TWI618110B - Ion beam line - Google Patents

Ion beam line Download PDF

Info

Publication number
TWI618110B
TWI618110B TW105115943A TW105115943A TWI618110B TW I618110 B TWI618110 B TW I618110B TW 105115943 A TW105115943 A TW 105115943A TW 105115943 A TW105115943 A TW 105115943A TW I618110 B TWI618110 B TW I618110B
Authority
TW
Taiwan
Prior art keywords
electrode
ion beam
ion
electrode pair
pair
Prior art date
Application number
TW105115943A
Other languages
Chinese (zh)
Other versions
TW201709252A (en
Inventor
薩米 哈托
山元徹朗
Original Assignee
日新離子機器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US14/831,225 external-priority patent/US9502213B2/en
Application filed by 日新離子機器股份有限公司 filed Critical 日新離子機器股份有限公司
Publication of TW201709252A publication Critical patent/TW201709252A/en
Application granted granted Critical
Publication of TWI618110B publication Critical patent/TWI618110B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/317Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation
    • H01J37/3171Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation for ion implantation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/10Lenses
    • H01J37/12Lenses electrostatic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/147Arrangements for directing or deflecting the discharge along a desired path
    • H01J37/1472Deflecting along given lines
    • H01J37/1474Scanning means
    • H01J37/1477Scanning means electrostatic

Abstract

在一態樣中,揭露一種離子植入系統,其包括一減速系統,其配置成用以接收一離子束及以至少2的減速比使該離子束減速;以及一靜電彎管,其配置在該減速系統之下游側,以便促使該離子束之偏向。該靜電彎管包括用以接收該減速離子束之3個串聯電極對,其中每一電極對具有一內電極及一外電極彼此隔開,以允許該離子束在其間通過。該最後電極對之每一電極保持在小於該中間電極對之任一電極所保持的電位之電位及該第一電極對之電極相對於該第中間電極對之電極保持在較低電位。 In one aspect, an ion implantation system is disclosed, which includes a deceleration system configured to receive an ion beam and decelerate the ion beam with a reduction ratio of at least 2; and an electrostatic elbow, which is configured at The downstream side of the deceleration system to facilitate the deflection of the ion beam. The electrostatic elbow includes three series electrode pairs for receiving the decelerated ion beam, wherein each electrode pair has an inner electrode and an outer electrode separated from each other to allow the ion beam to pass therebetween. Each electrode of the last electrode pair is maintained at a potential that is less than the potential held by any electrode of the intermediate electrode pair, and the electrode of the first electrode pair is maintained at a lower potential relative to the electrode of the second intermediate electrode pair.

Description

離子植入系統 Ion implantation system

本教示大致上係關於離子植入系統及方法,其包括用以調整帶狀離子束之電流密度來提高它的剖面均勻性的系統及方法。 This teaching relates generally to an ion implantation system and method, which includes a system and method for adjusting the current density of a strip-shaped ion beam to improve its cross-section uniformity.

離子植入技術被用於將離子植入半導體以便製造積體電路,已超過30年。傳統上,這樣的離子植入使用3種類型的離子植入機:中電流、高電流及高能量植入機。在高電流植入機中所包含之離子源通常包括具有高縱橫比(aspect ratios)之狹縫形式的引出孔,以便改善空間電荷之效應。從這樣的離子源所引出的一維離子束可被聚焦成為一橢圓形剖面,以在一上面入射有該離子束的晶圓上產生一實質上圓形的離子束剖面。 Ion implantation technology has been used to implant ions into semiconductors to make integrated circuits for more than 30 years. Traditionally, such ion implantation uses three types of ion implanters: medium current, high current, and high energy implanters. The ion source included in the high-current implanter usually includes a lead-out hole in the form of a slit with high aspect ratios in order to improve the effect of space charge. The one-dimensional ion beam extracted from such an ion source can be focused into an elliptical cross-section to produce a substantially circular ion beam cross-section on a wafer on which the ion beam is incident.

有些最近的商用高電流離子植入機使所謂的帶狀離子束撞擊至一晶圓上,以將離子植入其中,該帶狀離子束在名義上呈現一維剖面。使用這樣的帶狀離子束對於晶圓處理提供幾個優點。例如,該帶狀離子束可以具有一超出該晶圓之直徑的長尺寸因此可以保持靜止不動,只在正交於該離子束之傳播方向的一個維度上掃描該晶圓而在該整個晶圓上植入離子。再者,帶狀離子束可容許在該晶圓上之較高電流。 Some recent commercial high-current ion implanters impinge a so-called ribbon ion beam onto a wafer to implant ions into it, which nominally assumes a one-dimensional profile. Using such a ribbon ion beam provides several advantages for wafer processing. For example, the strip-shaped ion beam may have a long dimension exceeding the diameter of the wafer and thus may remain stationary, scanning the wafer only in one dimension orthogonal to the direction of propagation of the ion beam and scanning the entire wafer Implanted ion. Furthermore, the ribbon ion beam can tolerate higher currents on the wafer.

然而,帶狀離子束於離子植入的使用會造成許多挑 戰。舉例來說,該離子束之縱向剖面需要高均勻性,以獲得植入離子之可接受的劑量均勻性。當晶圓尺寸增加(例如,下一代450-mm晶圓取代目前主要300-mm晶圓)時,用以處理晶圓之帶狀離子束的可接受縱向均勻性之達成會更具有挑戰性。 However, the use of ribbon ion beams for ion implantation poses many challenges. war. For example, the longitudinal profile of the ion beam requires high uniformity to obtain an acceptable dose uniformity of the implanted ions. As wafer size increases (eg, the next generation of 450-mm wafers replaces the current 300-mm wafers), achieving acceptable longitudinal uniformity of the ribbon ion beam used to process the wafers will be more challenging.

在一些傳統離子植入系統中,將校正光學系統(corrector optics)併入離子束線中,以在離子束輸送期間改變離子束之電荷密度。然而,如果離子束剖面在從離子源引出後立即呈現高的不均勻性,或者由於空間電荷負載(space charge loading)或離子束輸送光學系統(beam transport optics)所引起的像差,此方法通常無法產生足夠的離子束均勻性。 In some conventional ion implantation systems, corrector optics are incorporated into the ion beamline to change the charge density of the ion beam during ion beam delivery. However, this method is usually used if the ion beam profile exhibits high non-uniformity immediately after extraction from the ion source, or due to space charge loading or beam transport optics Insufficient ion beam uniformity.

於是,需要可解決上述缺點之增強型的離子植入系統。特別地,需要用於離子植入之改良型系統及方法,其包括用以產生具有期望能量且沿著離子束線之期望離子束剖面的離子束之增強型系統及方法。 Therefore, there is a need for an enhanced ion implantation system that addresses the aforementioned disadvantages. In particular, there is a need for improved systems and methods for ion implantation that include enhanced systems and methods to generate an ion beam having a desired energy and a desired ion beam profile along an ion beam line.

在一態樣中,揭露一種用以改變帶狀離子束之能量的系統,其包括一校正裝置,其配置成用以接收一帶狀離子束並調整沿著該離子束之縱向尺寸的電流密度剖面;至少一減速/加速元件,其界定一用以在該離子束通過該至少一減速/加速元件時,減速或加速該離子束之減速/加速區域;一聚焦透鏡,其用以減少該離子束沿著其橫向尺寸發散;以及一靜電彎管(electrostatic bend),其配置在該減速/加速區域之下游,以促使該離子束之偏向。 In one aspect, a system for changing the energy of a band-shaped ion beam is disclosed. The system includes a correction device configured to receive a band-shaped ion beam and adjust a current density along a longitudinal dimension of the ion beam. Section; at least one deceleration / acceleration element defining a deceleration / acceleration region for decelerating or accelerating the ion beam when the ion beam passes through the at least one deceleration / acceleration element; a focusing lens for reducing the ions The beam diverges along its lateral dimension; and an electrostatic bend is disposed downstream of the deceleration / acceleration region to facilitate the deflection of the ion beam.

在一些具體例中,該校正裝置可以包括沿著該離子束之縱向尺寸堆疊的複數個隔開電極對,每一對電極分開,以形成一 用於該離子束通過之間隙,其中該等電極對係配置成藉由靜電電壓之施加而成為可個別偏壓的,以便局部地使該離子束沿著縱向尺寸偏向。可以使用各種不同的電極類型。在一些具體例中,該等電極對可以包括平板電極,其配置成大致平行或垂直於一由該離子束之傳播方向及其橫向尺寸所形成之平面。該系統可以進一步包括至少一電壓源,其用以施加該等靜電電壓至該校正裝置之電極對。 In some specific examples, the correction device may include a plurality of spaced apart electrode pairs stacked along a longitudinal dimension of the ion beam, each pair of electrodes being separated to form a A gap for the ion beam to pass through, wherein the electrode pairs are configured to be individually biased by the application of an electrostatic voltage so as to locally deflect the ion beam along the longitudinal dimension. Various electrode types can be used. In some specific examples, the electrode pairs may include plate electrodes configured to be substantially parallel or perpendicular to a plane formed by a propagation direction of the ion beam and a lateral dimension thereof. The system may further include at least one voltage source for applying the electrostatic voltages to the electrode pairs of the calibration device.

與該至少一電壓源連接之控制器可以控制該等靜電電壓至該等電極對之施加。舉例來說,該控制器可以配置成指示該電壓源,施加靜電電壓至該等電極對,以局部地使該離子束之至少一部分偏向,以便增加沿著該離子束之縱向尺寸的電流密度剖面之均勻性。 A controller connected to the at least one voltage source can control the application of the electrostatic voltages to the electrode pairs. For example, the controller may be configured to instruct the voltage source to apply an electrostatic voltage to the electrode pairs to locally deflect at least a portion of the ion beam so as to increase a current density profile along a longitudinal dimension of the ion beam Of uniformity.

該控制器可以配置成用以:例如,在該離子束通過分析磁鐵(analyzer magnet)或一上面入射有該離子束之基板的平面附近後,根據該離子束之測量得的電流密度剖面決定對該校正裝置之電極對所施加的該等靜電電壓。 The controller may be configured to, for example, determine the pair according to a measured current density profile of the ion beam after the ion beam passes near an analyzer magnet or a plane of a substrate on which the ion beam is incident. The electrostatic voltages applied to the electrode pairs of the calibration device.

在一些具體例中,該控制器係配置成用以施加時變電壓至該校正裝置之電極對。例如,該控制器可以配置成用以在時間上改變對該校正裝置之電極對所施加的電壓,以便促使該離子束沿著該縱向尺寸振盪運動。該離子束之振盪運動可以例如在約10mm至約20mm之範圍內呈現例如等於或小於約20mm之振幅。舉例來說,該振盪之頻率可以在約1Hz至約1kHz之範圍內。 In some embodiments, the controller is configured to apply a time-varying voltage to an electrode pair of the calibration device. For example, the controller may be configured to change the voltage applied to the electrode pair of the correction device in time so as to cause the ion beam to oscillate along the longitudinal dimension. The oscillating motion of the ion beam may exhibit, for example, an amplitude equal to or less than about 20 mm in a range of about 10 mm to about 20 mm. For example, the frequency of the oscillation may be in a range of about 1 Hz to about 1 kHz.

該聚焦透鏡可以包括至少一聚焦元件,例如,一對隔開以形成一用以接收該離子束之間隙的相對電極。再者,該減速/加速元件可以包括一對隔開以形成一用以接收該離子束之橫向間 隙的電極。該聚焦元件及該減速/加速元件可以彼此相對地配置,以在其間形成一間隙,以及可以維持在不同的電位,以便離子通過該間隙,會促使該等離子減速或加速。 The focusing lens may include at least one focusing element, for example, a pair of opposing electrodes spaced to form a gap for receiving the ion beam. Furthermore, the deceleration / acceleration element may include a pair of spacers to form a lateral space for receiving the ion beam. Gap electrode. The focusing element and the deceleration / acceleration element may be arranged opposite to each other to form a gap therebetween, and may be maintained at different potentials so that ions pass through the gap and cause the ions to decelerate or accelerate.

在一些具體例中,該等聚焦電極中之至少一者可以包括一配置成用以減少該離子束沿著它的縱向尺寸發散之彎曲上游側端面。例如,該聚焦電極之上游側端面可以是具有約1m至約10m之曲率半徑的凹面。 In some specific examples, at least one of the focusing electrodes may include a curved upstream side end surface configured to reduce divergence of the ion beam along its longitudinal dimension. For example, the upstream-side end surface of the focusing electrode may be a concave surface having a curvature radius of about 1 m to about 10 m.

在一些具體例中,該至少一減速/加速元件係配置在該校正裝置之下游側及該至少一聚焦元件係配置在該減速/加速元件之下游側。 In some specific examples, the at least one deceleration / acceleration element is disposed on a downstream side of the correction device and the at least one focusing element is disposed on a downstream side of the deceleration / acceleration element.

該聚焦元件可以相對於該靜電彎管配置而在其間形成一間隙,其中使該聚焦元件及該靜電彎管保持在不同的電位,以在該間隙中形成一適用以減少該離子束沿著該橫向尺寸發散之電場。 The focusing element may be disposed with respect to the electrostatic elbow to form a gap therebetween, wherein the focusing element and the electrostatic elbow are maintained at different potentials to form a gap in the gap suitable for reducing the ion beam along the Electric field diverging laterally.

在一些具體例中,該靜電彎管包括一內電極及一相對外電極,其等保持在不同電位,以便促使該離子束之偏向。該靜電彎管可以進一步包括一配置在該內電極之下游側且相對於該外電極之中間電極,其中該內電極及該中間電極係配置成被施加有獨立電位。在一些情況中,可以使該外電極及該中間電極保持在相同的電位。 In some specific examples, the electrostatic elbow includes an inner electrode and an opposite outer electrode, which are maintained at different potentials so as to promote the deflection of the ion beam. The electrostatic elbow may further include an intermediate electrode disposed on a downstream side of the internal electrode and opposite to the external electrode, wherein the internal electrode and the intermediate electrode are configured to be applied with independent potentials. In some cases, the external electrode and the intermediate electrode may be maintained at the same potential.

在一些具體例中,該靜電彎管之外電極包括一上游部及一下游部,其以相對於彼此成某一角度方式來配置,以便該下游部能捕獲在該離子束中所存在之中性粒子的至少一部分。該等上游及下游部可以一體地構成該外電極,或者它們可以是電性地耦接之 個別部分。 In some specific examples, the outer electrode of the electrostatic elbow includes an upstream portion and a downstream portion, which are arranged at an angle with respect to each other so that the downstream portion can be captured in the ion beam. Sex particles at least a part. The upstream and downstream portions may integrally constitute the external electrode, or they may be electrically coupled to each other. Individual sections.

在一些具體例中,該系統可以進一步包括另一校正裝置,其設置在該靜電彎管之下游側,該另一校正裝置係配置成用以調整該離子束沿著該縱向尺寸之電流密度剖面。在一些組合中,此下游校正裝置可以包括沿著該離子束之縱向尺寸堆疊的複數個隔開電極對,每一對電極分隔開以形成一用於該離子束通過之間隙,其中該等電極對係配置成藉由靜電電壓之施加而成為可個別偏壓的,以便局部地使該離子束沿著該縱向尺寸偏向。 In some specific examples, the system may further include another correction device disposed on the downstream side of the electrostatic elbow. The another correction device is configured to adjust a current density profile of the ion beam along the longitudinal dimension. . In some combinations, the downstream correction device may include a plurality of spaced electrode pairs stacked along the longitudinal dimension of the ion beam, each pair of electrodes being spaced apart to form a gap for the ion beam to pass through, wherein The electrode pairs are configured to be individually biased by the application of an electrostatic voltage so as to locally deflect the ion beam along the longitudinal dimension.

在一些具體例中,使該等校正裝置之電極對沿著該離子束之縱向尺寸彼此錯開。例如,可以使該下游校正裝置之電極對(沿著該離子束之縱向尺寸)相對於該上游校正裝置之個別電極對垂直地偏移有該等校正裝置之電極的縱向高度之一半(像素大小的一半)。 In some specific examples, the electrode pairs of the correction devices are staggered from each other along the longitudinal dimension of the ion beam. For example, the electrode pairs of the downstream correction device (along the longitudinal dimension of the ion beam) may be vertically offset relative to the individual electrode pairs of the upstream correction device by a half of the longitudinal height of the electrodes of the correction devices (pixel size Half).

在一些具體例中,該系統可以進一步包括另一聚焦透鏡(在此,亦稱為一第二聚焦透鏡),其設置在該另一校正裝置之下游側,以便減少該離子束沿著該橫向尺寸發散。再者,在一些情況下,可以在該另一聚焦透鏡之下游側配置一電接地元件。該電接地元件包括例如一對電接地電極,其分隔開以允許該離子束在其間通過。該第二聚焦透鏡可以包括至少一聚焦元件,其相對於該接地元件配置成在其間形成一間隙,其中該聚焦元件與該接地元件間之電位差在該間隙中產生電場,以便減少該離子束沿著該橫向尺寸發散。 In some specific examples, the system may further include another focusing lens (herein, also referred to as a second focusing lens), which is disposed on the downstream side of the other correction device so as to reduce the ion beam along the lateral direction. Size divergence. Furthermore, in some cases, an electrical grounding element may be disposed on the downstream side of the other focusing lens. The electrical ground element includes, for example, a pair of electrical ground electrodes spaced apart to allow the ion beam to pass therebetween. The second focusing lens may include at least one focusing element configured to form a gap therebetween with respect to the ground element, wherein a potential difference between the focusing element and the ground element generates an electric field in the gap in order to reduce the ion beam edge Diverging with this lateral dimension.

在其它態樣中,揭露一種用以使帶狀離子束減速之系統,其包括至少一減速元件,其界定一用以接收該帶狀離子束之區 域及使其離子減速;至少一對偏向電極,其分隔開以在其間接收該減速離子束及促使其偏向;以及一校正裝置,其配置成用以提供一用於該偏向離子束通過之通道及調整該離子束在非分散平面(non-dispersive plane)中之電流密度剖面。 In other aspects, a system for decelerating a band-shaped ion beam is disclosed, including at least one deceleration element defining a region for receiving the band-shaped ion beam. Domain and decelerate its ions; at least a pair of deflection electrodes spaced to receive and decelerate the decelerated ion beam therebetween; and a correction device configured to provide a means for the deflected ion beam to pass through Channel and adjust the current density profile of the ion beam in a non-dispersive plane.

在一些具體例中,該校正裝置可以包括沿著該離子束之縱向尺寸堆疊的複數個隔開電極對,每一對電極分開,以形成一用於該離子束通過之間隙,其中該等電極對係配置成藉由靜電電壓之施加而成為可個別偏壓的,以便局部地使該離子束沿著縱向尺寸偏向。在一些具體例中,該複數個隔開電極對可以包括內外相對電極及一配置在該內電極之下游側且相對於該外電極之中間電極,其中該外電極、該內電極及該中間電極係配置成保持在獨立的電位。舉例來說,可以使該內電極及該外電極保持在不同的電位,以便促使該離子束之偏向,然而使該外電極及該中間電極保持在相同的電位。該外電極可以包括一上游部及一下游部,其中該下游部係以相對於該上游部成某一角度方式來配置,以便捕獲在該離子束中所存在之中性粒子。在一些實施例中,該外電極之上游部及下游部一體地構成該外電極。 In some specific examples, the correction device may include a plurality of spaced apart electrode pairs stacked along a longitudinal dimension of the ion beam, each pair of electrodes being separated to form a gap for the ion beam to pass through, wherein the electrodes The pair is configured to be individually biased by the application of an electrostatic voltage so as to locally deflect the ion beam along the longitudinal dimension. In some specific examples, the plurality of separated electrode pairs may include internal and external opposing electrodes and an intermediate electrode disposed downstream of the internal electrode and opposite to the external electrode, wherein the external electrode, the internal electrode, and the intermediate electrode The system is configured to be maintained at an independent potential. For example, the internal electrode and the external electrode may be maintained at different potentials to promote the deflection of the ion beam, but the external electrode and the intermediate electrode may be maintained at the same potential. The external electrode may include an upstream portion and a downstream portion, wherein the downstream portion is disposed at an angle with respect to the upstream portion so as to capture neutral particles existing in the ion beam. In some embodiments, the upstream portion and the downstream portion of the external electrode integrally constitute the external electrode.

該系統可以進一步包括用以施加該等靜電電壓至該校正裝置之電極對的至少一電壓源。可以設置一與該至少一電壓源連接之控制器,以便調整被施加至該校正裝置之電極對的電壓。舉例來說,該控制器可以根據例如該接收離子束之測量電流密度剖面決定對該校正裝置之電極對所施加的電壓。 The system may further include at least one voltage source for applying the electrostatic voltages to the electrode pairs of the calibration device. A controller connected to the at least one voltage source may be provided to adjust the voltage applied to the electrode pair of the correction device. For example, the controller may determine a voltage to be applied to an electrode pair of the calibration device according to, for example, a measured current density profile of the received ion beam.

該系統可以進一步包括一聚焦透鏡,其配置成用以減少該離子束沿著其橫向尺寸發散。該聚焦透鏡可以包括至少一聚焦 元件,例如,一對電極,其分隔開以允許離子束在其間通過。在一些具體例中,一電接地元件,例如,一對隔開電極,係配置在該聚焦元件之下游側。該電接地元件可以相對於該聚焦元件設置以在其間形成一間隙。可以使該接地元件及該聚焦元件保持在不同的電位,以便在該間隙中形成一適用以減少該離子束沿著該橫向尺寸發散之電場。 The system may further include a focusing lens configured to reduce divergence of the ion beam along its lateral dimension. The focusing lens may include at least one focus An element, for example, a pair of electrodes that are separated to allow an ion beam to pass therebetween. In some embodiments, an electrical grounding element, such as a pair of spaced electrodes, is disposed downstream of the focusing element. The electrical grounding element may be disposed relative to the focusing element to form a gap therebetween. The grounding element and the focusing element can be maintained at different potentials so as to form an electric field in the gap suitable for reducing the ion beam diverging along the lateral dimension.

在另一態樣中,揭露一種離子植入系統,其包括一離子源,其適用以產生一帶狀離子束;一分析磁鐵,其用以接收該帶狀離子束及產生一質量選擇(mass-selected)帶狀離子束;以及一校正系統,其配置成用以接收該質量選擇帶狀離子束及調整該離子束沿著其縱向尺寸之電流密度剖面,以產生一沿著該縱向尺寸具有大致均勻電流密度剖面之輸出帶狀離子束。 In another aspect, an ion implantation system is disclosed that includes an ion source adapted to generate a band-shaped ion beam; an analysis magnet to receive the band-shaped ion beam and generate a mass selection (mass) -selected) a strip-shaped ion beam; and a correction system configured to receive the mass-selected strip-shaped ion beam and adjust a current density profile of the ion beam along its longitudinal dimension to generate a An output ribbon ion beam with a substantially uniform current density profile.

