TWI616090B - Hevc intra prediction method by using data reusing and architecture thereof - Google Patents
Hevc intra prediction method by using data reusing and architecture thereof Download PDFInfo
- Publication number
- TWI616090B TWI616090B TW106121282A TW106121282A TWI616090B TW I616090 B TWI616090 B TW I616090B TW 106121282 A TW106121282 A TW 106121282A TW 106121282 A TW106121282 A TW 106121282A TW I616090 B TWI616090 B TW I616090B
- Authority
- TW
- Taiwan
- Prior art keywords
- complex
- mode
- parameter
- video coding
- value
- Prior art date
Links
Landscapes
- Compression Or Coding Systems Of Tv Signals (AREA)
Abstract
本發明提出一種使用運算資料共用的高效率視訊編碼畫面內預測方法及其架構,包括以下步驟:控制器產生所要運算的位置、第一參數及第二參數;第一暫存器儲存一影像圖框的複數參考像素值;複數內插運算單元在Angular模式下,對於從控制器所要運算的位置、第一參數及第二參數與影像圖框的複數參考像素值進行內插運算,以輸出複數預測位置;第二暫存器儲存從複數內插運算單元傳遞過來的複數參考影像值;以及加法器在Planar模式下,對於第二暫存器所儲存之複數參考影像值進行運算,輸出複數Planar值,並且在DC模式下,輸出複數參考影像值之一DC值。The invention provides a high-efficiency video coding intra-picture prediction method and an architecture thereof, which comprise the following steps: the controller generates a position to be calculated, a first parameter and a second parameter; and the first register stores an image map. a complex reference pixel value of the frame; the complex interpolation operation unit performs an interpolation operation on the position, the first parameter, and the second parameter of the controller to calculate the complex reference pixel value of the image frame in the Angular mode to output the complex number Predicting a position; the second register stores the complex reference image values transmitted from the complex interpolating unit; and the adder operates the complex reference image values stored in the second register in the Planar mode, and outputs the complex Planar Value, and in DC mode, outputs a DC value of one of the complex reference image values.
Description
本發明係關於一種使用運算資料共用的高效率視訊編碼畫面內預測方法及其架構。The present invention relates to a high efficiency video coding intra-picture prediction method using arithmetic data sharing and an architecture thereof.
隨著科技進步,網路以及數位多媒體技術的蓬勃發展,人們對於影像解析度要求越來越高,高畫質的影音串流比例也越來越多。以致多媒體檔案以及影像的傳輸能力成為很重要的一部分,亦被視為主要發展的議題之一,而視訊壓縮編碼就是因此而生。With the advancement of technology, the rapid development of the Internet and digital multimedia technology, people are increasingly demanding image resolution, and the proportion of high-definition video and audio streams is increasing. As a result, the ability to transfer multimedia files and images has become an important part, and it has also been regarded as one of the main development issues, and video compression coding has emerged.
視訊壓縮標準至今日已經有一段時間的發展,例如,ITU-T組織的H.261、H.262、H.263;ISO/IEC組織的MPEG系列;Google的VPX;亦或是RealNetwork的rmvb等。目前市面上最常使用的H.264/AVC是由ITU-T的VCEG(Video Coding Experts Group)和ISO/IEC的MPEG(Motion Picture Experts Group) 所組成的JCT-VC(Joint Collaborative Team on Video Coding)所共同制定的一套視訊壓縮標準。Video compression standards have been developed for some time to date, for example, ITU-T H.261, H.262, H.263; ISO/IEC MPEG series; Google's VPX; or RealNetwork's rmvb, etc. . The most commonly used H.264/AVC on the market is JCT-VC (Joint Collaborative Team on Video Coding) consisting of ITU-T's VCEG (Video Coding Experts Group) and ISO/IEC MPEG (Motion Picture Experts Group). A set of video compression standards jointly developed.
