TWI616666B - Initial N/S pole accurate identification method for permanent magnet auxiliary synchronous reluctance motor rotor - Google Patents

Initial N/S pole accurate identification method for permanent magnet auxiliary synchronous reluctance motor rotor Download PDF

Info

Publication number
TWI616666B
TWI616666B TW105112374A TW105112374A TWI616666B TW I616666 B TWI616666 B TW I616666B TW 105112374 A TW105112374 A TW 105112374A TW 105112374 A TW105112374 A TW 105112374A TW I616666 B TWI616666 B TW I616666B
Authority
TW
Taiwan
Prior art keywords
axis
permanent magnet
reluctance motor
pole
synchronous reluctance
Prior art date
Application number
TW105112374A
Other languages
Chinese (zh)
Other versions
TW201640131A (en
Inventor
Jun-Qin Yang
li-wei Xu
de-li Wang
Dong Zhang
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Publication of TW201640131A publication Critical patent/TW201640131A/en
Application granted granted Critical
Publication of TWI616666B publication Critical patent/TWI616666B/en

Links

Landscapes

  • Synchronous Machinery (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

本發明公開了一種永磁輔助同步磁阻電機轉子初始N/S極精確辨識方法,該辨識方法針對的永磁輔助同步磁阻電機轉子具有兩層或兩層以上磁障壁,兩層或兩層以上依次相鄰的磁障壁內嵌入磁鋼,同時磁鋼所處各層磁障壁內位置相對一致。對具有以上特徵的永磁輔助同步磁阻電機轉子,該辨識方法通過向定子繞組施加均勻分佈於一個電週期內的幅值相等、持續相同預設時間的電壓向量,檢測回應d、q電流增量大小,繼而再利用永磁輔助同步磁阻電機增/去磁迴路的特殊性分辨出磁鋼磁極的極性,從而確定轉子初始位置。本發明解決了現有磁極檢測技術辨識永磁輔助同步磁阻電機轉子初始N/S極位置錯誤的問題,進一步排除了永磁輔助同步磁阻電機大量投入市場的障礙。 The invention discloses an initial N/S pole accurate identification method for a permanent magnet auxiliary synchronous reluctance motor rotor. The identification method is directed to a permanent magnet auxiliary synchronous reluctance motor rotor having two or more magnetic barriers, two or two layers The magnetic steel is embedded in the magnetic barriers adjacent to each other, and the positions of the magnetic barriers of the magnetic layers are relatively uniform. For the permanent magnet auxiliary synchronous reluctance motor rotor having the above characteristics, the identification method detects the response d, q current increase by applying a voltage vector uniformly distributed in the one-electrode period and having the same amplitude for the same preset time. The amount of size, and then the special characteristics of the permanent magnet assisted synchronous reluctance motor increase / demagnetization circuit to distinguish the polarity of the magnetic pole, thus determining the initial position of the rotor. The invention solves the problem that the existing magnetic pole detecting technology recognizes the initial N/S pole position error of the permanent magnet auxiliary synchronous reluctance motor rotor, and further eliminates the obstacle that the permanent magnet auxiliary synchronous reluctance motor is put into the market.

Description

一種永磁輔助同步磁阻電機轉子初始N/S極精確辨識方法 Initial N/S pole accurate identification method for rotor of permanent magnet auxiliary synchronous reluctance motor

本發明係與一種同步電機檢測技術領域有關,特別有關於一種永磁輔助同步磁阻電機轉子初始N/S極精確辨識方法。 The invention relates to a synchronous motor detecting technology field, and particularly relates to a method for accurately identifying an initial N/S pole of a permanent magnet auxiliary synchronous reluctance motor rotor.

同步磁阻電機完全依靠d、q軸磁路的磁阻差異來產生轉矩。因轉子上不存在導條,故不存在任何電磁損耗,相較於感應電機具有更高的效率和更低的穩定運行溫度。通過對同步磁阻電機轉子磁障壁的最優設計,最大化磁阻轉矩,已可做到優於感應電機的轉矩密度。目前,限制同步磁阻電機廣泛應用的問題主要是功率因數偏低,需要搭配大容量變頻器進行驅動。而永磁輔助同步磁阻電機通過在原有同步磁阻電機轉子磁障壁內合理添加磁鋼能有效提高功率因數,與此同時,伴隨磁鋼帶來的一部分永磁轉矩,也將進一步增大同步磁阻電機轉矩密度。因此,永磁輔助同步磁阻電機的多方面優點使其具備有極其廣闊的市場前景。 Synchronous reluctance motors rely entirely on the difference in magnetoresistance of the d and q axis magnetic circuits to generate torque. Since there are no guide bars on the rotor, there is no electromagnetic loss, which is higher efficiency and lower stable operating temperature than induction motors. By optimizing the reluctance torque of the synchronous magnetic reluctance motor rotor magnetic barrier, the torque density of the induction motor can be achieved. At present, the problem of limiting the widespread application of synchronous reluctance motors is mainly due to the low power factor, which needs to be driven with a large-capacity inverter. The permanent magnet auxiliary synchronous reluctance motor can effectively increase the power factor by adding magnetic steel in the magnetic barrier of the original synchronous reluctance motor rotor. At the same time, part of the permanent magnet torque accompanying the magnetic steel will further increase. Synchronous reluctance motor torque density. Therefore, the multi-faceted advantages of the permanent magnet-assisted synchronous reluctance motor make it have an extremely broad market prospect.

永磁輔助同步磁阻電機的驅動系統與永磁同步電機完全一致,控制方式也大致相同。在永磁同步電機驅動系統中,電機轉子位置的檢測與初始定位是系統運行的基本條件,也是向量控制的必要前提。為此,現有技術提供了一種永磁同步電機轉子初始N/S極辨識方法,通過向電機繞組施加不同空間角且幅值相等的電壓向量,檢測電壓向量分別對應的電流向量增量值,當電壓空間向量越接近轉子N極時,由於定子鐵心的飽和特性,增磁方向上回應電流向量增量也越大,因而可通過檢測電流回應增量值來獲取轉子N/S極資訊。現有專利 技術提供永磁同步電機轉子初始N/S極辨識方法通常為得到更精確的轉子位置會針對上述方法進行進一步的創新和改進,但基本原理是一致的。 The drive system of the permanent magnet auxiliary synchronous reluctance motor is exactly the same as the permanent magnet synchronous motor, and the control method is also the same. In the permanent magnet synchronous motor drive system, the detection and initial positioning of the rotor position of the motor is the basic condition for the system operation, and it is also a necessary prerequisite for vector control. To this end, the prior art provides an initial N/S pole identification method for a permanent magnet synchronous motor rotor. By applying voltage vectors of different spatial angles and equal amplitudes to the motor windings, the voltage vector corresponding to the voltage vector is respectively detected. The closer the voltage space vector is to the N pole of the rotor, the larger the response current vector increment in the magnetization direction due to the saturation characteristics of the stator core. Therefore, the rotor N/S pole information can be obtained by detecting the current response increment value. Existing patent The technology provides a permanent N-S pole identification method for a permanent magnet synchronous motor rotor. In order to obtain a more accurate rotor position, further innovations and improvements are made for the above method, but the basic principle is consistent.

然而,上述永磁同步電機的轉子初始N/S極辨識方法並不適用於永磁輔助同步磁阻電機。區別於以永磁磁場為主磁場的永磁同步電機,永磁輔助同步磁阻電機內的永磁磁場只起輔助作用,主激磁磁場為電樞繞組磁場的d軸分量。辨識轉子N/S極(即±d軸)時,去磁方向電壓向量將改變原磁場路徑,導致去磁方向電流回應增量值大於增磁方向的電流回應增量值,造成將實際為N極的位置辨識成了S極的誤會。 However, the rotor initial N/S pole identification method of the above permanent magnet synchronous motor is not suitable for the permanent magnet auxiliary synchronous reluctance motor. Different from the permanent magnet synchronous motor with permanent magnet magnetic field as the main magnetic field, the permanent magnet magnetic field in the permanent magnet auxiliary synchronous reluctance motor only plays an auxiliary role, and the main excitation magnetic field is the d-axis component of the armature winding magnetic field. When the rotor N/S pole (ie ±d axis) is identified, the demagnetization direction voltage vector will change the original magnetic field path, resulting in the demagnetization direction current response increment value greater than the magnetization direction current response increment value, resulting in the actual N The position of the pole is identified as a misunderstanding of the S pole.

而對於永磁輔助同步磁阻電機來說,即使N/S極位置辨識反,電機也能正常起動和工作,只是此時磁鋼將完全起反作用,客戶使用過程中將會出現電流增大,功率因數偏低,超速或超載能力差等現象,最終可能導致停機故障,非專業使用者通常難以察覺。 For the permanent magnet auxiliary synchronous reluctance motor, even if the N/S pole position is reversed, the motor can start and work normally, but the magnetic steel will completely react at this time, and the current will increase during the customer's use. Low power factor, poor speed or poor overload capability may eventually lead to downtime, which is often difficult for non-professional users to detect.

綜上,很有必要針對永磁輔助同步磁阻電機提出一種專用轉子初始N/S極精確辨識方法。 In summary, it is necessary to propose a special rotor initial N/S pole accurate identification method for permanent magnet auxiliary synchronous reluctance motor.

針對現有磁極檢測技術無法精確辨識永磁輔助同步磁阻電機轉子初始N/S極位置的問題,本發明的目的在於提供一種永磁輔助同步磁阻電機轉子初始N/S極精確辨識方法。 Aiming at the problem that the existing magnetic pole detection technology cannot accurately identify the initial N/S pole position of the rotor of the permanent magnet auxiliary synchronous reluctance motor, the object of the present invention is to provide an initial N/S pole accurate identification method for the permanent magnet auxiliary synchronous reluctance motor rotor.

為了達到上述目的,本發明採用如下技術方案:一種永磁輔助同步磁阻電機轉子初始N/S極精確辨識方法,該辨識方法通過向定子繞組施加均勻分佈於一個電週期內的幅值相等、持續相同預 設時間的電壓向量,檢測回應d、q電流增量大小,繼而再利用永磁輔助同步磁阻電機增去磁迴路的特殊性分辨出磁鋼磁極的極性,從而確定轉子初始位置。 In order to achieve the above object, the present invention adopts the following technical solution: an initial N/S pole accurate identification method for a permanent magnet auxiliary synchronous reluctance motor rotor, the identification method is applied to the stator windings by uniformly distributing the amplitudes uniformly in one electrical cycle, Continue the same pre- Set the voltage vector of time, detect the magnitude of the d and q current increments, and then use the special characteristics of the permanent magnet auxiliary synchronous reluctance motor to remove the magnetic circuit to distinguish the polarity of the magnetic pole to determine the initial position of the rotor.

進一步的,該辨識方法首先,將永磁輔助同步磁阻電機的一個電週期k等分,k必須大於等於8;假定-d軸在等分線上,假定-q軸在超前假定-d軸90°電角度的位置上;同時向各等分線上施加幅值相等、持續相同預設時間的電壓向量,採樣至少兩相繞組電流,進行派克(park)轉換得到假定-d軸上預設時間內電流回應增量,此電流增量值越大,假定-d軸與真實S極越接近,用於初步辨識轉子初始N/S極;然後,進行精確細分,給繞組同樣施加幅值相等、持續相同預設時間的電壓向量,重述上述流程,計算假定-d軸預設時間內電流增量和假定-q軸預設時間內電流增量,兩者差值越大,則所對應的-d軸與真實S極越接近,用於精確辨識轉子初始N/S極。 Further, the identification method firstly divides an electric cycle k of the permanent magnet auxiliary synchronous reluctance motor into equal parts, k must be greater than or equal to 8; assuming that the -d axis is on the bisector, assuming that the -q axis is ahead of the -d axis 90 °At the position of the electrical angle; simultaneously apply voltage vectors of equal amplitude for the same preset time to each aliquot, sample at least two phase winding currents, perform a park conversion to obtain the assumed time on the d-axis The current response increment, the larger the current increment value, the closer the -d axis is to the real S pole, for initial identification of the initial N/S pole of the rotor; then, the precise subdivision is performed, and the windings are equally applied with the same amplitude and duration. For the voltage vector of the same preset time, repeat the above process, calculate the current increment of the assumed -d axis preset time and the current increment of the assumed -q axis preset time. The greater the difference between the two, the corresponding - The closer the d-axis is to the real S-pole, the better the initial N/S pole of the rotor.