在一些具體例中,該校正系統可以進一步配置成用以使該接收質量選擇離子束之離子減速或加速,以便產生一沿著該縱向尺寸具有大致均勻電流密度剖面之減速/加速輸出帶狀離子束。在一些具體例中,該輸出帶狀離子束沿著該縱向尺寸呈現一具有等於或小於約5%之均方根(RMS)偏差或不均勻性的電流密度剖面。例如,該輸出帶狀離子束可以沿著該縱向尺寸呈現一具有等於或小於約4%或者等於或小於約3%或者等於或小於約2%或者等於或小於約1%之RMS偏差或不均勻性的電流密度剖面。 In some specific examples, the correction system may be further configured to decelerate or accelerate the ions of the reception mass selective ion beam so as to generate a deceleration / acceleration output band-shaped ion having a substantially uniform current density profile along the longitudinal dimension bundle. In some specific examples, the output band-shaped ion beam presents a current density profile with a root mean square (RMS) deviation or non-uniformity equal to or less than about 5% along the longitudinal dimension. For example, the output band-shaped ion beam may exhibit an RMS deviation or unevenness along the longitudinal dimension that is equal to or less than about 4% or equal to or less than about 3% or equal to or less than about 2% or equal to or less than about 1%. Current density profile.

在一些具體例中,在上述離子植入系統中之校正系統可以進一步包括一用以減少該帶狀離子束沿著其橫向尺寸發散之聚焦透鏡。再者,在一些具體例中,該校正系統可以配置成移除在該質量選擇離子束中所存在之中性粒子(例如,中性原子及/或分子) 的至少一部分。例如,該校正系統包括一靜電彎管,其用以在該等中性粒子持續沿它們的傳播方向傳播,以被一離子束截捕器(beam stop)(例如,該靜電彎管之外電極的一部分)捕獲下改變在該離子束中之離子的傳播方向。 In some specific examples, the calibration system in the above-mentioned ion implantation system may further include a focusing lens for reducing the divergence of the strip-shaped ion beam along its lateral dimension. Furthermore, in some specific examples, the correction system may be configured to remove neutral particles (eg, neutral atoms and / or molecules) present in the mass-selective ion beam. At least part of it. For example, the correction system includes an electrostatic elbow for the neutral particles to continue to propagate in their direction of propagation to be stopped by an ion beam trap (for example, an electrode outside the electrostatic elbow). Part of the ion beam) to change the propagation direction of the ions in the ion beam.

該離子植入系統可以進一步包括一用以保持一基板(例如,晶圓)之終端站(end-station),其中該輸出帶狀離子束傳播至該終端站,以入射在該基板上。在一些具體例中,該校正系統可以配置成用以調整該離子束之傳播方向,以便該輸出帶狀離子束沿著一與該基板表面成某一期望角度(例如,90度角)之方向入射在該基板之表面上。 The ion implantation system may further include an end-station for holding a substrate (eg, a wafer), wherein the output band-shaped ion beam propagates to the terminal station to be incident on the substrate. In some specific examples, the correction system may be configured to adjust the propagation direction of the ion beam so that the output band-shaped ion beam is along a direction at a desired angle (for example, a 90 degree angle) with the surface of the substrate. Incident on the surface of the substrate.

在一些具體例中,該離子植入系統之校正系統可以促使該離子束之振盪運動,以便改善該輸出帶狀離子束在該基板中所植入之離子的劑量均勻性。 In some specific examples, the calibration system of the ion implantation system can promote the oscillating movement of the ion beam, so as to improve the uniformity of the dose of the implanted ions of the output band-shaped ion beam in the substrate.

在一些具體例中,該離子植入系統之校正系統可以包括至少一校正裝置,其用以調整該離子束沿著該縱向尺寸之電流密度剖面。這樣的校正裝置可以包括例如沿著該離子束之縱向尺寸堆疊的複數個隔開電極對,每一對電極分開,以形成一用於該離子束通過之間隙,其中該等電極對係配置成藉由靜電電壓之施加而成為可個別偏壓的,以便局部地使該離子束在該非分散平面中偏向。該離子植入系統亦可以包括至少一電壓源,其用以施加電壓至該校正裝置之電極對;以及一控制器,其與該至少一電壓源連接,以便調整對該等電極對所施加之電壓。 In some specific examples, the calibration system of the ion implantation system may include at least one calibration device for adjusting a current density profile of the ion beam along the longitudinal dimension. Such a correction device may include, for example, a plurality of spaced apart electrode pairs stacked along the longitudinal dimension of the ion beam, each pair of electrodes separated to form a gap for the ion beam to pass through, wherein the electrode pairs are configured to Individually biasable by the application of an electrostatic voltage to locally bias the ion beam in the non-dispersed plane. The ion implantation system may also include at least one voltage source for applying voltage to the electrode pairs of the calibration device; and a controller connected to the at least one voltage source to adjust the voltage applied to the electrode pairs. Voltage.

在一些態樣中,揭露一種用以改變帶狀離子束之能量的方法,其包括使一帶狀離子束通過一存在有電場之區域中,以便 使該離子束之離子減速或加速、調整該帶狀離子束沿著其縱向尺寸之電流密度剖面及減少該帶狀離子束沿著其橫向尺寸發散。減少該離子束之發散的步驟包括使該離子束通過一聚焦透鏡。 In some aspects, a method for changing the energy of a band-shaped ion beam is disclosed, which includes passing a band-shaped ion beam through a region in which an electric field exists so that Decelerate or accelerate the ions of the ion beam, adjust the current density profile of the strip-shaped ion beam along its longitudinal dimension, and reduce the divergence of the strip-shaped ion beam along its lateral dimension. The step of reducing the divergence of the ion beam includes passing the ion beam through a focusing lens.

在一些具體例中,該帶狀離子束可以具有在約10keV至約100keV間之初始能量。在一些具體例中,使該離子束之離子減速或加速之步驟以大約1至大約30的範圍之因數改變該離子束之能量。 In some specific examples, the band-shaped ion beam may have an initial energy between about 10 keV and about 100 keV. In some embodiments, the step of decelerating or accelerating the ions of the ion beam changes the energy of the ion beam by a factor ranging from about 1 to about 30.

調整該離子束沿著它的縱向尺寸之電流密度剖面的步驟可以包括使用一校正裝置,其適用以局部地使該離子束沿著該縱向尺寸偏向,以便沿著該縱向尺寸產生一大致均勻電流密度剖面。 The step of adjusting the current density profile of the ion beam along its longitudinal dimension may include using a correction device adapted to locally deflect the ion beam along the longitudinal dimension so as to generate a substantially uniform current along the longitudinal dimension. Density profile.

在一些態樣中,揭露一種在基板中植入離子之方法,其包括從一離子源引出一帶狀離子束;使該帶狀離子束通過一分析磁鐵,以產生一質量選擇帶狀離子束;調整該質量選擇帶狀離子束沿著其至少一縱向尺寸之電流密度剖面,以產生一沿著該縱向尺寸具有大致均勻電流密度剖面之輸出帶狀離子束;以及導引該輸出帶狀離子束至一基板上,以便將離子植入該基板中。 In some aspects, a method for implanting ions in a substrate is disclosed, which includes extracting a band-shaped ion beam from an ion source; passing the band-shaped ion beam through an analysis magnet to generate a mass-selective band-shaped ion beam Adjusting the current density profile of the mass selection band ion beam along at least one longitudinal dimension thereof to generate an output band ion beam having a substantially uniform current density profile along the longitudinal dimension; and guiding the output band ion Beam onto a substrate to implant ions into the substrate.

在一些具體例中,可以配置一校正裝置,以實施調整該質量選擇帶狀離子束之電流密度剖面的步驟。舉例來說,一校正裝置可以調整該質量選擇帶狀離子束之電流密度剖面,以便獲得一呈現大致均勻電流密度剖面之離子束。 In some specific examples, a correction device may be configured to perform the step of adjusting the current density profile of the mass-selective band-shaped ion beam. For example, a calibration device can adjust the current density profile of the mass-selective band-shaped ion beam in order to obtain an ion beam that exhibits a substantially uniform current density profile.

在一些具體例中,該離子植入方法可以進一步包括使該質量選擇帶狀離子束之離子減速或加速,以便該輸出帶狀離子束具有一不同於該質量選擇帶狀離子束之能量的能量。 In some specific examples, the ion implantation method may further include decelerating or accelerating the ions of the mass selection band ion beam, so that the output band ion beam has an energy different from the energy of the mass selection band ion beam. .

在一些具體例中,植入離子劑量可以在約1012cm-2至約1016cm-2之間。離子電流可以是例如數十微安(例如,20微安)至數十毫安(例如,60毫安),例如,約50微安至約50毫安間,或者例如,約2毫安至約50毫安間。 In some specific examples, the implanted ion dose may be between about 10 12 cm -2 and about 10 16 cm -2 . The ionic current can be, for example, tens of microamperes (e.g., 20 microamps) to tens of milliamps (e.g., 60 milliamps), for example, between about 50 microamps to about 50 milliamps, or, for example, about 2 milliamps to about 50 milliamps.

在許多的離子植入應用中,即使當一加速/減速系統運作而使所接收的離子以適度減速比減速時,一由兩個分開電極所構成且配置在該加速/減速系統之下游測的靜電彎管(例如,上述靜電彎管)可以有效地使一離子束彎曲而不會造成該離子束之顯著角發散(「散開(blow-up)」)。然而,已被發現的是,在一配置成以高減速比使離子減速之減速系統的下游側之一傳統靜電彎管的使用可能造成該等離子之過度聚焦(over-focusing),此在該離子束穿越下游組件時,會轉而造成該離子束之散開。該離子束之散開會造成離子損失及會干擾該離子植入系統之操作。此外,在一些傳統離子植入系統中,需要高電壓之聚焦透鏡的使用可能例如因發弧(arcing)及經由電荷交換反應以中性原子/分子形式所產生之污染物而造成瞬間離子束不穩性。下面所論述之本技術的一些態樣係有關於這些問題之解決。 In many ion implantation applications, even when an accelerating / decelerating system is operating and the received ions are decelerated at a moderate deceleration ratio, one is composed of two separate electrodes and is arranged downstream of the accelerating / decelerating system. An electrostatic elbow (eg, the above-mentioned electrostatic elbow) can effectively bend an ion beam without causing significant angular divergence of the ion beam ("blow-up"). However, it has been found that the use of a conventional electrostatic elbow on one of the downstream sides of a deceleration system configured to decelerate ions with a high deceleration ratio may cause over-focusing of the plasma, where the ion As the beam travels through downstream components, the ion beam spreads in turn. The divergence of the ion beam causes ion loss and interferes with the operation of the ion implantation system. In addition, in some conventional ion implantation systems, the use of focusing lenses that require high voltage may cause transient ion beam instability, for example, due to arcing and contaminants generated in neutral atom / molecular form via charge exchange reactions. Stability. Some aspects of the technology discussed below address these issues.

在一態樣中,揭露一種離子植入系統,其包括一減速系統,其配置成用以接收一離子束及使該離子束以至少2的減速比減速;以及一靜電彎管,其配置在該減速系統之下游側,以便促使該離子束之偏向。該靜電彎管包括一第一電極對,其配置在該減速系統之下游側,以便接收該減速離子束,該第一電極對具有分開之一內電極及一外電極,以允許該離子束在其間通過;一第二電極對,其配置在該第一電極對之下游側且具有分開之一內電極及一外 電極,以允許該離子束在其間通過;以及一最後電極對,其配置在該第二電極對之下游側且具有分開之一內電極及一外電極,以允許該離子束在其間通過。該等第一、第二及最後電極對係配置成可以獨立偏壓的。在一些具體例中,使該最後電極對之每一電極保持在小於該第二電極對之任一電極所保持之電位的電位。亦使該第一電極對之電極相對於該第二電極對之電極保持在較低電位。 In one aspect, an ion implantation system is disclosed, which includes a deceleration system configured to receive an ion beam and decelerate the ion beam at a reduction ratio of at least 2; and an electrostatic elbow configured at The downstream side of the deceleration system to facilitate the deflection of the ion beam. The electrostatic elbow includes a first electrode pair, which is disposed on the downstream side of the deceleration system to receive the decelerated ion beam. The first electrode pair has a separate internal electrode and an external electrode to allow the ion beam to Passed in between; a second electrode pair, which is arranged on the downstream side of the first electrode pair and has a separate internal electrode and an external An electrode to allow the ion beam to pass therebetween; and a final electrode pair disposed on the downstream side of the second electrode pair and having an internal electrode and an external electrode separated to allow the ion beam to pass therebetween. The first, second and last electrode pairs are configured to be independently biased. In some specific examples, each electrode of the last electrode pair is maintained at a potential that is less than a potential held by any electrode of the second electrode pair. The electrodes of the first electrode pair are also kept at a lower potential than the electrodes of the second electrode pair.

在一些具體例中,該減速系統係配置成用以提供在約5至約100範圍內(例如,在約10至約80範圍內,或者在約20至約60範圍內,或者在約30至約50範圍內)之減速比。 In some specific examples, the reduction system is configured to provide a range of about 5 to about 100 (for example, a range of about 10 to about 80, or a range of about 20 to about 60, or a range of about 30 to about (About 50 range).

在一些具體例中,使該等電極對之每一者的內電極保持在小於那個電極對之個別外電極所保持之電位的電位,以便促使一由帶正電粒子所構成之離子束的偏向。 In some specific examples, the internal electrodes of each of these electrode pairs are maintained at a potential that is less than the potential held by the individual external electrodes of that electrode pair, so as to promote the deflection of an ion beam composed of positively charged particles .

該第一電極對之內外電極相對於該第二電極對之一個別電極可以構成某一個角度。再者,該最後電極對之內外電極的每一者相對於該第二電極對之一個別電極可以構成某一角度。 The inner and outer electrodes of the first electrode pair may form a certain angle with respect to an individual electrode of the second electrode pair. Furthermore, each of the inner and outer electrodes of the last electrode pair may form a certain angle with respect to an individual electrode of the second electrode pair.

在一些具體例中,使該等第一及最後電極對之外電極保持在一第一電位V1及使該等第一及最後電極對之內電極保持在一第二電位V2。再者,使該第二電極對之內電極電接地及使該第二電極對之外電極保持在一第三電位V3。該電壓V1可以大於該電壓V2。舉例來說,V1可以在約0V至約-30kV之範圍內,V2可以在約0V(零伏特)至約-30kV(負30kV)之範圍內,以及V3可以在約0V至約+30kV之範圍內。 In some specific examples, the outer electrodes of the first and last electrode pairs are maintained at a first potential V 1 and the inner electrodes of the first and last electrode pairs are maintained at a second potential V 2 . Furthermore, the inner electrode of the second electrode pair is electrically grounded and the outer electrode of the second electrode pair is maintained at a third potential V 3 . The voltage V 1 may be greater than the voltage V 2 . For example, V 1 may be in the range of from about 0V to about -30 kV, V 2 can range from about 0V (zero volts) to about -30 kV (negative 30kV) of, and V 3 may be from about 0V to about + Within 30kV.

在一些具體例中,該離子束係一帶狀離子束,而在其它具體例中,該離子束係一圓形離子束。 In some embodiments, the ion beam is a band-shaped ion beam, while in other embodiments, the ion beam is a circular ion beam.

在一些具體例中,該減速系統所接收之離子束具有在約10keV至約60keV之範圍內(例如,在約10keV至約20keV之範圍內)之離子能量及在約0.1mA至約40mA之範圍內(例如,在約5mA至約40mA之範圍內)的離子電流。 In some specific examples, the ion beam received by the deceleration system has an ion energy in a range of about 10 keV to about 60 keV (eg, in a range of about 10 keV to about 20 keV) and a range of about 0.1 mA to about 40 mA Within (for example, in the range of about 5 mA to about 40 mA).

在一些具體例中,該減速系統包括一減速元件,其與一下游聚焦元件分離,以便在其間界定一間隙。該減速系統可以包括兩個相對分離等電位電極部,在其間提供一用於該離子束通過之通道。該聚焦元件亦可以包括兩個等電位分離電極部,在其間提供一用於該離子束通過之通道。在一些具體例中,可以使該減速元件及該聚焦元件之每一者的分離電極部在它們的頂端及底端處連接,以構成例如一方形電極。使該減速元件及該聚焦元件之電極保持在不同的電位,以在該間隙中提供電場,以便使所接收之離子束減速。當該離子束穿過該間隙時,該電場亦可促使該離子束之聚焦。 In some specific examples, the reduction system includes a reduction element that is separated from a downstream focusing element so as to define a gap therebetween. The deceleration system may include two relatively separated equipotential electrode portions with a passage therebetween for the ion beam to pass through. The focusing element may also include two equipotential separation electrode portions with a passage provided therebetween for the ion beam to pass through. In some specific examples, separate electrode portions of each of the speed reduction element and the focusing element may be connected at their top and bottom ends to form, for example, a square electrode. The electrodes of the deceleration element and the focusing element are maintained at different potentials to provide an electric field in the gap so as to decelerate the received ion beam. When the ion beam passes through the gap, the electric field can also promote the focusing of the ion beam.

該離子植入系統可以進一步包括一離子源,其用以產生該離子束;以及一分析磁鐵,其配置在該離子源之下游側及在該減速系統之上游側,以便接收該離子源所產生之該離子束及產生一質量選擇離子束。 The ion implantation system may further include an ion source for generating the ion beam; and an analysis magnet configured on a downstream side of the ion source and on an upstream side of the deceleration system to receive the ion source The ion beam is generated and a mass selective ion beam is generated.

在一相關態樣中,揭露一種離子植入系統,其包括一用以促使一離子束之偏向的靜電彎管,其中該靜電彎管包括一第一電極對,其具有分開之一內電極及一外電極,以允許該離子束在其間通過;一第二電極對,其配置在該第一電極對之下游側且具有分開之一內電極及一外電極,以允許該離子束在其間通過;以及一最後電極對,其配置在該第二電極對之下游側且具有分開之一內電極及一外電極,以允許該離子束在其間通過。使該最後電極對之每一 電極保持在小於該第二電極對之任一電極所保持之電位的電位,以及使該第一電極對之電極相對於該第二電極對之電極保持在較低電位。再者,使該等電極對之每一者的內電極保持在小於那個電極對之個別外電所保持的電位之電位。 In a related aspect, an ion implantation system is disclosed, which includes an electrostatic elbow for promoting the deflection of an ion beam, wherein the electrostatic elbow includes a first electrode pair having a separate internal electrode and An external electrode to allow the ion beam to pass therebetween; a second electrode pair disposed on the downstream side of the first electrode pair and having a separate internal electrode and an external electrode to allow the ion beam to pass therebetween And a final electrode pair, which is disposed on the downstream side of the second electrode pair and has a separate internal electrode and an external electrode to allow the ion beam to pass therebetween. Make each of the last electrode pair The electrode is maintained at a potential that is less than the potential held by any of the electrodes of the second electrode pair, and the electrode of the first electrode pair is maintained at a lower potential relative to the electrode of the second electrode pair. Furthermore, the internal electrode of each of these electrode pairs is maintained at a potential that is less than the potential held by the individual external electricity of that electrode pair.

在上述離子植入系統之一些具體例中,使該等第一及最後電極對之外電極保持在一第一電位(V1)及使該等第一及最後電極對之內電極保持在一第二電位(V2)。再者,使該第二電極對之內電極電接地及使該第二電極對之外電極保持在一第三電位(V3)。該電壓V1可以比該電壓V2更正。舉例來說,V1可以在約0V至約-30kV(負30kV)之範圍內,V2可以在約0V至約-30kV之範圍內,以及V3可以在約0V至約+30kV之範圍內。 In some specific examples of the above-mentioned ion implantation system, the outer electrodes of the first and last electrode pairs are maintained at a first potential (V 1 ) and the inner electrodes of the first and last electrode pairs are maintained at a first potential (V 1 ). The second potential (V 2 ). Furthermore, the inner electrode of the second electrode pair is electrically grounded and the outer electrode of the second electrode pair is maintained at a third potential (V 3 ). The voltage V 1 can be corrected more than the voltage V 2 . For example, V 1 may be in the range of (negative 30kV) of, V 2 may be in the range of from about 0V to about -30kV, and V 3 may be within the range from about 0V to about -30kV about 0V to about + 30kV of .

在一些具體例中,該離子植入系統可以進一步包括一配置在該靜電彎管之下游側的對切透鏡(split lens)。該對切透鏡可以包括一具有一彎曲下游端面之第一電極對及一具有一彎曲上游端面之第二電極對,其中該兩個電極對之端面彼此分離,以在其間形成一間隙。該等第一及第二電極對係配置成可獨立偏壓的。例如,使該等第一及第二電極對偏壓,以便在該間隙中產生用以使通過該對切透鏡之離子束聚焦的電場。 In some specific examples, the ion implantation system may further include a split lens disposed on a downstream side of the electrostatic elbow. The tangent lens may include a first electrode pair having a curved downstream end surface and a second electrode pair having a curved upstream end surface, wherein the end surfaces of the two electrode pairs are separated from each other to form a gap therebetween. The first and second electrode pairs are configured to be independently biased. For example, the first and second electrode pairs are biased so as to generate an electric field in the gap to focus the ion beam passing through the pair of tangent lenses.

在另一態樣中,揭露一種離子植入系統,其包括一靜電彎管,其用以接收一離子束及促使其偏向;以及一對切透鏡,其配置在該靜電彎管之下游。該對切透鏡包括一具有一彎曲下游端面之第一電極對及一具有一彎曲上游端面之第二電極對,其中該兩個電極對之端面彼此分離,以在其間形成一間隙。該等第一及第二電極對係配置成可獨立偏壓的,例如,以在該間隙中產生用以使通過 該對切透鏡之該離子束聚焦的電場。該離子植入系統可以進一步包括一加速/減速系統,其配置在靜電彎管之上游側;以及一質量分析器,其配置在該加速/減速系統之上游側,用以接收一離子束及產生一質量選擇離子束。在一些具體例中,該靜電彎管可以包括一第一電極對、一第二電極對及一最後電極對,它們的每一者具有分開的一內電極及一外電極,以允許該離子束在其間通過。該3個電極對係配置成可獨立偏壓的。例如,使該最後電極對之每一電極可以保持在小於該第二電極對之任一電極所保持之電位的電位,以及使該第一電極對之電極亦可以相對於該第二電極對之電極保持在較低電位。在一些具體例中,使該等第一及最後電極對之外電極保持在一第一電位(V1)及使該等第一及最後電極對之內電極保持在一第二電位(V2)。在一些具體例中,V1比V2更正。再者,可以使該第二電極對之內電極電接地,以及可以使該第二電極對之外電極保持在一第三電位(V3)。 In another aspect, an ion implantation system is disclosed, which includes an electrostatic elbow for receiving an ion beam and promoting its deflection; and a pair of tangent lenses disposed downstream of the electrostatic elbow. The tangent lens includes a first electrode pair having a curved downstream end surface and a second electrode pair having a curved upstream end surface, wherein the end surfaces of the two electrode pairs are separated from each other to form a gap therebetween. The first and second electrode pairs are configured to be independently biased, for example, to generate an electric field in the gap to focus the ion beam passing through the pair of tangent lenses. The ion implantation system may further include an acceleration / deceleration system disposed on the upstream side of the electrostatic elbow; and a mass analyzer disposed on the upstream side of the acceleration / deceleration system for receiving an ion beam and generating A mass selective ion beam. In some specific examples, the electrostatic elbow may include a first electrode pair, a second electrode pair, and a last electrode pair, each of which has a separate internal electrode and an external electrode to allow the ion beam Passed in between. The three electrode pairs are configured to be independently biased. For example, each electrode of the last electrode pair can be maintained at a potential lower than the potential held by any of the electrodes of the second electrode pair, and the electrode of the first electrode pair can also be opposite to the second electrode pair. The electrodes remain at a low potential. In some specific examples, the outer electrodes of the first and last electrode pairs are maintained at a first potential (V 1 ) and the inner electrodes of the first and last electrode pairs are maintained at a second potential (V 2 ). In some specific examples, V 1 is more corrected than V 2 . Furthermore, the inner electrode of the second electrode pair can be electrically grounded, and the outer electrode of the second electrode pair can be maintained at a third potential (V 3 ).

