM控制器365、功率轉換器370、q軸電流控制器330、d軸電流控制器345、座標轉換器360而形成馬達驅動部。 The motor control device 300 includes a PWM controller 365 and a power converter 370 as a system for driving the motor 380. The PWM controller 365 and the power converter 370 are the same as the PWM controller 265 and the power converter 270 of the second embodiment. Incidentally, the motor driving unit is formed by the PWM controller 365, the power converter 370, the q-axis current controller 330, the d-axis current controller 345, and the coordinate converter 360.
[動力運轉/再生判別器375之動作] [Operation of Power Run / Regeneration Discriminator 375]
如前述,動力運轉/再生判別器375是由扭矩指令TCB與馬達旋轉速度ωm來判別馬達380在動力運轉狀態或在再生狀態。 As described above, the power operation / regeneration discriminator 375 uses the torque command TCB and the motor rotation speed ωm to determine whether the motor 380 is in the power operation state or the regeneration state.
動力運轉、再生判別是考慮馬達380之損失與編碼器310之量化誤差所造成之速度漣波,如圖10所示地使用馬達旋轉速度閾值ωA、扭矩指令閾值TCA來進行。馬 達旋轉速度閾值ωA是考慮編碼器310之量化誤差而決定,令動力運轉、再生判別結果在馬達380之無負載運轉時不震顫。扭矩指令閾值TCA是考慮馬達380之損失而決定,以成為馬達380之再生功率-馬達損失=0時之扭矩電流指令TCB之值來設定。 The determination of power running and regeneration is made by considering the speed ripple caused by the loss of the motor 380 and the quantization error of the encoder 310 as shown in FIG. 10 using the motor rotation speed threshold ωA and the torque command threshold TCA. horse The rotation speed threshold ωA is determined in consideration of the quantization error of the encoder 310, so that the power running and regeneration determination results do not tremble when the motor 380 is running without load. The torque command threshold value TCA is determined in consideration of the loss of the motor 380, and is set to the value of the torque current command TCB when the regenerative power of the motor 380-motor loss = 0.
動力運轉/再生判別器375是如圖10所示,在ωm≧ωA且TCB≦-TCA、或是ωm≦-ωA且TCB≧TCA之條件的情況下判定在再生狀態,在該等條件以外之條件的情況下判斷在動力運轉狀態。 The power running / regeneration discriminator 375 is determined to be in a regeneration state under the conditions of ωm ≧ ωA and TCB ≦ -TCA, or ωm ≦ -ωA and TCB ≧ TCA as shown in FIG. 10. The condition is judged in the power running state.
[最大一次電流指令算出器383之動作] [Operation of the maximum primary current command calculator 383]
如前述,最大一次電流指令算出器383是由動力運轉/再生判別器375之動力運轉、再生判別結果與馬達旋轉速度ωm算出最大一次電流指令IPC。具體而言,最大一次電流指令算出器383在動力運轉狀態的情況下不限制最大一次電流指令IPC,在再生狀態的情況下則如圖11所示地限制最大一次電流指令IPC。 As described above, the maximum primary current command calculator 383 calculates the maximum primary current command IPC from the power operation and regeneration determination result of the power operation / regeneration discriminator 375 and the motor rotation speed ωm. Specifically, the maximum primary current command calculator 383 does not limit the maximum primary current command IPC in the case of the power running state, and limits the maximum primary current command IPC in the case of the regeneration state as shown in FIG. 11.
最大一次電流指令IPC=IPCmax Maximum primary current command IPC = IPCmax
(0≦|ωm|≦ω1時) (When 0 ≦ | ωm | ≦ ω1)
最大一次電流指令IPC=IPCmax-KLIM.(|ωm|-ω1) Maximum primary current command IPC = IPCmax-KLIM. (| ωm | -ω1)
(ω1<|ωm|時) (when ω1 <| ωm |)
在此,ω1:q軸電流之限制開始旋轉速度 Here, ω1: the limit of the q-axis current starts the rotation speed
ω1是基底速度以上之值,基於馬達180減速時之扭矩特性而調整。 ω1 is a value higher than the base speed, and is adjusted based on the torque characteristics when the motor 180 is decelerated.
KLIM:決定高速旋轉時之最大一次電流指令值 之降低量的係數 KLIM: Determine the maximum current command value during high-speed rotation Reduction factor
[限制器390之動作] [Action of Limiter 390]
如前述,限制器390是將扭矩限制值演算器385所算出之扭矩限制值TLIM輸入,對扭矩指令TCB之值進行限制。 As described above, the limiter 390 inputs the torque limit value TLIM calculated by the torque limit value calculator 385 to limit the value of the torque command TCB.
[磁通量指令演算器320之動作] [Operation of the magnetic flux instruction calculator 320]
如前述,磁通量指令演算器320是演算用於改善馬達380之加減速特性之最佳之磁通量指令φ2C。 As described above, the magnetic flux command calculator 320 calculates an optimal magnetic flux command φ2C for improving the acceleration and deceleration characteristics of the motor 380.
磁通量指令演算器320是藉由下面之式子來求出磁場減弱前之磁通量指令φ2CB。 The magnetic flux command calculator 320 obtains the magnetic flux command φ2CB before the magnetic field is weakened by the following formula.
φ2CB=φ0 φ2CB = φ0
(0≦|ωm|≦ω0時) (When 0 ≦ | ωm | ≦ ω0)
φ2CB=φ0+K0.(|ωm|-ω0) φ2CB = φ0 + K0. (| ωm | -ω0)
(ω0<|ωm|時)...(9) (when ω0 <| ωm |) ... (9)
在此,ω0:基底速度 Here, ω0: basal velocity
φ0:基底速度之磁通量 φ0: magnetic flux of base velocity
K0:使高速旋轉時之磁通量上昇之係數 K0: Coefficient for increasing magnetic flux during high-speed rotation
若將馬達旋轉速度ωm代入上述之式子(9)而將磁通量指令φ2CB可視化,則成為如在實施形態2所示之圖8之圖表。 When the motor rotation speed ωm is substituted into the above formula (9) and the magnetic flux command φ2CB is visualized, it becomes a graph shown in FIG. 8 as shown in the second embodiment.
可藉由使高速旋轉時之磁通量上昇之係數K0而將高速旋轉輕負載旋轉之磁通量指令φ2CB的值增大,馬達380之高速旋轉時之激磁電流指令增大,即便有磁飽和亦可使磁通量不變小,可改善加減速特性。關於K0之最佳 值,可藉由嘗試錯誤法之實驗來求出,或是藉由模擬來求出。 The magnetic flux command φ2CB at high speed and light load rotation can be increased by the coefficient K0 that increases the magnetic flux at high speed. It does not become smaller, which can improve the acceleration and deceleration characteristics. About the best of K0 The value can be obtained through trial and error experiments, or through simulation.
磁通量指令演算器320在如上述地求出磁場減弱前之磁通量指令後,藉由下面之式子求出磁通量指令φ2C。 The magnetic flux command calculator 320 obtains the magnetic flux command before the magnetic field is weakened as described above, and then obtains the magnetic flux command φ2C by the following formula.
φ2C=φ2CB φ2C = φ2CB
(0≦|ωm|≦ω0時) (When 0 ≦ | ωm | ≦ ω0)
φ2C=φ2CB.ω0/|ωm| φ2C = φ2CB. ω0 / | ωm |
(ω0<|ωm|時)...(10) (when ω0 <| ωm |) ... (10)
若將馬達旋轉速度ωm代入上述之式子(10)而將磁通量指令φ2C可視化,則成為如在實施形態2所示之圖9之圖表。 When the motor rotation speed ωm is substituted into the above formula (10) and the magnetic flux command φ2C is visualized, it becomes a graph shown in FIG. 9 as shown in the second embodiment.
磁通量指令演算器320是因應馬達旋轉速度ωm,在進行式子(9)之演算而求出磁場減弱前之磁通量指令φ2CB後,對磁通量指令φ2CB進行式子(10)之演算,將磁通量指令φ2C往磁通量控制器340輸出。 The magnetic flux command calculator 320 calculates the magnetic flux command φ2CB before the magnetic field weakening by performing the calculation of the formula (9) in accordance with the rotation speed ωm of the motor, and then performs the calculation of the magnetic flux command φ2CB in the formula (10) to calculate the magnetic flux command φ2C It is output to the magnetic flux controller 340.
[轉差頻率演算器350之動作] [Operation of slip frequency calculator 350]
轉差頻率演算器350是與實施形態2之轉差頻率演算器250相同地使用上述之式子(6)而由扭矩電流指令Iqc與磁通量φ2C算出轉差頻率指令ωs。 The slip frequency calculator 350 calculates the slip frequency command ωs from the torque current command Iqc and the magnetic flux φ2C using the above-mentioned formula (6) in the same manner as the slip frequency calculator 250 of the second embodiment.
磁通量演算器335之動作] [The operation of the magnetic flux calculator 335]
磁通量演算器335是與實施形態2之磁通量演算器235相同地使用上述之式子(7)而由d軸電流回饋IdF求出磁通量φ2。 The magnetic flux calculator 335 is the same as the magnetic flux calculator 235 of the second embodiment, and uses the above formula (7) to obtain the magnetic flux φ2 from the d-axis current feedback IdF.
[扭矩限制值演算器385之動作] [Operation of the torque limit value calculator 385]
扭矩限制值演算器385是使用下面之式子而由d軸電流指令IdC與最大一次電流指令IPC演算扭矩限制值TLIM。 The torque limit value calculator 385 calculates the torque limit value TLIM from the d-axis current command IdC and the maximum primary current command IPC using the following formula.
TLIM=Pm.M/L2.φ2.(IPC2-IdC2)1/2...(11) TLIM = Pm. M / L2. φ2. (IPC2-IdC2) 1/2 ... (11)
在此,Pm是馬達380之極對數 Here, Pm is the number of pole pairs of the motor 380
[q軸電流演算器395之動作] [Operation of q-axis current calculator 395]
q軸電流演算器395是使用下面之式子,由透過限制器390而受到扭矩限制後之扭矩指令求出q軸電流指令IqC。 The q-axis current calculator 395 uses the following formula to obtain a q-axis current command IqC from a torque command that is subjected to torque limitation through the limiter 390.
IqC=L2/(Pm.M.φ2).(經扭矩限制後之扭矩指令)...(12) IqC = L2 / (Pm.M.φ2). (Torque command after torque limitation) ... (12)
[馬達控制裝置300之動作] [Operation of the motor control device 300]
輸入之扭矩指令TCB是被限制器390限制在扭矩限制值TLIM內,朝q軸電流演算器395輸出。q軸電流演算器395是基於扭矩限制後之扭矩指令TCB與磁通量φ2而求出q軸電流指令IqC。將q軸電流指令IqC與來自座標轉換器325之q軸電流回饋IqF比較,藉由q軸電流控制器330求出q軸電壓指令VqC。附帶一提,用於讓限制器390對扭矩指令TCB之值進行限制之扭矩限制值TLIM是扭矩限制值演算器385使用上述之式子(11)而算出。 The input torque command TCB is limited by the limiter 390 to the torque limit value TLIM, and is output to the q-axis current calculator 395. The q-axis current calculator 395 obtains the q-axis current command IqC based on the torque command TCB and the magnetic flux φ2 after the torque limitation. The q-axis current command IqC is compared with the q-axis current feedback IqF from the coordinate converter 325, and the q-axis voltage command VqC is obtained by the q-axis current controller 330. Incidentally, the torque limit value TLIM for limiting the value of the torque command TCB by the limiter 390 is calculated by the torque limit value calculator 385 using the above-mentioned formula (11).
另一方面,以磁通量指令φ2C下達磁通量指令演算器320使用上述之式子(9)及式子(10)所算出之磁通量,與磁通量演算器335使用上述之式子(7)所算出之磁通量φ2比較,藉由磁通量控制器340求出d軸電流指令IdC。將d軸電流指令IdC與來自座標轉換器325之d軸電流回饋 IdF比較,藉由d軸電流控制器345求出d軸電壓指令VdC。 On the other hand, the magnetic flux command calculator 320 that uses the magnetic flux command φ2C to use the magnetic flux calculated by the above equations (9) and (10), and the magnetic flux calculator 335 uses the magnetic flux calculated by the above equation (7) For φ2 comparison, the d-axis current command IdC is obtained by the magnetic flux controller 340. Feedback of d-axis current command IdC and d-axis current from coordinate converter 325 In comparison with IdF, the d-axis voltage command VdC is obtained by the d-axis current controller 345.
