TWI617995B - Method for checking the vision position of a robot - Google Patents

Method for checking the vision position of a robot Download PDF

Info

Publication number
TWI617995B
TWI617995B TW105136198A TW105136198A TWI617995B TW I617995 B TWI617995 B TW I617995B TW 105136198 A TW105136198 A TW 105136198A TW 105136198 A TW105136198 A TW 105136198A TW I617995 B TWI617995 B TW I617995B
Authority
TW
Taiwan
Prior art keywords
robot
positioning
image
visual
posture
Prior art date
Application number
TW105136198A
Other languages
Chinese (zh)
Other versions
TW201818294A (en
Inventor
何世池
黃鐘賢
翁鈺現
吳如峰
王培睿
Original Assignee
廣明光電股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 廣明光電股份有限公司 filed Critical 廣明光電股份有限公司
Priority to TW105136198A priority Critical patent/TWI617995B/en
Priority to CN201710845601.6A priority patent/CN108015762B/en
Application granted granted Critical
Publication of TWI617995B publication Critical patent/TWI617995B/en
Publication of TW201818294A publication Critical patent/TW201818294A/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1679Programme controls characterised by the tasks executed
    • B25J9/1692Calibration of manipulator
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/39Robotics, robotics to robotics hand
    • G05B2219/39024Calibration of manipulator

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)
  • Numerical Control (AREA)

Abstract

一種機器人視覺定位的驗證方法,在機器人校正視覺定位後,補償設定的機器人驗證姿態,以補償姿態擷取工作環境中形狀特徵影像,與基準特徵影像比較影像差異值,在影像差異值大於預設差異閥值時,重新進行視覺定位,以確保視覺定位的正確。 A method for verifying the visual positioning of a robot. After the robot corrects the visual positioning, it compensates the set robot verification posture to capture the shape feature image in the working environment by compensating the posture, compares the image difference value with the reference feature image, and the image difference value is greater than a preset When the threshold is different, the visual positioning is performed again to ensure the correct visual positioning.

Description

機器人視覺定位的驗證方法 Verification method of robot vision positioning

本發明有關一種機器人,尤其關於工業機器人利用視覺系統擷取影像,定位作業位置,再行驗證定位的方法。 The invention relates to a robot, in particular to a method for industrial robots to capture images using a vision system, locate a work position, and then verify the positioning.

機器人具有靈活移動、精確定位及連續性作業的特性,已成為產品生產線上製造組裝的最佳利器。而彈性化機器人的作業,讓機器人快速切換生產線,有效率的生產各種產品,已成為提升機器人生產效率的重要課題。 The robot has the characteristics of flexible movement, precise positioning and continuous operation, and has become the best weapon for manufacturing and assembly on product production lines. Flexible operation of the robot, allowing the robot to quickly switch production lines and efficiently produce various products, has become an important issue to improve the production efficiency of robots.

先前技術的機器人將周邊治具設置成相對的固定關係,使機器人與工件、工作台面維持在一定的相對關係,以利機器人取放處理工件。但此種固定關係的方法,包含機器人在內的整個作業單位固定化,需要依賴大量的精準機械治具,以及機械結合始能形成相對的固定關係。一旦生產的工件及處理程序改變,作業單位中所有的機械治具、機械結合、相對固定關係及作業點位都必須精準重新教導設立,而且機器人固定於作業單位中,難以再移作他用,無法彈性調度機器人,缺乏使用彈性。 The prior art robot sets the peripheral fixtures in a relatively fixed relationship, so that the robot maintains a certain relative relationship with the workpiece and the work surface, so that the robot can pick up and process the workpiece. However, this method of fixed relationship, which fixes the entire operating unit including the robot, requires a large number of precise mechanical fixtures, and the mechanical combination can form a relatively fixed relationship. Once the produced workpieces and processing procedures change, all mechanical fixtures, mechanical combinations, relatively fixed relationships, and operating points in the operating unit must be accurately re-taught and set up, and the robot is fixed in the operating unit and it is difficult to use it for other purposes. The robot cannot be scheduled flexibly, and it lacks flexibility in use.

因此,另有先前技術增加機器人的使用彈性,例如本國公告TW385269專利案,將機器人載於可移動的台車上,在生產線上各作業單位間移動切換工作。為解決台車每次移動到每一作業單位的定位,因工作台 面、地板及台車等水平度三者不一的狀況,造成機器人與工作台面3維空間的不確定關係。先前技術利用在工作台面設置定位標記,搭配機器人的視覺系統,讓機器人在開始工作前,自動完成機器人座標系統與工作台面之3維空間的定位。因此機器人所有在該工作台面的教導的作業點位,將隨定位結果,重新建立原有相對的固定關係,以遂行預設的自動化作業。 Therefore, there are other previous technologies that increase the flexibility of using robots. For example, the national patent TW385269 patent case puts the robot on a movable trolley and moves and switches between working units on the production line. In order to solve the positioning of the trolley to each operating unit every time, due to the workbench The three levels of surface, floor, and trolley are inconsistent, resulting in an uncertain relationship between the robot and the work surface in three dimensions. In the prior art, a positioning mark was set on the work surface and the robot's vision system was used to allow the robot to automatically complete the positioning of the three-dimensional space of the robot coordinate system and the work surface before starting work. Therefore, all of the robot's teaching operation points on the work surface will re-establish the original relative fixed relationship with the positioning results to perform the preset automatic operation.