再者,藉由參考下面詳細敘述與相關圖式,可以了解本教示之各種態樣。該等圖式簡述如下。 Furthermore, by referring to the detailed description and related drawings below, various aspects of the teaching can be understood. The schemes are briefly described below.

10‧‧‧離子植入系統 10‧‧‧ ion implantation system

12‧‧‧離子源 12‧‧‧ ion source

14‧‧‧引出電極 14‧‧‧ lead-out electrode

16‧‧‧抑制電極 16‧‧‧Suppression electrode

18‧‧‧聚焦電極 18‧‧‧ focusing electrode

19‧‧‧接地電極 19‧‧‧ ground electrode

20‧‧‧分析磁鐵 20‧‧‧ Analysis Magnet

20a‧‧‧可變大小質量解析孔 20a‧‧‧Variable size mass analysis hole

22‧‧‧校正系統(減速/加速系統) 22‧‧‧correction system (deceleration / acceleration system)

24‧‧‧終端站 24‧‧‧Terminal

25‧‧‧基板保持器 25‧‧‧ substrate holder

26‧‧‧基板 26‧‧‧ substrate

28‧‧‧電子槍 28‧‧‧ electron gun

28a‧‧‧陰極 28a‧‧‧cathode

28b‧‧‧陽極 28b‧‧‧Anode

30‧‧‧電子槍 30‧‧‧ electron gun

30a‧‧‧陰極 30a‧‧‧ cathode

30b‧‧‧陽極 30b‧‧‧Anode

32‧‧‧電離室 32‧‧‧Ionization chamber

34‧‧‧電漿電極 34‧‧‧ Plasma electrode

36‧‧‧引出電極 36‧‧‧ lead-out electrode

38‧‧‧電磁線圈總成 38‧‧‧ Solenoid Coil Assembly

40‧‧‧狹縫 40‧‧‧ slit

40a‧‧‧氣體進料器 40a‧‧‧Gas feeder

40b‧‧‧氣體進料器 40b‧‧‧Gas feeder

40c‧‧‧氣體進料器 40c‧‧‧Gas feeder

40d‧‧‧氣體進料器 40d‧‧‧Gas feeder

40e‧‧‧氣體進料器 40e‧‧‧Gas feeder

42‧‧‧校正裝置 42‧‧‧calibration device

44‧‧‧控制器 44‧‧‧controller

46‧‧‧減速/加速元件 46‧‧‧Deceleration / acceleration element

46a‧‧‧減速/加速電極 46a‧‧‧deceleration / acceleration electrode

46b‧‧‧減速/加速電極 46b‧‧‧deceleration / acceleration electrode

48‧‧‧聚焦元件 48‧‧‧ focusing element

48a‧‧‧聚焦電極 48a‧‧‧focusing electrode

48b‧‧‧聚焦電極 48b‧‧‧focusing electrode

50‧‧‧間隙區域 50‧‧‧Gap area

52‧‧‧靜電彎管 52‧‧‧Static elbow

52a‧‧‧外電極 52a‧‧‧External electrode

52b‧‧‧內電極 52b‧‧‧Internal electrode

52c‧‧‧中間電極 52c‧‧‧Intermediate electrode

53‧‧‧間隙 53‧‧‧ Clearance

54‧‧‧校正裝置 54‧‧‧correction device

56‧‧‧聚焦元件 56‧‧‧ focusing element

56a‧‧‧電極 56a‧‧‧electrode

56b‧‧‧電極 56b‧‧‧electrode

58‧‧‧間隙 58‧‧‧ Clearance

60‧‧‧接地元件 60‧‧‧ grounding element

60a‧‧‧電接地電極 60a‧‧‧Electric ground electrode

60b‧‧‧電接地電極 60b‧‧‧Electric ground electrode

62‧‧‧間隙 62‧‧‧ Clearance

100‧‧‧波形產生器 100‧‧‧ waveform generator

102‧‧‧剖面儀 102‧‧‧Profiler

200‧‧‧減速/加速系統 200‧‧‧ deceleration / acceleration system

202‧‧‧狹縫 202‧‧‧Slit

204‧‧‧校正裝置 204‧‧‧ Calibration device

206‧‧‧減速/加速元件 206‧‧‧Deceleration / acceleration element

206a‧‧‧電極部 206a‧‧‧electrode section

206b‧‧‧電極部 206b‧‧‧electrode section

208‧‧‧下游聚焦元件 208‧‧‧ Downstream Focusing Element

208a‧‧‧電極部 208a‧‧‧electrode section

208b‧‧‧電極部 208b‧‧‧electrode section

210‧‧‧間隙 210‧‧‧ Clearance

212‧‧‧靜電彎管 212‧‧‧electrostatic elbow

213‧‧‧間隙 213‧‧‧Gap

214‧‧‧電極對 214‧‧‧electrode pair

214a‧‧‧外電極 214a‧‧‧External electrode

214b‧‧‧內電極 214b‧‧‧Internal electrode

215‧‧‧間隙 215‧‧‧Gap

216‧‧‧電極對 216‧‧‧electrode pair

216a‧‧‧外電極 216a‧‧‧External electrode

216b‧‧‧內電極 216b‧‧‧Internal electrode

218‧‧‧電極對 218‧‧‧electrode pair

218a‧‧‧外電極 218a‧‧‧External electrode

218b‧‧‧內電極 218b‧‧‧Internal electrode

219‧‧‧內電極部 219‧‧‧ Internal electrode section

220‧‧‧校正裝置 220‧‧‧ Calibration device

221‧‧‧電壓源 221‧‧‧Voltage source

222‧‧‧聚焦元件 222‧‧‧Focus Element

223‧‧‧電壓源 223‧‧‧Voltage source

224a‧‧‧接地電極部 224a‧‧‧Ground electrode section

224b‧‧‧接地電極部 224b‧‧‧Ground electrode section

225‧‧‧電壓源 225‧‧‧Voltage source

226‧‧‧終端站 226‧‧‧Terminal

227‧‧‧控制器 227‧‧‧Controller

228‧‧‧晶圓 228‧‧‧wafer

300‧‧‧植入系統 300‧‧‧ Implantation System

302‧‧‧孔 302‧‧‧hole

304‧‧‧校正裝置 304‧‧‧correction device

306‧‧‧減速/加速系統 306‧‧‧ Deceleration / Acceleration System

308‧‧‧靜電彎管 308‧‧‧electrostatic elbow

308a‧‧‧彎曲外電極 308a‧‧‧curved external electrode

308b‧‧‧彎曲內電極 308b‧‧‧ curved inner electrode

310‧‧‧對切透鏡 310‧‧‧ Conical lens

312‧‧‧電極對 312‧‧‧electrode pair

312a‧‧‧彎曲下游端面 312a‧‧‧ Curved downstream end face

314‧‧‧電極對 314‧‧‧electrode pair

314a‧‧‧彎曲上游端面 314a‧‧‧curved upstream end face

316‧‧‧彎曲間隙 316‧‧‧ bending gap

317‧‧‧校正裝置 317‧‧‧correction device

318‧‧‧聚焦元件 318‧‧‧ focusing element

320‧‧‧接地電極 320‧‧‧ ground electrode

400‧‧‧離子植入系統 400‧‧‧ ion implantation system

402‧‧‧狹縫 402‧‧‧Slit

404‧‧‧校正裝置 404‧‧‧correction device

406‧‧‧減速/加速系統 406‧‧‧Deceleration / Acceleration System

408‧‧‧E-bend 408‧‧‧E-bend

410‧‧‧對切透鏡 410‧‧‧Convex lens

412‧‧‧校正裝置 412‧‧‧correction device

414‧‧‧聚焦電極 414‧‧‧Focus electrode

416‧‧‧接地電極 416‧‧‧ ground electrode

1100‧‧‧離子植入系統 1100‧‧‧ ion implantation system

1200‧‧‧電極對 1200‧‧‧ electrode pair

1201‧‧‧電極對 1201‧‧‧electrode pair

1202‧‧‧內電極 1202‧‧‧Internal electrode

1203‧‧‧外電極 1203‧‧‧External electrode

1204‧‧‧電極對 1204‧‧‧electrode pair

1205‧‧‧電極對 1205‧‧‧electrode pair

1206‧‧‧電極對 1206‧‧‧electrode pair

1300‧‧‧傳統E-bend 1300‧‧‧Traditional E-bend

1300a‧‧‧內電極 1300a‧‧‧Internal electrode

1300b‧‧‧外電極 1300b‧‧‧External electrode

1302‧‧‧電極對 1302‧‧‧electrode pair

1304‧‧‧電極對 1304‧‧‧electrode pair

1306‧‧‧電極對 1306‧‧‧electrode pair

DP‧‧‧下游部 DP‧‧‧ Downstream

E1‧‧‧電極對 E1‧‧‧electrode pair

E1a‧‧‧電極 E1a‧‧‧electrode

E1b‧‧‧電極 E1b‧‧‧electrode

E2‧‧‧電極對 E2‧‧‧electrode pair

E2a‧‧‧電極 E2a‧‧‧electrode

E2b‧‧‧電極 E2b‧‧‧electrode

E3‧‧‧電極對 E3‧‧‧electrode pair

E4‧‧‧電極對 E4‧‧‧electrode pair

E4a‧‧‧電極 E4a‧‧‧electrode

E4b‧‧‧電極 E4b‧‧‧electrode

E5‧‧‧電極對 E5‧‧‧electrode pair

E6‧‧‧電極對 E6‧‧‧electrode pair

E7‧‧‧電極對 E7‧‧‧electrode pair

E8‧‧‧電極對 E8‧‧‧electrode pair

E9‧‧‧電極對 E9‧‧‧electrode pair

E10‧‧‧電極對 E10‧‧‧electrode pair

H‧‧‧縱向尺寸 H‧‧‧length

R1‧‧‧曲率半徑 R1‧‧‧curvature radius

UF‧‧‧上游面 UF‧‧‧ upstream

UP‧‧‧上游部 UP‧‧‧ Upstream

V1‧‧‧電壓源 V1‧‧‧ voltage source

V2‧‧‧電壓源 V2‧‧‧ voltage source

V3‧‧‧電壓源 V3‧‧‧ voltage source

V4‧‧‧電壓源 V4‧‧‧ voltage source

V5‧‧‧電壓源 V5‧‧‧ voltage source

V6‧‧‧電壓源 V6‧‧‧ voltage source

V7‧‧‧電壓源 V7‧‧‧ voltage source

V8‧‧‧電壓源 V8‧‧‧ voltage source

V9‧‧‧電壓源 V9‧‧‧ voltage source

V10‧‧‧電壓源 V10‧‧‧ voltage source

V11‧‧‧電壓源 V11‧‧‧Voltage source

V12‧‧‧電壓源 V12‧‧‧voltage source

V13‧‧‧電壓源 V13‧‧‧Voltage source

V14‧‧‧電壓源 V14‧‧‧Voltage source

V15‧‧‧電壓源 V15‧‧‧Voltage source

V16‧‧‧電壓源 V16‧‧‧Voltage source

V17‧‧‧電壓源 V17‧‧‧Voltage source

V18‧‧‧電壓源 V18‧‧‧Voltage source

V19‧‧‧電壓源 V19‧‧‧Voltage source

V20‧‧‧電壓源 V20‧‧‧ voltage source

W‧‧‧橫向尺寸 W‧‧‧Horizontal size

圖1綱要性地描繪一帶狀離子束;圖2A綱要性地描繪依據本教示之一具體例的一離子植入系統;圖2B綱要性地描繪在圖2A之離子植入系統中所使用的依據本教示之一具體例的一校正系統;圖2C係圖2B所示之校正系統的一部分之示意側剖面圖; 圖3A係一用以產生帶狀離子束之離子源的局部示意圖;圖3B係圖3A之離子源的另一局部示意圖;圖3C係圖3A及3B之離子源的另一局部示意圖;圖4根據下面關於圖3A-3B所示之離子源描繪由一離子源所產生之一示範性帶狀離子束的電流剖面;圖5綱要性地描繪一適用於本教示之一具體例中的校正系統;圖6綱要性地描繪一通過依據本教示之一具體例的一校正裝置之帶狀離子束;圖7A綱要性地描繪一通過依據本教示之一具體例的一校正裝置之帶狀離子束,該校正裝置係配置成用以施加橫向電場至該離子束之至少一部分;圖7B綱要性地描繪一通過依據本教示之一具體例的一校正裝置之帶狀離子束,該校正裝置係配置成用以施加縱向電場至該離子束,以便促使其偏向;圖7C綱要性地描繪一用以施加至圖7B所示之校正裝置的電極對之斜坡電壓;圖8A綱要性地描繪一通過依據本教示之一具體例的一校正裝置之帶狀離子束,該校正裝置係配置成用以促使該離子束之縱向振盪運動;圖8B綱要性地描繪一用以施加至圖8A所示之校正裝置的電極對之三角形電壓;圖9係圖2A、2B及2C所示之離子植入系統的局部示意圖,其進一步描繪一用以測定離子束之電流剖面的離子束剖面儀;圖10A描繪未校正帶狀離子束之模擬電流剖面為高度之函數; 圖10B顯示示範性電壓可以被施加至圖2A、2B及2C所示之離子植入系統的校正裝置中之一的電極對,以提供圖10A所示之離子束剖面的粗校正及經由這樣的粗校正所獲得之部分校正離子束的模擬剖面;圖10C顯示示範性電壓可以被施加至圖2A、2B及2C所示之離子植入系統的另一校正裝置之電極對,以改善圖10B所示之部分校正離子束的均勻性及以此方式所獲得之校正離子束的模擬剖面;圖11A綱要性地描繪依據一具體例之離子植入系統,其中使用一由3個電極對所構成之靜電彎管;圖11B係在分散平面中圖11A中所示之離子植入系統的示意局部視圖 FIG. 1 outlines a band-shaped ion beam; FIG. 2A outlines an ion implantation system according to a specific example of the present teaching; FIG. 2B outlines an ion implantation system used in FIG. 2A A calibration system according to a specific example of the present teaching; FIG. 2C is a schematic side sectional view of a portion of the calibration system shown in FIG. 2B; FIG. 3A is a partial schematic diagram of an ion source for generating a band-shaped ion beam; FIG. 3B is another partial schematic diagram of the ion source of FIG. 3A; FIG. 3C is another partial schematic diagram of the ion source of FIGS. 3A and 3B; A current profile of an exemplary band-shaped ion beam generated by an ion source is depicted according to the ion source shown in FIGS. 3A-3B below; FIG. 5 outlines a calibration system suitable for use in a specific example of the present teachings Figure 6 outlines a band-shaped ion beam that passes through a correction device according to a specific example of the present teaching; Figure 7A outlines a band-shaped ion beam that passes through a correction device according to a specific example of the present teaching; The correction device is configured to apply a lateral electric field to at least a portion of the ion beam; FIG. 7B outlines a band-shaped ion beam that passes through a correction device according to a specific example of the present teaching. The correction device is configured It is used to apply a longitudinal electric field to the ion beam so as to promote its deflection; FIG. 7C schematically depicts the ramp voltage of an electrode pair used to apply the correction device shown in FIG. 7B; FIG. 8A outlines a pass voltage A specific example of the present teaching is a band-shaped ion beam of a correction device configured to cause a longitudinal oscillating movement of the ion beam; FIG. 8B schematically depicts a correction for applying to the correction shown in FIG. 8A The triangular voltage of the electrode pair of the device; FIG. 9 is a partial schematic diagram of the ion implantation system shown in FIGS. 2A, 2B, and 2C, which further depicts an ion beam profiler for measuring the current profile of the ion beam; FIG. Correct the simulated current profile of the ribbon ion beam as a function of height; FIG. 10B shows that an exemplary voltage may be applied to an electrode pair in one of the calibration devices of the ion implantation system shown in FIGS. 2A, 2B, and 2C to provide a rough correction of the ion beam profile shown in FIG. A simulated cross-section of a partially corrected ion beam obtained from a coarse correction; FIG. 10C shows that an exemplary voltage can be applied to an electrode pair of another correction device of the ion implantation system shown in FIGS. 2A, 2B, and 2C to improve FIG. 10B. The uniformity of the partially corrected ion beam and the simulated cross-section of the corrected ion beam obtained in this way are shown; FIG. 11A outlines an ion implantation system according to a specific example in which a three-electrode pair is used. Electrostatic elbow; FIG. 11B is a schematic partial view of the ion implantation system shown in FIG. 11A in a dispersed plane

圖11C係在非分散平面中圖11A所示之離子植入系統的不同示意局部視圖;圖11D綱要性地描繪用以施加電壓至該靜電彎管之電極的電壓源及一用以控制該等電壓源之控制器;圖12A顯示一離子束通過一在減速比60下操作之減速系統及一由兩個隔開電極所構成之下游靜電彎管的理論模擬結果;圖12B顯示一離子束通過一在減速比60下操作之減速系統及一由3個電極對所構成之下游靜電彎管的理論模擬結果;圖13A顯示一具有能量30keV及電流25mA之As離子束通過一由兩個隔開電極所構成之靜電彎管的理論模擬結果;圖13B顯示一具有能量30keV及電流25mA之As離子束通過一由3個串聯電極對所構成之靜電彎管(E-bend)的理論模擬結果;圖14A係在一具有一配置在一靜電彎管之下游的對切透鏡之 離子植入系統的分散平面中之局部示意剖面圖;圖14B係在圖14A所示之離子植入系統的非分散平面中的局部示意側視圖;以及圖15係在一使用一由3個電極對所構成之靜電彎管及一配置在該靜電彎管之下游的對切透鏡之離子植入系統的分散平面中之局部示意圖。 FIG. 11C is a different schematic partial view of the ion implantation system shown in FIG. 11A in a non-dispersed plane; FIG. 11D schematically depicts a voltage source for applying a voltage to an electrode of the electrostatic elbow and a voltage source for controlling the Controller of the voltage source; Figure 12A shows the theoretical simulation results of an ion beam passing through a reduction system operating at a reduction ratio of 60 and a downstream electrostatic elbow consisting of two spaced electrodes; Figure 12B shows an ion beam passing A theoretical simulation result of a deceleration system operating at a reduction ratio of 60 and a downstream electrostatic elbow composed of 3 electrode pairs; FIG. 13A shows an As ion beam having an energy of 30 keV and a current of 25 mA passing through a two-space The theoretical simulation results of an electrostatic elbow formed by electrodes; FIG. 13B shows the theoretical simulation results of an As ion beam with an energy of 30keV and a current of 25mA passing through an electrostatic elbow (E-bend) composed of three series electrode pairs; Fig. 14A is a perspective view of a lens having a tangential lens disposed downstream of an electrostatic elbow. A partial schematic cross-sectional view of the ion implantation system in a dispersed plane; FIG. 14B is a partial schematic side view in a non-dispersive plane of the ion implantation system shown in FIG. 14A; and FIG. Partial schematic diagram of the dissected plane of the formed electrostatic elbow and an ion implantation system of a tangential lens disposed downstream of the electrostatic elbow.

在一些態樣中,本教示係有關於一種離子植入系統(在此,亦稱為離子植入機),其包括一用以產生一帶狀離子束之離子源及一用以確保該帶狀離子束在一上面入射有該離子束之基板處至少沿著該離子束之縱向尺寸呈現一大致均勻電流密度剖面的校正系統。在一些情況下,當輸送該離子束至一基板,以便將離子植入該基板中時,可以使用該校正系統及在該離子植入系統之離子束線中的其它光學元件,以大致維持一從一離子源引出之帶狀離子束的剖面(例如,在約5%或更佳範圍內)。 In some aspects, the present teachings relate to an ion implantation system (also referred to herein as an ion implanter), which includes an ion source for generating a band-shaped ion beam and a band for ensuring the band A correction system in which the shaped ion beam has a substantially uniform current density profile at least along a longitudinal dimension of the ion beam at a substrate on which the ion beam is incident. In some cases, when the ion beam is delivered to a substrate for implanting ions into the substrate, the calibration system and other optical elements in the ion beam line of the ion implantation system can be used to substantially maintain a A cross-section (e.g., in the range of about 5% or better) of a band-shaped ion beam from an ion source.

在一些具體例中,依據本教示之離子植入系統包括一具有兩個階段(一離子束注入階段,接著是一離子束校正階段)之離子束線,其亦可以任選地包含一用以使該離子束減速或加速之機制。該注入階段可以包括離子束產生及質量選擇。在一些具體例中,該離子束校正階段可以包括校正器陣列及減速/加速光學元件。在一些具體例中,該離子束線係可配置成用以將離子植入300-mm基板(例如,經由一大致350-mm高之帶狀離子束)或450-mm基板(例如,經由一大致500-mm高之帶狀離子束)中。例如,該離子束線可以包含一適合於不同基板尺寸之可更換離子光學配置套件。該離子 光學配置套件可以包括例如一用以從一離子源引出一離子束之引出電極、減速/加速階段光學元件及在離子植入機之終端站中的基板處理組件,例如,更換末端作用器(replacement end effector)及FOUPs(前開式晶圓傳送盒)。 In some specific examples, the ion implantation system according to the present teaching includes an ion beam line having two phases (an ion beam implantation phase, followed by an ion beam correction phase), which may also optionally include an A mechanism to decelerate or accelerate the ion beam. The implantation phase may include ion beam generation and mass selection. In some specific examples, the ion beam correction phase may include a corrector array and a deceleration / acceleration optical element. In some embodiments, the ion beam line may be configured to implant ions into a 300-mm substrate (for example, via a strip-shaped ion beam having a height of approximately 350-mm) or a 450-mm substrate (for example, via an Strip-shaped ion beam at approximately 500-mm height). For example, the ion beam line may include a replaceable ion optics configuration kit suitable for different substrate sizes. The ion The optical configuration kit may include, for example, an extraction electrode for extracting an ion beam from an ion source, a deceleration / acceleration phase optical element, and a substrate processing assembly in a terminal station of the ion implanter, for example, a replacement end effector. end effector) and FOUPs.

下面描述本教示之各種示範性具體例。這些具體例中所使用之術語具有它們在該項技藝中的一般意思。為了更清楚,定義下面術語。 Various exemplary specific examples of the present teaching are described below. The terms used in these specific examples have their ordinary meaning in the art. For clarity, the following terms are defined.

在此所使用之術語「帶狀離子束」意指具有被定義為它的最大尺寸(在此,亦稱為該離子束之縱向尺寸)與它的最小尺寸(在此,亦稱為該離子束之橫向尺寸)之比率的縱橫比之離子束,該比率至少為約3,例如,等於或大於10,或者等於或大於20,或者等於或大於30。一帶狀離子束可以呈現各種不同的剖面圖。例如,一帶狀離子束可以具有矩形或橢圓形剖面圖。圖1綱要性地描繪一具有縱向尺寸(在此,亦稱為高度)H及橫向尺寸(在此,亦稱為寬度)W之示範性帶狀離子束。在不失其一般性下,在下面本發明之各種具體例的敘述中,假設該離子束之傳播方向為沿著笛卡兒座標系統之z軸、該縱向尺寸沿著y軸及該橫向尺寸延著x軸。如下面所更詳細論述,在這多的具體例中,使用一分析磁鐵,使該離子束在一垂直於該離子束之傳播方向的平面中分散。此平面在此稱為分散平面。在下面具體例中,該分散平面對應於xz平面。一垂直於該分散平面之平面稱為非分散平面。在下面具體例中,該非分散平面對應於yz平面。 The term "ribbon ion beam" as used herein means having its largest dimension (herein also referred to as the longitudinal dimension of the ion beam) and its smallest dimension (herein also referred to as the ion The beam has an aspect ratio of an ion beam having an aspect ratio of at least about 3, for example, equal to or greater than 10, or equal to or greater than 20, or equal to or greater than 30. A strip-shaped ion beam can take on a variety of different sectional views. For example, a ribbon ion beam may have a rectangular or oval cross-sectional view. FIG. 1 outlines an exemplary ribbon ion beam having a longitudinal dimension (here, also referred to as height) H and a lateral dimension (here, also referred to as width) W. Without loss of generality, in the following description of various specific examples of the present invention, it is assumed that the propagation direction of the ion beam is along the z-axis of the Cartesian coordinate system, the longitudinal dimension is along the y-axis, and the lateral dimension Along the x-axis. As discussed in more detail below, in these many specific examples, an analysis magnet is used to disperse the ion beam in a plane perpendicular to the propagation direction of the ion beam. This plane is referred to herein as the scattering plane. In the following specific example, the dispersion plane corresponds to the xz plane. A plane perpendicular to the dispersion plane is called a non-dispersion plane. In the following specific example, the non-dispersion plane corresponds to the yz plane.

在此所使用之術語「電流密度」與在該項技藝中所使用者一致,其意指流經單位面積(例如,垂直於離子之傳播方向的 單位面積)之與該等離子相關的電流。 As used herein, the term "current density" is consistent with that used in the art, which means that it flows through a unit area (e.g., perpendicular to the direction of propagation of ions). Current per unit area) associated with the plasma.

在此所使用之術語「電流密度剖面」意指該離子束之電流密度為沿著該離子束之位置的函數。例如,沿著該離子束之縱向尺寸的離子電流密度剖面意指該離子電流密度為沿著該離子束之縱向尺寸離某一參考點(例如,該離子束之上邊緣或下邊緣或中心)之距離的函數或沿著該縱向尺寸流經單位長度之與離子相關的電流。 The term "current density profile" as used herein means that the current density of the ion beam is a function of the position along the ion beam. For example, an ion current density profile along the longitudinal dimension of the ion beam means that the ion current density is away from a reference point along the longitudinal dimension of the ion beam (for example, the upper or lower edge or center of the ion beam) A function of the distance or an ion-related current flowing through the unit length along the longitudinal dimension.

術語「大致均勻電流密度剖面」意指呈現最多5%之RMS變化的離子電流密度剖面。 The term "substantially uniform current density profile" means an ion current density profile that exhibits a maximum 5% change in RMS.

術語「減速比」意指進入一減速系統之離子束的能量與離開該減速系統之離子束的能量之比率(亦即,該減速系統所接收之離子束的能量與該減速離子束之能量的比率)。 The term "deceleration ratio" means the ratio of the energy of the ion beam entering a deceleration system to the energy of the ion beam leaving the deceleration system (i.e., the energy of the ion beam received by the deceleration system and the energy of the deceleration ion beam ratio).

參考圖2A、2B及2C,依據本教示之一具體例的離子植入系統10包括一用以產生一帶狀離子束之離子源12及一以電力偏壓以有助於該離子束從該離子源引出之引出電極(puller electrode)14。以電力使一抑制電極16偏壓,以阻止中和電子(例如,該離子束經由環境氣體之離子化所產生的電子)回流至該離子源;以電力使一聚焦電極18偏壓,以減少該離子束之發散;以及一接地電極19定義該離子束之參考接地。一配置在該聚焦電極18之下游側的分析磁鐵20接收該帶狀離子束及產生一質量選擇離子束。 Referring to FIGS. 2A, 2B, and 2C, an ion implantation system 10 according to a specific example of the present teaching includes an ion source 12 for generating a band-shaped ion beam and an electrical bias to assist the ion beam from the ion beam. A puller electrode 14 from which the ion source is drawn. A suppressing electrode 16 is biased with electric power to prevent neutralizing electrons (for example, the electrons generated by ionization of the ambient gas from flowing back to the ion source); a focusing electrode 18 is biased with electric power to reduce Divergence of the ion beam; and a ground electrode 19 defines a reference ground of the ion beam. An analysis magnet 20 disposed downstream of the focusing electrode 18 receives the band-shaped ion beam and generates a mass selective ion beam.

在一些具體例中,可以使離子源外殼及分析磁鐵框架總成與接地電位電隔離。例如,可使它們以例如-30kV浮接於接地電位以下。在一些情況下,可以選擇該浮接電壓,以便從該離子源引出該離子束及以比該離子束在一上面入射有該離子束來將離子 植入其中之基板處的能量高之能量對該離子束實施質量分析。在另一選擇中,可以引出並質量分析該離子束,以及隨後使該離子束加速而以較高能量入射在該基板上。 In some specific examples, the ion source housing and the analysis magnet frame assembly can be electrically isolated from the ground potential. For example, they can be floated below the ground potential at, for example, -30 kV. In some cases, the floating voltage can be selected so that the ion beam is extracted from the ion source and the ion beam is incident with the ion beam on top of the ion beam. The ion beam is subjected to mass analysis by a high energy at the substrate implanted therein. In another option, the ion beam can be extracted and mass analyzed, and then the ion beam can be accelerated to impinge on the substrate with higher energy.

再次參考圖2A-2C,如下面所更詳細地論述,該示範性離子植入系統10進一步包括一校正系統22,其用以調整沿著至少該離子束之縱向尺寸(例如,在該離子束之非分散平面中)的該離子束之電流密度剖面,以產生一沿著至少它的縱向尺寸呈現大致均勻電流密度剖面之輸出帶狀離子束。再者,該校正系統22可調整該離子束之橫向大小,例如,減少該離子束沿著該橫向尺寸(例如,在該分散平面中)發散,以確保該輸出離子束具有一期望橫向大小。 Referring again to FIGS. 2A-2C, as discussed in more detail below, the exemplary ion implantation system 10 further includes a correction system 22 for adjusting a longitudinal dimension along at least the ion beam (e.g., in the ion beam In the non-dispersion plane) of the ion beam to produce an output band-shaped ion beam that exhibits a substantially uniform current density profile along at least its longitudinal dimension. Furthermore, the correction system 22 can adjust the lateral size of the ion beam, for example, reduce the ion beam to diverge along the lateral size (eg, in the dispersion plane) to ensure that the output ion beam has a desired lateral size.

在一些具體例中,例如下面所論述者,該校正系統22可以進一步提供該質量選擇帶狀離子束之減速/加速。以此方式,可以獲得一具有期望能量及大致均勻電流密度剖面之輸出帶狀離子束。在不失其一般性下,在下面所論述之具體例中,該校正系統22亦稱為一減速/加速系統。然而,應該了解到,在一些具體例中,該校正系統22可以不提供該離子束之減速或加速。 In some specific examples, such as those discussed below, the correction system 22 may further provide deceleration / acceleration of the mass-selective band-shaped ion beam. In this way, an output band-shaped ion beam having a desired energy and a substantially uniform current density profile can be obtained. Without losing its generality, in the specific examples discussed below, the correction system 22 is also referred to as a deceleration / acceleration system. However, it should be understood that, in some specific examples, the correction system 22 may not provide deceleration or acceleration of the ion beam.

該示範性離子植入系統10進一步包括一終端站24,該終端站24包括一用以將一基板26保持在離開該校正系統22之該帶狀離子束的路徑中之基板保持器(substrate holder)25。在此具體例中,可以在該項技藝中所已知之方式沿著一正交於該離子束之傳播方向的尺寸掃描該基板保持器,以使該基板之不同部分暴露於該離子束,以便將離子植入其中。在一些具體例中,該離子束之縱向尺寸大於該基板之直徑,以便該基板沿著一垂直於該離子束之傳播方向的尺寸之線性移動可以導致離子之植入遍及該整個基板。該輸 出帶狀離子束之電流密度的大致均勻性確保在整個基板上所植入離子可達成均勻劑量。 The exemplary ion implantation system 10 further includes an end station 24 including a substrate holder for holding a substrate 26 in a path away from the ribbon ion beam of the calibration system 22 ) 25. In this specific example, the substrate holder can be scanned in a manner known in the art along a dimension orthogonal to the propagation direction of the ion beam to expose different portions of the substrate to the ion beam in order to Ions are implanted into it. In some specific examples, the longitudinal dimension of the ion beam is larger than the diameter of the substrate, so that linear movement of the substrate along a dimension perpendicular to the propagation direction of the ion beam can cause implantation of ions throughout the entire substrate. The lose The approximate uniformity of the current density of the strip-shaped ion beam ensures that a uniform dose can be achieved by the implanted ions across the substrate.

可以使用能產生帶狀離子束之各種不同離子源做為該離子源12。在發明名稱為「Ion Source Ribbon Beam with Controllable Density Profile」之美國專利第6,664,547號及發明名稱為「Ion Source,Ion Implantation Apparatus,and Ion Implantation Method」之美國專利第7,791,041號中描述可以產生帶狀離子束之離子源的一些實例,在此以提及方式併入上述美國專利之全部內容。 As the ion source 12, various ion sources capable of generating a band-shaped ion beam can be used. It is described in U.S. Patent No. 6,664,547 with the invention name `` Ion Source Ribbon Beam with Controllable Density Profile '' and U.S. Patent No. 7,791,041 with the invention name `` Ion Source, Ion Implantation Apparatus, and Ion Implantation Method ''. Some examples of beam ion sources are incorporated herein by reference in their entirety.

此具體例所使用之離子源12被描述於發明名稱為「Magnetic Field Source For An Ion Source」之美國公開申請案第2014/0265856號及發明名稱為「Ion Source Having At Least One Electron Gun Comprising A Gas Inlet And A Plasma Region Defined by An Anode And A Ground Element Thereof」之美國專利第8,994,272號中,在此以提及方式併入它們的全部內容。簡言之,參考圖3A、3B及3C,該離子源12可以包括兩個相對外部電子槍28/30,其配置在一長且窄的矩形電離室32(離子源本體)之兩端。每一電子槍可以包括一間接加熱陰極(IHCs)28a/30a及一陽極28b/30b。如圖3C所示,一板狀電漿電極34包含一成形以允許離子從該離子源引出之孔(例如,該孔可以是450mm×6mm的狹縫)。以一相似於該電漿電極之形狀且與該電漿電極隔開有一個或一個以上電絕緣間隔物(未顯示)的引出電極36來協助離子引出。在一些具體例中,可使該引出電極36相對於該離子源本體及該電漿電極偏壓有高達-5kV。 The ion source 12 used in this specific example is described in U.S. Published Application No. 2014/0265856 with the invention name "Magnetic Field Source For An Ion Source" and the invention name "Ion Source Having At Least One Electron Gun Comprising A Gas" Inlet And A Plasma Region Defined by An Anode And A Ground Element Thereof "in US Patent No. 8,994,272, the entire contents of which are incorporated herein by reference. In brief, referring to FIGS. 3A, 3B and 3C, the ion source 12 may include two opposite external electron guns 28/30, which are arranged at both ends of a long and narrow rectangular ionization chamber 32 (the ion source body). Each electron gun may include an indirect heating cathode (IHCs) 28a / 30a and an anode 28b / 30b. As shown in FIG. 3C, a plate-shaped plasma electrode 34 includes a hole (for example, the hole may be a 450 mm × 6 mm slit) formed to allow ions to be drawn out of the ion source. An extraction electrode 36 similar to the shape of the plasma electrode and separated from the plasma electrode by one or more electrically insulating spacers (not shown) is used to assist ion extraction. In some specific examples, the lead-out electrode 36 can be biased up to -5 kV relative to the ion source body and the plasma electrode.

參考圖3B,使該離子源本體沈浸在由電磁線圈總成38所產生之軸向磁場中。在此具體例中,該線圈總成包括3個副線圈,其等沿著該離子源本體之長軸分佈及產生獨立且部分重疊的磁場遍及該離子源本體之頂部、中間及底部。該磁場限制該等電子槍所產生之一次電子束,因而沿著該電離室之軸線產生一明確界定的電漿柱(plasma column)。可以獨立地調整該3個線圈段之每一者所產生的磁通密度,以確保該引出離子束之電流密度大致沒有不均勻性。 Referring to FIG. 3B, the ion source body is immersed in an axial magnetic field generated by the electromagnetic coil assembly 38. In this specific example, the coil assembly includes three secondary coils, which are distributed along the long axis of the ion source body and generate independent and partially overlapping magnetic fields throughout the top, middle, and bottom of the ion source body. The magnetic field limits the primary electron beam generated by the electron guns, thus creating a well-defined plasma column along the axis of the ionization chamber. The magnetic flux density generated by each of the three coil segments can be independently adjusted to ensure that the current density of the extracted ion beam is substantially free of unevenness.

參考圖3C,可以使用沿著該離子源本體之長軸所分佈的5個個別氣體進料器40a、40b、40c、40d及40e,以調整沿著該電漿柱之離子密度,其中每一氣體進料器具有自己的專屬質量流量控制器(MFC)。在此具體例中,該等電子槍之陽極及陰極以及該電漿電極及該引出電極係由石墨所製成。該電離室係由鋁所製成且其內表面塗有石墨。 Referring to FIG. 3C, five individual gas feeders 40a, 40b, 40c, 40d, and 40e distributed along the long axis of the ion source body can be used to adjust the ion density along the plasma column, each of which The gas feeder has its own dedicated mass flow controller (MFC). In this specific example, the anodes and cathodes of the electron guns, the plasma electrodes and the extraction electrodes are made of graphite. The ionization chamber is made of aluminum and its inner surface is coated with graphite.

可以藉由一位於該離子源外殼中之可伸縮離子束剖面儀(retractable beam profiler)分析該引出離子束。為了更清楚表達,圖4描繪離子束電流為藉由這樣的原型離子源所產生之帶狀離子束的垂直(縱向)位置之函數。沿著該縱向尺寸之電流密度剖面呈現約2.72%之RMS不均勻性。 The extracted ion beam can be analyzed by a retractable beam profiler located in the ion source housing. For clarity, FIG. 4 depicts the ion beam current as a function of the vertical (longitudinal) position of the band-shaped ion beam generated by such a prototype ion source. The current density profile along this longitudinal dimension exhibits an RMS non-uniformity of about 2.72%.

再次參考圖2A,在此具體例中,將該離子源12所產生之離子束引出及在進入該分析磁鐵20前加速至一期望能量(例如,在5至80keV之間)。該分析磁鐵20在該非分散平面中對該離子束施加電場,以在該分散平面中使具有不同質荷比之離子分離,藉以在該分析磁鐵之聚焦平面上產生一在該分散平面中具有腰寬 (waist)之質量選擇離子束。如下面所述,一配置在該離子束腰寬附近的可變大小質量解析孔(variable size mass resolving aperture)20a允許具有一期望質荷比之離子向下游傳送至下面所更詳述論述之該系統的其它組件。 Referring to FIG. 2A again, in this specific example, the ion beam generated by the ion source 12 is extracted and accelerated to a desired energy (for example, between 5 and 80 keV) before entering the analysis magnet 20. The analysis magnet 20 applies an electric field to the ion beam in the non-dispersion plane to separate ions having different mass-to-charge ratios in the dispersion plane, thereby generating a focal plane of the analysis magnet with a waist in the dispersion plane. width (waist) mass selective ion beam. As described below, a variable size mass resolving aperture 20a arranged near the waist width of the ion beam allows ions having a desired mass-to-charge ratio to be transmitted downstream to the ones discussed in more detail below. Other components of the system.

可以使用在該項技藝中所已知之各種分析磁鐵。在此具體例中,該分析磁鐵具有600mm磁極間隙之鞍型線圈設計、約90度之彎曲角度及950mm的彎曲半徑,但是亦可以使用其它磁極間隙、彎曲角度及彎曲半徑。所配置之可變大小質量解析孔20a允許具有一期望質荷比之離子向下游傳送至該減速/加速系統22。換句話說,該分析磁鐵20產生一被該減速/加速系統22接收之質量選擇帶狀離子束。 Various analytical magnets known in the art can be used. In this specific example, the analysis magnet has a saddle-shaped coil design with a 600 mm magnetic pole gap, a bending angle of about 90 degrees, and a bending radius of 950 mm, but other magnetic pole gaps, bending angles, and bending radii may also be used. The configured variable-size mass-analysis hole 20 a allows ions having a desired mass-to-charge ratio to be transmitted downstream to the deceleration / acceleration system 22. In other words, the analysis magnet 20 generates a mass-selective band-shaped ion beam received by the deceleration / acceleration system 22.

繼續參考圖2A、2B及2C,該減速/加速系統22包括一用以接收該質量選擇帶狀離子束之狹縫40。該狹縫40係足夠高,以適應該離子束之縱向尺寸,在一些具體例中,該狹縫40係600mm高,以及具有一可在一選擇範圍內(例如,在約5mm至約60mm間)連續變化之橫向尺寸(例如,在該分散平面中之尺寸)。 With continued reference to FIGS. 2A, 2B, and 2C, the deceleration / acceleration system 22 includes a slit 40 for receiving the mass selective band ion beam. The slit 40 is high enough to accommodate the longitudinal dimension of the ion beam. In some specific examples, the slit 40 is 600 mm high and has a selectable range (for example, between about 5 mm to about 60 mm). ) Continuously changing lateral dimensions (e.g., dimensions in the dispersion plane).

在該狹縫40之下游側配置一校正裝置42,以便接收通過該狹縫之該帶狀離子束。在此具體例中,如圖5所綱要性地顯示,該校正裝置42包括沿著該離子束之縱向尺寸(亦即,沿著y軸)堆疊之複數個隔開電極對E1、E2、E3、E4、E5、E6、E7、E8、E9及E10,其中每一電極對係可個別以電力偏壓的。更具體地,在此具體例中,複數個靜電電壓源V1、V2、V3、V4、V5、V6、V7、V8、V9及V10施加獨立電壓至每一電極對,以便產生具有沿著該帶狀離子束之縱向尺寸的分量之電場,以局部地使該離子束之一個 或更多部分偏向,進而調整該離子束沿著該縱向尺寸之電流密度剖面。在此具體例中,實施這樣的電流密度剖面之調整,以提高該離子束沿著它縱向尺寸(例如,在該非分散平面中)之電流密度的均勻性。該等電壓源V1、…、V10可以是獨立電壓源或可以是單一電壓源之不同模組。 A correction device 42 is disposed on the downstream side of the slit 40 so as to receive the band-shaped ion beam passing through the slit. In this specific example, as shown schematically in FIG. 5, the correction device 42 includes a plurality of spaced apart electrode pairs E1, E2, E3 stacked along the longitudinal dimension of the ion beam (that is, along the y-axis). , E4, E5, E6, E7, E8, E9 and E10, each of which can be individually biased with power. More specifically, in this specific example, a plurality of electrostatic voltage sources V1, V2, V3, V4, V5, V6, V7, V8, V9, and V10 apply independent voltages to each electrode pair in order to generate a voltage having voltages along the band. Electric field of the longitudinal dimension component of a shaped ion beam to locally make one of the ion beams Or more, the current density profile of the ion beam along the longitudinal dimension is adjusted. In this specific example, the adjustment of the current density profile is performed to improve the uniformity of the current density of the ion beam along its longitudinal dimension (for example, in the non-dispersion plane). The voltage sources V1, ..., V10 may be independent voltage sources or different modules of a single voltage source.

每一電極對包括兩個電極,例如,電極E1a及E1b,其配置成大致平行於一由該離子束之傳播方向與它的縱向尺寸所界定之平面。使該等電極對之電極分離,以提供一可讓該離子束通過之橫向間隙。除了其它因素以外,還可以例如根據該離子束之縱向尺寸、用以校正在該離子束之縱向剖面中之不均勻性所需的解析度、在該離子束中之離子的類型來選擇電極對之數目。在一些具體例中,電極對之數目可以是例如在約10至約30之範圍內。 Each electrode pair includes two electrodes, for example, electrodes E1a and E1b, which are arranged substantially parallel to a plane defined by the propagation direction of the ion beam and its longitudinal dimension. The electrode pairs are separated from each other to provide a lateral gap through which the ion beam can pass. The electrode pair may be selected, for example, based on the longitudinal size of the ion beam, the resolution required to correct non-uniformities in the longitudinal profile of the ion beam, the type of ions in the ion beam Of the number. In some specific examples, the number of electrode pairs may be, for example, in a range of about 10 to about 30.

與該等電壓源V1、……、V10連接之控制器44可以下面所更詳細地描述之方式決定對該校正裝置之電極對施加電壓(例如,靜態電壓),以局部地使通過該等電極對中之一個或更多電極對間的該離子束之一部分或更多部分偏向有一選擇角度,藉此調整該離子束沿著它的縱向尺寸之電流密度。 The controller 44 connected to the voltage sources V1,..., V10 may decide to apply a voltage (eg, a static voltage) to the electrode pair of the correction device in a manner described in more detail below to locally pass the electrodes. One or more of the ion beams between one or more electrode pairs in the pair are biased toward a selected angle, thereby adjusting the current density of the ion beam along its longitudinal dimension.

舉例來說,圖6顯示藉由靜電電壓之施加使3個電極對E5、E6及E7偏壓,以便被施加至E6的電壓大於被施加至E5及E7之電壓,進而在該離子束之陰影部分通過的區域中產生箭頭所示之電場分量,該離子束之陰影部分比該離子束之其它部分呈現高的電荷密度(在此實例中,使其它電極對維持在接地電位)。被施加至該離子束之陰影部分的電場促使那個部分之上段的向上偏向及那個部分之下段的向下偏向,藉此降低在那個部分中之電荷密 度,以改善沿著該縱向尺寸之電流密度剖面的均勻性。 For example, FIG. 6 shows that the three electrodes are biased to E5, E6, and E7 by applying an electrostatic voltage, so that the voltage applied to E6 is greater than the voltage applied to E5 and E7, and in the shadow of the ion beam An electric field component indicated by an arrow is generated in a partially passing region, and a shaded portion of the ion beam exhibits a higher charge density than the other portions of the ion beam (in this example, the other electrode pairs are maintained at a ground potential). The electric field applied to the shaded part of the ion beam causes the upward bias of the upper segment of that part and the downward bias of the lower segment of that part, thereby reducing the charge density in that part. To improve the uniformity of the current density profile along the longitudinal dimension.

參考圖7A,在一些具體例中,該校正裝置42可以配置成用以施加一橫向電場至該離子束(亦即,一具有沿著該離子束之橫向尺寸的分量之電場),以便促使該離子束之橫向偏向,例如以改變該離子束之傳播方向。更具體地,該校正裝置42可以配置成使得該等電極對之每一電極係可個別偏壓的。例如,在此具體例中,電壓源V1、…、V20可以分別施加獨立電壓(例如,靜電電壓)至該等電極對之電極(參見,例如,電壓源V1及V11配置成施加獨立電壓至該電極對E1之電極E1a及E1b)。 Referring to FIG. 7A, in some specific examples, the correction device 42 may be configured to apply a lateral electric field to the ion beam (that is, an electric field having a component along a lateral dimension of the ion beam) so as to cause the The ion beam is deflected laterally, for example, to change the propagation direction of the ion beam. More specifically, the correction device 42 may be configured such that each electrode system of the electrode pairs can be individually biased. For example, in this specific example, the voltage sources V1, ..., V20 may apply independent voltages (eg, electrostatic voltages) to the electrodes of the electrode pairs (see, for example, the voltage sources V1 and V11 are configured to apply independent voltages to the voltage source). Electrodes E1a and E1b) of electrode pair E1.

舉例來說,可以選擇一個或更多電極之相對電極對間的電位差,以提供該離子束之一個或更多部分的局部橫向偏向。例如,如圖7A所示,在此實例中,該等電壓源V2及V12施加不同電壓v2及v12至該等電極E2a及E2b(v12<v2),以便促使通過這兩個相對電極間之該離子束的部分朝該電極E2b局部偏向。同時,該等電壓源V4及V14施加不同電壓v4及v14至該等電極E4a及E4b(v14>v4),以便促使通過這兩個相對電極間之該離子束的部分朝該電極E4a局部偏向。在一些具體例中,兩個相對電極間之電位差可以是在約0V至約4kV之範圍內。 For example, the potential difference between opposite electrode pairs of one or more electrodes may be selected to provide a localized lateral deflection of one or more portions of the ion beam. For example, as shown in FIG. 7A, in this example, the voltage sources V2 and V12 apply different voltages v2 and v12 to the electrodes E2a and E2b (v12 <v2) in order to facilitate the passage between the two opposing electrodes. A part of the ion beam is locally deflected toward the electrode E2b. At the same time, the voltage sources V4 and V14 apply different voltages v4 and v14 to the electrodes E4a and E4b (v14> v4), so as to promote partial deflection of the ion beam passing between the two opposing electrodes toward the electrode E4a. In some specific examples, the potential difference between the two opposite electrodes may be in a range of about 0V to about 4kV.

在一些情況下,可以藉由施加一電壓至在該離子束之一側上的所有電極及另一電壓至在該離子束之相對側上的所有電極,使該整個離子束橫向地偏向,例如,以改變它的傳播方向。 In some cases, the entire ion beam can be laterally deflected by applying a voltage to all electrodes on one side of the ion beam and another voltage to all electrodes on opposite sides of the ion beam, such as To change the direction of its spread.

參考圖7B及7C,在一些具體例中,該校正裝置42可以配置成用以使該整個離子束沿著該縱向尺寸(亦即,垂直地沿著y軸)偏向。例如,如圖7C所示,該控制器44可以促使該等電 壓源V1、…、V10施加一斜坡電壓至該等電極對E1、…、E10,以產生一具有沿著該離子束之縱向尺寸的分量之電場(以箭頭綱要性地顯示於圖7B中),其可以促使該離子束之縱向偏向。 Referring to FIGS. 7B and 7C, in some specific examples, the correction device 42 may be configured to deflect the entire ion beam along the longitudinal dimension (ie, vertically along the y-axis). For example, as shown in FIG. 7C, the controller 44 may cause the power The voltage sources V1, ..., V10 apply a ramp voltage to the electrode pairs E1, ..., E10 to generate an electric field having a component along the longitudinal dimension of the ion beam (shown schematically in FIG. 7B as an arrow). , Which can promote the longitudinal deflection of the ion beam.

與該等電壓源V1、…、V20連接之該控制器44可以例如根據該離子束之一期望局部或整體偏向角決定對該等電極所施加之電壓。該控制器可以在該項技藝中所之方式例如根據在該離子束中之離子的電荷、一期望偏向角來決定所需要的電壓。在一些情況下,該控制器可以實施對該等電極對之電極的電壓施加,以便提供該離子束之局部橫向及縱向偏向。例如,不同電極對間之電壓差可以例如以上面關於圖6所示之方式促使局部縱向偏向,而該等電極對之電極間的電壓差可以促使局部橫向偏向。 The controller 44 connected to the voltage sources V1, ..., V20 may, for example, determine the voltage to be applied to the electrodes based on a desired local or global deflection angle of one of the ion beams. The controller may determine the required voltage in a manner such as that based on the charge of the ions in the ion beam, a desired deflection angle. In some cases, the controller may implement voltage application to the electrode pairs of electrodes to provide local lateral and longitudinal deflections of the ion beam. For example, the voltage difference between different electrode pairs may, for example, promote local longitudinal deflection in the manner shown above with respect to FIG. 6, and the voltage difference between the electrode pairs may promote local lateral deflection.

參考圖8A,在一些具體例中,該校正裝置42可以配置成用以促使該離子束沿著它的縱向尺寸做振盪運動。在該控制器44之控制下的波形產生器100可以施加變動電壓至該等電極對中之一個或更多電極對,以造成一具有沿著該離子束之縱向尺寸(沿著y軸)的分量之變動電場,此轉而促使該離子束之時變偏向。在一些情況下,該離子束之這樣的時變偏向可以處於該離子束沿著它的縱向尺寸的週期振盪的形式。在一些情況下,這樣的振盪之振幅可以例如在約10mm至約20mm之範圍內。 Referring to FIG. 8A, in some specific examples, the correction device 42 may be configured to cause the ion beam to make an oscillating motion along its longitudinal dimension. The waveform generator 100 under the control of the controller 44 may apply a variable voltage to one or more of the electrode pairs to create a voltage having a longitudinal dimension (along the y-axis) along the ion beam. The changing electric field of the component, in turn, causes the ion beam to become deflected over time. In some cases, such a time-varying bias of the ion beam may be in the form of a periodic oscillation of the ion beam along its longitudinal dimension. In some cases, the amplitude of such an oscillation may be, for example, in the range of about 10 mm to about 20 mm.

舉例來說,如圖8B所綱要性地顯示,該波形產生器可以施加一三角形電壓波形至該等電極對E1、…、E10,以促使該離子束沿著它的縱向軸週期性振盪。該離子束之這樣的「擺動」可以改善在一入射有該離子束之基板中所植入的離子之劑量均勻性。振盪頻率可以例如根據該基板相對於該入射離子束之移動的速 率而變動。在一些具體例中,振盪頻率可以例如在約1Hz至約1kHz之範圍內。 For example, as shown schematically in Fig. 8B, the waveform generator may apply a triangular voltage waveform to the electrode pairs E1, ..., E10 to cause the ion beam to oscillate periodically along its longitudinal axis. Such "wobble" of the ion beam can improve the dose uniformity of the ions implanted in a substrate incident with the ion beam. The oscillating frequency can be based, for example, on the speed of movement of the substrate relative to the incident ion beam. Rate. In some specific examples, the oscillation frequency may be, for example, in a range of about 1 Hz to about 1 kHz.

再次參考圖2A、2B及2C,該減速/加速系統22進一步包括一減速/加速元件46,其與一下游聚焦元件48分離,以在其間界定一間隙區域50。該減速/加速元件46包括兩個相對等位電極46a及46b,它們在其間提供一用於該離子束通過之通道。同樣地,該聚焦元件48包括兩個等位相對電極48a及48b,它們在其間提供一用於該離子束通過之通道。 Referring again to FIGS. 2A, 2B, and 2C, the deceleration / acceleration system 22 further includes a deceleration / acceleration element 46 that is separated from a downstream focusing element 48 to define a gap region 50 therebetween. The deceleration / acceleration element 46 includes two opposite equipotential electrodes 46a and 46b which provide a passage therebetween for the ion beam to pass through. Similarly, the focusing element 48 includes two equi-opposing electrodes 48a and 48b which provide a channel therebetween for the ion beam to pass through.

在該減速/加速元件46與該聚焦元件48間之電位差的施加在該間隙區域中產生一電場,以便使該離子束之離子減速或加速。除了其它因素之外,還可以根據該等離子之能量的期望變動、該離子束之離子的類型、該離子束之使用的特定應用,以在該項技藝中之一般技術人士所已知的方式選擇在該減速/加速元件與該聚焦元件間之電位差。 The application of a potential difference between the deceleration / acceleration element 46 and the focusing element 48 generates an electric field in the gap region to decelerate or accelerate the ions of the ion beam. Among other factors, it can be selected in a manner known to those skilled in the art based on the expected change in the energy of the plasma, the type of ions of the ion beam, and the specific application for which the ion beam is used The potential difference between the deceleration / acceleration element and the focusing element.

舉例來說,在一些實施中,可以施加在約0至約-30(負30)kV之範圍內或在約0至約+30(正30)kV之範圍內的電壓至該等減速/加速電極46a/46b及可以施加在約0至約-5(負5)kV之範圍內的電壓至該等聚焦電極48a/48b。 For example, in some implementations, a voltage in the range of about 0 to about -30 (negative 30) kV or in the range of about 0 to about +30 (positive 30) kV can be applied to such decelerations / accelerations The electrodes 46a / 46b and a voltage in the range of about 0 to about -5 (negative 5) kV can be applied to the focusing electrodes 48a / 48b.

參考圖2C,在此具體例中,使該等聚焦電極48a/48b中之一個或兩個的上游面(UF)彎曲,以便在間隙區域中產生電場分量,以反制該離子束在該非分散平面中(沿著該離子束之縱向尺寸)的發散。為了更清楚表達,圖2C顯示一離子束通過該間隙50,該離子束因互斥空間電荷效應而在該非分散平面中在它的縱向端點的附近呈現離子的發散。該等聚焦電極48a/48b之上游端的彎曲剖 面可以配置成有助於產生一電場圖案,該電場圖案會施加校正力至這樣的發散離子,以確保該離子束之離子的大致平行傳播。舉例來說,該聚焦電極之上游端可以具有一大致凹形剖面(當從上游方向觀看時)且具有在約1m至約10m之範圍內的曲率半徑。 Referring to FIG. 2C, in this specific example, the upstream surface (UF) of one or both of the focusing electrodes 48a / 48b is bent to generate an electric field component in the gap region to counteract the ion beam in the non-dispersion Divergence in a plane (along the longitudinal dimension of the ion beam). For clearer illustration, FIG. 2C shows an ion beam passing through the gap 50, the ion beam exhibiting divergence of ions in the non-dispersive plane near its longitudinal endpoint due to the mutual exclusion space charge effect. Curved section of the upstream ends of the focusing electrodes 48a / 48b The surface can be configured to help generate an electric field pattern that will apply a corrective force to such divergent ions to ensure that the ions of the ion beam travel substantially parallel. For example, the upstream end of the focusing electrode may have a substantially concave cross section (when viewed from the upstream direction) and have a radius of curvature in a range of about 1 m to about 10 m.

再次參考圖2A、2B及2C,該減速/加速系統22進一步包括一配置在該聚焦元件48之下游側且與其分離有一間隙53的靜電彎管52。在該聚焦元件48與該靜電彎管(例如,該彎管之一個或更多電極)間之電位差可以在該間隙53中產生電場,以便減少該帶狀離子束沿著其橫向尺寸發散。換句話說,在該聚焦元件48與該靜電彎管52間之間隙做為一用以減少該離子束沿著它的橫向尺寸發散之聚焦透鏡。可以例如在前述控制器44之控制下,使用一個或更多電壓源,以在該項技藝中所已知之方式施加電壓至該減速/加速元件及該聚焦元件。 Referring again to FIGS. 2A, 2B, and 2C, the deceleration / acceleration system 22 further includes an electrostatic elbow 52 disposed on the downstream side of the focusing element 48 and separated by a gap 53 therefrom. A potential difference between the focusing element 48 and the electrostatic elbow (eg, one or more electrodes of the elbow) may generate an electric field in the gap 53 in order to reduce the divergence of the strip-shaped ion beam along its lateral dimension. In other words, the gap between the focusing element 48 and the electrostatic elbow 52 is used as a focusing lens to reduce the divergence of the ion beam along its lateral dimension. The voltage can be applied to the deceleration / acceleration element and the focusing element using one or more voltage sources under the control of the aforementioned controller 44 in a manner known in the art, for example.

在此具體例中,該靜電彎管52包括一外電極52a及一相對內電極52b。可以施加不同電位至該外電極52a及該相對內電極52b,以在該離子束通過使這些電極分離之橫向間隙時,促使該離子束偏向。舉例來說,該離子束之偏向角可以在約10度至約90度之範圍內,例如,22.5度。 In this specific example, the electrostatic elbow 52 includes an outer electrode 52a and an opposite inner electrode 52b. Different potentials may be applied to the outer electrode 52a and the opposite inner electrode 52b to promote the ion beam to be deflected when the ion beam passes through a lateral gap separating the electrodes. For example, the deflection angle of the ion beam may be in a range of about 10 degrees to about 90 degrees, for example, 22.5 degrees.

在此具體例中,該靜電彎管進一步包括一中間電極52c,該中間電極52c係配置在該內電極52b之下游側且(例如,經由一間隙)與其電隔離,以允許與被施加至該內電極52b之電壓無關的電壓施加至該中間電極52c。舉例來說,在此具體例中,使該外電極52a及該中間電極52c保持在相同電位。在一些具體例中,被施加至該外電極52a之電壓可以在約0至約-20(負20)kV之範圍 內及被施加至該內電極52b之電壓可以在約-5(負5)kV至約-30(負30)kV之範圍內。 In this specific example, the electrostatic elbow further includes an intermediate electrode 52c, which is disposed downstream of the internal electrode 52b and is electrically isolated from the internal electrode 52b (for example, via a gap) to allow it to be applied to the internal electrode 52b. A voltage irrelevant to the internal electrode 52b is applied to the intermediate electrode 52c. For example, in this specific example, the external electrode 52a and the intermediate electrode 52c are kept at the same potential. In some specific examples, the voltage applied to the external electrode 52a may range from about 0 to about -20 (negative 20) kV. The voltage applied to and within the internal electrode 52b may be in a range of about -5 (negative 5) kV to about -30 (negative 30) kV.

該外電極52a包括一上游部(UP)及一下游部(DP),其相對於彼此成一銳角方式來配置,以對該外電極提供一彎曲剖面。除了其它因素以外,還可以例如根據幾何限制(geometrical constraints)、在該離子束進入該減速/加速系統時,該離子束的橫向發散來選擇該外電極之上游部與下游部間的角度。在此具體例中,該外電極之上游部與下游部間的角度為約22.5度。雖然在此具體例中,該上游部及該下游部一體地構成該外電極,但是在另一具體例中,該上游部及該下游部可以是電耦接成等電位之個別電極。 The external electrode 52a includes an upstream portion (UP) and a downstream portion (DP), which are arranged at an acute angle with respect to each other to provide a curved section to the external electrode. Among other factors, the angle between the upstream portion and the downstream portion of the external electrode may be selected based on, for example, geometrical constraints, lateral divergence of the ion beam when the ion beam enters the deceleration / acceleration system. In this specific example, the angle between the upstream portion and the downstream portion of the external electrode is about 22.5 degrees. Although in this specific example, the upstream portion and the downstream portion integrally constitute the external electrode, in another specific example, the upstream portion and the downstream portion may be individual electrodes electrically coupled to be equipotential.

如上所述,在該外電極52a與該內電極52b間之電位差在那些電極間之空間中產生電場,以便使該離子束之離子偏向。然而,當在該離子束中所存在的電中性粒子(中性原子及/或分子)(如果有的話)已進入該靜電彎管時,它們沒有偏向且持續沿著它們的傳播方向行進。結果,這些中性粒子或至少其一部分撞擊該外電極之下游部(DP)且從該離子束被移除。 As described above, the potential difference between the outer electrode 52a and the inner electrode 52b generates an electric field in the space between those electrodes so as to deflect the ions of the ion beam. However, when the electrically neutral particles (neutral atoms and / or molecules) (if any) present in the ion beam have entered the electrostatic elbow, they are not biased and continue to travel in the direction of their propagation . As a result, the neutral particles or at least a part of them hit the downstream portion (DP) of the external electrode and are removed from the ion beam.

可以在該靜電彎管52之下游側任選地配置用以調整該離子束沿著它的縱向尺寸(在該非分散平面中)之電流密度的另一校正裝置54。在此具體例中,該校正裝置54具有一相似於該上游校正裝置42之結構。特別地,該校正裝置54包括複數個隔開電極對,像是關於該上游校正裝置42之圖5所示的電極對,它們沿著該離子束之縱向尺寸堆疊,每一電極對在其間提供一用於該離子束之通過的橫向間隙。相似於該上游校正裝置42,該第二校正裝置54之每一電極對可以經由對每一電極之電壓的施加(例如,經由相 似於圖5所示之關於該校正裝置42的電壓源V1、…、V10之複數個電壓源)來個別偏壓。如果需要的話,以此方式,該第二校正裝置54可以使該離子束之一個或更多部分局部地偏向,以進一步改善該離子束沿著它的縱向尺寸的電流密度之均勻性。以此方式,該兩個校正裝置42及54可合作地確保從該減速/加速系統22離開的該帶狀離子束沿著它的縱向尺寸呈現高的電流密度均勻性。 On the downstream side of the electrostatic elbow 52, another correction device 54 for adjusting the current density of the ion beam along its longitudinal dimension (in the non-dispersion plane) may be optionally disposed. In this specific example, the correction device 54 has a structure similar to that of the upstream correction device 42. In particular, the correction device 54 includes a plurality of spaced electrode pairs, such as the electrode pair shown in FIG. 5 with respect to the upstream correction device 42, which are stacked along the longitudinal dimension of the ion beam, each electrode pair being provided therebetween A lateral gap for the passage of the ion beam. Similar to the upstream correction device 42, each electrode pair of the second correction device 54 may be applied by applying a voltage to each electrode (e.g., via a phase Similar to the voltage sources V1,..., V10 of the correction device 42 shown in FIG. 5), the bias voltages are individually biased. In this manner, if desired, the second correction device 54 may locally bias one or more portions of the ion beam to further improve the uniformity of the current density of the ion beam along its longitudinal dimension. In this way, the two correction devices 42 and 54 can cooperatively ensure that the strip-shaped ion beam exiting from the deceleration / acceleration system 22 exhibits high current density uniformity along its longitudinal dimension.

上述控制器44亦與用以施加電壓至該第二校正裝置54之電極對的電壓源連接。該控制器可以下面所更詳述的方式決定對該等電極對所施加之電壓及可促使該等電壓源施加那些電壓至該等電極對。 The controller 44 is also connected to a voltage source for applying a voltage to the electrode pair of the second correction device 54. The controller can determine the voltages applied to the electrode pairs and can cause those voltage sources to apply those voltages to the electrode pairs in a more detailed manner below.

相似於該上游校正裝置42,該第二下游校正裝置54可以配置成以上述方式造成該離子束的橫向偏向及/或該離子束沿著它的縱向尺寸的振盪運動。再者,該下游校正裝置54亦可以配置成例如以上述關於該上游校正裝置42之方式造成該整個離子束的縱向(垂直)偏向。 Similar to the upstream correction device 42, the second downstream correction device 54 may be configured to cause a lateral deflection of the ion beam and / or an oscillating movement of the ion beam along its longitudinal dimension in the manner described above. Furthermore, the downstream correction device 54 may be configured to cause the longitudinal (vertical) deflection of the entire ion beam, for example, in the manner described above with respect to the upstream correction device 42.

如上所述,在此具體例中,該外電極52a及該中間電極52c保持在相同電位。此可以改善及較佳地防止在該離子束通過該靜電彎管與該第二校正裝置間之間隙時,不期望的電場分量造成該離子束的任何擾動。 As described above, in this specific example, the external electrode 52a and the intermediate electrode 52c are maintained at the same potential. This can improve and better prevent any disturbance of the ion beam caused by the unwanted electric field component when the ion beam passes through the gap between the electrostatic elbow and the second correction device.

在此具體例中,使該下游第二校正裝置54之電極對沿著該離子束之縱向尺寸相對於該上游校正裝置42之電極對錯開。換句話說,使該校正裝置54之每一電極對相對於該上游校正裝置42之一個別電極對垂直地(沿著該離子束之縱向尺寸)偏移。這樣的偏移可以是例如該等校正裝置之電極的縱向高度之一半(像素 大小的一半)。以此方式,該等校正裝置42及54可以更精細解析度(例如,對應於像素大小的一半之解析度)促使該離子束之各種不同部分的局部偏向。 In this specific example, the electrode pair of the downstream second correction device 54 is offset from the electrode pair of the upstream correction device 42 along the longitudinal dimension of the ion beam. In other words, each electrode pair of the correction device 54 is offset vertically (along the longitudinal dimension of the ion beam) relative to an individual electrode pair of the upstream correction device 42. Such an offset may be, for example, one-half (pixels) of the longitudinal height of the electrodes of the correction devices. Half the size). In this way, the correction devices 42 and 54 can cause finer resolution (eg, a resolution corresponding to half the pixel size) to cause local deflections of various parts of the ion beam.

在此具體例中,使該等校正裝置42及54彼此適當地分離,以限制對它們的電極所施加之電壓至小於約2kV,此可以改善該等校正裝置之操作的穩定性及亦可以該等電極對沿著該縱向尺寸的緊密排列。 In this specific example, the correction devices 42 and 54 are appropriately separated from each other to limit the voltage applied to their electrodes to less than about 2 kV, which can improve the stability of the operation of the correction devices and can also The equal electrode pairs are closely aligned along the longitudinal dimension.

雖然在此具體例中使用兩個校正裝置,但是在其它具體例中可以只使用單一校正裝置,以改善該離子束沿著它的縱向尺寸的電流密度之均勻性,例如,可以使用該校正裝置42或該校正裝置54。例如,在使從該分析磁鐵所接收之離子束減速的一些具體例中,可以只使用該下游校正裝置54。 Although two correction devices are used in this specific example, only a single correction device can be used in other specific examples to improve the uniformity of the current density of the ion beam along its longitudinal dimension. For example, the correction device can be used 42 or this correction device 54. For example, in some specific examples of decelerating the ion beam received from the analysis magnet, only the downstream correction device 54 may be used.

繼續參考圖2A以及圖2B及2C,在該第二校正裝置54之下游側任選地配置另一聚焦元件56且使該另一聚焦元件56與該第二校正裝置54分離有一間隙58。相似於該上游聚焦元件48,該第二聚焦元件56包括一對相對電極56a及56b,它們在其間提供一用於該離子束之通過的通道。在該第二校正裝置54之一個或更多電極對與該等第二聚焦電極56a/56b間之電位差會在該間隙58中造成電場,該電場在該離子束通過該間隙時,可以減少該離子束沿著它的縱向尺寸發散。 With continued reference to FIGS. 2A and 2B and 2C, another focusing element 56 is optionally disposed on the downstream side of the second correction device 54 and the other focusing element 56 is separated from the second correction device 54 by a gap 58. Similar to the upstream focusing element 48, the second focusing element 56 includes a pair of opposing electrodes 56a and 56b that provide a passage therebetween for the passage of the ion beam. The potential difference between one or more electrode pairs of the second correction device 54 and the second focusing electrodes 56a / 56b will cause an electric field in the gap 58, which can reduce the electric field when the ion beam passes through the gap. The ion beam diverges along its longitudinal dimension.

在一些具體例中,對該等聚焦電極56a及56b所施加之電壓可以在約0至約-10(負10)kV之範圍內。 In some specific examples, the voltage applied to the focusing electrodes 56a and 56b may be in a range of about 0 to about -10 (negative 10) kV.

該系統進一步包括一接地元件60,該接地元件具有一對相對電接地電極60a及60b,它們係配置在該等第二聚焦電極 56a及56b之下游側且彼此分離而形成一間隙62。該等相對接地電極60a及60b構成一電接地導管(electrically grounded duct),該離子束經由該電接地導管朝該終端站24離開該減速/加速系統。 The system further includes a grounding element 60 having a pair of opposite electrical ground electrodes 60a and 60b, which are disposed on the second focusing electrodes. The downstream sides of 56a and 56b are separated from each other to form a gap 62. The opposing ground electrodes 60a and 60b constitute an electrically grounded duct through which the ion beam exits the deceleration / acceleration system toward the terminal station 24 via the electrically grounded duct.

在一些具體例中,該減速/加速系統22缺少該第二校正裝置54及該第二聚焦元件58。 In some specific examples, the deceleration / acceleration system 22 lacks the second correction device 54 and the second focusing element 58.

在該等聚焦電極56a及56b與該等接地電極60a及60b間之電位差導致在該間隙62內之電場分量的產生,此在該離子束通過該間隙時,可以減少該離子束沿著它的橫向尺寸發散。再者,在此具體例中,例如,相似於該等電極48a/48b之上游面(邊緣),使該等電極60a及60b之上游面(邊緣)彎曲,以減少該離子束沿著它的縱向尺寸發散。因此,該等透鏡間隙58及62共同提供一第二聚焦透鏡,以便減少該離子束沿著它的橫向及縱向尺寸發散。 The potential difference between the focusing electrodes 56a and 56b and the ground electrodes 60a and 60b results in the generation of an electric field component in the gap 62. When the ion beam passes through the gap, the ion beam can be reduced along its Horizontal dimension divergence. Furthermore, in this specific example, for example, similar to the upstream faces (edges) of the electrodes 48a / 48b, the upstream faces (edges) of the electrodes 60a and 60b are bent to reduce the ion beam along its Vertical dimension divergence. Therefore, the lens gaps 58 and 62 together provide a second focusing lens to reduce the divergence of the ion beam along its lateral and longitudinal dimensions.

在許多的具體例中,離開該減速/加速系統之該輸出帶狀離子束沿著它的縱向尺寸呈現一具有等於或小於約5%或等於或小於約4%或等於或小於約2%及較佳地小於約1%的RMS不均勻性之電流密度剖面。這樣的帶狀離子束可以具有大於一上面入射有該離子束之基板的直徑(例如,大於約300mm或大於約450mm)之縱向長度。因此,該基板沿著橫向尺寸之線性運動可以導致大致均勻劑量的離子在該基板中之植入。 In many specific examples, the output band-shaped ion beam leaving the deceleration / acceleration system presents along its longitudinal dimension a film having a length equal to or less than about 5% or equal to or less than about 4% or equal to or less than about 2% and A current density profile that preferably has an RMS non-uniformity of less than about 1%. Such a ribbon-shaped ion beam may have a longitudinal length that is larger than a diameter (for example, greater than about 300 mm or greater than about 450 mm) of a substrate on which the ion beam is incident. Therefore, linear movement of the substrate along the lateral dimension can result in implantation of a substantially uniform dose of ions in the substrate.

在一些具體例中,可以使用該輸出帶狀離子束,將在約1012至約1016cm-2之範圍內的離子劑量植入一基板中。在一些這樣的具體例中,在該基板上所入射之該帶狀離子束的電流可以例如在約數十微安(例如,約20微安)至約數十毫安(例如,約60毫安)之範圍內,例如,在約50微安至約50毫安之範圍內,或者在約2 毫安至約50毫安之範圍內。 In some specific examples, the output band ion beam can be used to implant an ion dose in a range of about 10 12 to about 10 16 cm -2 into a substrate. In some such specific examples, the current of the ribbon ion beam incident on the substrate may be, for example, about tens of microamperes (for example, about 20 microamperes) to about tens of milliamperes (for example, about 60 milliamperes). Range), for example, in the range of about 50 microamps to about 50 milliamps, or in the range of about 2 milliamps to about 50 milliamps.

在一些具體例中,可以以下面方式決定對該等校正裝置42及54所施加之電壓。最初,可以測量離開該分析磁鐵20之帶狀質量選擇離子束(在此亦稱為未校正離子束)的電流密度。例如,藉由在只對該靜電彎管之電極施加電壓下使該未校正離子束通過該減速/加速系統22,以使該大致未受干擾之離子束行進至該終端站,進而達成上述目的。 In some specific examples, the voltage applied to these correction devices 42 and 54 can be determined in the following manner. Initially, the current density of a band-like mass selective ion beam (also referred to herein as an uncorrected ion beam) leaving the analysis magnet 20 can be measured. For example, the above objective is achieved by passing the uncorrected ion beam through the deceleration / acceleration system 22 under a voltage applied only to the electrode of the electrostatic elbow, so that the substantially undisturbed ion beam travels to the terminal station. .

可以使用一配置在該終端站中之電流測量裝置,測量該未校正離子束之電流密度剖面。舉例來說,圖9綱要性地描繪一可伸縮地配置在該離子植入系統之終端站24中的剖面儀(profiler)102。可以使用各種束流剖面儀(beam current profiler)。例如,在一些具體例中,該束流剖面儀可以包括一列法拉第杯(Faraday cups),以測量為高度之函數的該離子束之電流剖面。在其它具體例中,該離子束剖面儀可以包括一可以移動橫越該離子束之電流測量板。該離子束剖面儀與該控制器44連接,以提供關於該離子束沿著它的縱向尺寸之電流剖面的資訊。該控制器44可以使用此資訊,以決定對該等校正裝置及/或其它元件(例如,聚焦元件)所施加之必要電壓。例如,該控制器可以使用此資訊,決定對該等校正裝置之電極對所施加的電壓,以改善該離子束沿著它的縱向尺寸之電流密度剖面的均勻性。 A current measurement device disposed in the terminal station can be used to measure the current density profile of the uncorrected ion beam. For example, FIG. 9 outlines a profiler 102 that is telescopically disposed in a terminal station 24 of the ion implantation system. Various beam current profilers can be used. For example, in some specific examples, the beam profiler may include a series of Faraday cups to measure the current profile of the ion beam as a function of height. In other embodiments, the ion beam profiler may include a current measurement plate that can be moved across the ion beam. The ion beam profiler is connected to the controller 44 to provide information about the current profile of the ion beam along its longitudinal dimension. The controller 44 may use this information to determine the necessary voltages to be applied to these correction devices and / or other elements (eg, focusing elements). For example, the controller can use this information to determine the voltage applied to the electrode pairs of these correction devices to improve the uniformity of the current density profile of the ion beam along its longitudinal dimension.

舉例來說,圖10A顯示以一些高度區塊(height bins)描繪具有40keV之能量及30mA之總電流的模擬未校正磷離子束之離子電流的直方圖。此直方圖顯示出相對於一均勻性窗口(uniformity window)該離子束之電流密度的局部不均勻性。在此實 例中,該末校正離子束以不同高度區塊呈現離子電流具有約12.5%的RMS變化量。 For example, FIG. 10A shows a histogram depicting the ion current of a simulated uncorrected phosphorus ion beam with energy of 40 keV and a total current of 30 mA in some height bins. This histogram shows local non-uniformities in the current density of the ion beam relative to a uniformity window. Here In the example, the uncorrected ion beam exhibits an ion current with a block height of about 12.5% in different height blocks.

再次參考圖9,該控制器44可以從該離子束剖面儀102接收關於該未校正離子束之電流密度剖面的資訊(例如,在上述直方圖中所示之資訊)及可以使用該資訊,決定對該等校正裝置中之一的電極對所施加之電壓(例如,在圖10A、10B及10C所示之實例中,初始配置該下游校正裝置54),以提供該離子束沿著它的縱向尺寸之電流密度的第一次校正。 Referring again to FIG. 9, the controller 44 may receive information about the current density profile of the uncorrected ion beam from the ion beam profiler 102 (for example, the information shown in the above histogram) and may use the information to determine A voltage applied to an electrode pair of one of the correction devices (for example, in the example shown in FIGS. 10A, 10B, and 10C, the downstream correction device 54 is initially configured) to provide the ion beam in its longitudinal direction First correction of current density of dimensions.

在一些具體例中,該控制器可以比較在每一高度窗口中之測量電流與一參考值。如果該測量電流與該參考值間之差超過一臨界值,例如,百分之1或2,則該控制器可以促使一個或更多電壓源施加電壓至一個或更多讓對應於那個高度窗口之離子束部分通過其間的電極對,以便使在那個部分中之電流更靠近該參考值。如上所詳述,此可藉由促使該離子束沿著它的縱向尺寸局部偏向來達成。 In some specific examples, the controller can compare the measured current in each height window with a reference value. If the difference between the measured current and the reference value exceeds a critical value, for example, 1 or 2 percent, the controller may cause one or more voltage sources to apply voltage to one or more voltages corresponding to that height window. The ion beam portion passes through the electrode pair therebetween so that the current in that portion is closer to the reference value. As detailed above, this can be achieved by causing the ion beam to be locally deflected along its longitudinal dimension.

舉例來說,該控制器可以促使被耦接至該第二校正裝置54之電極對的電壓源施加圖10B所示之電壓至該等電極對,以便使該離子束在它的中心處散焦及使該離子束在它的上邊緣處聚焦。例如,可以施加電壓至讓對應於60-90mm高度窗口之離子束的部分通過其間之電極,以降低在此部分中之電流密度。以此方式,可以改善該離子束之電流密度的均勻性。 For example, the controller may cause a voltage source coupled to the electrode pair of the second correction device 54 to apply the voltage shown in FIG. 10B to the electrode pairs in order to defocus the ion beam at its center. And focus the ion beam at its upper edge. For example, a voltage may be applied to pass a portion of the ion beam corresponding to a height window of 60-90 mm through an electrode therebetween to reduce the current density in this portion. In this way, the uniformity of the current density of the ion beam can be improved.

接著,可例如以上述在校正中測量該未校正離子束之電流密度的方式,測量經過該等校正裝置中之一(例如,在此實例中,該下游校正裝置)校正的該部分校正離子束之電流密度剖面。 Then, the partially corrected ion beam corrected by one of the correction devices (for example, the downstream correction device in this example) may be measured in the manner described above for measuring the current density of the uncorrected ion beam in the correction. Current density profile.

舉例來說,圖10B所示之直方圖描繪模擬離子電流為沿著一藉由只使用該第二校正裝置所獲得之離子束的縱向尺寸之高度窗口的函數,以改善圖10A所示之未校正離子束的電流密度。此部分校正離子束在該均勻性窗口內呈現約3.2%之離子束電流的RMS偏差(相較於該未校正離子束所呈現之12.5%變化量,是有改善的)。 For example, the histogram shown in FIG. 10B depicts the simulated ion current as a function of a height window along the longitudinal dimension of the ion beam obtained by using only the second correction device to improve the Correct the ion beam current density. This part of the corrected ion beam presents an RMS deviation of about 3.2% of the ion beam current within the uniformity window (compared to the 12.5% change shown by the uncorrected ion beam, which is an improvement).

再次參考圖9,該控制器44可以接收關於該部分校正離子束之電流密度剖面的資訊,以便決定對該上游校正裝置42之電極對所施加之電壓,以進一步提高該離子束剖面之均勻性。換句話說,該上游校正裝置可以提供該離子束剖面之精細校正。 Referring again to FIG. 9, the controller 44 may receive information about the current density profile of the partially corrected ion beam in order to determine the voltage applied to the electrode pair of the upstream correction device 42 to further improve the uniformity of the ion beam profile. . In other words, the upstream correction device can provide fine correction of the ion beam profile.

舉例來說,圖10C顯示可以施加電壓至該第一校正裝置42,以在該均勻性窗口內進一步提高該離子束剖面之均勻性。此圖亦呈現用以描繪在使用該等第一及第二校正裝置42及54來校正具有圖10A所示之剖面的該未校正離子束之均勻性時的離子束電流之模擬剖面的直方圖。此直方圖顯示該兩個校正裝置之組合校正效果導致在該均勻性窗口內具有約1.2%之離子電流的RMS偏差之電流密度剖面。換句話說,在此實例中,該兩個校正裝置之組合校正效果導致該離子束沿著該縱向尺寸的電流密度剖面之均勻性有大約1個數量級的改善。 For example, FIG. 10C shows that a voltage can be applied to the first correction device 42 to further improve the uniformity of the ion beam profile within the uniformity window. This figure also presents a histogram depicting a simulated cross section of the ion beam current when the first and second correction devices 42 and 54 are used to correct the uniformity of the uncorrected ion beam having the cross section shown in FIG. 10A. . This histogram shows that the combined correction effect of the two correction devices results in a current density profile with an RMS deviation of the ion current of about 1.2% within the uniformity window. In other words, in this example, the combined correction effect of the two correction devices results in an improvement in the uniformity of the current density profile of the ion beam along the longitudinal dimension by about an order of magnitude.

在其它具體例中,可以先配置該上游校正裝置42,以提供離開該質量分析器之該帶狀離子束的電流密度剖面之粗略校正,以及接著,可以配置該下游校正裝置54,以提供該離子束之電流密度剖面的更精細校正。 In other specific examples, the upstream correction device 42 may be configured first to provide a rough correction of the current density profile of the band ion beam leaving the mass analyzer, and then the downstream correction device 54 may be configured to provide the Finer correction of the current density profile of the ion beam.

如上所述,可以各種不同方式來配置該減速/加速系 統22。舉例來說,在一些具體例中,可以將該等減速/加速電壓設定為零,以便該系統22只做為一校正系統而沒有促使在該離子束中之離子的減速及/或加速。 As mentioned above, the deceleration / acceleration system can be configured in various ways. 统 22. For example, in some specific examples, the deceleration / acceleration voltage may be set to zero, so that the system 22 is only used as a calibration system without promoting deceleration and / or acceleration of ions in the ion beam.

可以使用依據本教示之離子植入系統,將各種離子植入各種基板中。離子的一些實例包括但不侷限於磷離子、砷離子、硼離子、像BF2 +、B18Hx +及C7Hx +之分子離子。基板的一些實例包括但不侷限於矽、鍺、磊晶(例如覆以多晶矽)晶圓、絕緣層上有矽(SIMOX)晶圓、像SiC或SiN之陶瓷基板、大陽能電池及在生產平板顯示器中所使用之基板。基板形狀之一些實例包括圓形、方形或矩形。 Various ions can be implanted into various substrates using an ion implantation system according to the present teachings. Some examples of ions include, but are not limited to, phosphorus ions, arsenic ions, boron ions, molecular ions like BF 2 + , B 18 H x + and C 7 H x + . Some examples of substrates include, but are not limited to, silicon, germanium, epitaxial (e.g., polycrystalline silicon) wafers, silicon-on-insulator (SIMOX) wafers, ceramic substrates like SiC or SiN, solar cells, and production A substrate used in a flat panel display. Some examples of the shape of the substrate include a circle, a square, or a rectangle.

在一些具體例中,可以藉由使用在一加速/減速系統之下游側所配置的3對串聯電極,實施一靜電彎管。如下面所更詳細描述,當在一減速模式中操作該加速/減速系統,以使一接收離子束以至少2的減速比(例如,以在約5至約100之範圍內的減速比)減速時,該靜電彎管之這樣的實施可以是特別有利的。在此所使用之術語減速比意指進入該減速系統之離子束的能量相對於離開該減速系統之該離子束的能量之比率(亦即,該減速系統所接收之離子束的能量相對於該減速離子束的能量之比率)。 In some specific examples, an electrostatic bend can be implemented by using three pairs of series electrodes arranged on the downstream side of an acceleration / deceleration system. As described in more detail below, when the acceleration / deceleration system is operated in a deceleration mode, a receiving ion beam is decelerated at a reduction ratio of at least 2 (for example, at a reduction ratio in a range of about 5 to about 100). Such an implementation of the electrostatic elbow can be particularly advantageous. The term reduction ratio as used herein means the ratio of the energy of the ion beam entering the reduction system to the energy of the ion beam leaving the reduction system (i.e., the energy of the ion beam received by the reduction system relative to the The ratio of the energy of the decelerated ion beam).

圖11A、11B及11C綱要性地描繪依據這樣的具體例之一離子植入系統1100。如下面所更詳細描述,除了以3對靜電偏壓電極實施該靜電彎管之外,該離子植入系統1100係相似於上面關於圖2A、2B及2C所示之離子植入系統10。更具體地,相似於上述離子植入系統10,該離子植入系統1100包括該離子源12,其用以產生一離子束;該引出電極14,其以電力偏壓以有助於該離子 束從該離子源引出;該抑制電極16,其以電力偏壓,以阻止中和電子回流;該聚焦電極18,其以電力偏壓,以減少該離子束之發散;以及該接地電極19,其定義該離子束之參考接地。該分析磁鐵20係配置在該聚焦電極18之下游側,以接收該帶狀離子束及產生一質量選擇離子束。 11A, 11B, and 11C schematically depict an ion implantation system 1100 according to one such specific example. As described in more detail below, the ion implantation system 1100 is similar to the ion implantation system 10 shown above with respect to FIGS. 2A, 2B, and 2C, except that the electrostatic elbow is implemented with three pairs of electrostatic bias electrodes. More specifically, similar to the above-mentioned ion implantation system 10, the ion implantation system 1100 includes the ion source 12 for generating an ion beam, and the extraction electrode 14 which is biased with electricity to assist the ions The beam is drawn from the ion source; the suppression electrode 16 is biased with electricity to prevent the neutralization of electrons from flowing back; the focusing electrode 18 is biased with electricity to reduce the divergence of the ion beam; and the ground electrode 19, It defines the reference ground for this ion beam. The analysis magnet 20 is disposed downstream of the focusing electrode 18 to receive the band-shaped ion beam and generate a mass selective ion beam.

該離子植入系統1100進一步包括一減速/加速系統200,其包括一用以接收該質量選擇離子束之狹縫202;以及一校正裝置204,其相似於上述校正裝置。該減速/加速系統200進一步包括一減速/加速元件206,其與一下游聚焦元件208分離,以在其間界定一間隙210。如上面關於該離子植入系統10所述,該減速/加速元件206包括兩個相對等位電極部206a及206b,它們在其間提供一用於該離子束之通過的通道。在此具體例中,使該等電極部206a及206b在它們的頂端及底端處連接,以構成一矩形電極。同樣地,該聚焦元件208包括兩個等位電極部208a及208b,它們在其間提供一用於該離子束之通過的通道。 The ion implantation system 1100 further includes a deceleration / acceleration system 200 including a slit 202 for receiving the mass selective ion beam; and a correction device 204 similar to the correction device described above. The deceleration / acceleration system 200 further includes a deceleration / acceleration element 206 that is separated from a downstream focusing element 208 to define a gap 210 therebetween. As described above with respect to the ion implantation system 10, the deceleration / acceleration element 206 includes two opposite equipotential electrode portions 206a and 206b, which provide a passage therebetween for the passage of the ion beam. In this specific example, the electrode portions 206a and 206b are connected at their top and bottom ends to form a rectangular electrode. Likewise, the focusing element 208 includes two equipotential electrode portions 208a and 208b, which provide a passage therebetween for the passage of the ion beam.

在該減速/加速元件206與該聚焦元件208間之電位差的施加在該間隙區域210中產生電場,以便使該離子束減速或加速。在此具體例中,當在該減速模式中操作時,在該減速/加速元件206與該聚焦元件208間所施加之電位可以至少2之減速比(例如,在約5至約100之範圍內)促使通過該間隙210之該離子束減速。 The application of a potential difference between the deceleration / acceleration element 206 and the focusing element 208 generates an electric field in the gap region 210 in order to decelerate or accelerate the ion beam. In this specific example, when operating in the deceleration mode, the potential applied between the deceleration / acceleration element 206 and the focusing element 208 may be a reduction ratio of at least 2 (for example, in the range of about 5 to about 100) ) Causes the ion beam passing through the gap 210 to decelerate.

舉例來說,為了達成減速比,可以施加在約-5kV至約-60kV之範圍內的電壓至該減速/加速元件206之電極部206a及206b及可以施加在約0V至約-30kV(負30kV)之範圍內的電壓至該聚焦元件208之電極部208a及208b。 For example, in order to achieve a reduction ratio, a voltage in a range of approximately -5kV to approximately -60kV may be applied to the electrode portions 206a and 206b of the deceleration / acceleration element 206 and may be applied between approximately 0V to approximately -30kV (minus 30kV ) To the electrode portions 208a and 208b of the focusing element 208.

在此具體例中,在該聚焦元件208之下游側配置一包括3個電極對(214、216及218)之靜電彎管212(在此,亦稱為E-bend 212),以接收該離子束及使該離子束偏向。然而,當在該離子束中所存在的電中性粒子(中性原子及/或分子)(如果有的話)已進入該靜電彎管時,它們沒有偏向且持續沿著它們的傳播方向行進。相似於先前具體例,該靜電彎管可以使該離子束以在約10度至約90度之範圍內的某一個角度(例如,22.5度)偏向。 In this specific example, an electrostatic elbow 212 (here, also referred to as E-bend 212) including three electrode pairs (214, 216, and 218) is disposed downstream of the focusing element 208 to receive the ion Beam and bias the ion beam. However, when the electrically neutral particles (neutral atoms and / or molecules) (if any) present in the ion beam have entered the electrostatic elbow, they are not biased and continue to travel in the direction of their propagation . Similar to the previous specific example, the electrostatic elbow can deflect the ion beam at an angle (for example, 22.5 degrees) in a range of about 10 degrees to about 90 degrees.

該第一電極對124包括一內電極214b及一外電極214a,它們被隔開,以允許該離子束在其間通過。該第二電極對216亦包括一內電極216b及一外電極216a,它們被隔開,以允許該離子束在其間通過。同樣地,該最後電極對218包括一內電極218b及一外電極218a,它們被隔開,以允許該離子束在其間通過。以相對於該等第一及最後電極對之個別電極成某一角度(例如,該離子束之全偏向角的一半,該全偏向角例如是在約5度至約45度之範圍內的偏向角)方式配置該第二電極對之每一電極。 The first electrode pair 124 includes an inner electrode 214b and an outer electrode 214a, which are separated to allow the ion beam to pass therebetween. The second electrode pair 216 also includes an inner electrode 216b and an outer electrode 216a, which are separated to allow the ion beam to pass therebetween. Similarly, the last electrode pair 218 includes an inner electrode 218b and an outer electrode 218a, which are separated to allow the ion beam to pass therebetween. At an angle relative to the individual electrodes of the first and last electrode pairs (for example, half of the total deflection angle of the ion beam, the total deflection angle is, for example, a deflection in a range of about 5 to about 45 degrees Each electrode of the second electrode pair is arranged in an angle) manner.

如下面所更詳細描述,該第一電極對214之電極保持在小於該第二電極對216之電極所保持的電位之電位。再者,該最後電極對218之每一電極保持在小於該第二電極對216之任一電極所保持的電位之電位。另外,在該離子束包括帶正電離子的這個具體例中,該等電極對之每一者的內電極保持在小於那個電極對之個別外電極所保持的電位之電位,以便產生一用以在該離子束通過該等電極間時彎曲該離子束之電場。換句話說,該內電極214b保持在比該外電極214a低的電位,該內電極216b保持在比該外電極216a低的電位,以及該內電極218b保持在比該外電極218a低的電 位。 As described in more detail below, the electrodes of the first electrode pair 214 are maintained at a potential that is less than the potential held by the electrodes of the second electrode pair 216. Furthermore, each electrode of the last electrode pair 218 is maintained at a potential that is less than the potential held by any of the electrodes of the second electrode pair 216. In addition, in this specific example in which the ion beam includes positively charged ions, the inner electrode of each of the electrode pairs is maintained at a potential that is less than the potential held by the individual outer electrodes of that electrode pair in order to generate a The electric field of the ion beam is bent as the ion beam passes between the electrodes. In other words, the internal electrode 214b is maintained at a lower potential than the external electrode 214a, the internal electrode 216b is maintained at a lower potential than the external electrode 216a, and the internal electrode 218b is maintained at a lower electrical potential than the external electrode 218a. Bit.

更具體地,參考圖11B,在此具體例中,該第一電極對214之外電極214a及該最後電極對218之外電極218a保持在相同電位(V1)以及該第一電極對214之內電極214b及該最後電極對218之內電極218b保持在相同電位(V2),其中V2小於V1(例如,V2可以是-25kV及V1可以是-15kV)。再者,使該第二電極對216之內電極216b電接地及使該第二電極對之外電極216a保持在電位V3,其中V3大於V1及V2之每一者。 More specifically, 11B, the in this particular embodiment, the first electrode 214a and the electrode 214 than the final electrode 218 than the electrode 218a is maintained at the same potential (V 1) and the first electrode pair 214, The inner electrode 214b and the inner electrode 218b of the last electrode pair 218 are maintained at the same potential (V 2 ), where V 2 is less than V 1 (for example, V 2 may be -25 kV and V 1 may be -15 kV). Furthermore, the inner electrode 216b of the second electrode pair 216 is electrically grounded and the outer electrode 216a of the second electrode pair is maintained at a potential V 3 , where V 3 is greater than each of V 1 and V 2 .

舉例來說,該電位V1可以在0V(零伏特)至約-20kV之範圍內,以及該電位V2可以在0V(零電伏)至約-30kV之範圍內。再者,該電位V3可以在0至約+30kV之範圍內。 For example, the potential V 1 may be in a range of 0 V (zero volts) to about -20 kV, and the potential V 2 may be in a range of 0 V (zero electrical volts) to about -30 kV. Further, the potential V 3 may be in a range of 0 to about +30 kV.

參考圖11D,在此具體例中,一電壓源221施加該電壓V1至該等電極214a及218a,一電壓源223施加該電壓V2至該等電極214b及218b,以及一電壓源225施加該電壓V3至該電極216a。在其它具體例中,該等電壓源可以施加不同樣式的電壓至該等電極。一控制器227可以控制該等電壓源,以便施加期望電壓至該等電極。 Referring to FIG 11D, in this particular embodiment, a voltage source 221 is applied to the voltage V 1 is such electrodes 214a and 218a, 223 applies the voltage V 2 to these electrodes 214b and 218b, and a voltage source 225 is applied to a voltage source The voltage V 3 is applied to the electrode 216a. In other specific examples, the voltage sources can apply different voltages to the electrodes. A controller 227 can control the voltage sources to apply a desired voltage to the electrodes.

該3個電極對(214、216及218)之排列在像在此所述使用於一離子束線中一減速系統之下游側時,可以提供一些優點。具體地,當操作該減速系統以便提供高減速比,例如大於約2之減速比時,可以使該離子束在橫越該減速間隙(例如,上述間隙210)時經歷強的聚焦效應(focusing effect)。這樣強的聚焦可以產生一過度聚焦離子束,該過度聚焦離子束可能在橫越一下游靜電彎管時呈現顯著的發散(「散開(blow-up)」)及因而撞擊該彎管之電極或其它 下游組件的那些電極。 The arrangement of the three electrode pairs (214, 216, and 218) on the downstream side of a deceleration system in an ion beam line as described herein may provide some advantages. Specifically, when the reduction system is operated so as to provide a high reduction ratio, such as a reduction ratio greater than about 2, the ion beam can be made to experience a strong focusing effect when it traverses the reduction gap (for example, the aforementioned gap 210). ). Such a strong focus can produce an over-focused ion beam that may exhibit significant divergence ("blow-up") and thus impact the electrode or other Those electrodes of the downstream components.

使用該等分段電極對214、216及218做為該靜電彎管,可以減輕此問題。更具體地,該等分段電極對214、216及218呈現強的聚焦能力,以校正因該減速系統使該離子束經歷強聚焦所造成的該離子束之高度發散,以便在離子沒有明顯損失(較佳地,沒有任何損失)於該彎管之電極或其它下游組件之那些電極下確保該離子束將離開該靜電彎管及到達下游晶圓。例如,當該離子束進入在該第一電極對與該第二電極對間之間隙213時,可能使該離子束散焦。當該離子束進入該第二電極對216之電極間的空間及該第二電極對與該最後電極對間之間隙215時,該離子束會經歷強的聚焦力,但是一些情況下,該離子束會在該間隙215中經歷小的聚焦力。 Using the segmented electrode pairs 214, 216, and 218 as the electrostatic elbow can alleviate this problem. More specifically, the segmented electrode pairs 214, 216, and 218 exhibit strong focusing capabilities to correct the high divergence of the ion beam caused by the ion beam undergoing strong focusing by the deceleration system, so that there is no significant loss of ions (Preferably without any loss) under the electrodes of the elbow or those of other downstream components to ensure that the ion beam will leave the electrostatic elbow and reach the downstream wafer. For example, when the ion beam enters the gap 213 between the first electrode pair and the second electrode pair, the ion beam may be defocused. When the ion beam enters the space between the electrodes of the second electrode pair 216 and the gap 215 between the second electrode pair and the last electrode pair, the ion beam experiences a strong focusing force, but in some cases, the ion The beam will experience a small focusing force in this gap 215.

為了進一步更清楚表達,圖12A顯示一離子束通過一減速系統及一由兩個隔開電極所構成之下游傳統靜電彎管的理論模擬。具體地,在此具體例中,該減速系統包括兩個電極對1200及1201,其中該電極對1200維持在-29.5kV的電壓及該電極對1201維持在-5kV的電壓。再者,該靜電彎管之內電極1202維持在-0.75kV的電壓及該靜電彎管之外電極1203維持在-0.47kV的電壓。另外,假定進入該減速系統之離子束包括30keV之能量的帶正電離子。該離子束通過該減速系統,使該離子束之能量減少至0.5keV。換句話說,該減速系統呈現60的減率比。模擬結果顯示此高減速比在焦點A處導致該離子束之過度聚焦,以致於該離子束呈現交叉且足夠快速地發散,進而撞擊該靜電彎管在其遠端處的外電極及下游組件。 For further clarity, FIG. 12A shows a theoretical simulation of an ion beam passing through a deceleration system and a downstream traditional electrostatic elbow consisting of two spaced electrodes. Specifically, in this specific example, the deceleration system includes two electrode pairs 1200 and 1201, where the electrode pair 1200 is maintained at a voltage of -29.5 kV and the electrode pair 1201 is maintained at a voltage of -5 kV. Furthermore, the inner electrode 1202 of the electrostatic elbow is maintained at a voltage of -0.75 kV and the outer electrode 1203 of the electrostatic elbow is maintained at a voltage of -0.47 kV. In addition, it is assumed that the ion beam entering the deceleration system includes positively charged ions having an energy of 30 keV. The ion beam passes through the deceleration system to reduce the energy of the ion beam to 0.5 keV. In other words, the reduction system exhibits a reduction ratio of 60. The simulation results show that this high reduction ratio causes the ion beam to be over-focused at the focus A, so that the ion beam appears to cross and diverge quickly enough to hit the external electrode and downstream components of the electrostatic elbow at its distal end.

相較下,圖12B顯示離子束通過一減速系統及隨後通過一以3個個別電極對來實施之靜電彎管的理論模擬。相似於前述模擬,該減速系統係由分別保持在-29.5kV及-5.5kV的電壓之兩個電極對1200及1201所構成。在此模擬中,以上述方式藉由使用3個電極對1204、1205及1206,來實施該靜電彎管,其中該等第一及最後電極對1204及1206之內電極保持在-0.75kV的電位及它們的外電極保持在-0.68kV的電位。使該第二電極對之內電極接地及使它的外電極保持在+0.73kV的電位。相似於先前模擬,該離子束以30keV之能量連入該減速系統及以0.5keV之減少能量離開該減速系統(對應於60的減速比)。雖然相似於先前模擬,該高減速比導致該離子束之過度聚焦及因而當該離子束進入該靜電彎管時造成它的發散,但是本教示之靜電彎管校正此發散,以在沒有離子損失於例如該靜電彎管之電極或該等下游組件之那些電極下確保該離子束會離開該靜電彎管及該等下游組件。 In comparison, FIG. 12B shows a theoretical simulation of an electrostatic elbow that is passed through a deceleration system and then through 3 individual electrode pairs. Similar to the previous simulation, the deceleration system is composed of two electrode pairs 1200 and 1201 maintained at a voltage of -29.5kV and -5.5kV, respectively. In this simulation, the electrostatic elbow is implemented in the manner described above by using three electrode pairs 1204, 1205, and 1206, where the electrodes within the first and last electrode pairs 1204 and 1206 are maintained at a potential of -0.75 kV And their external electrodes are maintained at a potential of -0.68kV. The inner electrode of the second electrode pair is grounded and its outer electrode is maintained at a potential of +0.73 kV. Similar to the previous simulation, the ion beam was connected into the reduction system with an energy of 30 keV and exited the reduction system with a reduced energy of 0.5 keV (corresponding to a reduction ratio of 60). Although similar to previous simulations, the high reduction ratio caused the ion beam to overfocus and thus cause it to diverge when it entered the electrostatic elbow, but the electrostatic elbow of this teaching corrects this divergence so that there is no ion loss Make sure that the ion beam leaves the electrostatic elbow and the downstream components under, for example, the electrodes of the electrostatic elbow or those of the downstream components.

藉由使用上述3個電極對實施之該靜電彎管的另一優點在於:它可以有助於高電流離子束之聚焦。在施加高電壓至該彎管的電極之E-bend中,通常在該彎管內具有少數的背景電子。沒有這些電子會使該離子束之電荷中和變得困難,其中該電荷中和可以抑制離子束「散開」。 Another advantage of the electrostatic elbow implemented by using the above three electrode pairs is that it can help focus the high current ion beam. In an E-bend that applies a high voltage to an electrode of the elbow, there are usually a few background electrons in the elbow. The absence of these electrons makes it difficult to neutralize the charge of the ion beam, where the charge neutralization can inhibit the ion beam from "spreading".

具體地,在傳統E-bend中,因為用以提供這樣的E-bend有足夠聚焦能力所需的電壓會非常高(例如,-30kV至-60kV),所以離子束「散開」的問題對於高離子束能量(例如,大於約30ekV之能量)及高離子束電流來說會變得明顯。 Specifically, in the conventional E-bend, because the voltage required to provide such an E-bend with sufficient focusing ability will be very high (for example, -30kV to -60kV), the problem of "spreading" the ion beam is high for high voltages. Ion beam energies (eg, energies greater than about 30 ekV) and high ion beam currents can become apparent.

例如,圖13A顯示一具有30keV的能量及25mA的 電流之模擬離子束通過一具有保持在-25kV之電位的內電極1300a及保持在-12kV之電位的外電極1300b之傳統E-bend 1300。該離子束在一下游晶圓上的寬度為169mm。模擬結果顯示該離子束之「散開」造成離子損失及在該下游晶圓上的較寬離子束斑點,該離子束斑點會必定大於該晶圓之掃描及降低製程生產量。 For example, FIG. 13A shows an energy source with 30 keV and 25 mA. A simulated ion beam of electric current passes through a conventional E-bend 1300 having an internal electrode 1300a maintained at a potential of -25kV and an external electrode 1300b maintained at a potential of -12kV. The ion beam has a width of 169 mm on a downstream wafer. Simulation results show that the "spreading" of the ion beam causes ion loss and a wider ion beam spot on the downstream wafer. The ion beam spot must be larger than the wafer scanning and reduce process throughput.

相較下,圖13B顯示一具有30keV的能量及25mA的電流之模擬離子束通過依據本教示之一E-bend,該E-bend係由3個電極對1302、1304及1306所構成,其中該等電極對1302及1306之內電極維持在-25kV的電壓及那些電極對之外電極維持在-13.65kV的電壓。使該電極對1304之內電極接地及它的外電極維持在+16kV的電壓。模擬結果顯示由3個個別電極對所構成的該E-bend防止該離子束之散開及在沒有離子損失下允許該離子束橫越該彎管及該等下游組件。 In comparison, FIG. 13B shows a simulated ion beam with an energy of 30 keV and a current of 25 mA passing through an E-bend according to one of the teachings. The E-bend is composed of three electrode pairs 1302, 1304, and 1306. The electrodes inside the electrode pairs 1302 and 1306 were maintained at a voltage of -25 kV and those outside the electrode pairs were maintained at a voltage of -13.65 kV. The inner electrode of this electrode pair 1304 is grounded and its outer electrode is maintained at a voltage of + 16kV. The simulation results show that the E-bend composed of 3 individual electrode pairs prevents the ion beam from spreading and allows the ion beam to cross the elbow and the downstream components without ion loss.

再次參考圖11A、11B及11C,在此具體例中,該電極218a包括一配置在該內電極218b之下游側且與其(例如,經由一間隙)電隔離的內電極部219。在此具體例中,使該電極部219在它的頂端及底端處耦接至該電極218a之外電極部,以便構成一完整矩形出口電極,該完整矩形出口電極在該E-bend之出口處的該帶狀離子束之周圍附近界定一大致均勻電位,以便維持該離子束之帶狀。該離子植入系統1100進一步包括另一任選校正裝置220,其配置在該靜電彎管之下游側,以便調整該離子束沿著它縱向尺寸(在該非分散平面中)的電流密度。另一聚焦元件222係任選地配置在該第二校正裝置之下游側。該離子植入系統進一步包括相對接地電極部224a及224b,該等相對接地電極部224a及224b構成一可讓 該離子束通過以進入一終端站226之電接地導管,其中在該終端站226中保持一晶圓228,以便使它暴露於該離子束。 Referring again to FIGS. 11A, 11B, and 11C, in this specific example, the electrode 218a includes an internal electrode portion 219 disposed downstream of the internal electrode 218b and electrically isolated from the internal electrode portion 218 (eg, via a gap). In this specific example, the electrode portion 219 is coupled to the electrode portion outside the electrode 218a at its top and bottom ends so as to form a complete rectangular outlet electrode, and the complete rectangular outlet electrode is at the exit of the E-bend. A substantially uniform potential is defined near the periphery of the band-shaped ion beam at the same position so as to maintain the band shape of the ion beam. The ion implantation system 1100 further includes another optional correction device 220 configured on the downstream side of the electrostatic elbow to adjust the current density of the ion beam along its longitudinal dimension (in the non-dispersed plane). The other focusing element 222 is optionally disposed on the downstream side of the second correction device. The ion implantation system further includes opposing ground electrode portions 224a and 224b, and the opposing ground electrode portions 224a and 224b constitute a The ion beam passes through an electrically grounded conduit to enter an end station 226 in which a wafer 228 is held in the end station 226 so as to expose it to the ion beam.

一由這3個個別電極對所構成之E-bend的使用並非侷限於使用帶狀離子束之離子植入系統。更確切來說,這樣的E-bend亦可以運用在例如使用圓形離子束之其它離子植入系統中的一減速系統之下游側。本教示之另一態樣係有關於在該離子植入系統之一靜電彎管的下游側所配置之一做為出口透鏡的對切透鏡(split lens)之使用。 The use of an E-bend consisting of these three individual electrode pairs is not limited to an ion implantation system using a ribbon ion beam. More precisely, such an E-bend can also be used on the downstream side of a deceleration system in, for example, other ion implantation systems using circular ion beams. Another aspect of the present teaching relates to the use of a split lens as an exit lens disposed on the downstream side of an electrostatic elbow of the ion implantation system.

例如,圖14A及14B係這樣的植入系統300之部分示意圖,相似於上述植入系統10之該植入系統300包括一用以從一上游質量分析器(未顯示)接收一質量選擇離子束的孔302。該離子植入系統300進一步包括一校正裝置304、一配置在該校正裝置304之下游側的減速/加速系統306及一配置在該減速/加速系統之下游側的靜電彎管308。在此具體例中,該靜電彎管周括一彎曲外電極308a及一彎曲內電極308b,其中在這些電極間之電壓差的施加導致在其間的空間中產生電場,以便使一在該等電極間通過之離子束彎曲。 For example, FIGS. 14A and 14B are partial schematic diagrams of an implantation system 300 similar to the implantation system 10 described above. The implantation system 300 includes a mass selective ion beam from an upstream mass analyzer (not shown).的 孔 302。 The hole 302. The ion implantation system 300 further includes a correction device 304, a deceleration / acceleration system 306 disposed on the downstream side of the correction device 304, and an electrostatic elbow 308 disposed on the downstream side of the deceleration / acceleration system. In this specific example, the electrostatic elbow includes a curved external electrode 308a and a curved internal electrode 308b, wherein the application of a voltage difference between these electrodes causes an electric field to be generated in the space therebetween, so that an The passing ion beam is bent.

不像上述離子植入系統10,在此具體例中,在該靜電彎管308之下游側配置一對切透鏡310。該對切透鏡310包括一對電極312及另一對電極314,其中該電極對312包括一彎曲下游端面312a及該電極對314包括一彎曲上游端面314a。該等電極對之兩個彎曲端面藉由其間的彎曲間隙316而彼此分離。在一些具體例中,該等透鏡312及314之每一彎曲端面的特徵在於在約250mm至約1000mm之範圍內的曲率半徑(例如,對於電極對312而言, 顯示為R1)。 Unlike the above-mentioned ion implantation system 10, in this specific example, a pair of tangent lenses 310 are arranged on the downstream side of the electrostatic elbow 308. The tandem lens 310 includes a pair of electrodes 312 and another pair of electrodes 314, wherein the electrode pair 312 includes a curved downstream end surface 312a and the electrode pair 314 includes a curved upstream end surface 314a. The two curved end faces of the electrode pairs are separated from each other by a bending gap 316 therebetween. In some specific examples, each of the curved end faces of the lenses 312 and 314 is characterized by a radius of curvature in a range of about 250 mm to about 1000 mm (for example, for electrode pair 312, (Shown as R1).

可以獨立地使該等電極對312及314偏壓成不同的電位。例如,可以施加電位V1至該電極對312及可以施加另一電位V2至該電極對314。如果V1及V2被選擇成使得V1>V2,則可以形成一強垂直散焦透鏡(strong vertically de-focusing lens)。另一方面,如果V1<V2,則可以形成一強垂直聚焦透鏡(strong vertically focusing lens)。舉例來說,該等電位V1及V2可以在約0V至約-20kV之範圍內。在一些實施中,縱使該靜電彎管之電極維持在較高電位,可以選擇V1及V2成接近接地電位(例如,在約0V至約-5kV之範圍內)。當在減速模式操作該離子植入系統時,此可以有助於降低及較佳地去除能量污染(energy contamination)。 The electrode pairs 312 and 314 can be independently biased to different potentials. For example, a potential V 1 may be applied to the electrode pair 312 and another potential V 2 may be applied to the electrode pair 314. If V 1 and V 2 are selected such that V 1 > V 2 , a strong vertically de-focusing lens can be formed. On the other hand, if V 1 <V 2 , a strong vertically focusing lens can be formed. For example, the potentials V 1 and V 2 may be in a range of about 0V to about -20 kV. In some implementations, even though the electrode of the electrostatic elbow is maintained at a high potential, V 1 and V 2 may be selected to be close to the ground potential (for example, in a range of about 0V to about -5kV). This can help reduce and better remove energy contamination when operating the ion implantation system in a deceleration mode.

更具體地,在一些情況下,當在該E-bend之下游側使用一傳統透鏡而不是該對切透鏡時,可能需要施加高電壓至該透鏡之電極,以便提供高能量離子束(例如,具有在約30keV至60keV之範圍內的能量之離子束)之垂直聚焦。當該離子束通過該透鏡時,這樣的高電壓會導致該離子束之能量的暫時增加,此轉而造成某些離子在橫越該透鏡時遭遇電荷交換反應。因為該透鏡相對於一下游晶圓通常配置在直的視線上,所以這樣的電荷交換反應會導致被植入該下游晶圓中之中性原子/分子的形成。此外,施加高電壓至該透鏡之電極,會導致電弧形成,此會造成該離子束短暫的不穩定性。 More specifically, in some cases, when a conventional lens is used on the downstream side of the E-bend instead of the dicing lens, it may be necessary to apply a high voltage to the electrode of the lens in order to provide a high-energy ion beam (for example, Ion beams with an energy in the range of about 30 keV to 60 keV) for vertical focusing. When the ion beam passes through the lens, such a high voltage will cause a temporary increase in the energy of the ion beam, which in turn will cause some ions to experience a charge exchange reaction as they cross the lens. Because the lens is usually disposed in a straight line of sight with respect to a downstream wafer, such a charge exchange reaction will result in the formation of neutral atoms / molecules implanted in the downstream wafer. In addition, the application of high voltage to the electrodes of the lens can cause arcing, which can cause transient instability of the ion beam.

諸如上述透鏡310之對切透鏡可以改善該E-bend之垂直聚焦能力,同時減少及較佳地去除因電弧所造成的離子束不穩定性及中性原子/分子之產生所造成的離子束污染。例如,該對切透 鏡之電極的端面之曲率半徑可以足夠小(例如,取決於離子速高度而定,在約250mm至約500mm之範圍內,例如,對於300m高的離子束,該曲率半徑可以是約450mm),以在更低透鏡電壓下垂直地允許離子束之聚焦/散焦。舉例來說,對於60keV的離子束,V1可以是約-10Kv及V2可以是0V,它們比在使用傳統透鏡之系統中要達成相似聚焦效應所需的電壓要低很多。 A tangent lens such as the above-mentioned lens 310 can improve the vertical focusing ability of the E-bend, while reducing and better removing ion beam contamination caused by arc beam instability and generation of neutral atoms / molecules . For example, the radius of curvature of the end face of the electrode of the tangent lens may be sufficiently small (for example, depending on the height of the ion velocity, in the range of about 250mm to about 500mm, for example, for an ion beam of 300m high, the radius of curvature may be Is about 450mm) to allow focusing / defocusing of the ion beam vertically at lower lens voltages. For example, for the 60keV beam, V 1 may be about -10Kv 0V and V 2 may be, they are much lower than in the conventional lens system to reach the voltage required for focusing effect similar.

繼續參考圖14A及14B,在該對切透鏡310之下游側配置一校正裝置317,以便調整離子束沿著它的縱向尺寸(在該非分散平面中)之電流密度。可以在該第二校正裝置之下游側任選地配置另一聚焦元件318。該離子植入系統進一步包括一接地電極320,其構成一可讓該離子束通過以進入一終端站(未顯示)之電接地導管,其中在該終端站中保持一晶圓(未顯示),以便使它暴露於該離子束。 With continued reference to FIGS. 14A and 14B, a correction device 317 is disposed downstream of the tandem lens 310 to adjust the current density of the ion beam along its longitudinal dimension (in the non-dispersion plane). A further focusing element 318 may be optionally arranged on the downstream side of the second correction device. The ion implantation system further includes a ground electrode 320, which constitutes an electrical grounding duct through which the ion beam can pass to enter a terminal station (not shown), wherein a wafer (not shown) is held in the terminal station, In order to expose it to the ion beam.

使用該對切透鏡310之另一優點在於:它允許緊接在該校正裝置317後發生空間電荷中和。相較之下,在使用像透鏡318而不是該對切透鏡310之傳統透鏡的系統中,空間電荷中和之離子束輸送之開始可能被移至該接地導管電極320深處,此可能在高電流下導致離子束散開。 Another advantage of using the tandem lens 310 is that it allows space charge neutralization to occur immediately after the correction device 317. In contrast, in a system using a conventional lens like lens 318 instead of the tandem lens 310, the beginning of space charge neutralization ion beam transport may be moved deeper into the grounded catheter electrode 320, which may be higher The current causes the ion beam to spread.

亦可以在一包括3個電極對之E-bend(例如,上述之E-bend 212)的下游側使用一依據本教示之對切透鏡(例如,上述對切透鏡310)。舉例來說,圖15顯示這樣的離子植入系統400之部分示意圖,該離子植入系統400包括一用以接收一離子束之狹縫402、一校正裝置404、一減速/加速系統406、一由3個個別電極對所構成之E-bend 408、一對切透鏡410、另一校正裝置412、一聚 焦電極414及一用以提供一用於該離子束進入一內部配置有晶圓之終端端的導管之接地電極416。被施加至該E-bend 408之電極的電壓可以在上述關於該E-bend 212之範圍內。 It is also possible to use a tangent lens (for example, the above-mentioned tangent lens 310) on the downstream side of an E-bend (for example, the above-mentioned E-bend 212) including three electrode pairs. For example, FIG. 15 shows a partial schematic diagram of an ion implantation system 400 including a slit 402 for receiving an ion beam, a correction device 404, a deceleration / acceleration system 406, a E-bend 408 consisting of three individual electrode pairs, a pair of tangential lenses 410, another correction device 412, a poly A focal electrode 414 and a ground electrode 416 for providing a conduit for the ion beam to enter a terminal inside which a wafer is disposed. The voltage applied to the electrodes of the E-bend 408 may be in the range described above with respect to the E-bend 212.

在此技術領域中具有通常技術之人士將察覺到可以在不脫離本發明之範圍內對上述具體例實施各種變更。 Those having ordinary skill in this technical field will perceive that various changes can be made to the above-mentioned specific embodiments without departing from the scope of the present invention.

10‧‧‧離子植入系統 10‧‧‧ ion implantation system

12‧‧‧離子源 12‧‧‧ ion source

14‧‧‧引出電極 14‧‧‧ lead-out electrode

16‧‧‧抑制電極 16‧‧‧Suppression electrode

18‧‧‧聚焦電極 18‧‧‧ focusing electrode

19‧‧‧接地電極 19‧‧‧ ground electrode

20‧‧‧分析磁鐵 20‧‧‧ Analysis Magnet

20a‧‧‧可變大小質量解析孔 20a‧‧‧Variable size mass analysis hole

22‧‧‧校正系統(減速/加速系統) 22‧‧‧correction system (deceleration / acceleration system)

24‧‧‧終端站 24‧‧‧Terminal

25‧‧‧基板保持器 25‧‧‧ substrate holder

26‧‧‧基板 26‧‧‧ substrate

42‧‧‧校正裝置 42‧‧‧calibration device

46‧‧‧減速/加速元件 46‧‧‧Deceleration / acceleration element

48‧‧‧聚焦元件 48‧‧‧ focusing element

50‧‧‧間隙區域 50‧‧‧Gap area

52‧‧‧靜電彎管 52‧‧‧Static elbow

54‧‧‧校正裝置 54‧‧‧correction device

56‧‧‧聚焦元件 56‧‧‧ focusing element

60‧‧‧接地元件 60‧‧‧ grounding element

Claims (20)

一種離子植入系統,其包括:一減速系統,其配置成用以接收一離子束並以至少2的減速比使該離子束減速;一靜電彎管,其配置在該減速系統之下游側,用以造成該離子束之偏向;該靜電彎管包括:一第一電極對,其配置在該減速系統之下游側,用以接收該減速離子束,該第一電極對具有分隔開之一內電極及一外電極,以允許該離子束在其間通過;一第二電極對,其配置在該第一電極對之下游側且具有分隔開之一內電極及一外電極,以允許該離子束在其間通過;以及一最後電極對,其配置在該第一電極對之下游側且具有分隔開之一內電極及一外電極,以允許該離子束在其間通過,其中該等電極對係配置成可被獨立地偏壓。 An ion implantation system includes: a deceleration system configured to receive an ion beam and decelerate the ion beam with a deceleration ratio of at least 2; and an electrostatic elbow disposed on a downstream side of the deceleration system, Used to cause the ion beam to be deflected; the electrostatic elbow includes: a first electrode pair arranged on the downstream side of the deceleration system to receive the decelerated ion beam, the first electrode pair has one spaced apart An internal electrode and an external electrode to allow the ion beam to pass therebetween; a second electrode pair disposed on the downstream side of the first electrode pair and having an internal electrode and an external electrode spaced apart to allow the An ion beam passes therebetween; and a final electrode pair disposed on the downstream side of the first electrode pair and having an inner electrode and an outer electrode spaced apart to allow the ion beam to pass therethrough, wherein the electrodes The pairs are configured to be independently biased. 如請求項1之離子植入系統,其中,該最後電極對之每一電極保持在小於該第二電極對之任一電極所保持的電位之電位及該第一電極對之電極相對於該第二電極對之電極保持在較低電位。 The ion implantation system of claim 1, wherein each electrode of the last electrode pair is maintained at a potential smaller than the potential held by any electrode of the second electrode pair and the electrode of the first electrode pair is relative to the first electrode pair. The electrodes of the two electrodes are kept at a low potential. 如請求項1之離子植入系統,其中,該減速比係在約5至約100之範圍內。 The ion implantation system of claim 1, wherein the reduction ratio is in a range of about 5 to about 100. 如請求項2之離子植入系統,其中,該等電極對之每一者的內電極保持在小於那個電極對之個別外電極所保持的電位之電位。 The ion implantation system of claim 2, wherein the inner electrode of each of the electrode pairs is maintained at a potential that is less than the potential held by the individual outer electrodes of that electrode pair. 如請求項2之離子植入系統,其中,該等第一及最後電極對之外電極保持在一第一電位(V1)及該等第一及最後電極對之內電極保 持在一第二電位(V2)。 The ion implantation system of claim 2, wherein the outer electrodes of the first and last electrode pairs are maintained at a first potential (V 1 ) and the inner electrodes of the first and last electrode pairs are maintained at a second Potential (V 2 ). 如請求項5之離子植入系統,其中,該第二電極對之內電極電接地及該第二電極對之外電極保持在一第三電位(V3)。 The ion implantation system of claim 5, wherein the inner electrode of the second electrode pair is electrically grounded and the outer electrode of the second electrode pair is maintained at a third potential (V 3 ). 如請求項5之離子植入系統,其中,V1比V2高。 The ion implantation system of claim 5, wherein V 1 is higher than V 2 . 如請求項1之離子植入系統,其中,該減速系統包括一減速元件,其與一下游聚焦元件分離,以便在其間界定一間隙。 The ion implantation system of claim 1, wherein the speed reduction system includes a speed reduction element separated from a downstream focusing element so as to define a gap therebetween. 如請求項1之離子植入系統,進一步包括一用以產生該離子束之離子源。 The ion implantation system of claim 1, further comprising an ion source for generating the ion beam. 如請求項1之離子植入系統,進一步包括配置在該離子源之下游側及該減速系統之上游側的一分析磁鐵,用以接收該離子源所產生之該離子束及產生一質量選擇離子束。 The ion implantation system as claimed in claim 1, further comprising an analysis magnet disposed downstream of the ion source and upstream of the deceleration system, for receiving the ion beam generated by the ion source and generating a mass-selective ion bundle. 如請求項1之離子植入系統,進一步包括一配置在該靜電彎管之下游側的對切透鏡,該對切透鏡包括:一第一電極對,其具有一彎曲下游端面;一第二電極對,其具有一彎曲上游端面,其中該兩個電極對之端面彼此分離,以在其間形成一間隙。 The ion implantation system according to claim 1, further comprising a tangential lens disposed on a downstream side of the electrostatic elbow, the tangential lens comprising: a first electrode pair having a curved downstream end surface; a second electrode The pair has a curved upstream end surface, wherein the end surfaces of the two electrode pairs are separated from each other to form a gap therebetween. 如請求項11之離子植入系統,其中,該對切透鏡之第一及第二電極對係配置成可被獨立地偏壓。 The ion implantation system of claim 11, wherein the first and second electrode pairs of the tangent lens are configured to be independently biased. 如請求項12之離子植入系統,其中,該對切透鏡之第一及第二電極對被偏壓,以便在該間隙中產生一用以使通過該對切透鏡之該離子束聚焦的電場。 The ion implantation system of claim 12, wherein the first and second electrode pairs of the tangent lens are biased to generate an electric field in the gap to focus the ion beam passing through the tangent lens. . 一種離子植入系統,其包括:一靜電彎管,其用以造成一離子束之偏向;該靜電彎管包括: 一第一電極對,其具有分隔開之一內電極及一外電極,以允許該離子束在其間通過;一第二電極對,其配置在該第一電極對之下游側且具有分隔開之一內電極及一外電極,以允許該離子束在其間通過;以及一最後電極對,其配置在該第二電極對之下游側且具有分隔開之一內電極及一外電極,以允許該離子束在其間通過,其中該最後電極對之每一電極保持在小於該第二電極對之任一電極所保持的電位之電位及該第一電極對之電極相對於該第二電極對之電極保持在較低電位,以及其中該等電極對之每一者的內電極保持在小於那個電極對之個別外電極所保持的電位之電位。 An ion implantation system includes: an electrostatic elbow for biasing an ion beam; the electrostatic elbow includes: A first electrode pair having an internal electrode and an external electrode separated to allow the ion beam to pass therebetween; a second electrode pair disposed on a downstream side of the first electrode pair and having a partition An internal electrode and an external electrode, to allow the ion beam to pass therebetween; and a final electrode pair, which is arranged on the downstream side of the second electrode pair and has an internal electrode and an external electrode separated, To allow the ion beam to pass therethrough, wherein each electrode of the last electrode pair is maintained at a potential that is less than the potential held by any electrode of the second electrode pair and the electrode of the first electrode pair is opposite the second electrode The opposing electrodes are held at a lower potential, and the inner electrode of each of these electrode pairs is maintained at a potential that is less than the potential held by the individual outer electrodes of that electrode pair. 如請求項14之離子植入系統,其中,該等第一及最後電極對之外電極保持在一第一電位(V1)及該等第一及最後電極對之內電極保持在一第二電位(V2)。 The ion implantation system of claim 14, wherein the outer electrodes of the first and last electrode pairs are maintained at a first potential (V 1 ) and the inner electrodes of the first and last electrode pairs are maintained at a second Potential (V 2 ). 如請求項15之離子植入系統,其中,該第二電極對之內電極電接地及該第二電極對之外電極保持在一第三電位(V3)。 The ion implantation system of claim 15, wherein the inner electrode of the second electrode pair is electrically grounded and the outer electrode of the second electrode pair is maintained at a third potential (V 3 ). 如請求項16之離子植入系統,其中,V1比V2高。 The ion implantation system of claim 16, wherein V 1 is higher than V 2 . 一種離子植入系統,其包括:一靜電彎管,其用以接收一離子束及造成該離子束之偏向;一對切透鏡,其配置在該靜電彎管之下游側,該對切透鏡包括:一第一電極對,其具有一彎曲下游端面;一第二電極對,其具有一彎曲上游端面,其中該等第一及第二電極對係配置成可獨立地偏壓,以及該兩個電極對之端面彼此分離,以在其間形成一間隙。 An ion implantation system includes: an electrostatic elbow for receiving an ion beam and causing the ion beam to be deflected; a pair of tangential lenses configured at a downstream side of the electrostatic elbow, the pair of tangent lenses including : A first electrode pair having a curved downstream end face; a second electrode pair having a curved upstream end face, wherein the first and second electrode pairs are configured to be independently biased, and the two The end faces of the electrode pairs are separated from each other to form a gap therebetween. 如請求項18之離子植入系統,其中,該等第一及第二電極對被偏壓,以便在該間隙中產生一用以使通過該對切透鏡之該離子束聚焦的電場。 The ion implantation system of claim 18, wherein the first and second electrode pairs are biased so as to generate an electric field in the gap to focus the ion beam passing through the tandem lens. 如請求項18之離子植入系統,其中,該靜電彎管包括:一第一電極對,其配置在該減速系統之下游側,用以接收該減速離子束,該第一電極對具有一內電極及一外電極彼此隔開,以允許該離子束在其間通過;一第二電極對,其配置在該第一電極對之下游側且具有分隔開之一內電極及一外電極,以允許該離子束在其間通過;以及一最後電極對,其配置在該第一電極對之下游側且具有分隔開之一內電極及一外電極,以允許該離子束在其間通過,其中該等電極對係配置成可獨立地被偏壓。 The ion implantation system of claim 18, wherein the electrostatic elbow comprises: a first electrode pair, which is arranged on the downstream side of the deceleration system to receive the deceleration ion beam, the first electrode pair has an inner An electrode and an external electrode are separated from each other to allow the ion beam to pass therebetween; a second electrode pair is disposed on the downstream side of the first electrode pair and has an internal electrode and an external electrode spaced apart to Allowing the ion beam to pass therebetween; and a final electrode pair disposed on the downstream side of the first electrode pair and having an internal electrode and an external electrode spaced apart to allow the ion beam to pass therethrough, wherein the The equal electrode pairs are configured to be independently biased.
TW105115943A 2015-08-20 2016-05-23 Ion beam line TWI618110B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14/831,225 US9502213B2 (en) 2013-03-15 2015-08-20 Ion beam line
US14/831,225 2015-08-20

Publications (2)

Publication Number Publication Date
TW201709252A TW201709252A (en) 2017-03-01
TWI618110B true TWI618110B (en) 2018-03-11

Family

ID=58203125

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105115943A TWI618110B (en) 2015-08-20 2016-05-23 Ion beam line

Country Status (3)

Country Link
JP (1) JP6428726B2 (en)
CN (1) CN106469634B (en)
TW (1) TWI618110B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6774603B2 (en) 2017-03-06 2020-10-28 株式会社Jvcケンウッド Laser light irradiation detection device, laser light irradiation detection method, laser light irradiation detection system
US10074514B1 (en) * 2017-09-08 2018-09-11 Varian Semiconductor Equipment Associates, Inc. Apparatus and method for improved ion beam current
JP6933962B2 (en) * 2017-11-22 2021-09-08 住友重機械イオンテクノロジー株式会社 Ion implanter and control method of ion implanter

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5177366A (en) * 1992-03-06 1993-01-05 Eaton Corporation Ion beam implanter for providing cross plane focusing
US20100065761A1 (en) * 2008-09-17 2010-03-18 Axcelis Technologies, Inc. Adjustable deflection optics for ion implantation
US7989784B2 (en) * 2009-06-30 2011-08-02 Twin Creeks Technologies, Inc. Ion implantation apparatus and a method
TW201214500A (en) * 2010-06-28 2012-04-01 Varian Semiconductor Equipment Deceleration lens
US20130042809A1 (en) * 2011-08-17 2013-02-21 Nissin Ion Equipment Co., Ltd. Ion implanter
TWI489515B (en) * 2013-03-15 2015-06-21 Nissin Ion Equipment Co Ltd Ion beam line

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5780863A (en) * 1997-04-29 1998-07-14 Eaton Corporation Accelerator-decelerator electrostatic lens for variably focusing and mass resolving an ion beam in an ion implanter
US6998625B1 (en) * 1999-06-23 2006-02-14 Varian Semiconductor Equipment Associates, Inc. Ion implanter having two-stage deceleration beamline
US20050061997A1 (en) * 2003-09-24 2005-03-24 Benveniste Victor M. Ion beam slit extraction with mass separation
JP4133883B2 (en) * 2003-12-04 2008-08-13 日新イオン機器株式会社 Ion beam equipment
JP4747876B2 (en) * 2006-02-17 2011-08-17 日新イオン機器株式会社 Ion beam irradiation equipment
JP4305489B2 (en) * 2006-10-11 2009-07-29 日新イオン機器株式会社 Ion implanter
US8124946B2 (en) * 2008-06-25 2012-02-28 Axcelis Technologies Inc. Post-decel magnetic energy filter for ion implantation systems

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5177366A (en) * 1992-03-06 1993-01-05 Eaton Corporation Ion beam implanter for providing cross plane focusing
US20100065761A1 (en) * 2008-09-17 2010-03-18 Axcelis Technologies, Inc. Adjustable deflection optics for ion implantation
US7989784B2 (en) * 2009-06-30 2011-08-02 Twin Creeks Technologies, Inc. Ion implantation apparatus and a method
TW201214500A (en) * 2010-06-28 2012-04-01 Varian Semiconductor Equipment Deceleration lens
US20130042809A1 (en) * 2011-08-17 2013-02-21 Nissin Ion Equipment Co., Ltd. Ion implanter
TWI489515B (en) * 2013-03-15 2015-06-21 Nissin Ion Equipment Co Ltd Ion beam line

Also Published As

Publication number Publication date
CN106469634B (en) 2018-04-10
CN106469634A (en) 2017-03-01
JP6428726B2 (en) 2018-11-28
TW201709252A (en) 2017-03-01
JP2017041441A (en) 2017-02-23

Similar Documents

Publication Publication Date Title
US9142386B2 (en) Ion beam line
TWI486992B (en) An ion implantation system, an electric deflection apparatus for use in a beam line within the same and a method of implanting ions
US9281162B2 (en) Single bend energy filter for controlling deflection of charged particle beam
TWI638379B (en) Ion implantation systems and methods for reducing particle contamination
JP2008503067A (en) Ion beam scanning system and method for improved ion implantation homogenization
TW201630032A (en) Combined electrostatic lens system for ion implantation
TWI732817B (en) Apparatus and method for contamination control in ion beam apparatus
TW201635326A (en) Systems and methods for beam angle adjustment in ion implanters with beam deceleration
TWI618110B (en) Ion beam line
CN113169011A (en) Scanning and corrector magnet design for high throughput scanned beam ion implanters
CN111492455A (en) Apparatus and method for controlling ion beam characteristics using energy filter
US9502213B2 (en) Ion beam line
TWI597760B (en) Ion beam scanning assembly
KR102440710B1 (en) Ion implantation apparatus and ion implantation method
US20100252746A1 (en) End terminations for electrodes used in ion implantation systems
US9396903B1 (en) Apparatus and method to control ion beam current
US10074514B1 (en) Apparatus and method for improved ion beam current
US10804068B2 (en) Electostatic filter and method for controlling ion beam properties using electrostatic filter
US11651932B1 (en) Mismatched optics for angular control of extracted ion beam