再進一步的,該辨識方法具體包括如下步驟:步驟1:將永磁輔助同步磁阻電機的一個電週期k等分,k必須大於等於8,△θ 0=360°/k。假定-d軸在等分線上,假定-q軸在超前假定-d軸90°電角度的位置上;同時向各等分線上施加幅值相等、持續相同預設時間的電壓向量,採樣至少兩相繞組電流,進行park轉換得到假定-d軸上預設時間內電流增量△i d ,對比各電壓向量對應得到的假定-d軸電流回應增量△i d ,提取最大的電流增量△i d 所對應電壓向量位置θ 1為真實-d軸(S極)粗略位置;步驟2:由步驟1獲得真實-d軸(S極)粗略位置θ 1,在與θ 1位置偏差±△θ 0/2電角度的兩個位置分別施加同步驟1的電壓向量,假定-d軸在該位置上,假定-q軸在超前假定-d軸90°電角度的位置上。採樣至少兩相繞組電流,進行park轉換得到假定-d軸預設時間內電流增量△i d1和假定-q軸預設時間內電流增 量△i q1,比較△i d1-△i q1,提取得到△i d1-△i q1更大值的電壓向量位置θ 2為真實-d軸(S極)更接近位置;步驟3:重複執行步驟2,直到得到更精確的真實-d軸(S極)位置θ r為止,對θ r±180°電角度得到轉子真實初始d軸(N極)位置θ fFurther, the identification method specifically includes the following steps: Step 1: equally divide an electrical period k of the permanent magnet auxiliary synchronous reluctance motor, k must be greater than or equal to 8, Δ θ 0 = 360 ° / k . Assume that the -d axis is on the bisector, assuming that the -q axis is at a position that is assumed to be at an electrical angle of -10° from the -d axis; simultaneously applying voltage vectors of equal magnitude for the same preset time to each aliquot, sampling at least two Phase winding current, park conversion is obtained by assuming the current increment Δ i d in the preset time on the -d axis, and the assumed -d-axis current response increment Δ i d is obtained corresponding to each voltage vector, and the maximum current increment is extracted. The voltage vector position θ 1 corresponding to i d is the true-d-axis (S-pole) coarse position; Step 2: The true-d-axis (S-pole) coarse position θ 1 is obtained from step 1 , and the deviation from the θ 1 position is ±Δ θ The two positions of the 0 /2 electrical angle are respectively applied with the voltage vector of step 1, assuming that the -d axis is at this position, assuming that the -q axis is at a position that is assumed to be -10° electrical angle of the -d axis. Sampling at least two phase winding currents, performing park conversion to obtain a current increment Δ i d 1 within a predetermined time period of the d- axis and a current increment Δ i q 1 within a predetermined time period of the -q axis, comparing Δ i d 1 -△ i q 1 , extracting the voltage vector position θ 2 of the larger value of Δ i d 1i q 1 is the true -d axis (S pole) closer to the position; Step 3: repeating step 2 until more accurate From the true-d-axis (S-pole) position θ r , the true initial d-axis (N-pole) position θ f of the rotor is obtained for an electrical angle of θ r ±180°.

進一步的,該永磁輔助同步磁阻電機轉子具有兩層或兩層以上磁障壁,且兩層或兩層以上依次相鄰的磁障壁內嵌入磁鋼,磁鋼所處各層磁障壁內位置相對一致。 Further, the permanent magnet auxiliary synchronous reluctance motor rotor has two or more magnetic barriers, and two or more layers of magnetic barriers are sequentially embedded in the magnetic barrier, and the magnetic barriers are respectively located in the magnetic barriers. Consistent.

採用本發明方法,解決了現有磁極檢測技術應用於永磁輔助同步磁阻電機上將會發生N/S極檢測反的誤會。同時,本發明方法也從側面反映永磁輔助同步磁阻電機的控制需要搭配具有專用軟體的變頻器使用,採用傳統永磁同步電機變頻器將必然產生一些不必要的麻煩。 The method of the invention solves the misunderstanding that the existing magnetic pole detection technology is applied to the permanent magnet auxiliary synchronous reluctance motor, and the N/S pole detection reverse occurs. At the same time, the method of the invention also reflects from the side that the control of the permanent magnet auxiliary synchronous reluctance motor needs to be used with a frequency converter having a special software body, and the conventional permanent magnet synchronous motor frequency converter will inevitably generate some unnecessary troubles.

另外,這種初始N/S極辨識方法經過多次測試,誤差能控制在非常小的範圍內,為永磁輔助同步磁阻電機的高效正常運行提供了保障,進一步得排除了永磁輔助同步磁阻電機大量投入市場的障礙。 In addition, this initial N/S pole identification method has been tested many times, and the error can be controlled within a very small range, which provides a guarantee for the efficient and normal operation of the permanent magnet auxiliary synchronous reluctance motor, and further eliminates the permanent magnet auxiliary synchronous magnetic Obstacles to the market for resistance motors.

1‧‧‧磁鋼 1‧‧‧Magnetic steel

2‧‧‧磁障壁 2‧‧‧Magnetic barrier

3‧‧‧邊緣磁橋區域 3‧‧‧Edge magnetic bridge area

ω‧‧‧電氣角速度 ω ‧‧‧ electrical angular velocity

p‧‧‧電機極對數 p ‧‧‧Motor pole pairs

R1‧‧‧定子相電阻 R1‧‧‧ stator phase resistance

ψ pm ‧‧‧轉子磁鋼在定子繞組上產生磁鏈 ψ pm ‧‧‧ magnet rotor flux generated in the stator winding

u d ‧‧‧定子電流空間向量在d軸方向上的分量 u d ‧‧‧The component of the stator current space vector in the d-axis direction

u q ‧‧‧定子電流空間向量在q軸方向上的分量 u q ‧‧‧The component of the stator current space vector in the q-axis direction

i d ‧‧‧定子電流空間向量在d軸方向上的分量 i d ‧‧‧The component of the stator current space vector in the d-axis direction

i q ‧‧‧定子電流空間向量在q軸方向上的分量 i q ‧‧‧The component of the stator current space vector in the q-axis direction

L d ‧‧‧d軸電感 L d ‧‧‧d shaft inductance

L q ‧‧‧q軸電感 L q ‧‧‧q axis inductance

圖1是本發明辨識步驟流程圖。 1 is a flow chart of the identification step of the present invention.

圖2是本發明永磁輔助同步磁阻電機轉子結構示意圖。 2 is a schematic view showing the structure of a rotor of a permanent magnet auxiliary synchronous reluctance motor of the present invention.

圖3是傳統永磁同步電機空載磁場分佈以及在N/S極位置分別施加等幅值,持續相同預設時間電壓向量後磁場分佈對比圖;左圖空載,中圖N極,右圖S極。 Fig. 3 is a comparison diagram of the magnetic field distribution of the conventional permanent magnet synchronous motor with no-load magnetic field distribution and equal amplitude applied at the N/S pole position, and the same preset time voltage vector; the left picture is empty, the middle picture N pole, the right picture S pole.

圖4是本發明永磁輔助同步磁阻電機空載磁場分佈以及在N/S極位置分別施加等幅值,持續相同預設時間電壓向量後磁場分佈對比圖;左圖空載,中圖N極,右圖S極。 4 is a comparison diagram of the magnetic field distribution after the no-load magnetic field distribution of the permanent magnet auxiliary synchronous reluctance motor of the present invention and the equal amplitude value applied at the N/S pole position, and the voltage vector of the same preset time is continued; Extreme, right S pole.

圖5是永磁輔助同步磁阻電機相量圖。 Figure 5 is a phasor diagram of a permanent magnet assisted synchronous reluctance motor.

為了使本發明實現的技術手段、創作特徵、達成目的與功效易於明白瞭解,下面結合具體圖示,進一步闡述本發明。 In order to make the technical means, creative features, achievement goals and effects achieved by the present invention easy to understand, the present invention will be further described below in conjunction with specific illustrations.

參見圖2,所示為本發明中永磁輔助同步磁阻電機轉子結構示意圖,其給出了三種的永磁輔助同步磁阻電機轉子結構。 Referring to Fig. 2, there is shown a schematic structural view of a rotor of a permanent magnet auxiliary synchronous reluctance motor according to the present invention, which shows three rotor structures of a permanent magnet auxiliary synchronous reluctance motor.

由圖可知,本發明中永磁輔助同步磁阻電機轉子具有以下特徵:具有兩層或兩層以上磁障壁2;兩層或兩層以上依次相鄰的磁障壁2內嵌入磁鋼1,同時磁鋼1所處各層磁障壁2內位置相對一致。 As can be seen from the figure, the permanent magnet auxiliary synchronous reluctance motor rotor of the present invention has the following features: two or more magnetic barriers 2; two or more layers of magnetic barriers 2 adjacent to each other are embedded with magnetic steel 1 The positions in the magnetic barrier 2 of each layer of the magnetic steel 1 are relatively uniform.

再者,本永磁輔助同步磁阻磁鋼材料無限定,鐵氧體和稀土永磁材料皆可以。 Furthermore, the permanent magnet-assisted synchronous magnetoresistive magnetic steel material is not limited, and both ferrite and rare earth permanent magnet materials are acceptable.

此處並未對轉子各處尺寸進行優化,也不考慮各自結構本身的優越性,只用於示意,凡滿足上述特徵結構的永磁輔助同步磁阻電機轉子,都是本發明針對的辨識對象。 The dimensions of the rotor are not optimized here, and the superiority of the respective structures is not considered. It is only used for illustration. The permanent magnet auxiliary synchronous reluctance motor rotor that satisfies the above characteristic structure is the identification object targeted by the present invention. .

參見圖3,傳統永磁同步電機空載磁場分佈以及在N/S極位置分別施加等幅值,持續相同預設時間電壓向量後磁場分佈,左圖為空載磁場,中圖N極處為增磁狀態,右圖S極處為去磁狀態,以所施加電壓向量方向為假定d軸。很明顯,施加電壓向量後(無論增磁還是去磁)的磁路較空載磁路並未發生任何改變,只是鐵心及氣隙處磁場強弱發生變化。由於定子鐵心非線性磁化特性,增磁狀態d軸電感將小於去磁狀態的d軸電感。根據如下公式: Referring to FIG. 3, the conventional permanent magnet synchronous motor has a no-load magnetic field distribution and an equal amplitude is applied at the N/S pole position, and the magnetic field distribution is continued after the same preset time voltage vector. The left picture shows the no-load magnetic field, and the middle figure N pole is In the state of magnetization, the S pole at the right is demagnetized, and the direction of the applied voltage vector is assumed to be the d-axis. Obviously, the magnetic circuit after applying the voltage vector (whether magnetically added or demagnetized) does not change much compared to the no-load magnetic circuit, except that the magnetic field strength at the core and the air gap changes. Due to the nonlinear magnetization characteristics of the stator core, the d-axis inductance of the magnetization state will be smaller than the d-axis inductance of the demagnetization state. According to the following formula:

可知,因施加電壓向量等幅值等時間,故兩狀態下ψ d 相同,又因增磁狀態d軸電感小於去磁狀態下的d軸電感,則可得到增磁狀態△i d >去磁狀態△i d It can be seen that due to the application of the voltage vector and the like, the ψ d is the same in both states, and since the d-axis inductance in the magnetization state is smaller than the d-axis inductance in the demagnetization state, the magnetization state Δ i d > demagnetization can be obtained. State Δ i d .

基於以上原理,將永磁同步電機的一個電週期k等分。假定d軸在等分線上,假定q軸在超前假定d軸90°電角度的位置上。通過計算提取最大的電流增量△i d ,則可得真實d軸(N極)的粗略位置為最大的電流增量△i d 所對應電壓向量位置。以上為傳統永磁同步電機轉子N/S極辨識方法。 Based on the above principle, one electrical cycle k of the permanent magnet synchronous motor is equally divided. Assuming that the d-axis is on the bisector, it is assumed that the q-axis is at a position that is advanced by assuming an electrical angle of 90° from the d-axis. By calculating the maximum current increment Δ i d , the rough position of the true d-axis (N-pole) is the voltage vector position corresponding to the maximum current increment Δ i d . The above is the N/S pole identification method of the rotor of the conventional permanent magnet synchronous motor.

參見圖4,本發明永磁輔助同步磁阻電機空載磁場分佈以及在N/S極位置分別施加等幅值,持續相同預設時間電壓向量後磁場分佈對比,左圖為空載磁場,中圖N極處為增磁狀態,右圖S極處為去磁狀態,假設同樣以所施加電壓向量方向為假定d軸。區別於傳統永磁同步電機,永磁輔助同步磁阻電機去磁迴路較增磁迴路發生較大改變,兩者磁路的變化使得轉子N/S的辨識無法單純依據定子鐵心非線性磁化特性來判斷。去磁狀態,原有轉子永磁磁場受定子電壓向量磁場擠壓,產生的新磁路分出一部分通過轉子狹長的邊緣磁橋區域以及圖中垂直於q軸區域,邊緣磁橋區域的高度飽和以及垂直於q軸區域多磁障壁結構造成的低磁導,一併導致去磁狀態d軸電感將遠小於增磁狀態下的d軸電感。通過大量模式化對比測試,對於具有請求項1特徵的永磁輔助同步磁阻電機,皆會出現上述現象。此時,根據公式(1)可知,增磁狀態△i d <去磁狀態△i d Referring to FIG. 4, the magnetic field distribution of the permanent magnet auxiliary synchronous reluctance motor of the present invention and the equal amplitude are applied at the N/S pole position respectively, and the magnetic field distribution is compared after the same preset time voltage vector, and the left picture is the no-load magnetic field. The N pole of the figure is the magnetization state, and the S pole of the right diagram is the demagnetization state, assuming that the direction of the applied voltage vector is also assumed to be the d-axis. Different from the traditional permanent magnet synchronous motor, the demagnetization circuit of the permanent magnet auxiliary synchronous reluctance motor changes greatly compared with the magnetization circuit. The change of the magnetic circuit makes the identification of the rotor N/S not based on the nonlinear magnetization characteristics of the stator core. Judge. In the demagnetization state, the original permanent magnet magnetic field is squeezed by the stator voltage vector magnetic field, and the new magnetic circuit is generated by a part of the narrow magnetic bridge region passing through the rotor and perpendicular to the q-axis region in the figure, and the height of the edge magnetic bridge region is saturated. And the low magnetic permeability caused by the multi-magnetic barrier structure perpendicular to the q-axis region, together with the demagnetization state d-axis inductance will be much smaller than the d-axis inductance in the magnetization state. Through a large number of patterning comparison tests, the above phenomenon occurs for a permanent magnet auxiliary synchronous reluctance motor having the characteristics of claim 1. At this time, according to the formula (1), the magnetization state Δ i d < the demagnetization state Δ i d .

參見圖1,基於以上原理,本發明首先將永磁輔助同步磁阻電機的一個電週期k等分,k必須大於等於8,△θ0=360°/k。假定-d軸在等分線上,假定-q軸在超前假定-d軸90°電角度的位置上。各等分線上施加幅值相等、持續相同預設時間的電壓向量,採樣至少兩相繞組電流,進行park轉換得到假定-d軸上預設時間內電流增量△i d ,對比各電壓向量對應得到的假定-d軸電流回應增量△i d ,提取最大的電流增量△i d 所對應電壓向量位置θ 1為初始-d軸(S極)粗略位置。 Referring to Figure 1, based on the above principles, the present invention is a first auxiliary periodic permanent magnetic synchronous reluctance electrical machine aliquots k, k must be greater than 8, △ θ 0 = 360 ° / k. Assuming that the -d axis is on the bisector, assume that the -q axis is at a position that is assumed to be an electrical angle of 90° from the -d axis. Applying voltage vectors of equal amplitude and duration for the same preset time on each bisector, sampling at least two phase winding currents, performing park conversion to obtain a current increment Δ i d within a preset time on the assumed d-axis, corresponding to each voltage vector The obtained assumed d-axis current responds to the increment Δ i d , and the voltage vector position θ 1 corresponding to the maximum current increment Δ i d is extracted as the initial-d-axis (S-pole) coarse position.

由於真實-d軸(S極)的粗略定位θ 1將只可能存在於360°/k、2*360°/k、3*360°/k...360°電角度這些等分線位置上,而實際轉子S極是可以存在於任意位置,故為了實現對永磁輔助同步磁阻電機轉子初始位置更精確的測量,本發明在得到粗略位置θ 1步驟後,對θ 1附近位置進行精確細分,分別對θ 1+△θ 0/2和θ 1-△θ 0/2兩個位置施加幅值相等、持續相同預設時間的電壓向量,假定-d軸在該位置上,則假定-q軸在超前假定-d軸90°電角度的位置上。採樣至少兩相繞組電流,進行park轉換得到假定-d軸預設時間內電流增量△i d1和假定-q軸預設時間內電流增量△i q1,比較△i d1-△i q1,提取得到△i d1-△i q1更大值的電壓向量位置θ 2為真實-d軸(S極)更接近位置。具體過程如下(參見圖1):針對θ 1+△θ 0/2和θ 1-△θ 0/2兩個位置,進行park轉換分別得到假定-d軸預設時間內電流增量△i d1、△i d1’和假定-q軸預設時間內電流增量△i q1、△i q1’;比較△i d1-△i q1與△i d1’-△i q1’,提取得到更大值的電壓向量位置θ 2為真實-d軸(S極)更接近位置:若△i d1-△i q1>△i d1’-△i q1’,則θ 2=θ 1+△θ 0/2;若△i d1-△i q1<△i d1’-△i q1’,則θ 2=θ 1-△θ 0/2。 Since the coarse positioning θ 1 of the true-d axis (S pole) will only exist at the bisector positions of 360°/ k , 2*360°/ k , 3*360°/ k ...360° electrical angle after the actual rotor pole is S may be present at any position, so that in order to achieve a more accurate measurement of the initial position of the permanent magnet assisted synchronous reluctance motor rotor, the present invention is obtained in step coarse position θ 1, θ 1 to a position near the accurate Subdividing, applying voltage vectors of equal amplitude for the same preset time to two positions θ 1 + Δ θ 0 /2 and θ 1 - Δ θ 0 /2 respectively, assuming that the -d axis is at the position, then assume - The q-axis is assumed to be at the position of the 90-degree electrical angle of the -d-axis. Sampling at least two phase winding currents, performing park conversion to obtain a current increment Δ i d 1 within a predetermined time period of the d- axis and a current increment Δ i q 1 within a predetermined time period of the -q axis, comparing Δ i d 1 -△ i q 1 , the voltage vector position θ 2 obtained by extracting a larger value of Δ i d 1i q 1 is closer to the position of the true -d axis (S pole). The specific process is as follows (see Fig. 1): For the two positions θ 1 + Δ θ 0 /2 and θ 1 - Δ θ 0 /2, the park conversion is performed to obtain the current increment Δ i d within the preset time of the -d axis. 1 , Δ i d 1 ' and the assumed -q axis current increment Δ i q 1 , Δ i q 1 '; comparison Δ i d 1 - Δ i q 1 and Δ i d 1 '- Δ i q 1 ', the voltage vector position θ 2 extracted to obtain a larger value is true - the d-axis (S-pole) is closer to the position: if Δ i d 1 - Δ i q 1 > Δ i d 1 '- Δ i q 1 ', Then θ 2 = θ 1 + Δ θ 0 /2; if Δ i d 1 - Δ i q 1 < Δ i d 1 '- Δ i q 1 ', θ 2 = θ 1 - Δ θ 0 /2.

進一步的,更新△θ 0,將△θ 0/2賦予新值△θ 0,不斷重複上述精確細分步驟,直到最後一次△θ 0<最初設定△θ min 。此時得到真實-d軸(S極)精確位置θ r,對θ r±180°電角度得到轉子真實初始d軸(N極)位置θ fFurther, updating Δ θ 0 , assigning Δ θ 0 /2 to the new value Δ θ 0 , and repeating the above precise subdivision step until the last time Δ θ 0 < initial setting Δ θ min . At this time, the true-d-axis (S-pole) precise position θ r is obtained, and the true initial d-axis (N-pole) position θ f of the rotor is obtained for the electrical angle of θ r ±180°.

在精確細分的步驟中,需要同時計算假定-d電流增量△i d1和假定-q軸電流增量△i q1,因在假定-d軸不斷逼近真實-d軸過程中,儘管△i d1越來越大,△i q1越來越小,但各假定-d軸電流增量△i d1間變化幅度卻越來越小,單純通過提取最大△i d1無法保證轉子位置辨識的高精度。而此時假定-q軸電流增量△i q1相對於假定-d軸電流增量△i d1具有更高的解析度。為得到最為接近真實-d軸的位置,我們 希望辨識的假定-d軸位置能同時擁有越大的△i d1和越小的△i q1。因此,通過比較△i d1-△i q1,提取最大△i d1-△i q1所對應電壓向量位置θ 2將具有非常高的精度。 In the step of precise subdivision, it is necessary to simultaneously calculate the assumed -d current increment Δ i d 1 and the assumed -q axis current increment Δ i q 1 , because in the process of assuming that the -d axis is constantly approaching the true-d axis, despite △ As d d 1 is getting larger and larger, △ i q 1 is getting smaller and smaller, but the variation range between the assumed -d-axis current increments Δ i d 1 is getting smaller and smaller, and the rotor cannot be guaranteed simply by extracting the maximum Δ i d 1 High precision for position recognition. At this time, it is assumed that the -q-axis current increment Δ i q 1 has a higher resolution with respect to the assumed -d-axis current increment Δ i d 1 . To get the position closest to the true-d axis, we want to identify the assumed -d-axis position that has both a larger Δ i d 1 and a smaller Δ i q 1 . Therefore, by comparing Δ i d 1 - Δ i q 1 , extracting the voltage vector position θ 2 corresponding to the maximum Δ i d 1 - Δ i q 1 will have a very high precision.

以上顯示和描述了本發明的基本思想和主要特徵。需要注意的是,不同於永磁同步電機,永磁輔助同步磁阻電機即使轉子N/S極位置辨識錯誤,電機也能正常起動和常規運轉,具體可通過以下輸出轉矩公式和圖5永磁輔助同步磁阻電機相量圖進行解釋:T=p ψ pm i q +p(L d -L q )i d i q (2) The basic idea and main features of the present invention have been shown and described above. It should be noted that, unlike the permanent magnet synchronous motor, the permanent magnet auxiliary synchronous reluctance motor can start normally and operate normally even if the rotor N/S pole position is incorrectly identified, specifically by the following output torque formula and FIG. The magnetic Assisted Synchronous Reluctance Motor phasor diagram is explained: T = p ψ pm i q + p ( L d - L q ) i d i q (2)

式中第一項為永磁轉矩,第二項為磁阻轉矩。p為電機極對數,L d 、L q 分別為d軸和q軸電感,i d 、i q 分別為定子電流空間向量在d、q軸方向上的分量,ψ pm為轉子磁鋼在定子繞組上產生磁鏈,通常定義d軸為轉子磁鋼N極磁場方向,q軸為d軸方向逆時針旋轉90°電角度。傳統永磁同步電機無論表貼式還是內嵌式,輸出轉矩的主要貢獻成分為永磁轉矩。而對於永磁輔助同步磁阻電機,輸出轉矩主要貢獻成分為磁阻轉矩,永磁轉矩所占成分通常不到30%。這是由其轉子多層磁障壁導致的磁路特殊性所決定,磁鋼產生的磁場需經過層層障礙才能形成與定子繞組交鏈的ψ pm,嵌入磁鋼無論磁能的強弱,帶來的ψ pm將十分有限。 The first term in the formula is permanent magnet torque and the second term is reluctance torque. p is the pole pair of the motor, L d and L q are the d-axis and q-axis inductance respectively, i d and i q are the components of the stator current space vector in the d and q directions, respectively, ψ pm is the rotor magnet in the stator winding A magnetic flux is generated, and the d-axis is generally defined as the N-pole magnetic field direction of the rotor magnet, and the q-axis is rotated 90° counterclockwise in the d-axis direction. Traditional permanent magnet synchronous motors, whether surface-mounted or in-line, the main contribution of output torque is permanent magnet torque. For the permanent magnet auxiliary synchronous reluctance motor, the main contribution component of the output torque is the reluctance torque, and the permanent magnet torque usually accounts for less than 30%. This multi-layer magnetic circuit by a magnetic barrier particularity of the decision result in the rotor, the magnetic field generated by the magnet to form barrier layers subject to [Psi] and ψ pm stator winding linkage, magnetic energy, whether embedded magnet strength, to bring Pm will be very limited.

當永磁輔助同步磁阻轉子N/S極位置辨識錯誤,以最極端狀況N/S極位置辨識相反為例。假定正常狀態,輸出轉矩100Nm=磁阻轉矩80Nm+永磁轉矩20Nm;辨識N/S極相反時,將變為磁阻轉矩80Nm-永磁轉矩20Nm=輸出轉矩60Nm,很顯然,因永磁轉矩成分小,電機仍能依靠磁阻轉矩進行起動與常規運轉,但此時為得到與正常狀態相同的100Nm輸出轉矩,電機電流勢必大幅增加,此時電機效率下降,發熱量增加,長期運行於此狀態將大大降低電機壽命。同時,參照圖5本發明永磁輔助同步磁阻電機相量圖,未嵌入磁鋼,功率因數角為θ 1;嵌入磁鋼,N/S極位置辨識正確,功率因數角為θ 2;嵌入磁鋼,N/S極位置辨識相反,功率因數角為θ 3;此時θ 2<θ 1<θ 3,即cosθ 2>cosθ 1>cosθ 3。通過實例驗證, 未嵌入磁鋼實測額定點功率因數為0.73,嵌入磁鋼採用本發明轉子N/S極辨識方法額定點功率因數為0.85,嵌入磁鋼採用傳統永磁同步電機辨識方法額定點功率因數為0.62。 When the N/S pole position identification of the permanent magnet assisted synchronous reluctance rotor is incorrect, the N/S pole position identification in the most extreme case is reversed as an example. Assuming normal state, the output torque is 100Nm = reluctance torque 80Nm + permanent magnet torque 20Nm; when the N/S pole is opposite, it will become reluctance torque 80Nm - permanent magnet torque 20Nm = output torque 60Nm, obviously Because the permanent magnet torque component is small, the motor can still rely on the reluctance torque for starting and normal operation. However, in order to obtain the same 100Nm output torque as the normal state, the motor current is bound to increase greatly, and the motor efficiency is reduced. The increase in heat generation, long-term operation in this state will greatly reduce the life of the motor. Meanwhile, referring to FIG. 5, the phasor diagram of the permanent magnet auxiliary synchronous reluctance motor of the present invention is not embedded in the magnetic steel, and the power factor angle is θ 1 ; the magnetic steel is embedded, the N/S pole position is correctly identified, and the power factor angle is θ 2 ; For magnetic steel, the N/S pole position is reversed, and the power factor angle is θ 3 ; at this time θ 2 < θ 1 < θ 3 , that is, cos θ 2 >cos θ 1 >cos θ 3 . The example shows that the measured power factor of the un-embedded magnetic steel is 0.73, and the embedded magnetic steel adopts the rotor N/S pole identification method of the present invention. The rated power factor is 0.85, and the embedded magnetic steel adopts the conventional permanent magnet synchronous motor identification method. The factor is 0.62.

以上說明突出了本發明的重要性與必要性,進一步排除了永磁輔助同步磁阻電機大量投入市場的障礙,避免了客戶使用過程中由於轉子初始位置辨識錯誤將會出現的電流增大,功率因數偏低,超速或超載能力差等非專業用戶通常難以察覺的問題。 The above description highlights the importance and necessity of the present invention, further eliminates the obstacles that the permanent magnet auxiliary synchronous reluctance motor is put into the market, and avoids the increase of current which occurs due to the error of the initial position identification of the rotor during the use of the customer. Non-professional users, such as low factors, poor speed or poor overload capacity, are often difficult to detect.

以上顯示和描述了本發明的基本原理、主要特徵和本發明的優點。本發明所屬技術領域中具有通常知識者應該瞭解,本發明不受上述實施例的限制,上述實施例和說明書中描述的只是說明本發明的原理,在不脫離本發明精神和範圍的前提下,本發明還會有各種變化和改進,這些變化和改進都落入要求保護的本發明範圍內。本發明要求保護範圍由所附的申請專利範圍及其等效物界定。 The basic principles, main features, and advantages of the present invention are shown and described above. It is to be understood by those skilled in the art that the present invention is not limited by the foregoing embodiments. The invention is also subject to various modifications and improvements which fall within the scope of the invention as claimed. The scope of the invention is defined by the scope of the appended claims and their equivalents.

Claims (3)

一種永磁輔助同步磁阻電機轉子初始N/S極精確辨識方法,其中,該辨識方法通過向至少兩相定子繞組施加均勻分佈於一個電週期內的幅值相等、持續相同一預設時間的一電壓向量,檢測回應d、q一電流回應增量大小,繼而再利用該永磁輔助同步磁阻電機增磁狀態的電流增量小於去磁狀態的電流增量的特性分辨出該永磁輔助同步磁阻電機轉子磁極的極性,從而確定一轉子初始N/S極;其中,該永磁輔助同步磁阻電機轉子具有兩層或兩層以上磁障壁,且兩層或兩層以上依次相鄰的該磁障壁內嵌入一磁鋼,該磁鋼所處各層該磁障壁內位置相對一致。 An initial N/S pole accurate identification method for a permanent magnet auxiliary synchronous reluctance motor rotor, wherein the identification method is applied to at least two phase stator windings by uniformly distributing the amplitudes in one electrical cycle to be equal for the same preset time a voltage vector, detecting the response d, q a current response increment size, and then using the permanent magnet auxiliary synchronous reluctance motor to increase the current increment of the magnetostatic state is smaller than the demagnetization state of the current increment to distinguish the permanent magnet assist The polarity of the rotor pole of the synchronous reluctance motor is determined to determine an initial N/S pole of the rotor; wherein the permanent magnet auxiliary synchronous reluctance motor rotor has two or more layers of magnetic barriers, and two or more layers are sequentially adjacent A magnetic steel is embedded in the magnetic barrier, and the positions of the magnetic barrier in the layers of the magnetic steel are relatively uniform. 如請求項1項所述之永磁輔助同步磁阻電機轉子初始N/S極精確辨識方法,其中,該辨識方法首先,將該永磁輔助同步磁阻電機的一個電週期k等分,k必須大於等於8;假定一-d軸在等分線上,假定一-q軸在超前假定該-d軸90°電角度的位置上;同時向各等分線上施加幅值相等、持續相同該預設時間的該電壓向量,採樣該些定子繞組電流,進行park轉換得到假定該-d軸上該預設時間內之該電流回應增量,該電流回應增量值越大,假定該-d軸與該永磁輔助同步磁阻電機之實際S極越接近,用於初步辨識該轉子初始N/S極;然後,給該些定子繞組同樣施加幅值相等、持續相同該預設時間的該電壓向量,重述上述流程,計算假定該-d軸預設時間內該電流回應增量和假定該-q軸該預設時間內該電流回應增量,兩者差值越大,則所對應的該-d軸與該永磁輔助同步磁阻電機之實際S極越接近,用於精確辨識該轉子初始N/S極。 An initial N/S pole accurate identification method for a permanent magnet auxiliary synchronous reluctance motor rotor according to claim 1, wherein the identification method firstly divides an electric cycle k of the permanent magnet auxiliary synchronous reluctance motor into k Must be greater than or equal to 8; assuming that the one-d axis is on the bisector, assuming that the one-q axis is at a position that is assumed to be 90° electrical angle of the -d axis; while applying the same magnitude to each bisector, the same duration is maintained. Setting the voltage vector of time, sampling the stator winding currents, performing a park conversion to obtain the current response increment of the preset time on the -d axis, the larger the response value of the current response, the assumed d-axis The closer to the actual S pole of the permanent magnet auxiliary synchronous reluctance motor, for initial identification of the initial N/S pole of the rotor; then, the same voltage is applied to the stator windings for the same period of time Vector, restoring the above process, calculating the current response increment in the preset time of the -d axis and assuming that the current response increment of the -q axis within the preset time, the greater the difference between the two, the corresponding The -d axis and the permanent magnet auxiliary synchronous reluctance motor The closer the S pole, the rotor for accurate identification of the initial N / S poles. 如請求項2項所述之永磁輔助同步磁阻電機轉子初始N/S極精確辨識方法,其中,該辨識方法具體包括如下步驟:步驟1:將永磁輔助同步磁阻電機的一個電週期k等分,k必須大於等於8,△θ 0=360°/k;假定該-d軸在等分線上,假定該-q軸在超前假定該-d軸90°電角度的位置上;同時向各等分線上施加幅值相等、持續相同該預設時間的該電壓向量,採樣該些定子繞組電流,進行park轉換得到假定該-d軸上該預設時間內該電流回應增量△i d ,對比各該些定子繞組之該電壓向量對應得到的假定該-d軸電流回應增量△i d ,提取最大的該電流回應增量△i d 所對應該電壓向量之第一位置θ 1為該永磁輔助同步磁阻電機之實際該-d軸(S極)之一粗略位置;步驟2:由步驟1獲得該粗略位置θ 1,在與該粗略位置θ 1偏差±△θ 0/2電角度的兩個偏差位置分別施加同步驟1的該電壓向量,假定該-d軸在該偏差位置上,假定該-q軸在超前假定該-d軸90°電角度的位置上;採樣該些定子繞組電流,進行park轉換得到假定該-d軸該預設時間內一第一電流回應增量△i d1和假定該-q軸該預設時間內一第二電流回應增量△i q1,比較該第一電流回應增量與該第二電流回應增量△i d1 -△i q1,提取得到該第一電流回應增量與該第二電流回應增量△i d1 -△i q1之更大值的該電壓向量之第二位置θ 2為該永磁輔助同步磁阻電機之實際該-d軸(S極)之一更接近位置;步驟3:重複執行步驟2,直到得到更精確的該永磁輔助同步磁阻電機之實際該-d軸(S極)一精確位置θ r 為止,對θ r ±180°電角度得到該永磁輔助同步磁阻電機之實際一d軸(N極)一實際位置θ f The method for accurately determining the initial N/S pole of the permanent magnet auxiliary synchronous reluctance motor rotor according to claim 2, wherein the identification method comprises the following steps: Step 1: one electric cycle of the permanent magnet auxiliary synchronous reluctance motor k aliquot, k must be greater than or equal to 8, Δ θ 0 = 360 ° / k ; assuming the -d axis is on the bisector, assuming that the -q axis is advanced by assuming an angle of 90 ° electrical angle of the -d axis; Applying the voltage vector having the same amplitude and continuing for the same preset time to each aliquot, sampling the stator winding currents, performing a park conversion to assume that the current response increment Δ i in the preset time on the -d axis d . comparing the voltage vector corresponding to each of the stator windings to assume the -d-axis current response increment Δ i d , and extracting the maximum current response increment Δ i d corresponding to the first position θ 1 of the voltage vector Is a rough position of the actual -d axis (S pole) of the permanent magnet auxiliary synchronous reluctance motor; Step 2: obtaining the coarse position θ 1 from step 1 and deviating from the coarse position θ 1 by ±Δ θ 0 / The two deviation positions of the electrical angle are respectively applied to the voltage of step 1 Quantity, assuming that the -d axis is at the deviation position, assuming that the -q axis is at a position that is assumed to be 90° electrical angle of the -d axis; sampling the stator winding currents, performing a park conversion to assume that the -d axis Comparing a first current response increment Δ i d 1 in a preset time and a second current response increment Δ i q 1 in the preset time period of the -q axis, comparing the first current response increment with the second The current response increment Δ i d1 i q 1 , and extracting the second position of the voltage vector of the first current response increment and the second current response increment Δ i d1 i q 1 θ 2 is the actual position of the permanent magnet auxiliary synchronous reluctance motor that is closer to the position of the -d axis (S pole); Step 3: Repeat step 2 until the more accurate actual operation of the permanent magnet auxiliary synchronous reluctance motor is obtained. The -d axis (S pole) is a precise position θ r , and an actual d-axis (N-pole)-actual position θ f of the permanent magnet-assisted synchronous reluctance motor is obtained for an electrical angle of θ r ±180°.
TW105112374A 2015-05-11 2016-04-21 Initial N/S pole accurate identification method for permanent magnet auxiliary synchronous reluctance motor rotor TWI616666B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510237081.1A CN104852663B (en) 2015-05-11 2015-05-11 A kind of extremely accurate discrimination methods of the initial N/S of permanent magnetism assist in synchronization magnetic resistance motor rotor

Publications (2)

Publication Number Publication Date
TW201640131A TW201640131A (en) 2016-11-16
TWI616666B true TWI616666B (en) 2018-03-01

Family

ID=53852060

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105112374A TWI616666B (en) 2015-05-11 2016-04-21 Initial N/S pole accurate identification method for permanent magnet auxiliary synchronous reluctance motor rotor

Country Status (2)

Country Link
CN (1) CN104852663B (en)
TW (1) TWI616666B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107482984B (en) * 2016-10-12 2019-09-20 宝沃汽车(中国)有限公司 Motor initial position angle automatic Calibration angle compensation process and system
CN107979196B (en) * 2017-11-14 2020-02-21 江苏大学 Asymmetric permanent magnet auxiliary synchronous reluctance motor and design method for improving torque performance
CN107846170B (en) * 2017-11-27 2020-06-09 山东科汇电力自动化股份有限公司 Control method of double-sampling-point switched reluctance motor position-sensorless
CN110851949B (en) * 2019-09-01 2023-08-25 天津工业大学 Method for analyzing electromagnetic performance of multilayer magnetic barrier permanent magnet auxiliary synchronous reluctance motor
CN110932637B (en) * 2019-12-27 2021-05-18 浙江大学台州研究院 Method for identifying rotor position of permanent magnet synchronous motor in static state

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5144564A (en) * 1991-01-08 1992-09-01 University Of Tennessee Research Corp. Rotor position estimation of a permanent magnet synchronous-machine for high performance drive
US20050151502A1 (en) * 2004-01-14 2005-07-14 International Rectifier Corporation Position sensorless drive for permanent magnet synchronous motors
CN1794560A (en) * 2004-12-20 2006-06-28 三菱电机株式会社 Controlling device of permanent-magnet synchro motor
US7550937B2 (en) * 2007-04-17 2009-06-23 Delta Electronics, Inc. Method for detecting initial magnetic pole position in permanent-magnet motor
TWI382650B (en) * 2009-01-22 2013-01-11 Richtek Techohnology Corp Apparatus and method for detecting rotor position of pmsm
CN102931903A (en) * 2012-10-18 2013-02-13 青岛斑科变频技术有限公司 Method for detecting initial position of rotor of permanent magnet synchronous motor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5144564A (en) * 1991-01-08 1992-09-01 University Of Tennessee Research Corp. Rotor position estimation of a permanent magnet synchronous-machine for high performance drive
US20050151502A1 (en) * 2004-01-14 2005-07-14 International Rectifier Corporation Position sensorless drive for permanent magnet synchronous motors
CN1794560A (en) * 2004-12-20 2006-06-28 三菱电机株式会社 Controlling device of permanent-magnet synchro motor
US7550937B2 (en) * 2007-04-17 2009-06-23 Delta Electronics, Inc. Method for detecting initial magnetic pole position in permanent-magnet motor
TWI382650B (en) * 2009-01-22 2013-01-11 Richtek Techohnology Corp Apparatus and method for detecting rotor position of pmsm
CN102931903A (en) * 2012-10-18 2013-02-13 青岛斑科变频技术有限公司 Method for detecting initial position of rotor of permanent magnet synchronous motor

Also Published As

Publication number Publication date
TW201640131A (en) 2016-11-16
CN104852663B (en) 2018-04-13
CN104852663A (en) 2015-08-19

Similar Documents

Publication Publication Date Title
TWI616666B (en) Initial N/S pole accurate identification method for permanent magnet auxiliary synchronous reluctance motor rotor
CN103856139B (en) Permanent Magnet Synchronous Motor Speed Sensorless rotor magnetic pole initial position recognition methods
Kato et al. Rare earth reduction using a novel variable magnetomotive force flux-intensified IPM machine
JP5134846B2 (en) Permanent magnet motor drive system
Dutta et al. Winding inductances of an interior permanent magnet (IPM) machine with fractional slot concentrated winding
Sergeant et al. Rotor geometry design of interior PMSMs with and without flux barriers for more accurate sensorless control
Chen et al. Magnet-frozen-permeability FEA and DC-biased measurement for machine inductance: Application on a variable-flux PM machine
JP2009201259A (en) Permanent magnet type rotary electric machine, method of assembling permanent magnet type rotary electric machine, method of disassembling permanent magnet type rotary electric machine and drive system for permanent magnet electric motor
Faggion et al. Sensorless capability of fractional-slot surface-mounted PM motors
Zhao et al. Position-Sensorless Control of $\text {DC}+\text {AC} $ Stator Fed Doubly Salient Electromagnetic Motor Covered Full Speed Range
Zhou et al. Determination of $ d {\hbox {-}} q $ Axis Parameters of Interior Permanent Magnet Machine
Bianchi et al. Electric vehicle traction based on a PM assisted synchronous reluctance motor
Klein-Hessling et al. Iron loss redistribution in switched reluctance machines using bidirectional phase currents
Kano Torque ripple reduction of saliency-based sensorless drive concentrated-winding IPMSM using novel flux barrier
Gebregergis et al. Evaluation of inductance in a permanent magnet synchronous motor
CN106712628B (en) A kind of current closed-loop starting method of brushless DC motor without position sensor
Bianchi et al. Analysis and experimental tests of the sensorless capability of a fractional-slot inset PM motor
JP2005065415A (en) Magnetic pole position detector for permanent-magnet synchronous motor
Bianchi et al. Electromagnetic and thermal analysis of permanent magnet synchronous machines
Takbash et al. An analytical model for a spoke type variable flux permanent magnet motor in no-load condition
Min et al. Influence of step-air gap on line-start performance of u-shape single-phase permanent magnet motors
Leuzzi et al. Analysis of overload and sensorless control capability of PM-assisted synchronous reluctance machines
Alberti et al. Investigation on the self-sensing capability of a fractional-slot inset PM motor
Kang et al. Analysis of single-phase line-start permanent-magnet motor considering iron loss and parameter variation with load angle
Mingna et al. Analytical Calculation of Detent Force in Long-stator PM Linear Motor with Modified Carter Coefficients