然而,面對最新的高解度UHD(4k×2k)影像或是已有的HD(720p和1080p)影像,H.264/AVC已經不敷使用,因此,JCT-VC從2010年開始開始著手研發新一代的視訊壓縮標準HEVC(High Efficiency Video Coding),以H.264/AVC編碼架構為基礎,提供了更多的預測模式、可變編碼單位(quatree coding unit)、可調的轉換單位(quatree transform unit)等,目標是比H.264/AVC減少50%的位元率(bitrate),提升壓縮效率,改善高解析度影像所帶來的網路傳輸頻寬需求和影片檔案大小的問題。However, in the face of the latest high-resolution UHD (4k × 2k) images or existing HD (720p and 1080p) images, H.264/AVC is no longer sufficient. Therefore, JCT-VC has been working since 2010. Developed a new generation of video compression standard HEVC (High Efficiency Video Coding), based on the H.264/AVC encoding architecture, providing more prediction modes, quatree coding units, and adjustable conversion units ( Quatree transform unit), etc., the goal is to reduce the bit rate (bitrate) by 50% than H.264/AVC, improve compression efficiency, improve the network transmission bandwidth requirement and video file size caused by high-resolution images. .
在HEVC標準中,比起上一代的H.264/AVC有更多的方法來減少位元率,其中,在畫面內預測(Intra Prediction)中,H.264/AVC使用8個預測方向共9個模式,HEVC則增加到了33個方向一共35個模式。在H.264/AVC中,畫面內預測使用的編碼單位只有4× 4和16 ×16兩種大小;但是在HEVC中所用的有4 ×4、8 ×8、16 ×16、32 ×32、64 ×64五種大小,每一種大小的編碼單位都還要再去做畫面內預測,接著還需要做轉換(transform)、量化(quantization)以及熵編碼(entropy coding),所以,複雜度遠遠超過H.264/AVC,尤其在畫面內預測這塊,有必要降低其運算複雜度。In the HEVC standard, there are more ways to reduce the bit rate than the previous generation of H.264/AVC, where H.264/AVC uses 8 prediction directions in the Intra Prediction. In a pattern, HEVC has increased to 35 modes in 33 directions. In H.264/AVC, intra-picture prediction uses only 4 × 4 and 16 × 16 coding units; however, 4 × 4, 8 × 8, 16 × 16, 32 × 32, used in HEVC. 64 × 64 five sizes, each size of the coding unit has to do intra-picture prediction, and then need to do transformation (transformation), quantization (entropy coding) and entropy coding (entropy coding), so the complexity is far Exceeding H.264/AVC, especially in-picture prediction, it is necessary to reduce its computational complexity.
因此,如何針對畫面內預測所產生之上述缺點提出改良方法及硬體架構,以提升整體的效率及降低硬體成本,實為當前重要課題之一。Therefore, how to improve the overall efficiency and reduce the hardware cost of the above-mentioned shortcomings caused by intra-picture prediction is one of the current important topics.
鑒於前述之習知技術的缺點,本發明之主要目的係提供一種圖框速率提升轉換方法及期架構, 採用預測即補償的方式,大幅提升了預測精準度。In view of the shortcomings of the prior art, the main object of the present invention is to provide a frame rate increase conversion method and a period structure, which adopts a prediction or compensation method, which greatly improves the prediction accuracy.
為達到前述之目的,本發明提出一種使用運算資料共用的高效率視訊編碼(high efficiency video coding, HEVC)畫面內預測(intra prediction)方法,包括以下步驟:藉由一控制器(controller),產生所要運算的位置(x, y)、第一參數(d)及第二參數(mode);藉由一第一暫存器(first buffer),儲存一影像圖框的複數參考像素值;藉由複數內插運算單元(interpolation computing unit),在一Angular模式下,對於從該控制器所要運算的該位置、該第一參數及該第二參數與該影像圖框的該複數參考像素值進行內插運算,以輸出複數預測位置;藉由一第二暫存器,儲存從該複數內插運算單元傳遞過來的複數參考影像值;以及藉由一加法器(adder),在一Planar模式下,對於該第二暫存器所儲存之該複數參考影像值進行運算,以輸出複數Planar值,並且在一DC模式下,輸出該複數參考影像值之一DC平均值。 To achieve the foregoing objective, the present invention provides a high efficiency video coding (HEVC) intra prediction method using arithmetic data sharing, comprising the following steps: generating by a controller a position (x, y), a first parameter (d), and a second parameter (mode) to be operated; storing a plurality of reference pixel values of an image frame by using a first buffer; An interpolation computing unit, in an Angular mode, for the position, the first parameter, and the second parameter to be calculated from the controller, and the complex reference pixel value of the image frame Inserting a bit to output a complex prediction position; storing a plurality of reference image values transmitted from the complex interpolating unit by a second register; and adding, by an adder, in a Planar mode The complex reference image value stored by the second register is operated to output a complex Planar value, and in a DC mode, a DC average value of the complex reference image value is output.