轉差頻率演算器350使用上述之式子(6)而由扭矩電流指令IqC與磁通量φ2算出轉差頻率指令ωs。轉差頻率指令ωs是與速度演算器315輸出之馬達旋轉速度ωm相加。以轉差頻率指令ωs與馬達旋轉速度ωm求出一次頻率指令ω1。以積分器355將一次頻率指令ω1積分而求出定子位置指令θmc。 The slip frequency calculator 350 calculates the slip frequency command ωs from the torque current command IqC and the magnetic flux φ2 using the above formula (6). The slip frequency command ωs is added to the motor rotation speed ωm output from the speed calculator 315. A primary frequency command ω1 is obtained from the slip frequency command ωs and the motor rotation speed ωm. The integrator 355 integrates the primary frequency command ω1 to obtain the stator position command θmc.
座標轉換器360是基於定子位置指令θmc對q軸電壓指令VqC、d軸電壓指令VdC進行座標轉換,求出三相電壓指令Vuc、Vvc、Vwc。三相電壓指令Vuc、Vvc、Vwc是透過PWM控制器365、功率轉換器370而供給至馬達380,馬達380因應三相電壓指令Vuc、Vvc、Vwc而驅動。 The coordinate converter 360 performs coordinate conversion on the q-axis voltage command VqC and the d-axis voltage command VdC based on the stator position command θmc to obtain the three-phase voltage commands Vuc, Vvc, and Vwc. The three-phase voltage commands Vuc, Vvc, and Vwc are supplied to the motor 380 through the PWM controller 365 and the power converter 370. The motor 380 is driven in response to the three-phase voltage commands Vuc, Vvc, and Vwc.
q軸電流回饋IqF與d軸電流回饋IdF是由座標轉換器325基於定子位置指令θmc對馬達電流Iu、Iv進行座標轉換而求出。 The q-axis current feedback IqF and the d-axis current feedback IdF are obtained by coordinate conversion of the motor currents Iu and Iv based on the stator position command θmc.
如以上所說明,磁通量指令演算器320是求出與馬達旋轉速度和基底速度之差成比例地使磁通量增加之值,基於該值實施磁場減弱,再者,在磁場減弱領域是與扭矩電流指令Iqc成比例地將磁通量降低。亦即,磁通量控制器340是輸出用於改善馬達380之加減速特性之最佳之激磁電流指令IdC。 As described above, the magnetic flux command calculator 320 calculates a value that increases the magnetic flux in proportion to the difference between the rotation speed of the motor and the base speed, performs magnetic field weakening based on this value, and furthermore, in the field of magnetic field weakening, it is related to torque current command Iqc reduces the magnetic flux proportionally. That is, the magnetic flux controller 340 outputs an optimal exciting current command IdC for improving acceleration / deceleration characteristics of the motor 380.
因此,根據與實施形態3相關之馬達控制裝置300,將有磁飽和之馬達之動力運轉時之高速負載旋轉時之扭矩低下改善而縮短加速時間,同時還抑制馬達再生時 之過大之扭矩,而防止換流器之過電壓與變換器之過電流,而且沒有扭矩常數之急速變化,可兼顧良好之加速特性與安全之減速特性。 Therefore, according to the motor control device 300 related to the third embodiment, the torque reduction at the time of high-speed load rotation during power operation of a magnetically saturated motor is improved to shorten the acceleration time, and at the same time, the motor regeneration is suppressed. Excessive torque prevents over-voltage of the inverter and over-current of the converter, and there is no rapid change in torque constant, which can take into account good acceleration characteristics and safe deceleration characteristics.
附帶一提,與實施形態3相關之馬達控制裝置300亦可於將q軸電壓指令VqC、d軸電壓指令VdC輸出之系統設非干渉控制器,控制d軸及q軸之干渉。另外,亦可藉由三相電流控制系統構成d軸及q軸之電流控制系統之內部。再者,亦可使激磁電流指令不是從基底速度上昇,而是從任意之旋轉速度上昇。 Incidentally, the motor control device 300 related to Embodiment 3 may also be provided with a non-drying controller in a system that outputs the q-axis voltage command VqC and the d-axis voltage command VdC to control the d-axis and the q-axis. In addition, the inside of the d-axis and q-axis current control systems can also be constituted by a three-phase current control system. Furthermore, the excitation current command may not be raised from the base speed, but may be raised from an arbitrary rotation speed.
本發明相關之馬達控制裝置是在馬達之基底旋轉速度以上之旋轉速度與旋轉速度成比例地將磁通量增加,設動力運轉/再生判別而限制再生時之最大一次電流。藉此,可實現如下之馬達控制裝置:將有磁飽和之馬達之動力運轉動作時之高速負載時之扭矩低下改善而增快加速時間。同時還抑制馬達再生時之過大之扭矩,而防止換流器之過電壓與變換器之過電流,而且沒有扭矩常數之急速變化,可兼顧快之加速特性與安全之減速特性。 The motor control device related to the present invention increases the magnetic flux in proportion to the rotation speed above the base rotation speed of the motor, and sets the power operation / regeneration discrimination to limit the maximum primary current during regeneration. Thereby, the following motor control device can be realized: the torque at the time of high-speed load at the time of the power running operation of the motor with magnetic saturation is improved to improve the acceleration time. At the same time, it suppresses excessive torque during the regeneration of the motor, prevents overvoltage of the inverter and overcurrent of the inverter, and there is no rapid change in torque constant, which can take into account fast acceleration characteristics and safe deceleration characteristics.
100‧‧‧馬達控制裝置 100‧‧‧ Motor control device
110‧‧‧編碼器 110‧‧‧ Encoder
115‧‧‧速度演算器 115‧‧‧speed calculator
125‧‧‧座標轉換器 125‧‧‧ coordinate converter
130‧‧‧q軸電流控制器 130‧‧‧q axis current controller
135‧‧‧激磁電流指令演算器 135‧‧‧Excitation current command calculator
145‧‧‧d軸電流控制器 145‧‧‧d-axis current controller
150‧‧‧轉差頻率演算器 150‧‧‧Slip Frequency Calculator
155‧‧‧積分器 155‧‧‧Integrator
157‧‧‧OSC 157‧‧‧OSC
160‧‧‧座標轉換器 160‧‧‧coordinate converter
165‧‧‧PWM控制器 165‧‧‧PWM controller
170‧‧‧功率轉換器 170‧‧‧ Power Converter
175‧‧‧動力運轉/再生判別器 175‧‧‧Power running / regeneration discriminator
180‧‧‧馬達 180‧‧‧ Motor
185‧‧‧q軸電流限制值算出器 185‧‧‧q-axis current limit calculator
190‧‧‧限制器 190‧‧‧Limiter
Claims (10)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013020648A JP5620527B2 (en) | 2013-02-05 | 2013-02-05 | Motor control device |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201436449A TW201436449A (en) | 2014-09-16 |
TWI618344B true TWI618344B (en) | 2018-03-11 |
Family
ID=51242318
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW102146593A TWI618344B (en) | 2013-02-05 | 2013-12-17 | Motor control |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP5620527B2 (en) |
KR (1) | KR20140100410A (en) |
CN (1) | CN103973186B (en) |
TW (1) | TWI618344B (en) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106537760B (en) * | 2015-01-28 | 2020-03-31 | 松下知识产权经营株式会社 | Motor control device and method for correcting torque constant in the same |
JP6431788B2 (en) * | 2015-03-05 | 2018-11-28 | 株式会社日立産機システム | Power converter and control method thereof |
CN104901598B (en) * | 2015-06-24 | 2017-07-28 | 广东威灵电机制造有限公司 | Motor driver, method and motor |
CN104901593B (en) * | 2015-06-24 | 2017-10-24 | 广东威灵电机制造有限公司 | Motor driver, method and motor |
WO2017033320A1 (en) * | 2015-08-26 | 2017-03-02 | 三菱電機株式会社 | Power supply regenerative converter and motor control device |
CN105634368A (en) * | 2016-04-08 | 2016-06-01 | 中车株洲电力机车研究所有限公司 | Self-adaptive speed regulating method and system having maximum deceleration |
CN106330036B (en) * | 2016-09-22 | 2018-12-11 | 四川长虹电器股份有限公司 | Motor identification of rotational inertia control method |
JP7026448B2 (en) * | 2017-04-17 | 2022-02-28 | 日本電産サンキョー株式会社 | Servo motor control device and method |
CN113346820B (en) * | 2020-03-02 | 2022-05-17 | 广东威灵电机制造有限公司 | Motor control method, motor control device, motor system, and storage medium |
CN113346819B (en) * | 2020-03-02 | 2022-06-10 | 广东威灵电机制造有限公司 | Motor control method, motor control device, motor system, and storage medium |
CN113162516B (en) * | 2021-04-08 | 2022-09-20 | 佛山市威灵洗涤电机制造有限公司 | Motor control method and device, motor, household appliance and readable storage medium |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07308100A (en) * | 1994-03-14 | 1995-11-21 | Meidensha Corp | Control device for induction motor |
CN1751429A (en) * | 2003-02-14 | 2006-03-22 | 株式会社安川电机 | Ac motor control method and control device |
CN101351956A (en) * | 2006-08-17 | 2009-01-21 | 爱信艾达株式会社 | Electric motor drive control method and apparatus |
CN101479925A (en) * | 2006-07-06 | 2009-07-08 | 三菱电机株式会社 | Vector control apparatus for induction motor, vector control method for induction motor, and drive control apparatus for induction motor |
JP2011205857A (en) * | 2010-03-26 | 2011-10-13 | Sanken Electric Co Ltd | Control device and control method of induction motor |
TW201231349A (en) * | 2010-12-22 | 2012-08-01 | Microspace Corp | Motor drive control device |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2151918A1 (en) * | 2008-08-07 | 2010-02-10 | Bombardier Transportation GmbH | Operating a synchronous motor having a permanent magnet rotor |
-
2013
- 2013-02-05 JP JP2013020648A patent/JP5620527B2/en not_active Expired - Fee Related
- 2013-12-17 TW TW102146593A patent/TWI618344B/en not_active IP Right Cessation
-
2014
- 2014-01-20 KR KR1020140006832A patent/KR20140100410A/en not_active Application Discontinuation
- 2014-01-21 CN CN201410026004.7A patent/CN103973186B/en not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07308100A (en) * | 1994-03-14 | 1995-11-21 | Meidensha Corp | Control device for induction motor |
CN1751429A (en) * | 2003-02-14 | 2006-03-22 | 株式会社安川电机 | Ac motor control method and control device |
CN101479925A (en) * | 2006-07-06 | 2009-07-08 | 三菱电机株式会社 | Vector control apparatus for induction motor, vector control method for induction motor, and drive control apparatus for induction motor |
CN101351956A (en) * | 2006-08-17 | 2009-01-21 | 爱信艾达株式会社 | Electric motor drive control method and apparatus |
JP2011205857A (en) * | 2010-03-26 | 2011-10-13 | Sanken Electric Co Ltd | Control device and control method of induction motor |
TW201231349A (en) * | 2010-12-22 | 2012-08-01 | Microspace Corp | Motor drive control device |
Also Published As
Publication number | Publication date |
---|---|
CN103973186B (en) | 2018-02-16 |
TW201436449A (en) | 2014-09-16 |
JP2014155255A (en) | 2014-08-25 |
KR20140100410A (en) | 2014-08-14 |
JP5620527B2 (en) | 2014-11-05 |
CN103973186A (en) | 2014-08-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI618344B (en) | Motor control | |
TWI581556B (en) | Motor control device | |
JP4965924B2 (en) | Variable magnetic flux drive system | |
JP5948613B2 (en) | Motor control device | |
TWI632767B (en) | Motor control | |
JP5036918B2 (en) | Power converter | |
JP6226566B2 (en) | Motor control device and construction machine having the same | |
JP4931105B2 (en) | Electric vehicle power converter | |
JP7181946B2 (en) | Driving device and driving method for rotating electric machine | |
CN113346820B (en) | Motor control method, motor control device, motor system, and storage medium | |
JP2014155393A (en) | Ac electric machine system and control method therefor | |
JP6203036B2 (en) | Electric vehicle control device | |
JP5787584B2 (en) | Motor drive device | |
JP6216639B2 (en) | Motor control device | |
JP2019062589A (en) | Motor control device and motor control method | |
JP2005253264A (en) | Electric rolling stock controlling device | |
JP6304401B2 (en) | Motor control device and control method | |
JP2008167630A (en) | Control unit for electric power converter | |
JPWO2014141527A1 (en) | Motor control device | |
JP5492180B2 (en) | Variable magnetic flux drive system | |
JP5904920B2 (en) | Electric vehicle power converter | |
JP6296310B2 (en) | AC electric machine system and control method thereof | |
JP2024111718A (en) | Electric motor control method and electric motor control device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |