TWI615939B - Electrostatic discharge protection component - Google Patents

Electrostatic discharge protection component Download PDF

Info

Publication number
TWI615939B
TWI615939B TW106123046A TW106123046A TWI615939B TW I615939 B TWI615939 B TW I615939B TW 106123046 A TW106123046 A TW 106123046A TW 106123046 A TW106123046 A TW 106123046A TW I615939 B TWI615939 B TW I615939B
Authority
TW
Taiwan
Prior art keywords
region
doped region
substrate
conductivity type
epitaxial layer
Prior art date
Application number
TW106123046A
Other languages
Chinese (zh)
Other versions
TW201909376A (en
Inventor
謝志泓
曾清秋
許志維
Original Assignee
敦南科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 敦南科技股份有限公司 filed Critical 敦南科技股份有限公司
Priority to TW106123046A priority Critical patent/TWI615939B/en
Application granted granted Critical
Publication of TWI615939B publication Critical patent/TWI615939B/en
Publication of TW201909376A publication Critical patent/TW201909376A/en

Links

Landscapes

  • Semiconductor Integrated Circuits (AREA)

Abstract

本發明公開一種靜電放電保護元件,其包括:基底、磊晶層、第一內部摻雜區、第二內部摻雜區、第一頂部摻雜區、第二頂部摻雜區以及導電層。基底上具有一第一元件區以及一第二元件區,磊晶層設於基底上,第一內部摻雜區與第二內部摻雜區分別設於第一元件區與第二元件區內且接近基底與磊晶層的接面,第一頂部摻雜區與第二頂部摻雜區分別設於第一元件區與第二元件區內且分別從磊晶層的表面外露,導電層電性連接第一頂部摻雜區與第二頂部摻雜區。據此,本發明能有效降低箝制電壓。 The present invention discloses an electrostatic discharge protection element comprising: a substrate, an epitaxial layer, a first internal doped region, a second internal doped region, a first top doped region, a second top doped region, and a conductive layer. The substrate has a first component region and a second component region. The epitaxial layer is disposed on the substrate, and the first inner doped region and the second inner doped region are respectively disposed in the first device region and the second device region. Adjacent to the junction of the substrate and the epitaxial layer, the first top doped region and the second top doped region are respectively disposed in the first device region and the second device region and are respectively exposed from the surface of the epitaxial layer, and the conductive layer is electrically A first top doped region and a second top doped region are connected. Accordingly, the present invention can effectively reduce the clamping voltage.

Description

靜電放電保護元件 Electrostatic discharge protection component

本發明涉及一種半導體元件,特別是涉及一種靜電放電保護元件。 The present invention relates to a semiconductor component, and more particularly to an electrostatic discharge protection component.

靜電對電子產品的傷害一直是不易解決的問題,正常操作的電子產品一旦受到靜電放電(Electrostatic Discharge,ESD)作用時,常會出現一些不穩定的現象,如功能突然失常情形等,輕者須重開機才能排除,重者直接造成產品損壞。為確保電子產品正常運作,常會在電子產品中增加保護元件以使其具有靜電防制能力,當靜電超過某一設定的安全值時,保護元件便立即做動以將過電壓及過電流安全釋放到接地。 The damage of static electricity to electronic products has always been a difficult problem to solve. When an electronic product that is normally operated is subjected to Electrostatic Discharge (ESD), there are often some unstable phenomena, such as a sudden malfunction of the function, etc. It can be removed by booting, and the serious one directly causes damage to the product. In order to ensure the normal operation of electronic products, protective components are often added to electronic products to make them have electrostatic protection capability. When the static electricity exceeds a certain set safety value, the protection components are immediately activated to safely release overvoltage and overcurrent. To ground.

現有的保護元件主要分為平台式(Mesa)、平面式(Planar)與溝槽式(Trench)結構,其中Mesa結構屬於立體結構,故不利於黃光製程中之對位曝光從而影響製程的穩定性,無法滿足小尺寸元件對於線寬與光阻(PR)包覆能力的要求。Planar結構雖然可解決立體障礙所產生的問題,且黃光顯影後的線寬也可符合元件高精準度的設計要求,但由於Planar結構只能用於橫向式的設計,所以必須在元件表面多設計一個接地(Gnd)區域,Planar結構的面積也因此比Mesa結構要來的大;此外,與Mesa結構相比,Planar結構的防靜電能力較弱。 The existing protection components are mainly divided into a platform type (Mesa), a planar type (Planar) and a trench type (Trench) structure, wherein the Mesa structure belongs to a three-dimensional structure, which is disadvantageous to the alignment exposure in the yellow light process and affects the stability of the process. Sex, can not meet the requirements of small size components for line width and photoresist (PR) coating capability. Although the Planar structure can solve the problems caused by steric obstacles, and the line width after yellow light development can also meet the high-precision design requirements of the components, since the Planar structure can only be used for the horizontal design, it must be on the surface of the components. Designing a grounded (Gnd) area, the area of the Planar structure is therefore larger than that of the Mesa structure; in addition, the Planar structure has a weaker antistatic capability than the Mesa structure.

Trench結構主要是通過從表面挖出溝槽並填入絕緣層的方式來維持晶片表面的平坦性,如此可提升黃光製程的能力,且由於 Trench結構與Mesa結構同樣為垂直導通元件,所以防靜電能力大大優於Planar結構,也不需要在元件表面多設計一個Gnd區域從而可有效縮減整體元件的尺寸。然而,Trench結構存在易產生高箝制電壓(Vc)的重大缺點,此可能會影響IC元件的運作。 The Trench structure mainly maintains the flatness of the surface of the wafer by digging the trench from the surface and filling the insulating layer, thus improving the capability of the yellow light process, and The Trench structure is also a vertical conduction element as the Mesa structure, so the antistatic capability is much better than the Planar structure, and there is no need to design a Gnd area on the surface of the component to effectively reduce the size of the overall component. However, the Trench structure has a major disadvantage of easily generating a high clamp voltage (Vc), which may affect the operation of the IC component.

本發明所要解決的技術問題在於,針對現有技術的不足提供一種靜電放電保護元件,其能保護IC元件不受ESD脈衝破壞,並確保其能在高頻正常工作,以符合高頻傳輸的需要。 The technical problem to be solved by the present invention is to provide an electrostatic discharge protection component that protects the IC component from ESD pulses and ensures that it can operate normally at high frequencies to meet the needs of high frequency transmission.

為了解決上述的技術問題,本發明所採用的技術方案是,提供一種靜電放電保護元件,其包括一基底、一磊晶層、一第一內部摻雜區、一第二內部摻雜區、一第一頂部摻雜區、一第二頂部摻雜區以及一導電層。該基底具有一第一導電型,且該基底上具有一第一元件區、一第二元件區以及一設於該第一元件區與該第二元件區之間的隔離區;該磊晶層設於該基底上,且具有一不同於該第一導電型的第二導電型;該第一內部摻雜區與該第二內部摻雜區分別設於該第一元件區與該第二元件區內,且接近該基底與該磊晶層的接面,其中該第一內部摻雜區具有該第二導電型,且該第二內部摻雜區具有該第一導電型;該第一頂部摻雜區與該第二頂部摻雜區分別設於該第一元件區與該第二元件區內,且分別從該磊晶層的表面外露,其中該第一頂部摻雜區具有該第一導電型,且該第二頂部摻雜區具有該第二導電型;該導電層電性連接該第一頂部摻雜區與該第二頂部摻雜區。 In order to solve the above technical problem, the technical solution adopted by the present invention is to provide an electrostatic discharge protection component including a substrate, an epitaxial layer, a first internal doping region, a second internal doping region, and a a first top doped region, a second top doped region, and a conductive layer. The substrate has a first conductivity type, and the substrate has a first component region, a second component region, and an isolation region disposed between the first device region and the second device region; the epitaxial layer Is disposed on the substrate and has a second conductivity type different from the first conductivity type; the first internal doping region and the second internal doping region are respectively disposed on the first component region and the second component And adjacent to the junction of the substrate and the epitaxial layer, wherein the first inner doped region has the second conductivity type, and the second inner doped region has the first conductivity type; the first top portion The doped region and the second top doped region are respectively disposed in the first device region and the second device region, and are respectively exposed from a surface of the epitaxial layer, wherein the first top doped region has the first Conductive type, and the second top doped region has the second conductivity type; the conductive layer is electrically connected to the first top doped region and the second top doped region.

進一步地,該靜電放電保護元件還包括一設於該基底與該磊晶層之間的緩衝層,該緩衝層具有該第二導電型,且該第一內部摻雜區與該第二內部摻雜區進一步向下延伸至該緩衝層中。 Further, the ESD protection device further includes a buffer layer disposed between the substrate and the epitaxial layer, the buffer layer having the second conductivity type, and the first internal doping region and the second internal doping The miscellaneous region extends further down into the buffer layer.

進一步地,該第一內部摻雜區與該第二內部摻雜區進一步水平延伸至該隔離區內。 Further, the first inner doped region and the second inner doped region further extend horizontally to the isolation region.

進一步地,該靜電放電保護元件還包括多個絕緣溝槽,至少 一該絕緣溝槽設於該隔離區內,且從該磊晶層的表面向下延伸穿過該第一內部摻雜區與該第二內部摻雜區並延伸至該基底中,另一該絕緣溝槽設於該第一元件區內,且從該磊晶層的表面向下延伸穿過該第一內部摻雜區並延伸至該基底中,再一該絕緣溝槽設於該第二元件區內,且從該磊晶層的表面向下延伸穿過該第二內部摻雜區並延伸至該基底中。 Further, the ESD protection component further includes a plurality of insulating trenches, at least An insulating trench is disposed in the isolation region, and extends downward from a surface of the epitaxial layer through the first inner doped region and the second inner doped region and extends into the substrate, and the other An insulating trench is disposed in the first component region, and extends downward from the surface of the epitaxial layer through the first inner doping region and into the substrate, and the insulating trench is disposed in the second Within the component region, and extending from the surface of the epitaxial layer through the second inner doped region and into the substrate.

進一步地,該第一內部摻雜區包括至少兩個彼此分離的部分區段以及至少一個位於該等部分區段之間且相對於該第一頂部摻雜區的通道區段。 Further, the first inner doped region includes at least two partial segments separated from each other and at least one channel segment located between the partial segments and opposite to the first top doped region.

進一步地,該靜電放電保護元件還包括一隔離層,該隔離層設於該磊晶層上,該導電層設於該隔離層上,並通過該隔離層接觸該第一頂部摻雜區與該第二頂部摻雜區。 Further, the ESD protection device further includes an isolation layer disposed on the epitaxial layer, the conductive layer is disposed on the isolation layer, and contacts the first top doped region through the isolation layer Second top doped region.

進一步地,該基底具有一介於0.001Ohm-cm與0.13Ohm-cm之間的電阻率,該磊晶層具有一介於14Ohm-cm與100Ohm-cm之間的電阻率,且具有一介於2μm與6μm之間的厚度。 Further, the substrate has a resistivity of between 0.001 Ohm-cm and 0.13 Ohm-cm, the epitaxial layer having a resistivity between 14 Ohm-cm and 100 Ohm-cm, and having a ratio between 2 μm and 6 μm The thickness between.

進一步地,該第一內部摻雜區與該第二內部摻雜區的寬度介於0.5μm至10μm之間,且摻雜濃度介於1E12cm-3至1E17cm-3之間。 Further, the width of the first inner doped region and the second inner doped region is between 0.5 μm and 10 μm, and the doping concentration is between 1E12 cm −3 and 1E17 cm −3 .

進一步以PNP結構為例,該第一導電型為P型,且該第二導電型為N型。 Taking the PNP structure as an example, the first conductivity type is a P type, and the second conductivity type is an N type.

進一步以NPN結構為例,該第一導電型為N型,且該第二導電型為P型。 Taking the NPN structure as an example, the first conductivity type is an N type, and the second conductivity type is a P type.

本發明的有益效果在於,本發明技術方案所提供的捲繞型固態電解電容器封裝結構及其製作方法,其可通過“將第一內部摻雜區與第二內部摻雜區分別配置於第一元件區與第二元件區內,且接近基底與磊晶層的接面,其中基底與第二內部摻雜區具有相同的傳導性,而磊晶層與第一內部摻雜區具有相同的傳導性”的設計,可有效降低箝制電壓,並可改善製程中自動摻雜(auto-doping) 的影響以提升整體良率。 The utility model has the beneficial effects of the winding type solid electrolytic capacitor package structure and the manufacturing method thereof provided by the technical solution of the present invention, which can be configured by “disposing the first inner doping region and the second inner doping region respectively The element region and the second device region are adjacent to the junction of the substrate and the epitaxial layer, wherein the substrate and the second inner doped region have the same conductivity, and the epitaxial layer has the same conduction as the first inner doped region "Design" to effectively reduce the clamping voltage and improve auto-doping in the process The impact of improving the overall yield.

為使能更進一步瞭解本發明的特徵及技術內容,請參閱以下有關本發明的詳細說明與附圖,然而所提供的附圖僅用於提供參考與說明,並非用來對本發明加以限制。 For a better understanding of the features and technical aspects of the present invention, reference should be made to the accompanying drawings.

Z1、Z2‧‧‧靜電放電保護元件 Z1, Z2‧‧‧ Electrostatic discharge protection components

1‧‧‧基底 1‧‧‧Base

11‧‧‧第一元件區 11‧‧‧First component area

12‧‧‧第二元件區 12‧‧‧Second component area

13‧‧‧隔離區 13‧‧‧Isolated area

14‧‧‧第一表面 14‧‧‧ first surface

15‧‧‧第二表面 15‧‧‧ second surface

2‧‧‧磊晶層 2‧‧‧ epitaxial layer

3‧‧‧第一內部摻雜區 3‧‧‧First internal doping zone

4’‧‧‧第二頂部摻雜區 4'‧‧‧Second top doped area

5‧‧‧隔離層 5‧‧‧Isolation

6‧‧‧第一導電層 6‧‧‧First conductive layer

6’‧‧‧第二導電層 6'‧‧‧Second conductive layer

7‧‧‧緩衝層 7‧‧‧ Buffer layer

T1、T2、T3‧‧‧絕緣溝槽 T1, T2, T3‧‧‧ insulated trench

D1‧‧‧第一控向PN二極體 D1‧‧‧First Controlled PN Dipole

D2‧‧‧齊納二極體 D2‧‧‧Zina diode

31‧‧‧部分區段 31‧‧‧ Sections

32‧‧‧通道區段 32‧‧‧Channel section

3’‧‧‧第二內部摻雜區 3'‧‧‧Second internal doping zone

4‧‧‧第一頂部摻雜區 4‧‧‧First top doped area

D3‧‧‧第二控向PN二極體 D3‧‧‧Second control PN diode

P1、P2‧‧‧端子 P1, P2‧‧‧ terminals

IP‧‧‧正電流 I P ‧‧‧Positive current

IN‧‧‧負電流 I N ‧‧‧negative current

圖1為本發明第一實施例的靜電放電保護元件的一部分的結構示意圖。 1 is a schematic view showing the structure of a part of an electrostatic discharge protection element according to a first embodiment of the present invention.

圖2為本發明第一實施例的靜電放電保護元件的一部分的等效電路示意圖。 2 is a schematic diagram showing an equivalent circuit of a part of an electrostatic discharge protection element according to a first embodiment of the present invention.

圖3為本發明第一實施例的靜電放電保護元件的一部分的結構示意圖。 Fig. 3 is a schematic structural view showing a part of an electrostatic discharge protection element according to a first embodiment of the present invention.

圖4為本發明第二實施例的靜電放電保護元件的一部分的等效電路示意圖。 4 is a schematic diagram showing an equivalent circuit of a portion of an electrostatic discharge protection element according to a second embodiment of the present invention.

本發明主要是關於一種用於功率半導體元件的靜電放電保護元件,其不僅利用溝槽式結構來縮小元件尺寸與提高製程穩定性,也利用NPN結構來降低箝制電壓(Vc)。以下是通過特定的具體實施例來說明本發明所公開有關“靜電放電保護元件”的實施方式,本領域技術人員可由本說明書所公開的內容瞭解本發明的優點與效果。本發明可通過其他不同的具體實施例加以施行或應用,本說明書中的各項細節也可基於不同觀點與應用,在不悖離本發明的精神下進行各種修飾與變更。另外,本發明的附圖僅為簡單示意說明,並非依實際尺寸的描繪,事先聲明。以下的實施方式將進一步詳細說明本發明的相關技術內容,但所公開的內容並非用以限制本發明的保護範圍。 The present invention is primarily directed to an electrostatic discharge protection device for a power semiconductor device that utilizes not only a trench structure to reduce component size and process stability, but also an NPN structure to reduce the clamping voltage (Vc). The embodiments of the present invention relating to "electrostatic discharge protection elements" are described below by way of specific embodiments, and those skilled in the art can understand the advantages and effects of the present invention from the disclosure of the present specification. The present invention may be carried out or applied in various other specific embodiments, and various modifications and changes can be made without departing from the spirit and scope of the invention. In addition, the drawings of the present invention are merely illustrative and are not intended to be stated in the actual size. The following embodiments will further explain the related technical content of the present invention, but the disclosure is not intended to limit the scope of the present invention.

[第一實施例] [First Embodiment]

請參閱圖1,為本發明第一實施例的靜電放電保護元件的一部 分的結構示意圖。如圖所示,靜電放電保護元件Z1包括一基底1、一磊晶層2、一第一內部摻雜區3、一第二內部摻雜區3’、一第一頂部摻雜區4、一第二頂部摻雜區4’、一隔離層5、一第一導電層6以及一第二導電層6’。 Please refer to FIG. 1 , which is a part of an electrostatic discharge protection component according to a first embodiment of the present invention. Schematic diagram of the structure. As shown, the electrostatic discharge protection element Z1 includes a substrate 1, an epitaxial layer 2, a first internal doped region 3, a second internal doped region 3', a first top doped region 4, and a a second top doped region 4', an isolation layer 5, a first conductive layer 6, and a second conductive layer 6'.

本實施例中,基底1可為矽晶片,且具有一第一導電型,其中基底1上具有一第一元件區11、一第二元件區12以及一位於第一元件區11與第二元件區12之間的隔離區13;磊晶層2可通過外延生長方式形成於基底1的第一表面14(如頂表面)上,且具有一第二導電型,其中第二導電型不同於第一導電型,例如,當第一導電型為P型時,第二導電型即相對為N型,兩者也可互換。較佳地,基底1可具有一介於0.001Ohm-cm與0.13Ohm-cm之間的電阻率,磊晶層2可具有一介於14Ohm-cm與100Ohm-cm之間的電阻率,且磊晶層2可具有一介於2μm與6μm之間的厚度,以使元件滿足特定的條件(如5V至24V的崩潰電壓)。 In this embodiment, the substrate 1 can be a germanium wafer and has a first conductivity type, wherein the substrate 1 has a first component region 11, a second component region 12, and a first component region 11 and a second component. The isolation region 13 between the regions 12; the epitaxial layer 2 may be formed on the first surface 14 (such as the top surface) of the substrate 1 by epitaxial growth, and has a second conductivity type, wherein the second conductivity type is different from the first conductivity type A conductivity type, for example, when the first conductivity type is P type, the second conductivity type is relatively N type, and the two are also interchangeable. Preferably, the substrate 1 may have a resistivity between 0.001 Ohm-cm and 0.13 Ohm-cm, and the epitaxial layer 2 may have a resistivity between 14 Ohm-cm and 100 Ohm-cm, and the epitaxial layer 2 may have a thickness between 2 μm and 6 μm to allow the component to meet certain conditions (eg, a breakdown voltage of 5V to 24V).

第一內部摻雜區3與第二內部摻雜區3’可通過離子佈植(Ion Implant)與熱擴散(Thermal Diffusion)方式以分別形成於第一元件區11與第二元件區12內,且均位於基底1與磊晶層2的接面附近,第一內部摻雜區3具有第二導電型,且第二內部摻雜區3’具有第一導電型;較佳地,第一和第二內部摻雜區3、3’的寬度介於0.5μm至10μm之間,且摻雜濃度介於1E12cm-3至1E17cm-3之間。 The first inner doped region 3 and the second inner doped region 3 ′ may be formed in the first element region 11 and the second element region 12 by ion implantation (Ion Implant) and thermal diffusion (Thermal Diffusion), respectively. And both are located near the junction of the substrate 1 and the epitaxial layer 2, the first inner doped region 3 has a second conductivity type, and the second inner doped region 3' has a first conductivity type; preferably, the first The width of the second inner doping regions 3, 3' is between 0.5 μm and 10 μm, and the doping concentration is between 1E12 cm -3 and 1E17 cm -3 .

值得說明的是,基底1、第一或第二內部摻雜區3、3’與磊晶層2可構成一NPN結構,而此NPN結構所提供的放大效應可降低元件整體的電阻值從而有效降低Vc值;另,也可通過調整第一和第二內部摻雜區3、3’的結構與摻雜濃度來降低Vc值;再者,由於第一和第二內部摻雜區3、3’的摻雜濃度變化會影響空乏區的大小,因此可通過調整第一和第二內部摻雜區3、3’的摻雜濃度來達到設定的電容值,其中第一或第二內部摻雜區3、3’的配置又可 提高電容值的穩定性。 It should be noted that the substrate 1, the first or second internal doping regions 3, 3' and the epitaxial layer 2 may constitute an NPN structure, and the amplification effect provided by the NPN structure can reduce the overall resistance value of the device and is effective. Lowering the Vc value; alternatively, reducing the Vc value by adjusting the structure and doping concentration of the first and second internal doping regions 3, 3'; further, due to the first and second internal doping regions 3, 3 The change in doping concentration affects the size of the depletion region, so the doping concentration of the first and second internal doping regions 3, 3' can be adjusted to achieve a set capacitance value, wherein the first or second internal doping Zone 3, 3' configuration can be Improve the stability of the capacitance value.

第一頂部摻雜區4與第二頂部摻雜區4’可通過離子佈植方式以分別形成於第一元件區11與第二元件區12內,且分別從磊晶層2的表面外露;第一和第二頂部摻雜區4、4’可分別作為元件的源極區與集極區,其中第一頂部摻雜區4具有第一導電型,第一頂部摻雜區4的摻雜濃度大於磊晶層2的摻雜濃度,第一頂部摻雜區4與第一內部摻雜區3的一部分在垂直方向(磊晶層2的厚度方向)上相互重疊且相互之間保持一適當距離,以在磊晶層2中形成漂移區;類似地,第二頂部摻雜區4’具有第二導電型,第二頂部摻雜區4’的摻雜濃度大於磊晶層2的摻雜濃度,第二頂部摻雜區4’與第二內部摻雜區3’的一部分同樣在垂直方向(磊晶層2的厚度方向)上相互重疊且相互之間保持一適當距離,以在磊晶層2中形成漂移區。 The first top doping region 4 and the second top doping region 4 ′ may be formed by ion implantation in the first device region 11 and the second device region 12 , respectively, and exposed from the surface of the epitaxial layer 2 respectively; The first and second top doped regions 4, 4' may respectively serve as a source region and a collector region of the device, wherein the first top doping region 4 has a first conductivity type, and the doping of the first top doping region 4 The concentration is greater than the doping concentration of the epitaxial layer 2, and the first top doped region 4 and a portion of the first inner doped region 3 overlap each other in the vertical direction (the thickness direction of the epitaxial layer 2) and are maintained at an appropriate position a distance to form a drift region in the epitaxial layer 2; similarly, the second top doped region 4' has a second conductivity type, and the doping concentration of the second top doped region 4' is greater than that of the epitaxial layer 2 The concentration, the second top doped region 4' and a portion of the second inner doped region 3' are also overlapped in the vertical direction (thickness direction of the epitaxial layer 2) and maintained at an appropriate distance from each other to be epitaxial A drift region is formed in layer 2.

隔離層5可通過本領域技術人員熟知的各種方法形成於磊晶層2上,且避開第一和第二頂部摻雜區4、4’的涵蓋區域,即,隔離層5具有開口(未標號)用以暴露第一和第二頂部摻雜區4、4’。第一導電層6與第二導電層6’可通過本領域技術人員熟知的各種方法來形成,以作為元件的電極,其中第一導電層6配置於隔離層5上,且接觸第一和第二頂部摻雜區4、4’,以電性連接穩壓電源的高壓側(如5V的電源),第二導電層6’配置於基底1的第二表面15(如底表面)上,以電性連接被保護的另一個元件(如IC元件)。 The isolation layer 5 can be formed on the epitaxial layer 2 by various methods well known to those skilled in the art, and avoids the covered areas of the first and second top doped regions 4, 4', that is, the isolation layer 5 has an opening (not The label) is used to expose the first and second top doped regions 4, 4'. The first conductive layer 6 and the second conductive layer 6' may be formed by various methods well known to those skilled in the art as electrodes of the element, wherein the first conductive layer 6 is disposed on the isolation layer 5 and contacts the first and the first The top doped regions 4, 4' are electrically connected to the high voltage side of the regulated power supply (such as a 5V power supply), and the second conductive layer 6' is disposed on the second surface 15 (such as the bottom surface) of the substrate 1 to Electrically connect another component that is protected (such as an IC component).

基底1與磊晶層2之間可進一步形成一第二導電型的緩衝層7,此時第一和第二內部摻雜區3、3’向下延伸至緩衝層7中;磊晶層2與緩衝層7可同時通過外延生長方式形成於基底1上,其中緩衝層7的厚度較磊晶層2為薄,且摻雜濃度小於磊晶層2的摻雜濃度。 A second conductivity type buffer layer 7 may be further formed between the substrate 1 and the epitaxial layer 2, and the first and second internal doping regions 3, 3' extend downward into the buffer layer 7; the epitaxial layer 2 The buffer layer 7 can be simultaneously formed on the substrate 1 by epitaxial growth, wherein the buffer layer 7 is thinner than the epitaxial layer 2, and the doping concentration is smaller than the doping concentration of the epitaxial layer 2.

請一併參閱圖1以及圖2,靜電放電保護元件Z1中,以P型與N型為第一導電型與第二導電型,基底1、磊晶層2、第一內部 摻雜區3與第一頂部摻雜區4可在第一元件區11內構成一第一控向PN二極體D1以及一與第一控向PN二極體D1串聯耦合的齊納二極體D2(Zener diode),且基底1、磊晶層2、第二內部摻雜區3’與第二頂部摻雜區4’可在第二元件區12內構成一第二控向PN二極體D3,其中第二控向PN二極體D3與第一控向PN二極體D1和齊納二極體D2的組合並聯耦合。 Referring to FIG. 1 and FIG. 2 together, in the electrostatic discharge protection device Z1, the P-type and the N-type are the first conductivity type and the second conductivity type, and the substrate 1, the epitaxial layer 2, and the first interior The doped region 3 and the first top doped region 4 may form a first steering PN diode D1 and a Zener diode coupled in series with the first steering PN diode D1 in the first component region 11. a body D2 (Zener diode), and the substrate 1, the epitaxial layer 2, the second inner doped region 3' and the second top doped region 4' may constitute a second control PN dipole in the second element region 12. The body D3, wherein the second steering PN diode D3 is coupled in parallel with the combination of the first steering PN diode D1 and the Zener diode D2.

更進一步地說,靜電放電保護元件Z1利用多個絕緣溝槽T1、T2、T3(溝槽中填充絕緣材料)將形成第一控向PN二極體D1的磊晶層2的一部分與形成第二控向PN二極體D3的磊晶層2的另一部分隔離,此等絕緣溝槽T1、T2、T3並有助於形成齊納二極體D2;具體地說,至少一個絕緣溝槽T1配置於隔離區13內,且從磊晶層2的表面向下延伸至基底1中,若第一和第二內部摻雜區3、3’進一步水平延伸至隔離區13內,則絕緣溝槽T1從磊晶層2的表面向下延伸穿過第一和第二內部摻雜區3、3’並延伸至基底1中,另一個絕緣溝槽T2配置於第一元件區11內,且從磊晶層2的表面向下延伸穿過第一內部摻雜區3並延伸至基底1中,再一個絕緣溝槽T3配置於第二元件區12內,且從磊晶層2的表面向下延伸穿過第二內部摻雜區3’並延伸至基底1中。 Further, the electrostatic discharge protection element Z1 uses a plurality of insulating trenches T1, T2, T3 (filled with insulating material in the trench) to form a portion of the epitaxial layer 2 of the first steering PN diode D1 and form the first The second control is isolated from another portion of the epitaxial layer 2 of the PN diode D3, and the insulating trenches T1, T2, T3 contribute to form the Zener diode D2; specifically, at least one insulating trench T1 Disposed in the isolation region 13 and extending downward from the surface of the epitaxial layer 2 into the substrate 1. If the first and second internal doping regions 3, 3' extend further horizontally into the isolation region 13, the insulating trench T1 extends downward from the surface of the epitaxial layer 2 through the first and second inner doped regions 3, 3' and into the substrate 1, and the other insulating trench T2 is disposed in the first element region 11, and The surface of the epitaxial layer 2 extends downward through the first inner doped region 3 and into the substrate 1, and another insulating trench T3 is disposed in the second element region 12 and downward from the surface of the epitaxial layer 2. It extends through the second inner doped region 3' and extends into the substrate 1.

須說明的是,雖然圖1中顯示,配置於隔離區13內的絕緣溝槽T1的數量有兩個,然實際上絕緣溝槽T1的數量與位置可依實際需求而有所改變,故由圖1所示絕緣溝槽T1的數量僅供舉例說明,並不限定本發明。 It should be noted that although the number of the insulating trenches T1 disposed in the isolation region 13 is two, the number and position of the insulating trenches T1 may be changed according to actual needs. The number of insulating trenches T1 shown in Figure 1 is for illustrative purposes only and is not intended to limit the invention.

當正向靜電放電(ESD)發生時,所產生的正電流IP將從連接第一導電層6的端子P1通過第一控向PN二極體D1與齊納二極體D2流到連接第二導電層6’的端子P2;由於端子P1相對於端子P2被強加到更大的正電壓,並使第一控向PN二極體D1被正向偏置且齊納二極體D2被反向偏置,因此第一控向PN二極體D1可將端子P1、P2之間的最大電壓固定到約等於齊納二極體D2的齊納 電壓(如5V),以保護後端的元件不被ESD所破壞。當反向ESD發生時,所產生的負電流IN將從端子P2通過第二控向PN二極體D3流到端子P1,且呈正向偏置的第二控向PN二極體D3可安全地處理反向ESD脈衝。 When positive electrostatic discharge (ESD) occurs, the generated positive current I P will flow from the terminal P1 connecting the first conductive layer 6 through the first steering PN diode D1 and the Zener diode D2 to the connection. Terminal P2 of the second conductive layer 6'; since the terminal P1 is forced to a larger positive voltage with respect to the terminal P2, and the first steering PN diode D1 is forward biased and the Zener diode D2 is reversed Offset, so the first steering PN diode D1 can fix the maximum voltage between the terminals P1, P2 to a Zener voltage (such as 5V) approximately equal to the Zener diode D2 to protect the components at the back end. Destroyed by ESD. When the reverse ESD occurs, the generated negative current I N will flow from the terminal P2 through the second steering PN diode D3 to the terminal P1, and the second biased PN diode D3 which is forward biased can be safe. The reverse ESD pulse is processed.

[第二實施例] [Second embodiment]

請參閱圖3,為本發明第二實施例的靜電放電保護元件的一部分的剖視圖。如圖所示,本實施例與第一實施例的差異主要在於,靜電放電保護元件Z1中之第一內部摻雜區3包括至少兩個彼此分離的部分區段31以及至少一個位於此等部分區段31之間且相對於第一頂部摻雜區4的通道區段32,其餘技術細節均與第一實施例相同,於此不再重複贅述。 3 is a cross-sectional view showing a portion of an electrostatic discharge protection element according to a second embodiment of the present invention. As shown, the difference between this embodiment and the first embodiment is mainly that the first inner doped region 3 in the electrostatic discharge protection element Z1 includes at least two partial segments 31 separated from each other and at least one portion located therein. The remaining technical details are the same as those of the first embodiment with respect to the channel section 32 between the sections 31 and with respect to the first top doped area 4, and the detailed description thereof will not be repeated here.

請一併參閱圖3以及圖4,以P型與N型為第一導電型與第二導電型,基底1、磊晶層2、第一內部摻雜區3與第一頂部摻雜區4可在第一元件區11內構成一第一控向PN二極體D1、一齊納二極體D2以及一第二控向PN二極體D3,其中齊納二極體D2和第二控向PN二極體D3並聯耦合,且第一控向PN二極體D1與齊納二極體D2和第二控向PN二極體D3的組合串聯耦合;另,基底1、磊晶層2、第二內部摻雜區3’與第二頂部摻雜區4’可在第二元件區12內構成另一個第二控向PN二極體D3,且此第二控向PN二極體D3與第一控向PN二極體D1、齊納二極體D2和第二控向PN二極體D3的組合並聯耦合。 Referring to FIG. 3 and FIG. 4 together, the P-type and the N-type are the first conductivity type and the second conductivity type, and the substrate 1, the epitaxial layer 2, the first internal doping region 3 and the first top doping region 4 are used. A first steering PN diode D1, a Zener diode D2 and a second steering PN diode D3 can be formed in the first component region 11, wherein the Zener diode D2 and the second steering direction The PN diode D3 is coupled in parallel, and the first control PN diode D1 is coupled in series with the combination of the Zener diode D2 and the second steering PN diode D3; in addition, the substrate 1, the epitaxial layer 2 The second inner doped region 3' and the second top doped region 4' may constitute another second controlled PN diode D3 in the second element region 12, and the second controlled PN diode D3 is The combination of the first control PN diode D1, the Zener diode D2 and the second steering PN diode D3 is coupled in parallel.

值得說明的是,當正向靜電放電(ESD)發生時,所產生的正電流IP可從端子P1通過第一控向PN二極體D1與齊納二極體D2流到端子P2,也可從端子P1通過第一控向PN二極體D1與第二控向PN二極體D3流到端子P2;據此,靜電放電保護元件Z1不僅可利用齊納二極體D2的穩壓特性來保護後端的元件,還可利用負電阻效應來降低Vc值。 It is worth noting that when positive electrostatic discharge (ESD) occurs, the generated positive current I P can flow from the terminal P1 through the first steering PN diode D1 and the Zener diode D2 to the terminal P2. The terminal P1 can pass through the first steering PN diode D1 and the second steering PN diode D3 to the terminal P2; accordingly, the electrostatic discharge protection component Z1 can utilize not only the voltage stabilizing characteristic of the Zener diode D2 To protect the components of the back end, the negative resistance effect can also be used to reduce the Vc value.

[實施例的有益效果] [Advantageous Effects of Embodiments]

本發明實施例所提供的靜電放電保護元件,其可通過“將第一內部摻雜區與第二內部摻雜區分別配置於第一元件區與第二元件區內,且接近基底與磊晶層的接面,其中基底與第二內部摻雜區具有相同的傳導性,而磊晶層與第一內部摻雜區具有相同的傳導性”的設計,可有效降低箝制電壓,並可改善製程中自動摻雜(auto-doping)的影響以提升整體良率。 The electrostatic discharge protection device provided by the embodiment of the invention can be configured to “dispose the first inner doped region and the second inner doped region in the first device region and the second device region, respectively, and close to the substrate and the epitaxial layer The junction of the layers, wherein the substrate and the second inner doped region have the same conductivity, and the epitaxial layer has the same conductivity as the first inner doped region, can effectively reduce the clamping voltage and improve the process The effect of auto-doping improves the overall yield.

承上述,本發明也可通過調整第一和第二內部摻雜區的結構與摻雜濃度來降低Vc值。 In view of the above, the present invention can also reduce the Vc value by adjusting the structure and doping concentration of the first and second internal doping regions.

再者,由於第一和第二內部摻雜區的摻雜濃度變化會影響空乏區的大小,因此本發明可通過調整第一和第二內部摻雜區的摻雜濃度來達到設定的電容值,其中第一或第二內部摻雜區的配置又可提高電容值的穩定性。 Furthermore, since the doping concentration variation of the first and second internal doping regions affects the size of the depletion region, the present invention can achieve the set capacitance value by adjusting the doping concentrations of the first and second internal doping regions. Wherein the configuration of the first or second internal doped regions in turn increases the stability of the capacitance value.

此外,本發明利用溝槽式結構,相較於平台與平面式結構可縮小元件尺寸與提高製程穩定性。 In addition, the present invention utilizes a trench structure that reduces component size and improves process stability compared to platform and planar structures.

以上所公開的內容僅為本發明的優選可行實施例,並非因此侷限本發明的申請專利範圍,所以凡是運用本發明說明書及附圖內容所做的等效技術變化,均包含於本發明的申請專利範圍內。 The above disclosure is only a preferred embodiment of the present invention, and is not intended to limit the scope of the present invention. Therefore, any equivalent technical changes made by using the present specification and the contents of the drawings are included in the application of the present invention. Within the scope of the patent.

Z1‧‧‧靜電放電保護元件 Z1‧‧‧Electrostatic Discharge Protection Element

1‧‧‧基底 1‧‧‧Base

11‧‧‧第一元件區 11‧‧‧First component area

12‧‧‧第二元件區 12‧‧‧Second component area

13‧‧‧隔離區 13‧‧‧Isolated area

14‧‧‧第一表面 14‧‧‧ first surface

15‧‧‧第二表面 15‧‧‧ second surface

2‧‧‧磊晶層 2‧‧‧ epitaxial layer

3‧‧‧第一內部摻雜區 3‧‧‧First internal doping zone

3’‧‧‧第二內部摻雜區 3'‧‧‧Second internal doping zone

4‧‧‧第一頂部摻雜區 4‧‧‧First top doped area

4’‧‧‧第二頂部摻雜區 4'‧‧‧Second top doped area

5‧‧‧隔離層 5‧‧‧Isolation

6‧‧‧第一導電層 6‧‧‧First conductive layer

6’‧‧‧第二導電層 6'‧‧‧Second conductive layer

7‧‧‧緩衝層 7‧‧‧ Buffer layer

T1、T2、T3‧‧‧絕緣溝槽 T1, T2, T3‧‧‧ insulated trench

P1、P2‧‧‧端子 P1, P2‧‧‧ terminals

IP‧‧‧正電流 I P ‧‧‧Positive current

IN‧‧‧負電流 I N ‧‧‧negative current

Claims (9)

一種靜電放電保護元件,其包括:一基底,具有一第一導電型,其中該基底上具有一第一元件區、一第二元件區以及一設於該第一元件區與該第二元件區之間的隔離區;一磊晶層,設於該基底上,且具有一不同於該第一導電型的第二導電型;一第一內部摻雜區與一第二內部摻雜區,分別設於該第一元件區與該第二元件區內,且接近該基底與該磊晶層的接面,其中該第一內部摻雜區具有該第二導電型,且該第二內部摻雜區具有該第一導電型;一第一頂部摻雜區與一第二頂部摻雜區,分別設於該第一元件區與該第二元件區內,且分別從該磊晶層的表面外露,其中該第一頂部摻雜區具有該第一導電型,且該第二頂部摻雜區具有該第二導電型;一導電層,電性連接該第一頂部摻雜區與該第二頂部摻雜區;及一緩衝層,設於該基底與該磊晶層之間,其中該緩衝層具有該第二導電型,且該第一內部摻雜區與該第二內部摻雜區進一步向下延伸至該緩衝層中。 An electrostatic discharge protection device comprising: a substrate having a first conductivity type, wherein the substrate has a first component region, a second component region, and a first component region and the second component region An isolation region; an epitaxial layer disposed on the substrate and having a second conductivity type different from the first conductivity type; a first internal doped region and a second internally doped region, respectively Provided in the first component region and the second component region, and close to the junction of the substrate and the epitaxial layer, wherein the first internal doping region has the second conductivity type, and the second internal doping The region has the first conductivity type; a first top doped region and a second top doped region are respectively disposed in the first device region and the second device region, and are respectively exposed from the surface of the epitaxial layer The first top doped region has the first conductivity type, and the second top doped region has the second conductivity type; a conductive layer electrically connected to the first top doped region and the second top portion a doped region; and a buffer layer disposed between the substrate and the epitaxial layer, wherein the buffer Having the second conductivity type layer, and the first inner and the second doped region extends further down to the inner region of the doped buffer layer. 如請求項1所述的靜電放電保護元件,其中,該第一內部摻雜區與該第二內部摻雜區進一步水平延伸至該隔離區內。 The electrostatic discharge protection device of claim 1, wherein the first inner doped region and the second inner doped region extend further horizontally into the isolation region. 如請求項1所述的靜電放電保護元件,還包括多個絕緣溝槽,至少一該絕緣溝槽設於該隔離區內,且從該磊晶層的表面向下延伸穿過該第一內部摻雜區與該第二內部摻雜區並延伸至該基底中,另一該絕緣溝槽設於該第一元件區內,且從該磊晶層的表面向下延伸穿過該第一內部摻雜區並延伸至該基底中,再 一該絕緣溝槽設於該第二元件區內,且從該磊晶層的表面向下延伸穿過該第二內部摻雜區並延伸至該基底中。 The electrostatic discharge protection device of claim 1, further comprising a plurality of insulating trenches, at least one of the insulating trenches being disposed in the isolation region and extending downward from the surface of the epitaxial layer through the first interior a doped region and the second inner doped region extend into the substrate, and the other insulating trench is disposed in the first element region and extends downward from the surface of the epitaxial layer through the first inner portion Doping regions and extending into the substrate, and then An insulating trench is disposed in the second component region and extends downwardly from the surface of the epitaxial layer through the second inner doped region and into the substrate. 如請求項3所述的靜電放電保護元件,其中,該第一內部摻雜區包括至少兩個彼此分離的部分區段以及至少一個位於該等部分區段之間且相對於該第一頂部摻雜區的通道區段。 The electrostatic discharge protection element of claim 3, wherein the first inner doped region comprises at least two partial segments separated from each other and at least one is located between the partial segments and is doped with respect to the first top The channel section of the miscellaneous zone. 如請求項1所述的靜電放電保護元件,還包括一隔離層,該隔離層設於該磊晶層上,該導電層設於該隔離層上,並通過該隔離層接觸該第一頂部摻雜區與該第二頂部摻雜區。 The electrostatic discharge protection device of claim 1, further comprising an isolation layer disposed on the epitaxial layer, the conductive layer being disposed on the isolation layer and contacting the first top doping through the isolation layer a miscellaneous region and the second top doped region. 如請求項1所述的靜電放電保護元件,其中,該基底具有一介於0.001Ohm-cm與0.13Ohm-cm之間的電阻率,該磊晶層具有一介於14Ohm-cm與0100Ohm-cm之間的電阻率,且具有一介於2μm與6μm之間的厚度。 The electrostatic discharge protection device according to claim 1, wherein the substrate has a resistivity of between 0.001 Ohm-cm and 0.13 Ohm-cm, and the epitaxial layer has a relationship between 14 Ohm-cm and 0100 Ohm-cm. The resistivity and has a thickness of between 2 μm and 6 μm. 如請求項1所述的靜電放電保護元件,其中,該第一內部摻雜區與該第二內部摻雜區的寬度介於0.5μm至10μm之間,且摻雜濃度介於1E12 cm-3至1E17 cm-3之間。 The electrostatic discharge protection device of claim 1, wherein the first inner doped region and the second inner doped region have a width of between 0.5 μm and 10 μm and a doping concentration of 1E12 cm -3 Between 1E17 cm -3 . 如請求項1所述的靜電放電保護元件,其中,該第一導電型為P型,且該第二導電型為N型。 The electrostatic discharge protection device of claim 1, wherein the first conductivity type is a P type, and the second conductivity type is an N type. 如請求項1所述的靜電放電保護元件,其中,該第一導電型為N型,且該第二導電型為P型。 The electrostatic discharge protection device of claim 1, wherein the first conductivity type is an N type, and the second conductivity type is a P type.
TW106123046A 2017-07-10 2017-07-10 Electrostatic discharge protection component TWI615939B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW106123046A TWI615939B (en) 2017-07-10 2017-07-10 Electrostatic discharge protection component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW106123046A TWI615939B (en) 2017-07-10 2017-07-10 Electrostatic discharge protection component

Publications (2)

Publication Number Publication Date
TWI615939B true TWI615939B (en) 2018-02-21
TW201909376A TW201909376A (en) 2019-03-01

Family

ID=62014427

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106123046A TWI615939B (en) 2017-07-10 2017-07-10 Electrostatic discharge protection component

Country Status (1)

Country Link
TW (1) TWI615939B (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201546997A (en) * 2014-06-13 2015-12-16 Richtek Technology Corp Transient voltage suppression device and manufacturing method thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201546997A (en) * 2014-06-13 2015-12-16 Richtek Technology Corp Transient voltage suppression device and manufacturing method thereof

Also Published As

Publication number Publication date
TW201909376A (en) 2019-03-01

Similar Documents

Publication Publication Date Title
US9978740B2 (en) Uni-directional transient voltage suppressor (TVS)
US10096588B2 (en) TVS structures for high surge and low capacitance
US8633509B2 (en) Apparatus and method for transient electrical overstress protection
US7868387B2 (en) Low leakage protection device
US8698196B2 (en) Low capacitance transient voltage suppressor (TVS) with reduced clamping voltage
US8338854B2 (en) TVS with low capacitance and forward voltage drop with depleted SCR as steering diode
KR101394913B1 (en) Latch-Up Free Vertical TVS Diode Array Structure Using Trench Isolation
KR101975608B1 (en) Electrostatic discharge high voltage type transistor and electrostatic dscharge protection circuit thereof
TWI689076B (en) High surge bi-directional transient voltage suppressor
KR101847227B1 (en) Electrostatic discharge transistor
JP3805534B2 (en) Semiconductor integrated circuit and method of using protective element
US10483257B2 (en) Low voltage NPN with low trigger voltage and high snap back voltage for ESD protection
KR20200074581A (en) Electrostatic Discharge Protection Device
US8963202B2 (en) Electrostatic discharge protection apparatus
CN107887375B (en) Semiconductor electrostatic discharge protection element
JP5641879B2 (en) Semiconductor device
TWI615939B (en) Electrostatic discharge protection component
EP2763171B1 (en) Electrostatic discharge protective device
US6384453B1 (en) High withstand voltage diode and method for manufacturing same
TW201340287A (en) Semiconductor device
TWI524497B (en) Electrostatic discharge protection structure and electrostatic discharge protection circuit
TWI696329B (en) High surge transient voltage suppressor cross reference to other applications
TW201630195A (en) Semiconductor device layout structure
US8368177B2 (en) Integrated circuit with ESD structure
TWI574372B (en) Electrostatic discharge protection apparatus and applications thereof