另外,本發明亦提出一種使用運算資料共用的高效率視訊編碼畫面內預測架構,其包括:一控制器(controller),產生所要運算的位置(x,y)、第一參數(d)及第二參數(mode);一第一暫存器(first buffer),儲存一影像圖框的複數參考像素值;複數內插運算單元,在一Angular模式下,對於從該控制器所要運算的該位置、該第一參數及該第二參數與該影像圖框的該複數參考像素值進行內插運算,以輸出複數預測位置;一第二暫存器,儲存從該複數內插運算單元傳遞過來的複數參考影像值;以及一加法器(adder),在一Planar模式下,對於該第二暫存器所儲存之該複數參考影像值進行運算,以輸出複數Planar值,並且在一DC模式下,輸出該複數參考影像值之一DC平均值。 In addition, the present invention also proposes a high-efficiency video coding intra-picture prediction architecture using arithmetic data sharing, which includes: a controller, which generates a position (x, y), a first parameter (d), and a a second mode (mode); a first buffer to store a plurality of reference pixel values of an image frame; a complex interpolating unit, in an Angular mode, for the position to be operated from the controller Interpolating the first parameter and the second parameter with the complex reference pixel value of the image frame to output a complex prediction position; and a second temporary register storing the transfer from the complex interpolation operation unit a plurality of reference image values; and an adder, in a Planar mode, calculating the complex reference image value stored by the second register to output a complex Planar value, and in a DC mode, A DC average of one of the complex reference image values is output.
以下係藉由特定的具體實施例說明本發明之實施方式,熟悉此技術之人士可由本說明書所揭示之內容輕易地瞭解本發明之其他優點及功效。本發明亦可藉由其他不同的具體實例加以施行或應用,本發明說明書中的各項細節亦可基於不同觀點與應用在不悖離本發明之精神下進行各種修飾與變更。The embodiments of the present invention are described below by way of specific examples, and those skilled in the art can readily appreciate the other advantages and functions of the present invention. The invention may be embodied or applied in various other specific embodiments, and various modifications and changes may be made without departing from the spirit and scope of the invention.
須知,本說明書所附圖式繪示之結構、比例、大小等,均僅用以配合說明書所揭示之內容,以供熟悉此技術之人士瞭解與閱讀,並非用以限定本發明可實施之限定條件,故不具技術上之實質意義,任何結構之修飾、比例關係之改變或大小之調整,在不影響本發明所能產生之功效及所能達成之目的下,均應落在本發明所揭示之技術內容得能涵蓋之範圍內。It is to be understood that the structure, the proportions, the size and the like of the present invention are only used in conjunction with the disclosure of the specification, and are intended to be understood and read by those skilled in the art, and are not intended to limit the implementation of the invention. The conditions are not technically meaningful, and any modification of the structure, change of the proportional relationship or adjustment of the size should be disclosed in the present invention without affecting the effects and achievable effects of the present invention. The technical content can be covered.
以下依據本發明之實施例,描述一種使用運算資料共用的高效率視訊編碼(high efficiency video coding, HEVC)畫面內預測(intra prediction)方法,該方法包括三個核心模式:Angular模式、Planar模式及DC模式,此方法在硬體架構上以及資料運算共用來做改良,以增加硬體效能以及提升影像品質。Hereinafter, in accordance with an embodiment of the present invention, a high efficiency video coding (HEVC) intra prediction method using arithmetic data sharing is described, and the method includes three core modes: an Angular mode, a Planar mode, and In DC mode, this method is used in hardware architecture and data operations to improve hardware performance and image quality.