然而,前述先前技術利用視覺系統進行空間定位之技術,常因視覺系統本身的誤差、工作環境及光影等的影響,使其定位精度造成偏差,難以完全避免視覺系統辨識誤判狀況。而在視覺系統發生辨識誤判時,將產生錯誤的定位結果,因而影響所有教導點位的自動化作業,以致常造成撞機、工件加工精度不足或損毀工件的困擾。因此,如何確保機器人的視覺定位的正確,是亟待解決的問題。 However, the aforementioned prior art uses a vision system for spatial positioning, often due to the error of the vision system itself, the working environment, light and shadow, etc., causing its positioning accuracy to deviate, and it is difficult to completely avoid the misidentification of the vision system. However, when a misidentification occurs in the vision system, an incorrect positioning result will be generated, which will affect the automatic operation of all teaching points, which will often cause collisions, inadequate machining accuracy or damage to the workpiece. Therefore, how to ensure the correct visual positioning of the robot is an urgent problem.

本發明的目的提供一種機器人視覺定位的驗證方法,在視覺定位後,藉由補償設定機器人驗證姿態擷取工作環境中形狀特徵的影像,與教導的基準特徵影像比較差異,以驗證視覺定位的正確性。 The object of the present invention is to provide a method for verifying the visual positioning of a robot. After the visual positioning, the image of the shape feature in the working environment is captured by compensating and setting the robot verification posture, and the difference is compared with the taught reference feature image to verify the correct visual positioning. Sex.

本發明的另一目的提供一種機器人視覺定位的驗證方法,利用擷取特徵影像與基準特徵影像的差異,預設影像差異閥值,在影像差異大於差異閥值時,重新進行視覺定位,以確保視覺定位的正確。 Another object of the present invention is to provide a method for verifying the visual positioning of a robot. By using the difference between a captured feature image and a reference feature image, a preset image difference threshold is preset, and when the image difference is greater than the difference threshold, visual positioning is performed again to ensure Visual positioning is correct.

為了達到前述發明的目的,本發明機器人視覺定位的驗證方法,在教導機器人建立及記錄視覺定位基準後,機器人移動進入設定位置,自動控制移動至視覺定位基準記錄的基準姿態,對定位標記擷取定位標記影像,影像處理及比較擷取的定位標記影像與視覺定位基準記錄的基準定 位標記影像的差異,並利用影像差異進行補償校正機器人的定位,對視覺定位基準記錄的驗證姿態進行相同的補償,形成補償姿態,機器人自動控制移動至補償姿態,對形狀特徵擷取特徵影像,影像處理及比較擷取的特徵影像與視覺定位基準記錄的基準特徵影像中形狀特徵的影像差異值,檢查影像差異值不小於預設差異閥值,則重新開始視覺定位驗證。檢查影像差異值小於預設差異閥值,則完成視覺定位驗證作業。 In order to achieve the purpose of the foregoing invention, the method for verifying the visual positioning of a robot of the present invention teaches the robot to establish and record a visual positioning reference, and the robot moves into a set position, automatically controls the movement to the reference posture recorded by the visual positioning reference, and captures positioning marks. Anchor mark image, image processing and comparison of the captured anchor mark image with the reference setting of the visual positioning reference record Mark the difference of the image, and use the image difference to compensate and correct the positioning of the robot, and make the same compensation for the verification posture of the visual positioning reference record to form the compensation posture. The robot automatically controls the movement to the compensation posture, and captures the feature image for the shape feature. Image processing and comparison of the difference value of the shape feature between the extracted feature image and the reference feature image recorded by the visual positioning reference. Check that the image difference value is not less than the preset difference threshold, and then restart the visual positioning verification. Check that the image difference value is less than the preset difference threshold, and then complete the visual positioning verification operation.

在教導機器人建立及記錄視覺定位基準時,移動機器人進入設定位置,牽引機器人至第一點位,以基準姿態擷取定位標記影像,作為基準定位標記影像,記錄基準定位標記影像及機器人的基準姿態,牽引機器人至第二點位,以驗證姿態擷取工作環境中任一形狀特徵的影像,作為基準特徵影像,記錄基準特徵影像及機器人的驗證姿態,完成建立視覺定位基準。 When teaching the robot to establish and record the visual positioning reference, the mobile robot enters the set position, pulls the robot to the first point, and captures the positioning mark image with the reference attitude as the reference positioning mark image, records the reference positioning mark image and the robot's reference attitude , Towing the robot to the second point, the image of any shape feature in the working environment is taken to verify the posture, as the reference feature image, the reference feature image and the verification posture of the robot are recorded, and the visual positioning reference is established.

本發明利用影像差異進行校正機器人定位時,由機器人基準姿態擷取的定位標記影像與記錄的基準定位標記影像,進行兩影像中定位標記的特徵比對,計算位移量及旋轉角度的差異量。根據差異量伺服移動機器人,搜尋比對擷取定位標記的影像,使擷取的定位標記影像與基準定位標記影像相同或其差異量小於預設閥值時,記錄機器人的校正姿態,計算校正姿態與基準姿態的座標的偏移,補償機器人的座標偏移,以完成機器人的校正定位。 When the invention uses the image difference to correct the positioning of the robot, the positioning mark image captured by the robot's reference attitude and the recorded reference positioning mark image are used to compare the features of the positioning mark in the two images to calculate the difference between the displacement and the rotation angle. Serve the mobile robot according to the difference amount, search and compare the captured positioning mark image, make the captured positioning mark image be the same as the reference positioning mark image, or the difference amount is less than the preset threshold, record the robot's correction posture, and calculate the correction posture The coordinate offset from the reference attitude compensates the robot coordinate offset to complete the robot's calibration and positioning.

本發明的設定位置設在作業單位中機器人的作業位置,定位標記設置在作業單位中的工作台,其中定位標記與作業單位中的工作環境保持相對固定的空間位置關係,形狀特徵為工作環境中任一可識別的特殊 形象。重新開始視覺定位驗證時,計數重新校正定位的次數,一旦超出預設次數限值,即啟動警報。 The setting position of the invention is set at the working position of the robot in the work unit, and the positioning mark is set at the work table in the work unit. The positioning mark and the working environment in the work unit maintain a relatively fixed spatial position relationship, and the shape characteristic is in the working environment Any identifiable special Image. When the visual positioning verification is restarted, the number of re-calibration positioning is counted, and once the preset number of times is exceeded, an alarm is activated.

1‧‧‧作業單位 1‧‧‧Operating unit

2‧‧‧機器人 2‧‧‧ Robot

3‧‧‧控制器 3‧‧‧ Controller

4‧‧‧工作台 4‧‧‧Workbench

5‧‧‧工作環境 5‧‧‧Working environment

6‧‧‧固定端 6‧‧‧ fixed end

7‧‧‧基座 7‧‧‧ base

8‧‧‧定位標記 8‧‧‧ positioning mark

9‧‧‧活動端 9‧‧‧ event side

10‧‧‧視覺系統 10‧‧‧Vision System

11‧‧‧定位標記影像 11‧‧‧ Position marker image

12‧‧‧基準定位標記影像 12‧‧‧ fiducial mark image

13‧‧‧特徵影像 13‧‧‧ Feature image

14‧‧‧基準特徵影像 14‧‧‧ benchmark feature image

圖1 為本發明教導機器人建立視覺定位基準的示意圖。 FIG. 1 is a schematic diagram of teaching a robot to establish a visual positioning reference.

圖2 為本發明機器人視覺定位的驗證的示意圖。 FIG. 2 is a schematic diagram of verification of the visual positioning of a robot according to the present invention.

圖3 為本發明比較基準定位標記影像差異的示意圖。 FIG. 3 is a schematic diagram of comparing image differences of a reference positioning mark according to the present invention.

圖4 為本發明機器人調整姿態搜尋基準定位標記影像的示意圖。 FIG. 4 is a schematic diagram of an image of a robot according to the present invention to adjust a posture and search for a reference positioning mark.

圖5 為本發明機器人以校正姿態擷取特徵影像的示意圖。 FIG. 5 is a schematic diagram of a robot capturing a characteristic image with a corrected posture according to the present invention.

圖6 為本發明比較基準特徵影像差異的示意圖。 FIG. 6 is a schematic diagram of comparing differences in reference feature images according to the present invention.

圖7 為本發明機器人建立視覺定位基準的方法的流程圖。 FIG. 7 is a flowchart of a method for establishing a visual positioning reference for a robot according to the present invention.

圖8 為本發明機器人視覺定位的驗證方法的流程圖。 FIG. 8 is a flowchart of a method for verifying visual positioning of a robot according to the present invention.

有關本發明為達成上述目的,所採用之技術手段及其功效,茲舉較佳實施例,並配合圖式加以說明如下。 Regarding the technical means adopted by the present invention to achieve the above-mentioned objectives, and their effects, preferred embodiments are described below with reference to the drawings.

如圖1所示,為本發明教導機器人建立視覺定位基準的示意圖。本發明的作業單位1,主要包含機器人2、控制器3、工作台4及工作環境5。其中機器人2的固定端6固定在基座7,形成機器人座標系統R,而基座7可為台車等移動體,以乘載機器人2進行移動至各作業單位1,接近或離開作業單位1的工作台4,工作台4上設置定位標記8,定位標記8並與工作台4及週邊的工作環境5保持相對固定的空間位置關係,而工作環境5中具有多個形狀特徵F,形狀特徵F可為例如物體尖角或記號等可識別的特殊形象。 As shown in FIG. 1, it is a schematic diagram of teaching a robot to establish a visual positioning reference. The working unit 1 of the present invention mainly includes a robot 2, a controller 3, a workbench 4, and a working environment 5. The fixed end 6 of the robot 2 is fixed on the base 7 to form a robot coordinate system R, and the base 7 can be a mobile body such as a trolley. The robot 2 can be moved to each work unit 1 by the robot 2 and approached or left the work unit 1. Positioning marks 8 are provided on the workbench 4, and the positioning marks 8 maintain a relatively fixed spatial position relationship with the workbench 4 and the surrounding working environment 5. The working environment 5 has multiple shape features F, shape features F. It can be a recognizable special image such as a sharp corner of an object or a mark.

機器人2的活動端9設置視覺系統10,機器人2連接至控制器3,由控制器3根據編程控制機器人2移動,使活動端9承載視覺系統10擷取工作台4或工作環境5特徵影像,並將擷取影像時的機器人2姿態及特徵影像記錄在控制器3中。控制器3藉由機器人2擷取影像的姿態,根據各軸節的伺服馬達的轉動關係,可認知及記錄活動端9在機器人座標系統R的座標。因視覺系統10固定在機器人2的活動端9上,由視覺系統10與活動端9相對固定的關係,亦可獲得視覺系統10的座標。控制器3再對儲存的特徵影像進行影像處理,由視覺系統10的聚焦狀況,判別影像中的特徵與視覺系統10的空間關係,以定位特徵的座標。 The mobile terminal 9 of the robot 2 is provided with a vision system 10, and the robot 2 is connected to the controller 3. The controller 3 controls the movement of the robot 2 according to programming, so that the mobile terminal 9 carries the vision system 10 to capture characteristic images of the workbench 4 or the working environment 5, The attitude and characteristic image of the robot 2 when capturing the image are recorded in the controller 3. The controller 3 captures the posture of the image by the robot 2 and can recognize and record the coordinates of the movable end 9 in the robot coordinate system R according to the rotation relationship of the servo motor of each axis section. Since the vision system 10 is fixed on the movable end 9 of the robot 2, the coordinates of the vision system 10 can also be obtained from the relatively fixed relationship between the vision system 10 and the movable end 9. The controller 3 then performs image processing on the stored feature images, and determines the spatial relationship between the features in the images and the visual system 10 from the focus status of the visual system 10 to locate the coordinates of the features.

本發明教導機器人2建立視覺定位基準時,首先使機器人2進入作業單位1中的設定位置,該設定位置為機器人2的作業位置,由使用者牽引機器人2的活動端9移動至第一點位P1,利用控制器3操作視覺系統10,對工作台4台面上的定位標記8擷取影像,作為基準定位標記影像12(參圖3)。再由控制器3記錄基準定位標記影像12及擷取定位標記8影像時的機器人2基準姿態A。機器人2由基準姿態A,根據各軸節的伺服馬達的轉動關係,可計算活動端9在第一點位P1的座標,基準定位標記影像12則提供定位標記8與活動端9的相對空間關係,進一步可獲得與定位標記8保持固定位置關係的工作台4及工作環境5的相對位置關係,而使機器人2在作業單位1中明確定位。 The present invention teaches the robot 2 to establish a visual positioning reference, first to make the robot 2 enter a set position in the work unit 1, the set position is the work position of the robot 2, and the user pulls the movable end 9 of the robot 2 to the first point P1, the controller 3 is used to operate the vision system 10 to capture an image of the positioning mark 8 on the table 4 as a reference positioning mark image 12 (see FIG. 3). The controller 3 then records the reference positioning mark image 12 and the robot 2 reference posture A when the positioning mark 8 image is captured. From the reference attitude A, the robot 2 can calculate the coordinates of the movable end 9 at the first point P1 according to the rotation relationship of the servo motor of each axis section. The reference positioning mark image 12 provides the relative spatial relationship between the positioning mark 8 and the moving end 9 , Further obtain the relative positional relationship between the table 4 and the working environment 5 which maintain a fixed positional relationship with the positioning mark 8, so that the robot 2 can be clearly positioned in the work unit 1.

接著再由使用者牽引機器人2的活動端9移動至第二點位P2,利用控制器3操作視覺系統10,對工作環境5的任一形狀特徵F擷取影像,作為基準特徵影像14(參圖6)。再由控制器3記錄基準特徵影像及擷取形 狀特徵F影像時的機器人2驗證姿態B。同理機器人2由驗證姿態B,根據各軸節的伺服馬達的轉動關係,可計算活動端9在第二點位P2的座標,基準特徵影像14則提供形狀特徵F與活動端9的相對空間關係。因形狀特徵F在工作環境5的位置固定,相對與定位標記8維持相對固定空間關係。因此在正確視覺定位請況下,只要利用定位標記8使機器人2在作業單位1中定位,機器人2就能以相同的驗證姿態B擷取相同的基準特徵影像14。 The user then moves the movable end 9 of the robot 2 to the second point P2, and uses the controller 3 to operate the vision system 10 to capture an image of any shape feature F of the working environment 5 as a reference feature image 14 (see Figure 6). The controller 3 records the reference feature image and captures the shape. The robot 2 verifies the posture B at the time of the image of the feature F. Similarly, the robot 2 can verify the posture B and calculate the coordinates of the movable end 9 at the second point P2 according to the rotation relationship of the servo motor of each axis section. The reference feature image 14 provides the relative space between the shape feature F and the movable end 9 relationship. Since the shape feature F is fixed in the position of the working environment 5, a relatively fixed spatial relationship is maintained relatively with the positioning mark 8. Therefore, under the condition of correct visual positioning, as long as the positioning mark 8 is used to position the robot 2 in the work unit 1, the robot 2 can capture the same reference feature image 14 with the same verification posture B.

請同時參考圖2至圖6,圖2為本發明機器人視覺定位的驗證的示意圖,圖3為本發明比較基準定位標記影像差異的示意圖,圖4為本發明機器人調整姿態搜尋基準定位標記影像的示意圖,圖5為本發明機器人以校正姿態擷取特徵影像的示意圖,圖6為本發明比較基準特徵影像差異的示意圖。圖2中,本發明在建立視覺定位基準後,當機器人2移動後再進入作業單位1的設定位置時,首先需校正機器人2的定位,機器人2根據建立基準時記錄的資訊,自動控制移動形成基準姿態A,並控制視覺系統10擷取定位標記影像11(參圖3),經影像處理比較定位標記影像11與基準定位標記影像12(參圖3)的差異,利用影像差異進行校正機器人2定位。 Please refer to FIG. 2 to FIG. 6 at the same time. FIG. 2 is a schematic diagram of verification of the visual positioning of the robot according to the present invention, FIG. 3 is a schematic diagram of comparing the difference between the reference positioning mark images of the present invention, and FIG. Schematic diagram, FIG. 5 is a schematic diagram of a robot capturing feature images with a corrected posture according to the present invention, and FIG. 6 is a schematic diagram of comparing a reference feature image difference according to the present invention. In FIG. 2, after the visual positioning reference is established in the present invention, when the robot 2 moves and then enters the set position of the work unit 1, the positioning of the robot 2 needs to be corrected first. The robot 2 automatically controls the movement formation based on the information recorded when the reference is established. The reference attitude A, and control the vision system 10 to capture a positioning mark image 11 (see FIG. 3), compare the difference between the positioning mark image 11 and the reference positioning mark image 12 (see FIG. 3) after image processing, and use the image difference to correct the robot 2 Positioning.

圖3中,本發明利用影像差異進行校正機器人2定位時。由機器人2以基準姿態A擷取的定位標記影像11,與記錄的基準定位標記影像12比較差異,再進行兩影像中定位標記8特徵比對,計算出位移量及旋轉角度的差異量。接著在圖4中,根據差異量伺服移動機器人2,並不斷擷取定位標記8影像進行搜尋比對,使擷取的定位標記影像11與基準定位標記影像12相同或其差異量小於預設閥值時,記錄機器人2的校正姿態A’。此時擷取的定位標記影像11與基準定位標記影像12相同,表示機器人2的活動端9與定 位標記8保持在建立視覺定位基準時的相對位置關係。再根據校正姿態A’,由機器人2各軸節的伺服馬達的轉動關係,可獲得活動端9校正後在機器人2座標系統R的座標,計算校正姿態A’與基準姿態A的活動端9座標的偏移,補償機器人2的座標偏移,就可獲得機器人2在作業單位1的重新定位,以完成機器人2的校正定位。前述僅是舉例說明,機器人2的校正定位方法有多種,本發明包含且不限於前述舉例。 In FIG. 3, the present invention uses image differences to perform positioning of the correction robot 2. The positioning mark image 11 captured by the robot 2 with the reference attitude A is compared with the recorded reference positioning mark image 12, and the feature comparison of the positioning mark 8 in the two images is performed to calculate the difference between the displacement amount and the rotation angle. Then in FIG. 4, the mobile robot 2 is servoed according to the difference amount, and the positioning mark 8 images are continuously captured for search and comparison, so that the captured positioning mark image 11 is the same as the reference positioning mark image 12 or the difference is smaller than the preset valve. When the value is set, the corrected posture A ′ of the robot 2 is recorded. The captured positioning mark image 11 is the same as the reference positioning mark image 12 at this time, indicating that the mobile terminal 9 and the fixed position of the robot 2 The bit mark 8 maintains the relative positional relationship when the visual positioning reference is established. Based on the corrected attitude A ′ and the rotation relationship of the servo motor of each axis of the robot 2, the coordinates of the movable end 9 after correction in the robot 2 coordinate system R can be obtained, and the movable end 9 coordinates of the corrected attitude A ′ and the reference attitude A are calculated. The offset of the robot 2 is compensated, and the robot 2 can be repositioned in the work unit 1 to complete the correction and positioning of the robot 2. The foregoing is merely an example. There are various methods for correcting and positioning the robot 2. The present invention includes and is not limited to the foregoing examples.

本發明在完成機器人2的校正定位後,因偏移的定位標記8的座標已經過補償,對與定位標記8具有固定空間關係的形狀特徵F的座標也會偏移,因此需先對建立基準時的驗證姿態B進行相同的偏移補償,形成補償姿態B’。圖5中,當本發明進行驗證時,機器人2先根據建立基準時記錄的資訊,對驗證姿態B進行相同的偏移補償為補償姿態B’,機器人2再自動控制移動至補償姿態B’,並控制視覺系統10擷取形狀特徵F的特徵影像13,圖6中,經影像處理比較特徵影像13中形狀特徵F’與基準特徵影像14中形狀特徵F的影像差異值e。例如影像差異值e的X軸:3畫素(pixel),Y:6畫素(pixel),角度:0.5度,將畫素換算為實際距離如6mm,12mm等。與預設的差異閥值E比較,如果影像差異值e小於差異閥值E,表示定位的誤差經驗證尚在可接受的範圍,機器人2完成定位可繼續進行作業。一旦影像差異值e大於差異閥值E,就表示定位的誤差過大無法繼續進行作業,機器人2需要重新校正定位。而對於一再重新校正定位的機器人2,應進一步設定重新校正定位的次數限值,計數重新校正定位的次數,一旦超出次數限值,即啟動警報通知維修,才能避免碰撞損毀。 According to the present invention, after the calibration and positioning of the robot 2 is completed, the coordinates of the positioning mark 8 that has been offset due to the offset have been compensated, and the coordinates of the shape feature F that has a fixed spatial relationship with the positioning mark 8 will also be shifted. The verification attitude B at this time performs the same offset compensation to form a compensated attitude B ′. In FIG. 5, when the present invention performs verification, the robot 2 first performs the same offset compensation on the verification posture B as the compensation posture B ′ according to the information recorded when establishing the reference, and the robot 2 then automatically controls the movement to the compensation posture B ′, The vision system 10 is controlled to capture the feature image 13 of the shape feature F. In FIG. 6, the image difference value e between the shape feature F ′ in the feature image 13 and the shape feature F in the reference feature image 14 is compared through image processing. For example, the X axis of the image difference value e: 3 pixels (pixels), Y: 6 pixels (pixels), angle: 0.5 degrees, the pixels are converted into actual distances such as 6mm, 12mm, and so on. Compared with the preset difference threshold E, if the image difference value e is smaller than the difference threshold E, it means that the positioning error has been verified to be in an acceptable range, and the robot 2 can continue the operation after completing the positioning. Once the image difference value e is larger than the difference threshold value E, it means that the positioning error is too large to continue the operation, and the robot 2 needs to re-correct the positioning. For the robot 2 that repeatedly recalibrates the positioning, the limit of the number of times of recalibration should be further set, and the number of times of recalibration should be counted. Once the number of times exceeds the limit, an alarm will be initiated to notify maintenance to avoid collision damage.

如圖7所示,為本發明機器人建立視覺定位基準方法的流 程。根據前述實施例的說明,本發明建立視覺定位基準的方法的流程詳細步驟說明如下:首先在步驟S1,移動機器人進入作業單位的設定位置,開始對機器人建立視覺定位基準;步驟S2,牽引機器人至第一點位,以基準姿態擷取工作台的定位標記影像,作為基準定位標記影像;步驟S3,記錄基準定位標記影像及機器人的基準姿態;步驟S4,牽引機器人至第二點位,以驗證姿態擷取工作環境中任一形狀特徵的影像,作為基準特徵影像,接著至步驟S5,記錄基準特徵影像及機器人的驗證姿態;步驟S6,結束建立視覺定位基準。 As shown in Figure 7, the flow of establishing a visual positioning reference method for the robot of the present invention Cheng. According to the description of the previous embodiment, the detailed steps of the method for establishing a visual positioning reference of the present invention are described as follows: First, in step S1, the mobile robot enters the set position of the work unit and starts to establish a visual positioning reference for the robot; step S2, the robot is pulled to In the first position, the positioning mark image of the workbench is acquired with the reference posture as the reference positioning mark image; step S3, the reference positioning mark image and the reference posture of the robot are recorded; in step S4, the robot is pulled to the second position to verify The posture captures an image of any shape feature in the working environment as a reference feature image, and then proceeds to step S5 to record the reference feature image and the verification posture of the robot; step S6, the end of establishing a visual positioning reference.

如圖8所示,為本發明機器人視覺定位的驗證方法的流程。根據前述實施例的說明,本發明在教導機器人建立及記錄視覺定位基準後,對於移動進入作業單位設定的位置的機器人,需要機器人進行視覺定位及定位驗證,本發明機器人視覺定位的驗證方法的流程詳細步驟說明如下:首先在步驟T1,機器人移動進入作業單位設定的位置,開始進行視覺定位驗證;步驟T2,機器人自動控制移動至視覺定位基準記錄的基準姿態,對工作台的定位標記,擷取定位標記影像;步驟T3,影像處理且比較擷取的定位標記影像與視覺定位基準記錄的基準定位標記影像的差異,利用影像差異進行補償校正機器人的定位;至步驟T4,對建立基準記錄的驗證姿態進行相同的補償,形成補償姿態;接著至步驟T5,機器人自動控制移動至補償姿態,對工作環境中的形狀特徵,擷取特徵影像;步驟T6,影像處理比較擷取的特徵影像與基準特徵影像中形狀特徵的影像差異值;步驟T7,檢查影像差異值是否小於預設差異閥值?如果影像差異值不小於預設差異閥值,則至步驟T8,回至步驟T1,重新開始進行視覺定位驗證,如果影 像差異值小於預設差異閥值,則至步驟T9,完成視覺定位驗證,結束作業。 As shown in FIG. 8, it is a flowchart of a method for verifying the visual positioning of a robot according to the present invention. According to the description of the foregoing embodiment, after teaching the robot to establish and record a visual positioning reference, the present invention requires a robot to perform visual positioning and positioning verification for a robot that moves into a position set by a work unit. The process of the method for verifying the visual positioning of a robot according to the present invention The detailed steps are described as follows: First, in step T1, the robot moves into the position set by the work unit and starts visual positioning verification; in step T2, the robot automatically controls the movement to the reference posture recorded by the visual positioning reference, and captures the positioning marks of the workbench. Positioning mark image; step T3, image processing and comparing the difference between the captured positioning mark image and the reference positioning mark image recorded by the visual positioning reference, and using the image difference to compensate and correct the positioning of the robot; to step T4, verifying the establishment of the reference record Perform the same compensation on the attitude to form a compensated attitude; then, go to step T5, the robot automatically controls the movement to the compensated attitude, and captures the feature image of the shape features in the working environment; step T6, the image processing compares the captured feature image with the reference feature As shape feature values in the difference image; step T7, checked image difference value is smaller than a predetermined difference threshold value? If the image difference value is not less than the preset difference threshold, go to step T8, return to step T1, and restart the visual positioning verification. If the image difference value is less than the preset difference threshold, go to step T9 to complete the visual positioning verification and end the operation.

因此,本發明機器人視覺定位的驗證方法,就可在機器人校正視覺定位後,藉由補償設定的機器人驗證姿態,擷取工作環境中形狀特徵影像,與教導的基準特徵影像比較差異,驗證視覺定位的正確性,並利用擷取特徵影像與基準特徵影像的影像差異值,與預設的影像差異閥值,在影像差異值大於差異閥值時,重新進行視覺定位,以達到確保視覺定位的正確的目的。 Therefore, the method for verifying the visual positioning of the robot of the present invention can verify the visual positioning by compensating the set robot to verify the posture, capture the shape feature image in the working environment, and compare the difference with the taught reference feature image. The correctness of the image, and use the image difference value between the captured feature image and the reference feature image, and the preset image difference threshold. When the image difference value is greater than the difference threshold, the visual positioning is performed again to ensure the correct visual positioning. the goal of.

以上所述者,僅為用以方便說明本發明之較佳實施例,本發明之範圍不限於該等較佳實施例,凡依本發明所做的任何變更,於不脫離本發明之精神下,皆屬本發明申請專利之範圍。 The above are only for the convenience of explaining the preferred embodiments of the present invention, and the scope of the present invention is not limited to these preferred embodiments. Any changes made according to the present invention can be made without departing from the spirit of the present invention. , All belong to the scope of patent application of the present invention.

1‧‧‧作業單位 1‧‧‧Operating unit

2‧‧‧機器人 2‧‧‧ Robot

3‧‧‧控制器 3‧‧‧ Controller

4‧‧‧工作台 4‧‧‧Workbench

5‧‧‧工作環境 5‧‧‧Working environment

6‧‧‧固定端 6‧‧‧ fixed end

7‧‧‧基座 7‧‧‧ base

8‧‧‧定位標記 8‧‧‧ positioning mark

9‧‧‧活動端 9‧‧‧ event side

10‧‧‧視覺系統 10‧‧‧Vision System

Claims (8)

一種機器人視覺定位的驗證方法,其步驟包含:移動機器人進入設定位置;牽引機器人至第一點位為基準姿態,擷取定位標記影像,作為基準定位標記影像;記錄基準定位標記影像及機器人的該基準姿態;牽引機器人至第二點位為驗證姿態,擷取工作環境中任一可識別的特殊形象的形狀特徵的影像,作為基準特徵影像;記錄基準特徵影像及機器人的該驗證姿態;結束建立視覺定位基準;機器人進入設定位置;機器人自動控制移動至視覺定位基準記錄的該基準姿態,對定位標記,擷取定位標記影像;影像處理及比較擷取的定位標記影像與視覺定位基準記錄的基準定位標記影像的差異,並利用影像差異進行補償校正機器人的定位;對視覺定位基準記錄的該驗證姿態進行相同的補償,形成補償姿態;機器人自動控制移動至該補償姿態,對該形狀特徵擷取特徵影像;影像處理及比較擷取的特徵影像與視覺定位基準記錄的基準特徵影像中該形狀特徵的影像差異值;檢查影像差異值不小於預設差異閥值,則重新開始視覺定位驗證。 A method for verifying a robot's visual positioning includes the steps of: moving a robot into a set position; towing the robot to a first position as a reference posture; capturing a positioning mark image as a reference positioning mark image; recording the reference positioning mark image and the robot's Reference posture; Towing the robot to the second point for the verification posture, capture an image of any identifiable shape feature in the working environment as the reference characteristic image; record the reference characteristic image and the verification posture of the robot; end the establishment Visual positioning reference; the robot enters the set position; the robot automatically controls to move to the reference attitude recorded by the visual positioning reference, and captures the positioning mark image for the positioning mark; image processing and comparing the captured positioning mark image with the reference of the visual positioning reference record Position the mark image difference, and use the image difference to compensate and correct the positioning of the robot; perform the same compensation on the verification posture recorded by the visual positioning reference to form the compensation posture; the robot automatically controls the movement to the compensation posture, and extracts the shape features Image sign; difference image characteristic of the reference image shape characteristics and comparing the captured image processing and visual image features recorded positioning reference value; checking the image difference value is not less than a preset difference threshold, positioning is restarted visual verification. 如申請專利範圍第1項所述之機器人視覺定位的驗證方法,其中該設定位置設在作業單位中機器人的作業位置。 The method for verifying the visual positioning of a robot according to item 1 of the scope of patent application, wherein the set position is set at the working position of the robot in the work unit. 如申請專利範圍第2項所述之機器人視覺定位的驗證方法,其中該定位標記設置在作業單位中的工作台。 The method for verifying the visual positioning of a robot as described in item 2 of the scope of the patent application, wherein the positioning mark is provided on a workbench in a work unit. 如申請專利範圍第3項所述之機器人視覺定位的驗證方法,其中該定位標記與作業單位中的工作環境保持相對固定的空間位置關係。 The method for verifying the visual positioning of a robot according to item 3 of the scope of the patent application, wherein the positioning mark maintains a relatively fixed spatial position relationship with the working environment in the work unit. 如申請專利範圍第1項所述之機器人視覺定位的驗證方法,其中利用影像差異進行校正機器人定位時,由機器人基準姿態擷取的定位標記影像與記錄的基準定位標記影像,進行兩影像中定位標記的特徵比對,計算位移量及旋轉角度的差異量。 The method for verifying the visual positioning of a robot according to item 1 of the scope of patent application, wherein when correcting the positioning of the robot using image differences, the positioning mark image captured by the robot's reference attitude and the recorded reference positioning mark image are used for positioning in two images. Compare the features of the marks, and calculate the difference between the displacement and the rotation angle. 如申請專利範圍第5項所述之機器人視覺定位的驗證方法,其中根據減少差異量方向控制移動機器人,搜尋比對擷取定位標記的影像,使擷取的定位標記影像與基準定位標記影像相同或其差異量小於預設閥值時,記錄機器人的校正姿態,計算該校正姿態與該基準姿態的座標的偏移,補償機器人的座標偏移,以完成機器人的校正定位。 The method for verifying the visual positioning of a robot according to item 5 of the scope of patent application, wherein the mobile robot is controlled according to the direction of reducing the difference amount, and the captured positioning mark image is searched for comparison, so that the captured positioning mark image is the same as the reference positioning mark image When the difference is less than the preset threshold, the robot's correction posture is recorded, the offset between the coordinates of the correction posture and the reference posture is calculated, and the robot coordinate offset is compensated to complete the robot's correction and positioning. 如申請專利範圍第1項所述之機器人視覺定位的驗證方法,其中檢查影像差異值小於預設差異閥值,則完成視覺定位驗證作業。 According to the robot visual positioning verification method described in item 1 of the scope of the patent application, wherein the inspection image difference value is less than a preset difference threshold, the visual positioning verification operation is completed. 如申請專利範圍第1項所述之機器人視覺定位的驗證方法,其中重新開始視覺定位驗證時,計數重新校正定位的次數,一旦超出預設次數限值,即啟動警報。 The method for verifying the visual positioning of a robot according to item 1 of the scope of the patent application, wherein when the visual positioning verification is restarted, the number of times of re-calibrating the positioning is counted, and once the preset number of times is exceeded, an alarm is activated.
TW105136198A 2016-11-04 2016-11-04 Method for checking the vision position of a robot TWI617995B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW105136198A TWI617995B (en) 2016-11-04 2016-11-04 Method for checking the vision position of a robot
CN201710845601.6A CN108015762B (en) 2016-11-04 2017-09-19 Verification method for robot visual positioning

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW105136198A TWI617995B (en) 2016-11-04 2016-11-04 Method for checking the vision position of a robot

Publications (2)

Publication Number Publication Date
TWI617995B true TWI617995B (en) 2018-03-11
TW201818294A TW201818294A (en) 2018-05-16

Family

ID=62080333

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105136198A TWI617995B (en) 2016-11-04 2016-11-04 Method for checking the vision position of a robot

Country Status (2)

Country Link
CN (1) CN108015762B (en)
TW (1) TWI617995B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020108909A (en) * 2019-01-07 2020-07-16 トヨタ自動車株式会社 State determination device
DE102019105466B3 (en) * 2019-03-04 2020-08-06 Forward Ttc Gmbh Method for operating a drive system and drive system
CN111924479A (en) * 2020-08-11 2020-11-13 菲尼克斯(南京)智能制造技术工程有限公司 Carrier and system for automatic production
US20220351995A1 (en) * 2021-04-29 2022-11-03 Globalwafers Co., Ltd. Methods and systems of image based robot alignment

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020068992A1 (en) * 2000-12-04 2002-06-06 Hine Roger G. Self teaching robot
TW531479B (en) * 2001-04-13 2003-05-11 Yaskawa Electric Corp Teaching method and teaching plate for wafer carrying robot
US20110125325A1 (en) * 2008-08-01 2011-05-26 Yoshinori Fujii Teaching method for transfer robot
CN102294695A (en) * 2010-06-25 2011-12-28 鸿富锦精密工业(深圳)有限公司 Robot calibration method and calibration system
TW201403733A (en) * 2012-06-01 2014-01-16 Taiwan Semiconductor Mfg System and method for adjusting the position and orientation of a feed arm associated with a wafer handling robot
CN102485441B (en) * 2010-12-03 2014-07-02 财团法人工业技术研究院 Positioning method and correction method of mechanical arm
TW201603979A (en) * 2014-07-28 2016-02-01 廣明光電股份有限公司 Calibration device and method for robot arm
TWM530737U (en) * 2016-07-18 2016-10-21 Univ Nat Formosa Calibration system of robot

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3548652B2 (en) * 1996-07-24 2004-07-28 株式会社東芝 Apparatus and method for restoring object shape
JPH1063317A (en) * 1996-08-13 1998-03-06 Fanuc Ltd Method for combining coordinate system in robot and visual sensor system
JP3859574B2 (en) * 2002-10-23 2006-12-20 ファナック株式会社 3D visual sensor
CN101637908B (en) * 2008-07-29 2010-11-03 上海发那科机器人有限公司 Visual positioning method for robot transport operation
CN104552341B (en) * 2014-12-29 2016-05-04 国家电网公司 Mobile industrial robot single-point various visual angles pocket watch position and attitude error detection method
CN104864889B (en) * 2015-05-29 2018-05-29 山东鲁能智能技术有限公司 A kind of robot odometer correction system and method for view-based access control model
CN105729477B (en) * 2016-05-05 2018-04-27 四川省桑瑞光辉标识系统股份有限公司 The automatic laying method of aging assembly line fluorescent tube and system of view-based access control model positioning

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020068992A1 (en) * 2000-12-04 2002-06-06 Hine Roger G. Self teaching robot
TW531479B (en) * 2001-04-13 2003-05-11 Yaskawa Electric Corp Teaching method and teaching plate for wafer carrying robot
US20110125325A1 (en) * 2008-08-01 2011-05-26 Yoshinori Fujii Teaching method for transfer robot
CN102294695A (en) * 2010-06-25 2011-12-28 鸿富锦精密工业(深圳)有限公司 Robot calibration method and calibration system
CN102485441B (en) * 2010-12-03 2014-07-02 财团法人工业技术研究院 Positioning method and correction method of mechanical arm
TW201403733A (en) * 2012-06-01 2014-01-16 Taiwan Semiconductor Mfg System and method for adjusting the position and orientation of a feed arm associated with a wafer handling robot
TW201603979A (en) * 2014-07-28 2016-02-01 廣明光電股份有限公司 Calibration device and method for robot arm
TWM530737U (en) * 2016-07-18 2016-10-21 Univ Nat Formosa Calibration system of robot

Also Published As

Publication number Publication date
TW201818294A (en) 2018-05-16
CN108015762A (en) 2018-05-11
CN108015762B (en) 2021-01-15

Similar Documents

Publication Publication Date Title
TWI617995B (en) Method for checking the vision position of a robot
KR102271941B1 (en) Automated machining head with vision and procedure
US9002516B2 (en) Calibration method for tool center point of a robot manipulator
JP6855492B2 (en) Robot system, robot system control device, and robot system control method
CN112847353B (en) Multi-segment welding seam track correction method based on offline programming software
JP6812095B2 (en) Control methods, programs, recording media, robotic devices, and manufacturing methods for articles
WO2020121396A1 (en) Robot calibration system and robot calibration method
CN111278608B (en) Calibration article for 3D vision robot system
JP6576655B2 (en) Stage mechanism
CN114174006A (en) Robot eye calibration method, device, computing equipment, medium and product
CN101911279A (en) Workpiece support with fluid zones for temperature control
CN110815201B (en) Method for correcting coordinates of robot arm
CN112720458A (en) System and method for online real-time correction of robot tool coordinate system
CN104552341A (en) Single-point multi-view meter-hanging posture error detecting method of mobile industrial robot
CN111482964A (en) Novel robot hand-eye calibration method
JP6362954B2 (en) Stage mechanism
US20110118876A1 (en) Teaching line correcting apparatus, teaching line correcting method, and program thereof
CN114260908A (en) Robot teaching method, device, computer equipment and computer program product
TWI532575B (en) Calibration device and method for robot arm
CN110919238B (en) Automatic welding method and welding device
JP6565367B2 (en) Position correction system
US20230364812A1 (en) Robot system
CN114571199B (en) Screw locking machine and screw positioning method
TW201900358A (en) Method for calibrating coordinator of robot arm
US20200376678A1 (en) Visual servo system