以下針對Angular模式做詳細說明:The following is a detailed description of the Angular model:
首先,以4×4的預測單元(prediction unit, PU)為基準,對每一像素位置做所有d值的參考像素以及wy 的分析,如圖1所示之水平方向預測及圖2所示之垂直方向預測。First, based on a 4×4 prediction unit (PU), the reference pixels of all d values and the analysis of wy are performed for each pixel position, as shown in the horizontal direction prediction shown in FIG. Vertical direction prediction.
經過整理後,如圖3所示,可以發現到,不管是在水平方向預測或是垂直方向預測,相鄰兩個位置所使用的參考像素R會重複,並且係數總和為32。After sorting, as shown in FIG. 3, it can be found that the reference pixel R used in two adjacent positions is repeated regardless of whether it is in the horizontal direction prediction or the vertical direction prediction, and the sum of the coefficients is 32.
如果加入管線化(pipeline)的運算,就可以把4×4的PU分成4級,第2級開始可以使用第1級運算後的資料,經過調整後即可以做為一參考像素乘積,此後每一級以此類推,可以省去一個乘法運算。If you add a pipeline operation, you can divide the 4×4 PU into 4 levels. The second level can start using the data after the 1st level operation. After adjustment, it can be used as a reference pixel product. One level and so on, you can save a multiplication operation.
所以,先把4×4 PU的每一位置(PE1,1~PE4,4),都當作一運算單元(processing element, PE),每個PE 中都是做畫面內的內插運算。再把這16個PE分成4級的管線化運算,如圖4。Therefore, each position (PE1, 1~PE4, 4) of the 4×4 PU is treated as a processing element (PE), and each PE is interpolated in the picture. Then divide the 16 PEs into 4 levels of pipeline operations, as shown in Figure 4.
以圖5為例,在垂直方向預測的d=2時,PE1,1運算如下: ) (1) Taking Figure 5 as an example, when d=2 is predicted in the vertical direction, PE1,1 is calculated as follows: ) (1)
到了第2級後,PE2,1運算如下: ) (2) After the second level, PE2,1 operates as follows: ) (2)
將第1級的2.R2,0傳到第2級,再以位移的方式創造32.R2,0,最後只要用減法運算就可以取代掉原本的乘法運算。而第3級以及第4級也與第2級一樣,使用前一級的運算資料,補數處理後再做運算,結果如下所示: (3) (4) Will be level 1 of 2. R2,0 passed to level 2, and then created by displacement. R2,0, in the end, you can replace the original multiplication by subtracting. The third level and the fourth level are also the same as the second level. The calculation data of the previous level is used, and the complement processing is performed after the calculation. The result is as follows: (3) (4)
當第4級運算完成後,就可以進行下一垂直方向d值的運算。當17個垂直方向的d值都運算過後,就可以執行水平方向d值運算。When the level 4 operation is completed, the next vertical direction d value can be calculated. When the 17 vertical values of the d values have been calculated, the horizontal direction d value operation can be performed.
水平方向運算和垂直方向一樣,只是劃分管線化運算的方式有些不同,如圖6。The horizontal direction operation is the same as the vertical direction, but the way to divide the pipeline operation is somewhat different, as shown in Figure 6.
以下針對Planar模式做詳細說明:The following is a detailed description of the Planar mode:
Angular模式的運算方式與Planar模式的運算方式很類似,都是由某倍數的參考像素Rx,0或是R0,y所組成。表1為4×4的PU內之Planar模式的運算都列出來分析:The operation mode of Angular mode is similar to that of Planar mode. It is composed of a multiple of reference pixels Rx, 0 or R0, y. Table 1 shows the operations of the Planar mode in the 4×4 PU are listed for analysis:
由表1可知,除了Planar模式的運算與Angular模式的運算類似之外,還可以發現在4×4大小的PU,Planar模式所使用的參考像素R的係數只有0、1、2、3、4五種,除了係數3需要使用乘法運算才能得到之外,0、1、2及4均可以藉由數值的位移來取代乘法運算獲得。 表1:4×4的PU進行Planar運算分析It can be seen from Table 1 that, besides the operation of the Planar mode is similar to the operation of the Angular mode, it can be found that in the 4×4 size PU, the reference pixel R used in the Planar mode has only 0, 1, 2, 3, 4 coefficients. Five kinds, except that the coefficient 3 needs to be obtained by multiplication, 0, 1, 2, and 4 can be obtained by substituting the displacement of the value for the multiplication. Table 1: Planar operation analysis of 4×4 PU
也就是說,如果找到獲得係數3的參考像素R的方法,就可以使Planar模式的運算不用乘法即可完成。That is to say, if the method of obtaining the reference pixel R of the coefficient 3 is found, the operation of the Planar mode can be completed without multiplication.
因為Planar模式的運算與Angular模式的運算相似,所以可在Angular模式的運算去做尋找,在Angualr模式下,參考像素R的係數範圍為0~32。Because the operation of the Planar mode is similar to the operation of the Angular mode, it can be searched in the Angular mode. In the Angualr mode, the reference pixel R has a coefficient range of 0~32.
經過分析Angular運算後,雖然發現無法直接獲得係數為3的參考像素R,但是不管水平方向預測或是垂直方向預測,當d=2時,則會產生係數為6的參考像素R,如圖7所示。After analyzing the Angular operation, although it is found that the reference pixel R with coefficient 3 cannot be directly obtained, regardless of the horizontal direction prediction or the vertical direction prediction, when d=2, a reference pixel R with a coefficient of 6 is generated, as shown in FIG. 7. Shown.
只要將係數6的參考像素R提取出後,經過位移做除2運算後就可以獲得係數為3的參考像素R。這樣4×4大小PU的Planar模式運算,就可以不使用任何乘法運算即可以獲得。As long as the reference pixel R of the coefficient 6 is extracted, the reference pixel R having the coefficient of 3 can be obtained by performing the divide by 2 operation. Such a Planar mode operation of a 4×4 size PU can be obtained without any multiplication operation.
圖8為硬體在計算Angular模式時的時序圖,運作情形為一個週期會算出一筆預測資料,由於有加入管線化運作方式,所以會比同時進行的硬體多了3個週期的運行時間。Figure 8 is a timing diagram of the hardware when calculating the Angular mode. The operation situation is that one cycle will calculate a prediction data. Because of the pipelined operation mode, it will have three cycles longer than the simultaneous hardware.
圖9為硬體在計算Planar模式和DC模式時的時序圖,主要就是在當Angular模式運算時候,要先收集係數為3倍的參考像素R。當收集完成後,就可以直接算出DC模式及Planar模式的值,也就是當Angular模式計算完後,Planar模式和DC模式也會計算完成。Figure 9 is a timing diagram of the hardware when calculating the Planar mode and the DC mode. The main reason is that when the Angular mode operation is performed, the reference pixel R with a coefficient of three times is collected first. When the collection is completed, the values of the DC mode and the Planar mode can be directly calculated. That is, when the Angular mode is calculated, the Planar mode and the DC mode are also calculated.
關於本發明之使用運算資料共用的高效率視訊編碼(high efficiency video coding, HEVC)畫面內預測(intra prediction)方法的詳細運算流程,如圖10所示,該方法包括以下步驟S11~S19: 步驟S11:藉由一控制器(controller),產生所要運算的位置(x, y)、第一參數(d)及第二參數(mode); 步驟S13:藉由一第一暫存器(first buffer),儲存一影像圖框的複數參考像素值; 步驟S15:藉由複數內插運算單元(interpolation computing unit),在一Angular模式下,對於從控制器所要運算的位置、第一參數及第二參數與影像圖框的複數參考像素值進行內插運算,以輸出複數預測位置; 步驟S17:藉由一第二暫存器(second buffer),儲存從複數內插運算單元傳遞過來的複數參考影像值;以及 步驟S19:藉由一加法器(adder),在一Planar模式下,對於第二暫存器所儲存之複數參考影像值進行運算,以輸出複數Planar值,並且在一DC模式下,輸出複數參考影像值之一DC平均值。A detailed operation flow of the high efficiency video coding (HEVC) intra prediction method using the arithmetic data sharing of the present invention is as shown in FIG. 10, and the method includes the following steps S11 to S19: S11: generating a position (x, y), a first parameter (d), and a second parameter (mode) of the desired operation by using a controller; Step S13: using a first buffer (first buffer) Storing a plurality of reference pixel values of an image frame; Step S15: by means of an interpolation computing unit, in an Angular mode, for the position, first parameter, and second operation of the slave controller The parameter and the complex reference pixel value of the image frame are interpolated to output a complex prediction position; Step S17: storing a plurality of reference images transmitted from the complex interpolation unit by a second buffer a value; and step S19: performing an operation on the complex reference image value stored in the second register in an Planar mode by an adder to output a complex Planar value, and In a DC mode, the output of one of the reference image a plurality of DC average value.
此外,本發明亦提出一種使用運算資料共用的高效率視訊編碼畫面內預測架構,其主要硬體架構區塊如圖11所示,該硬體架構包括:一控制器(controller)10,產生所要運算的位置(x, y)、第一參數(d)及第二參數(mode);一第一暫存器(first buffer)12,儲存一影像圖框的複數參考像素值;複數內插運算單元14,在一Angular模式下,對於從控制器所要運算的位置、第一參數及第二參數與影像圖框的複數參考像素值進行內插運算,以輸出複數預測位置;一第二暫存器(second buffer)16,儲存從複數內插運算單元傳遞過來的複數參考影像值;以及一加法器(adder)18,在一Planar模式下,對於第二暫存器所儲存之複數參考影像值進行運算,以輸出複數Planar值,並且在一DC模式下,輸出複數參考影像值之一DC平均值。In addition, the present invention also proposes a high-efficiency video coding intra-picture prediction architecture using arithmetic data sharing. The main hardware architecture block is as shown in FIG. 11. The hardware architecture includes: a controller 10, which generates a desired The position of the operation (x, y), the first parameter (d) and the second parameter (mode); a first buffer 12, storing a plurality of reference pixel values of an image frame; complex interpolation operations Unit 14, in an Angular mode, interpolating the position, the first parameter, and the second parameter to be calculated from the controller and the complex reference pixel value of the image frame to output a complex prediction position; a second temporary storage a second buffer 16 storing a plurality of reference image values transmitted from the complex interpolation unit; and an adder 18 for storing a plurality of reference image values for the second register in a Planar mode An operation is performed to output a complex Planar value, and in a DC mode, a DC average of one of the complex reference image values is output.
具體而言,一開始在獲得訊號後,就會開始抓取輸入影像值,存入第一暫存器12中,當全部輸入都接收完成後,就會藉由複數內插運算單元進行Angular模式運算及輸出。當33個方向的Angular模式運算都完成後,就會開始進行Planar模式及DC模式運算並輸出Planar模式及DC模式的值。Specifically, after the signal is obtained, the input image value is captured and stored in the first register 12. When all the inputs are received, the Angular mode is performed by the complex interpolation unit. Operation and output. When the Angular mode operation in 33 directions is completed, the Planar mode and the DC mode operation are started and the values of the Planar mode and the DC mode are output.
本發明之使用運算資料共用的高效率視訊編碼畫面內預測架構以特殊應用積體電路(Application-Specific Integrated Circuit, ASIC)方式來實現,先以Verilog硬體描述語言實現本發明之高效率視訊編碼畫面內預測架構的硬體架構,並使用TSMC 0.18um製程實現硬體。The high-efficiency video coding intra-picture prediction architecture using the operation data sharing of the present invention is implemented by an Application-Specific Integrated Circuit (ASIC) method, and the high-efficiency video coding of the present invention is first implemented in a Verilog hardware description language. The hardware architecture of the intra-frame prediction architecture and hardware implementation using the TSMC 0.18um process.
綜上所述,本發明採用管線化運算方式來加強硬體運算效率,並且利用管線化運算的特性,使運算資料能重複使用,不需要重新存取再做運算。因此,本發明之使用運算資料共用的高效率視訊編碼畫面內預測架構能有效地增進硬體效能。In summary, the present invention adopts a pipelined operation method to enhance hardware operation efficiency, and utilizes the characteristics of pipelined operation, so that the operation data can be reused without re-accessing and then performing operations. Therefore, the high-efficiency video coding intra-picture prediction architecture using the arithmetic data sharing of the present invention can effectively improve the hardware performance.
儘管已參考本申請的許多說明性實施例描述了實施方式,但應瞭解的是,本領域技術人員能夠想到多種其他改變及實施例,這些改變及實施例將落入本公開原理的精神與範圍內。尤其是,在本公開、圖式以及所附申請專利的範圍之內,對主題結合設置的組成部分及/或設置可作出各種變化與修飾。除對組成部分及/或設置做出的變化與修飾之外,可替代的用途對本領域技術人員而言將是顯而易見的。Although the embodiments have been described with reference to the embodiments of the present invention, it will be understood that Inside. In particular, various changes and modifications can be made in the components and/or arrangements of the subject combination. Alternative uses will be apparent to those skilled in the art, in addition to variations and modifications in the component parts and/or arrangements.
10‧‧‧控制器10‧‧‧ Controller
12‧‧‧第一暫存器12‧‧‧First register
14‧‧‧複數內插運算單元14‧‧‧Multiple Interpolation Unit
16‧‧‧第二暫存器16‧‧‧Second register
18‧‧‧加法器18‧‧‧Adder
S11~S19‧‧‧步驟S11~S19‧‧‧Steps
圖1係顯示4×4的預測單元(prediction unit,PU)之水平方向預測之示意圖;圖2係顯示4×4的預測單元之垂直方向預測之示意圖;圖3(a)及圖3(b)係分別顯示4×4的預測單元之水平方向預測及垂直方向預測之示意圖;圖4係顯示4×4的預測單元管線化運作之示意圖;圖5係顯示4×4的預測單元管線化運作(垂直方向預測)之示意圖;圖6係顯示4×4的預測單元管線化運作(水平方向預測)之示意圖; 圖7係顯示4×4的預測單元之分析示意圖; 圖8係顯示本發明之Angular模式之時序圖; 圖9係顯示本發明之Planar模式及DC模式之時序圖; 圖10係顯示本發明之一種使用運算資料共用的高效率視訊編碼(high efficiency video coding, HEVC)畫面內預測(intra prediction)方法之流程圖;以及 圖11係顯示本發明之一種使用運算資料共用的高效率視訊編碼畫面內預測硬體架構之方塊圖。1 is a schematic diagram showing horizontal direction prediction of a 4×4 prediction unit (PU); FIG. 2 is a schematic diagram showing vertical direction prediction of a 4×4 prediction unit; FIG. 3(a) and FIG. 3(b) The system displays the horizontal direction prediction and the vertical direction prediction of the 4×4 prediction unit respectively; FIG. 4 shows a schematic diagram of the 4×4 prediction unit pipeline operation; FIG. 5 shows the 4×4 prediction unit pipeline operation. Schematic diagram of (vertical direction prediction); FIG. 6 is a schematic diagram showing 4×4 prediction unit pipeline operation (horizontal direction prediction); FIG. 7 is a schematic diagram showing analysis of 4×4 prediction unit; FIG. 8 is a diagram showing the present invention. Timing diagram of Angular mode; FIG. 9 is a timing diagram showing Planar mode and DC mode of the present invention; FIG. 10 is a diagram showing high efficiency video coding (HEVC) intra-screen prediction using arithmetic data sharing according to the present invention. A flowchart of the intra prediction method; and FIG. 11 is a block diagram showing a high efficiency video coding intra-picture prediction hardware architecture using arithmetic data sharing.
S11~S19‧‧‧步驟 S11~S19‧‧‧Steps
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW106121282A TWI616090B (en) | 2017-06-26 | 2017-06-26 | Hevc intra prediction method by using data reusing and architecture thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW106121282A TWI616090B (en) | 2017-06-26 | 2017-06-26 | Hevc intra prediction method by using data reusing and architecture thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI616090B true TWI616090B (en) | 2018-02-21 |
TW201906407A TW201906407A (en) | 2019-02-01 |
Family
ID=62016232
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW106121282A TWI616090B (en) | 2017-06-26 | 2017-06-26 | Hevc intra prediction method by using data reusing and architecture thereof |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI616090B (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120183041A1 (en) * | 2011-01-14 | 2012-07-19 | Sony Corporation | Interpolation filter for intra prediction of hevc |
WO2016048183A1 (en) * | 2014-09-23 | 2016-03-31 | Intel Corporation | Intra-prediction complexity reduction using a reduced number of angular modes and subsequent refinement |
US20160373770A1 (en) * | 2015-06-18 | 2016-12-22 | Qualcomm Incorporated | Intra prediction and intra mode coding |
TW201701674A (en) * | 2011-06-28 | 2017-01-01 | 三星電子股份有限公司 | Method of decoding video data controlled by processor |
US20170034536A1 (en) * | 2014-05-23 | 2017-02-02 | Huawei Technologies Co., Ltd. | Method and Apparatus for Pre-Prediction Filtering for Use in Block-Prediction Techniques |
US9667965B2 (en) * | 2012-06-25 | 2017-05-30 | Industry-University Cooperation Foundation Hanyang University | Video encoding and decoding method |
-
2017
- 2017-06-26 TW TW106121282A patent/TWI616090B/en not_active IP Right Cessation
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120183041A1 (en) * | 2011-01-14 | 2012-07-19 | Sony Corporation | Interpolation filter for intra prediction of hevc |
TW201701674A (en) * | 2011-06-28 | 2017-01-01 | 三星電子股份有限公司 | Method of decoding video data controlled by processor |
US9667965B2 (en) * | 2012-06-25 | 2017-05-30 | Industry-University Cooperation Foundation Hanyang University | Video encoding and decoding method |
US20170034536A1 (en) * | 2014-05-23 | 2017-02-02 | Huawei Technologies Co., Ltd. | Method and Apparatus for Pre-Prediction Filtering for Use in Block-Prediction Techniques |
WO2016048183A1 (en) * | 2014-09-23 | 2016-03-31 | Intel Corporation | Intra-prediction complexity reduction using a reduced number of angular modes and subsequent refinement |
US20160373770A1 (en) * | 2015-06-18 | 2016-12-22 | Qualcomm Incorporated | Intra prediction and intra mode coding |
Also Published As
Publication number | Publication date |
---|---|
TW201906407A (en) | 2019-02-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8160136B2 (en) | Probabilistic bit-rate and rate-distortion cost estimation for video coding | |
CA2797569C (en) | Method and device for video predictive encoding | |
US20110026596A1 (en) | Method and System for Block-Based Motion Estimation for Motion-Compensated Frame Rate Conversion | |
WO2017084258A1 (en) | Method for real-time video noise reduction in coding process, terminal, and nonvolatile computer readable storage medium | |
US9883200B2 (en) | Method of acquiring neighboring disparity vectors for multi-texture and multi-depth video | |
CN1806444A (en) | Adaptive-weighted motion estimation method and frame rate converting apparatus employing the method | |
JP4761390B2 (en) | Improvement of calculation method of interpolated pixel value | |
WO2022111717A1 (en) | Image processing method and apparatus, and electronic device | |
CN111182310A (en) | Video processing method and device, computer readable medium and electronic equipment | |
CN111526363A (en) | Encoding method and apparatus, terminal and storage medium | |
CN112449182A (en) | Video encoding method, device, equipment and storage medium | |
TWI616090B (en) | Hevc intra prediction method by using data reusing and architecture thereof | |
CN110944211A (en) | Interpolation filtering method, device, medium and electronic device for intra-frame prediction | |
TWI486061B (en) | Method and system for motion compensated picture rate up-conversion using information extracted from a compressed video stream | |
He et al. | FPGA-based high definition image processing system | |
US11743489B2 (en) | Motion compensation methods for video coding | |
US20150358630A1 (en) | Combined Parallel and Pipelined Video Encoder | |
CN112449185B (en) | Video decoding method, video encoding device, video encoding medium, and electronic apparatus | |
KR20020028161A (en) | Pixel calculating device | |
JP2007312369A (en) | Block noise removal device | |
CN106817583B (en) | HEVC SAO calculation method and device | |
Kanimozhi et al. | Efficient Lossless Compression Using H. 264/AVC Intra Coding and PWSIP Prediction | |
TW201409994A (en) | Encoding method and encoding device for 3D video | |
KR101126294B1 (en) | Apparatus and method for coding multi-view video | |
US20150341659A1 (en) | Use of pipelined hierarchical motion estimator in video coding |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |