TWI615012B - 用於密碼學密鑰產生之方法、器件及伺服器與其非暫態電腦可讀儲存媒體 - Google Patents

用於密碼學密鑰產生之方法、器件及伺服器與其非暫態電腦可讀儲存媒體 Download PDF

Info

Publication number
TWI615012B
TWI615012B TW105109554A TW105109554A TWI615012B TW I615012 B TWI615012 B TW I615012B TW 105109554 A TW105109554 A TW 105109554A TW 105109554 A TW105109554 A TW 105109554A TW I615012 B TWI615012 B TW I615012B
Authority
TW
Taiwan
Prior art keywords
biometric
descriptor
level
descriptors
hierarchy
Prior art date
Application number
TW105109554A
Other languages
English (en)
Other versions
TW201703455A (zh
Inventor
伯喬恩 賈可布森
賽耶德何森 席亞達堤
Original Assignee
高通公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 高通公司 filed Critical 高通公司
Publication of TW201703455A publication Critical patent/TW201703455A/zh
Application granted granted Critical
Publication of TWI615012B publication Critical patent/TWI615012B/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/08Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
    • H04L9/0861Generation of secret information including derivation or calculation of cryptographic keys or passwords
    • H04L9/0866Generation of secret information including derivation or calculation of cryptographic keys or passwords involving user or device identifiers, e.g. serial number, physical or biometrical information, DNA, hand-signature or measurable physical characteristics
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/08Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
    • H04L9/0816Key establishment, i.e. cryptographic processes or cryptographic protocols whereby a shared secret becomes available to two or more parties, for subsequent use
    • H04L9/0819Key transport or distribution, i.e. key establishment techniques where one party creates or otherwise obtains a secret value, and securely transfers it to the other(s)
    • H04L9/083Key transport or distribution, i.e. key establishment techniques where one party creates or otherwise obtains a secret value, and securely transfers it to the other(s) involving central third party, e.g. key distribution center [KDC] or trusted third party [TTP]
    • H04L9/0833Key transport or distribution, i.e. key establishment techniques where one party creates or otherwise obtains a secret value, and securely transfers it to the other(s) involving central third party, e.g. key distribution center [KDC] or trusted third party [TTP] involving conference or group key
    • H04L9/0836Key transport or distribution, i.e. key establishment techniques where one party creates or otherwise obtains a secret value, and securely transfers it to the other(s) involving central third party, e.g. key distribution center [KDC] or trusted third party [TTP] involving conference or group key using tree structure or hierarchical structure

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Collating Specific Patterns (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Storage Device Security (AREA)

Abstract

使用生物識別資料及一生物識別描述符階層來產生一密碼學密鑰。該生物識別描述符階層包括多個層級,其中一第一層級處之一生物識別描述符係與下一較低層級處之該等生物識別描述符之一子集相關聯。為了產生一密碼學密鑰,收集生物識別資料且比較該生物識別資料與該階層之該第一層級處之該等生物識別描述符。在該第一層級處選擇該等生物識別描述符中之一者,且基於該第一經選擇生物識別描述符來產生一第一密鑰分量。接著比較該生物識別資料與該階層之第二層級處之該生物識別描述符子集,該生物識別描述符子集係與該第一經選擇生物識別描述符相關聯。選擇一生物識別描述符且產生一密鑰分量之此處理程序針對該階層之每一層級而繼續。接著使用該等密鑰分量以產生一密碼學密鑰。

Description

用於密碼學密鑰產生之方法、器件及伺服器與其非暫態電腦可讀儲存媒體 相關申請案之交叉參考
本申請案主張2015年4月6日在美國專利商標局申請之非臨時申請案第14/679,840號的優先權及權利。
本發明係關於加密技術,且更具體言之,係關於使用生物識別資料來產生密碼學密鑰。
一種密碼術方案為使用兩個密鑰(公用密鑰,及被保持私密之私用密鑰)之公用密鑰密碼系統。使用公用密鑰來加密且可僅使用對應私用密鑰來解密訊息。舉例而言,發送者加密關於給定公用密鑰之訊息,且僅與公用密鑰相關聯之私用密鑰之擁有者才可解密所得密文且復原該訊息。公用密鑰密碼系統之實例包括RSA、數位簽名標準(DSS)、Paillier密碼系統,及Diffie-Hellman密鑰交換協定。另一加密方案為使用單一安全密鑰以用於加密及解密之對稱密鑰密碼系統。在安全初始交換中在各方之間交換安全密鑰,且接著由雙方使用安全密鑰以加密及解密訊息。對稱密鑰密碼系統之實例包括Twofish、Serpent、AES、Blowfish、CAST5、RC4及IDEA。另外,混合式密碼系統使用公用密鑰密碼系統及對稱密鑰密碼系統兩者。舉例而言,由 發送者產生且在訊息中運用接收者之公用密鑰來加密對稱密鑰。接收者運用其對應私用密鑰來解密訊息以獲得對稱密鑰。發送者及接收者接著使用對稱密鑰來加密及解密訊息。
一種用以產生密碼學密鑰(諸如私用密鑰或對稱密鑰)之方法包括使用生物識別資料。然而,歸因於生物識別資料收集之性質,生物識別資料之使用可為不精確的且不可重複的。舉例而言,諸如指紋或視網膜之生物識別物之影像可取決於掃描技術之品質、生物識別物在掃描期間之移動、背景條件、磨損或受傷指尖等等而變化。另外,生物識別資料之收集會引發關於對生物識別資訊之可能未經授權存取及使用的隱私權擔憂。
因此,需要一種穩固且安全的允許使用生物識別資料以用於產生密碼學密鑰之解決方案。
根據一個態樣,提供一種方法,其用於:獲得生物識別資料;及使用該生物識別資料及一生物識別描述符階層來產生一密碼學密鑰。使用該生物識別資料來選擇該生物識別描述符階層之一第一層級處之一第一生物識別描述符。獲得與該第一生物識別描述符相關聯之一第一密鑰分量。使用該生物識別資料來選擇該生物識別描述符階層之一第二層級處之一第二生物識別描述符。獲得與該第二生物識別描述符相關聯之一第二密鑰分量。接著使用至少該第一密鑰分量及該第二密鑰分量來產生一密碼學密鑰。
舉例而言,該生物識別描述符階層之該第一層級包括第一複數個生物識別描述符,且該第二層級包括第二複數個生物識別描述符,其中該第二層級處之該第二複數個生物識別描述符之一子集係與在該第一層級處選擇之該第一生物識別描述符相關聯。比較該生物識別資料與該第二層級處之該第二複數個生物識別描述符之此子集以選擇該 第二層級處之該第二生物識別描述符。
該生物識別描述符階層亦可包括額外較低層級。獲得該生物識別描述符階層之至少一個額外較低層級。對於每一額外較低層級,獲得一額外生物識別描述符及額外密鑰分量。接著使用至少該第一密鑰分量、該第二密鑰分量及任何額外密鑰分量來產生該密碼學密鑰。
在一例示性實施例中,該生物識別資料包括指紋資料。一生物識別描述符階層之一第一層級包括複數個指紋類型,且該生物識別描述符階層之一第二層級包括複數個巨集奇異點分佈。該生物識別描述符階層可進一步包括額外較低層級,諸如包括複數個第三層級隆脊映像之一第三層級及包括複數個第四層級柵格圖案之一第四層級。為了選擇該等第三層級隆脊映像中之一者,處理用於至少一個指紋之該指紋資料以獲得一隆脊映像。在用於該至少一個指紋之該指紋資料中之複數個點處獲得一隆脊之一定向角。將該等定向角表示為在該複數個點處之向量以產生該隆脊映像。比較該隆脊映像與該階層之該第三層級處之該複數個隆脊映像之一子集,該複數個隆脊映像之該子集係與該經選擇第二層級生物識別描述符相關聯,且選擇一第三層級隆脊映像。基於該經選擇第三層級隆脊映像來獲得一第三密鑰分量。
為了選擇該階層中之該等第四層級柵格圖案中之一者,處理該指紋資料以獲得一柵格圖案。將基於用於該至少一個指紋之該指紋資料所產生之該隆脊映像與該經選擇第三層級隆脊映像對準。將一m*n柵格重疊於該隆脊映像上,且選擇該m*n柵格中符合一指定準則之胞元。基於該等經選擇胞元來產生一柵格圖案。比較該柵格圖案與該第四層級處之該複數個柵格圖案之一子集,該複數個柵格圖案之該子集係與該經選擇第三層級隆脊映像相關聯,且選擇一第四層級柵格圖案。基於該經選擇第四層級柵格圖案來獲得一第四密鑰分量。接著使用該第一密鑰分量、該第二密鑰分量、該第三密鑰分量及該第四密鑰 分量或其一子集來產生該密碼學密鑰。
根據另一態樣,一種器件包含:一生物感測器電路,其經組態以獲得生物識別資料;及一處理電路,其耦接至該生物感測器電路。該處理電路經組態以使用該生物識別資料來選擇一生物識別描述符階層之一第一層級處之一第一生物識別描述符,及獲得與該第一生物識別描述符相關聯之一第一密鑰分量。該處理電路經進一步組態以使用該生物識別資料來選擇該生物識別描述符階層之一第二層級處之一第二生物識別描述符,及獲得與該第二生物識別描述符相關聯之一第二密鑰分量。該處理電路經進一步組態以使用至少該第一密鑰分量及該第二密鑰分量來獲得一密碼學密鑰。
根據另一態樣,獲得具有複數個層級之一生物識別描述符階層,其中該生物識別描述符階層之一第一層級處之第一複數個生物識別描述符中之每一者係與一不同第一密鑰分量相關聯,且該生物識別描述符階層之一第二層級處之第二複數個生物識別描述符中之每一者係與一不同第二密鑰分量相關聯。在一例示性實施例中,該第一複數個生物識別描述符及該第二複數個生物識別描述符被合成地預產生,其中該第一複數個生物識別描述符包括複數個經合成產生之隆脊映像,且其中該第二複數個生物識別描述符包括複數個經合成產生之柵格圖案。
將該生物識別描述符階層傳輸至一用戶端器件。在一實施例中,回應於與該用戶端器件之一異動之一起始而將該階層傳輸至該用戶端器件。舉例而言,伺服器自該用戶端器件接收一請求以產生用於與一使用者識別符相關聯之一註冊使用者之一密碼學密鑰,且該伺服器回應於此情形而將該生物識別描述符階層傳輸至該用戶端器件。在另一實例中,自該用戶端器件接收一公用密鑰,其中該公用密鑰係至少部分地基於該第一密鑰分量及該第二密鑰分量。
在一些實施例中,可自該用戶端器件接收一經更新生物識別描述符階層,其中該經更新階層中之至少一個生物識別描述符包括與一使用者識別符相關聯之生物識別資料。在其他可能實施例中,自該用戶端器件接收一經更新生物識別描述符階層,其中該第二層級中之該第二複數個生物識別描述符之一子集包括一稀疏生物識別描述符,該稀疏生物識別描述符相較於自與一使用者識別符相關聯之生物識別資料導出之一生物識別描述符具有小於一第一指定臨限值之一相似性參數。該第二層級中之該第二複數個生物識別描述符之該子集亦包括複數個經選擇生物識別描述符,該複數個經選擇生物識別描述符相較於該稀疏生物識別描述符具有大於一第二指定臨限值之一相似性參數。
在另一態樣中,一種伺服器包含:一網路介面,其經組態以與一用戶端器件通信;及一處理電路,其可操作地耦接至該網路介面。該處理電路經組態以獲得具有複數個層級之一生物識別描述符階層,其中該生物識別描述符階層之一第一層級處之第一複數個生物識別描述符中之每一者係與一不同第一密鑰分量相關聯,且該生物識別描述符階層之一第二層級處之第二複數個生物識別描述符中之每一者係與一不同第二密鑰分量相關聯。該處理電路經進一步組態以將該生物識別描述符階層傳輸至該用戶端器件。
100a‧‧‧第一層級生物識別描述符
100b‧‧‧第一層級生物識別描述符
100n‧‧‧第一層級生物識別描述符
102a‧‧‧第二層級生物識別描述符
102b‧‧‧第二層級生物識別描述符
102c‧‧‧第二層級生物識別描述符
102d‧‧‧第二層級生物識別描述符
102n‧‧‧第二層級生物識別描述符
104a‧‧‧第三層級生物識別描述符
104b‧‧‧第三層級生物識別描述符
104c‧‧‧第三層級生物識別描述符
104d‧‧‧第三層級生物識別描述符
106a‧‧‧第N層級生物識別描述符
106b‧‧‧第N層級生物識別描述符
106c‧‧‧第N層級生物識別描述符
106d‧‧‧第N層級生物識別描述符
106e‧‧‧第N層級生物識別描述符
110‧‧‧生物識別描述符階層
112‧‧‧第一層級
114‧‧‧第二層級
116‧‧‧第三層級
118‧‧‧第N層級
120‧‧‧第一密鑰分量A
122‧‧‧第二密鑰分量B
124‧‧‧第三密鑰分量C
126‧‧‧第N密鑰分量
128‧‧‧密碼學密鑰
130‧‧‧使用者生物識別資料
200‧‧‧方法
202‧‧‧步驟
204‧‧‧步驟
206‧‧‧步驟
300‧‧‧方法
302‧‧‧步驟
304‧‧‧步驟
306‧‧‧步驟
308‧‧‧步驟
310‧‧‧步驟
400‧‧‧通信網路
402‧‧‧廣域網路(WAN)
404‧‧‧區域網路(LAN)
406‧‧‧無線區域網路(WLAN)
408‧‧‧無線網路
410‧‧‧密碼學伺服器
412a‧‧‧器件A
412b‧‧‧器件B
412c‧‧‧器件C
412d‧‧‧器件D
412e‧‧‧器件E
416‧‧‧網路介面
418‧‧‧生物感測器電路
420‧‧‧處理電路
424‧‧‧生物識別密鑰產生電路/模組
432‧‧‧加密服務電路/模組
434‧‧‧記憶體/儲存器件
436‧‧‧生物識別鎖資訊
500‧‧‧生物識別描述符階層
502‧‧‧指紋資料
504a‧‧‧第一層級指紋類型
504b‧‧‧第一層級指紋類型
504c‧‧‧第一層級指紋類型
504d‧‧‧第一層級指紋類型
504e‧‧‧第一層級指紋類型
504n‧‧‧第一層級指紋類型
506a‧‧‧第二層級巨集奇異點分佈
506b‧‧‧第二層級巨集奇異點分佈
506n‧‧‧第二層級巨集奇異點分佈
508a‧‧‧第三層級隆脊映像
508b‧‧‧第三層級隆脊映像
508n‧‧‧第三層級隆脊映像
510a‧‧‧第四層級柵格圖案
510b‧‧‧第四層級柵格圖案
510n‧‧‧第四層級柵格圖案
512‧‧‧第一層級
514‧‧‧第二層級
516‧‧‧第三層級
518‧‧‧第四層級
520‧‧‧第一密鑰分量A
522‧‧‧第二密鑰分量B
524‧‧‧第三密鑰分量C
526‧‧‧第四密鑰分量D
528‧‧‧密碼學密鑰
600‧‧‧指紋之六個類型
602‧‧‧拱形
604‧‧‧帳形
606‧‧‧左旋形
608‧‧‧右旋形
610‧‧‧平鬥形
612‧‧‧雙鬥形
700‧‧‧基軸
702‧‧‧切線
704‧‧‧隆脊定向Θ
706‧‧‧樣本隆脊
708‧‧‧指紋影像
800‧‧‧隆脊映像
802‧‧‧向量
804‧‧‧核心
806‧‧‧三角形
900‧‧‧柵格圖案
902‧‧‧m*n柵格
904‧‧‧指紋影像
906‧‧‧胞元
1002‧‧‧步驟
1004‧‧‧隆脊映像
1006‧‧‧步驟
1008‧‧‧密度映像
1010‧‧‧步驟
1012‧‧‧輪廓映像
1014‧‧‧步驟
1100‧‧‧方法
1102‧‧‧步驟
1104‧‧‧步驟
1106‧‧‧步驟
1108‧‧‧步驟
1110‧‧‧步驟
1112‧‧‧步驟
1114‧‧‧步驟
1116‧‧‧步驟
1202‧‧‧步驟
1204‧‧‧步驟
1206‧‧‧步驟
1208‧‧‧步驟
1210‧‧‧步驟
1212‧‧‧步驟
1214‧‧‧步驟
1216‧‧‧步驟
1218‧‧‧步驟
1220‧‧‧步驟
1224‧‧‧步驟
1300‧‧‧方法
1302‧‧‧步驟
1304‧‧‧步驟
1306‧‧‧步驟
1308‧‧‧步驟
1310‧‧‧步驟
1312‧‧‧步驟
1314‧‧‧步驟
1316‧‧‧步驟
1320‧‧‧步驟
1400‧‧‧方法
1402‧‧‧步驟
1404‧‧‧步驟
1406‧‧‧步驟
1408‧‧‧步驟
1410‧‧‧步驟
1412‧‧‧步驟
1414‧‧‧步驟
1416‧‧‧步驟
1418‧‧‧步驟
1420‧‧‧步驟
1422‧‧‧步驟
1500‧‧‧方法
1502‧‧‧拇指之指紋
1504‧‧‧第一多項式點
1508‧‧‧第二多項式點
1600‧‧‧方法
1602‧‧‧步驟
1604‧‧‧步驟
1606‧‧‧步驟
1608‧‧‧步驟
1614‧‧‧步驟
1616‧‧‧步驟
1618‧‧‧步驟
1622‧‧‧步驟
1624‧‧‧步驟
1630‧‧‧密碼學伺服器
1640‧‧‧用戶端器件
1700‧‧‧方法
1702‧‧‧步驟
1704‧‧‧步驟
1706‧‧‧步驟
1708‧‧‧步驟
1710‧‧‧步驟
1712‧‧‧步驟
1714‧‧‧步驟
1716‧‧‧步驟
1718‧‧‧步驟
1720‧‧‧步驟
1730a‧‧‧第一使用者器件
1730b‧‧‧器件
1740‧‧‧密碼學伺服器
1802‧‧‧器件
1804‧‧‧處理電路
1806‧‧‧生物識別密鑰產生模組/電路
1808‧‧‧影像處理模組/電路
1810‧‧‧特徵偵測模組/電路
1812‧‧‧映像模組/電路
1814‧‧‧柵格圖案模組/電路
1816‧‧‧比較模組/電路
1818‧‧‧密鑰產生器模組/電路
1820‧‧‧記憶體/儲存器件
1822‧‧‧生物識別描述符階層
1824‧‧‧生物識別鎖資訊
1826‧‧‧使用者識別符
1830‧‧‧生物感測器電路
1834‧‧‧生物識別物
1902‧‧‧密碼學伺服器
1904‧‧‧處理電路
1906‧‧‧加密服務電路/模組
1908‧‧‧映像模組/電路
1910‧‧‧柵格圖案模組/電路
1912‧‧‧特徵偵測模組/電路
1916‧‧‧密鑰關聯模組/電路
1918‧‧‧公用密鑰資料庫
1920‧‧‧記憶體/儲存器件
1922‧‧‧經預產生生物識別描述符階層
1924‧‧‧生物識別鎖資訊
1926‧‧‧使用者識別符
1928‧‧‧網路介面電路
2000‧‧‧方法
2002‧‧‧步驟
2004‧‧‧步驟
2006‧‧‧步驟
現在僅作為實例且參考隨附圖式來描述根據本發明之實施例的裝置或方法之一些實施例。
圖1說明用於產生密碼學密鑰之生物識別描述符階層之實施例的示意性方塊圖。
圖2說明用於使用生物識別資料來產生密碼學密鑰之方法之實施例的邏輯流程圖。
圖3說明用於使用生物識別資料來產生密碼學密鑰之方法300之 另一實施例的邏輯流程圖。
圖4說明通信網路之實施例的示意性方塊圖。
圖5說明用於產生密碼學密鑰之生物識別描述符階層之另一實施例的示意性方塊圖。
圖6說明用於生物識別描述符階層之實施例中之指紋類型的示意性方塊圖。
圖7說明指紋及樣本隆脊之定向Θ之實施例的示意性方塊圖。
圖8說明隆脊映像之實施例的示意性方塊圖。
圖9說明柵格圖案之實施例的示意性方塊圖。
圖10說明用於產生生物識別描述符階層之較低層級之方法之實施例的邏輯流程圖。
圖11說明用於使用指紋資料之密鑰產生之方法之實施例的示意性方塊圖。
圖12說明用於產生密碼學密鑰之聲明處理程序之實施例的邏輯流程圖。
圖13說明用於產生使用者特定階層之方法之實施例的邏輯流程圖。
圖14說明用於使用至少一個指紋來復原密碼學密鑰之方法之實施例的邏輯流程圖。
圖15說明用於使用不同指紋子集來產生密碼學密鑰之方法之實施例的示意性方塊圖。
圖16說明用於加密服務中之密鑰復原之方法之實施例的邏輯流程圖。
圖17說明用於提供加密服務之方法之實施例的邏輯流程圖。
圖18說明經組態以用於使用生物識別資料之密碼學密鑰產生之器件之實施例的示意性方塊圖。
圖19說明經組態以用於提供加密服務之密碼學伺服器之實施例的示意性方塊圖。
圖20說明用於提供加密服務之方法之實施例的邏輯流程圖。
實施方式及圖式僅僅說明各種實施例之原理。因此將瞭解,熟習此項技術者將能夠設計出各種配置,儘管本文中未明確地描述或展示該等配置,但該等配置體現本文中及申請專利範圍中之原理,且屬於本發明之精神及範疇。此外,本文中所敍述之實例主要意欲出於教育目的以輔助理解實施例及概念,且應被認作但不限於此等經特定敍述實例及實施例。此外,本文中敍述某些實施例及特定實例之陳述意欲涵蓋其等效者。
概觀
產生包括多個生物識別描述符層級之階層,其中第一層級處之生物識別描述符係與下一較低層級處之生物識別描述符之子集相關聯。為了產生密碼學密鑰,獲得生物識別資料且比較生物識別資料與階層之第一層級處之生物識別描述符。在第一層級處選擇生物識別描述符中之一者,且基於第一經選擇生物識別描述符來獲得第一密鑰分量。接著比較生物識別資料與階層之第二層級處之生物識別描述符子集,生物識別描述符子集係與第一經選擇生物識別描述符相關聯。選擇第二層級處之子集中之此等生物識別描述符中之一者,且獲得第二密鑰分量。因此,僅需要比較生物識別資料與階層之第二層級處之生物識別描述符之子集。此會減少比較之數目以及處理時間及計算負荷,同時仍提供產生密碼學密鑰之處理程序的隨機性。
選擇生物識別描述符且產生密鑰分量之處理程序針對階層之每一層級而繼續。舉例而言,當階層包括N個層級時,接著對生物識別描述符進行N個選擇,且產生N個密鑰分量。接著使用N個密鑰分量以 產生密碼學密鑰。
使用生物識別資料之例示性密碼學密鑰產生及提取
圖1說明用於產生密碼學密鑰之生物識別描述符階層之實施例的示意性方塊圖。生物識別描述符階層110包括生物識別描述符(BD)100、102、104、106之複數個層級112、114、116、118。階層110具有樹狀結構,其中階層110之較高層級處之生物識別描述符係與階層110之較低層級處之生物識別描述符之子集相關聯。舉例而言,階層110之第一層級112中之BD1係與第二層級114中之生物識別描述符子集BD1-k相關聯,且階層110之第一層級112中之BDj係與第二層級114中之生物識別描述符子集BD1-m相關聯。同一層級處之子集可包括不同數目個生物識別描述符,例如,子集BD1-k中之生物識別描述符102之數目可多於或少於或等於子集BD1-m中之生物識別描述符102之數目。另外,不同層級可包括不同數目個生物識別描述符,諸如第二層級114相較於第一層級112可包括較多生物識別描述符,但相較於第三層級116可包括較少生物識別描述符。在圖1所展示之實例中,階層110包括N個層級,其中N等於2或更大。
階層110中之較低層級處之生物識別描述符相較於較高層級處之生物識別描述符較佳地具有較多細節或複雜度。舉例而言,第二層級114處之生物識別描述符102相較於第一層級112處之生物識別描述符100具有相似程度之複雜度或細節,但具有較多細節,且第三層級生物識別描述符104相較於第二層級生物識別描述符102包括較多細節或複雜度。另外,較低層級處之生物識別描述符相對於較高層級處之生物識別描述符較佳地為隨機的或獨立的。層級112、114、116、118之數目或生物識別描述符100、102、104、106之數目或其組合可經調整以達成所要隨機性或熵值。生物識別描述符100、102、104、106可由實際生物識別資料、合成生物識別資料或其組合之集合建構。
在一實施例中,針對複數個系統使用者預產生階層110。將階層110儲存於中心系統中,且在請求後就下載至使用者器件。接著獲得階層110且將其用於密鑰產生,例如,密鑰提取及復原處理程序兩者,如本文中由複數個使用者所描述。在一實施例中,為了保護使用者生物識別資料之安全性,階層110並不包括匹配於使用者生物識別資料130之全部或實質部分之單一生物識別描述符100、102、104、106。舉例而言,沒有生物識別描述符包括使用者生物識別資料之實質部分,使得特定生物識別物或使用者之身分識別係可辨別的。因此,可不單獨地自生物識別描述符或階層110辨別使用者生物識別資料130。此相較於儲存包括使用者生物識別資料之少量範本(例如,大約小於10個)且接著將生物識別資料130匹配至該等範本的現有方法會增加安全性。在此等現有方法中,在未經授權存取的情況下,可自範本且亦自根據範本所產生之密碼學密鑰辨別使用者之生物識別資料130。
在使用中,首先比較生物識別資料130與第一層級112處之生物識別描述符100,且選擇第一生物識別描述符BDn 100n,如由醒目提示區塊所說明。基於此第一經選擇生物識別描述符BDn 100n,獲得關聯第一密鑰分量A 120及關聯第二層級生物識別描述符子集BD1-m 102兩者。接著比較生物識別資料130與第二層級生物識別描述符BD1-m 102,且選擇第二生物識別描述符BD2 102d,如由醒目提示區塊所說明。再次基於此第二經選擇生物識別描述符BD2 102d,獲得關聯第二層級密鑰分量B 122及關聯第三層級生物識別描述符子集BD1-q 104兩者。如在圖1中進一步所見,接著基於生物識別資料130來選擇第三層級中之生物識別描述符BD1 104c,且獲得第三密鑰分量C 124。此處理程序繼續直至在階層110之第N層級118處選擇生物識別描述符106,且獲得對應第N密鑰分量126。
使用N個密鑰分量或其子集以獲得密碼學密鑰128。舉例而言,可將密碼學雜湊函數應用於N個密鑰分量或應用於其子集以獲得密碼學密鑰128。亦可使用其他方法以使用N個密鑰分量或其子集來獲得密碼學密鑰128。
圖2說明用於使用生物識別資料來產生密碼學密鑰之方法200之實施例的邏輯流程圖。由一器件獲得生物識別資料,例如,自併入於該器件中或耦接至該器件之生物識別感測器或自經由安全連接之另一器件。生物識別資料可包括特定生物識別物之影像、資料或其他資訊。可處理、操控生物識別資料,或可自生物識別資料導出其他資料以用於生物識別描述符100之比較及選擇,如本文中所描述。由器件存取生物識別描述符階層。階層可能已經儲存於器件上,或可向密碼學伺服器請求且自密碼學伺服器下載。
使用生物識別資料來選擇生物識別描述符階層之複數個層級中之每一層級處之一個生物識別描述符(202)。判定對應於每一層級處之每一經選擇生物識別描述符之密鑰分量以獲得複數個密鑰分量(204)。使用複數個密鑰分量或複數個密鑰分量之子集來產生密碼學密鑰(206)。亦可使用密碼學密鑰來產生公用密鑰。因此,公用密鑰亦係至少部分地基於密鑰分量或其子集,如本文中所描述。
將使用者識別符及任何經產生公用密鑰傳輸至密碼學伺服器以儲存為「生物識別鎖」資訊。生物識別鎖資訊包括使用者識別符、用於密鑰產生的生物識別物之識別(諸如指紋、視網膜等等之集合之識別),及用以產生密碼學密鑰的階層之版本識別符,以及所產生之任何公用密鑰或其他組態資訊。
圖3說明用於使用生物識別資料來產生密碼學密鑰之方法300之另一實施例的邏輯流程圖。為了開始密鑰產生之處理程序,由器件獲得使用者識別符。舉例而言,使用者在器件上輸入使用者名稱或密 碼。將指示使用者識別符之請求發送至密碼學伺服器。器件獲得與使用者識別符相關聯之生物識別鎖資訊,其包括用以首先產生密碼學密鑰之生物識別描述符階層之版本。接著請求使用者掃描在生物識別鎖資訊中識別之至少一個生物識別物。在一實施例中,可請求使用者掃描多個生物識別物,諸如多個指紋。另外,可掃描不同生物識別物,諸如指紋及視網膜。器件接著掃描或成像使用者之經請求生物識別物,且獲得生物識別資料。
使用生物識別資料來選擇生物識別描述符階層之第一層級處之第一生物識別描述符(302)。接著基於第一生物識別描述符來獲得第一密鑰分量(304)。使用生物識別資料來獲得生物識別描述符階層之第二層級處之第二生物識別描述符(306)。方法接著比較生物識別資料與階層110之下一較低層級處之生物識別描述符,且選擇第二生物識別描述符(210)。獲得與第二層級處之第二生物識別描述符相關聯之密鑰分量(308)。若階層包括另一較低層級,則處理程序重複直至選擇生物識別描述符且已針對每一層級獲得密鑰分量。接著使用密鑰分量或密鑰分量之子集來產生密碼學密鑰(310)。
可接著將密碼學密鑰用於加密、解密、鑑認、數位憑證,或用於其他目的及功能。
圖4說明可供操作本文中所描述之方法的例示性通信網路400之實施例的示意性方塊圖。例示性通信網路400包括以通信方式耦接之一或多個網路,諸如廣域網路(WAN)402、區域網路(LAN)404、無線區域網路(WLAN)406、無線網路408。LAN 404及WLAN 406可在住家或企業環境中操作。無線網路408可包括(例如)3G或4G蜂巢式網路、GSM網路、WIMAX網路、EDGE網路、GERAN網路等等,或衛星網路或其組合。
諸如器件A 412a、器件B 412b、器件C 412c、器件D 412d及器件 E 412e之器件中之任一者可包括(例如)個人電腦、膝上型電腦、行動電話及智慧型平板電腦、銷售點器件、載具,或可操作以執行本文中所描述之功能的其他類型之器件。較詳細地展示器件A 412a。器件A 12a之各種組件亦可包括於其他例示性器件412b、412c、412d及412e中。例示性器件A 412a包括網路介面416、生物感測器電路418、處理電路420及記憶體/儲存器件422。網路介面416包括用於無線及/或有線網路通信之介面。網路介面416亦可包括在允許存取器件412之資源中之一些或全部之前提供鑑認的鑑認能力。網路介面416亦可包括防火牆功能、閘道器功能及代理伺服器功能。
在一例示性實施例中,生物感測器電路418包括用以捕捉一生物識別物或多個生物識別物之影像的一或多個攝影機或掃描器。生物識別物為提供個體之獨特可量測識別符的生理特性。生物識別物可包括指紋、手掌靜脈、面部辨識、DNA、手掌印、虹膜辨識、視網膜掃描、語音等等。多峰式生物識別感測器可自同一生物識別物獲得多個影像(亦即,一虹膜之多個影像,或同一手指之掃描),或自不同生物識別物獲得資訊(多個手指之掃描,或指紋之掃描,連同語音辨識或面部辨識一起)。多峰式生物識別系統可依序地、同時地、其組合或逐次地獲得多個生物識別物之生物識別資料。生物感測器電路可使用二維或三維成像技術或其他類型之感測器以捕捉一生物識別物或多個生物識別物之生物識別資料。生物感測器電路418亦可包括用於防詐騙之其他感測器,諸如溫度感測器、移動感測器及血壓感測器。
處理電路420包括執行本文中所描述之功能以用於自生物識別資料產生密碼學密鑰的生物識別密鑰產生電路/模組424。記憶體/儲存器件422儲存生物識別描述符階層110及其他組態資訊。
密碼學伺服器410包括用於將加密服務提供至器件412之本端或遠端伺服器。密碼學伺服器410包括用於向器件412提供加密服務之加 密服務電路/模組432。記憶體/儲存器件434儲存生物識別描述符階層110及與加密服務之使用者相關聯之生物識別鎖資訊436。記憶體/儲存器件434可實施於一或多個內部記憶體器件、拆離式記憶體器件、網路附接儲存器件、儲存區域網路或位於一個地理位置或多個地理位置中之其他記憶體器件中。
現在描述生物識別描述符階層及密鑰產生方法之各種實例,其中生物識別物包括至少一個指紋之指紋資料。
用於使用指紋資料之密碼學密鑰產生之例示性生物識別描述符階層
圖5說明用於產生密碼學密鑰528之生物識別描述符階層500之另一實施例的示意性方塊圖,其中生物識別資料包括指紋資料502。第一層級512處之生物識別描述符504包括六個類型之指紋:拱形(arch)、帳形(tented arch)、左旋形(left loop)、右旋形(right loop)、平鬥形(plain whorl)及雙鬥形(double whorl)。
現在參看圖6,其說明指紋之六個類型600的示意性方塊圖。拱形602為識別無任何巨集奇異點之指紋的指紋類型。帳形604為具有一個核心及一個三角形之指紋,其中對稱軸線穿過三角形。左旋形606具有一對核心與三角形,其中三角形在對稱點之右側。右旋形608具有一對核心與三角形,其中三角形在對稱之左側。平鬥形610含有兩個三角形及一個核心。雙鬥形612含有兩個核心及兩個三角形。
返回參看圖5,階層500之第一層級512中的六個類型之指紋505係各自與不同第一層級密鑰分量A 520相關聯。舉例而言,若Typei表示第i類型指紋,則Ki表示關聯第一密鑰分量A 520。
對於第二層級514,生物識別描述符係基於巨集奇異點分佈506。在一實施例中,巨集奇異點包括核心及三角形。舉例而言,巨集奇異點分佈506包括指紋中之核心及三角形之各種組態或配置。第二層級中之巨集奇異點分佈506係各自與不同第二層級密鑰分量522相 關聯。舉例而言,若Mi表示第i個第二層級巨集奇異點,則Ki表示關聯第二密鑰分量B 522。
對於第三層級516,生物識別描述符包括表示複數個點處之隆脊之定向角的隆脊映像508。為了建構隆脊映像,在實際或合成指紋之影像上之複數個點處,判定彼位置處之隆脊之切線與基軸之間的角度。此角度被稱為彼點處之隆脊之定向。隆脊之定向Θ為介於0與179之間的值。圖7中說明隆脊定向之實例。
圖7說明描繪在指紋影像708中之一個點處的樣本隆脊706之隆脊定向Θ 704的例示性基軸700及切線702。
返回參看圖5,基於第二層級514中之核心分佈及三角形分佈來產生(藉助於數學產生器函數或藉由使用實際指紋之資料庫)複數個隆脊映像。舉例而言,在一實施例中,階層500包括(例如)128個第二層級巨集奇異點分佈506。128個第二層級巨集奇異點分佈506中之每一者係與64個第三層級隆脊映像508相關聯。
圖8說明隆脊映像800之實施例的示意性方塊圖。隆脊映像800包括表示複數個點處之隆脊定向的向量802。隆脊映像800說明核心804與三角形806之分佈。
返回參看圖5,第三層級隆脊映像508係各自與不同第三密鑰分量C 524相關聯。舉例而言,若Ridge Mapi表示第i隆脊映像,則Ki表示關聯第三密鑰分量C 524。
階層500之第四層級518包括複數個柵格圖案510。為了產生柵格圖案,使用m*n之柵格以重疊隆脊映像508之區域,其中m及n為系統參數,或特定地針對個別使用者或其群組之集合。在一實施例中,將值1指派至包括最高數目個小花紋的柵格之k個胞元,且將值0指派至剩餘胞元。若存在繫結(兩個胞元具有相似數目個小花紋),則基於胞元在自柵格之中心開始之螺旋形中的次序向外選擇胞元。具有值為1 之k個胞元的m*n網格建立有效柵格圖案。將有效柵格圖案映射至向量。可使用柵格圖案或經映射向量作為第四層級生物識別描述符510。在與第三層級隆脊映像508中之每一者相關聯的子集中產生有效柵格圖案及對應向量。第四層級柵格圖案510係各自與不同第四密鑰分量D 526相關聯。舉例而言,若Grid Patterni表示第i柵格圖案,則Ki表示關聯第四密鑰分量D 526。
選擇胞元以產生柵格圖案510之其他各種方法係可能的。舉例而言,可基於很可能隨著時間推移而被穩固地讀取之數個小花紋來選擇胞元。在另一實例中,可基於隆脊之密度來選擇胞元。在又一實例中,同時地或反覆地使用多種選擇方法以選擇胞元來產生用於第四層級之柵格圖案510。
圖9說明柵格圖案900之實例的示意性方塊圖。圖9說明重疊於指紋影像904上之m*n柵格902。柵格902中之經填充胞元906符合指定準則,諸如小花紋之數目或小花紋之品質或小花紋之穩固性或隆脊之密度或其他類型之準則。將所得柵格圖案映射至二進位值之向量。舉例而言,將圖9中用於6*8柵格之柵格圖案映射至具有48個二進位值之向量,例如,「1」用於經選擇胞元且「0」用於未經選擇胞元。在柵格經組態為5*6柵格且包括30個胞元之另一實例狀況下,30個胞元係由4位元組數表示。4位元組數中之每一者表示一種可能組態。此4位元組數中之一些值可不表示指紋之有效組態。假定30個胞元中僅有1/3之胞元符合指定準則(諸如具有足夠數目個小花紋),且自中心開始之螺旋形的平均長度為15,則僅15個柵格圖案可為有效的。
返回參看圖5,在另一實施例中,可將第五層級添加至階層500。第五層級處之生物識別描述符可指定關於第四層級生物識別描述符510中之小花紋的另外細節。舉例而言,第五層級生物識別描述符可指定隆脊上之孔隙之位置。
一旦產生階層500,就由密碼學伺服器儲存階層500。在數學上描述諸如隆脊映像之一些生物識別描述符。因而足夠的是儲存產生隆脊映像之產生器函數及參數。其他生物識別描述符可僅包括被儲存為整數個適當大小之點或矩陣或向量之座標。較佳地,針對複數個使用者預產生階層,例如,在不使用複數個使用者之生物識別資料的情況下產生或在使用者註冊之前產生生物識別描述符階層500。
在使用中,首先比較指紋資料502與第一層級512處之指紋類型504a-n,且選擇第一指紋類型504c,如由醒目提示區塊所說明。基於此經選擇第一層級指紋類型504c,獲得關聯第一密鑰分量A 520及關聯第二層級巨集奇異點分佈子集506兩者。接著比較指紋資料502與第二層級514中之關聯第二層級巨集奇異點分佈子集506a-n,且選擇第二層級巨集奇異點分佈506b,如由醒目提示區塊所說明。基於此經選擇第二層級巨集奇異點分佈506b,獲得關聯第二密鑰分量B 522及關聯第三層級隆脊映像子集508a-n兩者。
對於第三層級516,自指紋資料產生隆脊映像,且比較隆脊映像與關聯第三層級隆脊映像子集508a-n。選擇第三層級隆脊映像508a,且獲得關聯第三密鑰分量C 526。對於第四層級518,部分地自指紋資料及經選擇第三層級隆脊映像508a產生柵格圖案,如本文中較詳細地所描述。比較柵格圖案與第四層級柵格圖案子集510a-n,第四層級柵格圖案子集510a-n係與經選擇第三層級隆脊映像508a相關聯。選擇第四層級柵格圖案510a,且獲得關聯第四密鑰分量D 526。
使用四個密鑰分量A、B、C、D或該四個密鑰分量之子集以獲得密碼學密鑰528。舉例而言,可將密碼學雜湊函數應用於四個密鑰分量或應用於四個密鑰分量之子集以獲得密碼學密鑰128。亦可使用其他方法以使用密鑰分量或其子集來獲得密碼學密鑰528。
圖10說明用於產生生物識別描述符階層之較低層級之方法之實 施例的邏輯流程圖。可使用各種技術以產生用於生物識別描述符階層之一或多個層級之生物識別描述符。一般而言,生物識別描述符可被合成地產生或基於來自實際生物識別物之資料被產生。使用一或多個函數在數學上建構經合成產生之生物識別描述符。在一實施例中,不自實際生物識別資料提取經合成產生之生物識別描述符。
舉例而言,在一例示性實施例中,合成地產生複數個隆脊映像(1002)。產生器函數產生合成隆脊定向且用以產生合成隆脊映像。下文給出針對基於三角形(d i )及核心(c i )之位置之隆脊映像的產生器函數之實例。此函數為參數型,且產生針對單一核心與三角形設定之若干隆脊映像定向。可使用以下公式來提取隆脊之定向映像:
Figure TWI615012BD00001
函數g針對遍及
Figure TWI615012BD00002
值集合所計算的每一點處之定向給出經校正值。
Figure TWI615012BD00003
其中
Figure TWI615012BD00004
Figure TWI615012BD00005
設定為用以產生隆脊定向之L數之陣列。吾人可使用應用於單一第二層級核心及三角形分佈上之若干
Figure TWI615012BD00006
設定來建立若干隆脊映像1004。作為一替代例,有可能自實際指紋導出隆脊映像,或使用經合成產生之隆脊映像與自實際指紋導出之隆脊映像的組合。圖10中說明隆脊映像1004之實例。
為了產生柵格圖案,使用至少一個隆脊映像來導出密度映像(1006)。舉例而言,藉由將m*n柵格重疊於隆脊映像上而產生密度映像。計數柵格之胞元中的隆脊數目。接著應用灰階以表示胞元中之隆脊數目且獲得密度映像。圖10中說明密度映像1008之實例。密度映像 1008之較暗區段表示較高密度之隆脊,而較亮區段表示較低密度之隆脊。
緊接著,產生輪廓映像(1010)。在一例示性實施例中,將諸如迭代Gabor濾波器(例如,由具有各種刻度及旋度之Gabor濾波器組成的濾波器組)之Gabor或相似類型函數應用於隆脊映像及密度映像以導出輪廓映像。舉例而言,藉由基於隆脊映像及隆脊映像中之複數個點處之密度映像來應用Gabor濾波器,獲得包括經產生隆脊之輪廓映像。除了經產生隆脊以外,在輪廓映像中亦可產生小花紋點。此處理程序會產生包括實際指紋之小花紋特性(諸如小花紋類型、位置及定向)的輪廓映像。圖10中說明輪廓映像1012之實例。
可自輪廓映像提取小花紋,且可產生柵格圖案(1014)。舉例而言,藉由使用小花紋範本及範本濾波器來提取小花紋之細節。有可能自同一隆脊映像獲得複數個不同輪廓映像。舉例而言,藉由將不同密度映像應用於同一隆脊映像且使用Gabor函數,可獲得複數個不同輪廓映像。
可接著使用經產生輪廓映像及其對應經提取小花紋作為生物識別描述符,例如,在階層之第四層級中。舉例而言,將m*n柵格重疊於經產生輪廓映像上,且基於位於胞元中之小花紋之數目或其他準則而自該柵格選擇該等胞元。若指定數目k個小花紋位於柵格之特定胞元內(例如,k=1),則彼胞元等於「1」一否則,該胞元等於「0」。將為「1」及「0」之柵格圖案映射至向量。
可使用此處理程序藉由變化柵格圖案之大小而將額外層級添加至階層。舉例而言,對於第四層級,使用m=2之m*n柵格以獲得柵格圖案。將2×2柵格重疊於隆脊映像上,且計數每一胞元中之小花紋。接著,在下一較低層級上,使用具有增加大小之柵格(例如,4×4柵格)以獲得柵格圖案。接著,將16×16柵格映像用於下一較低層級以產 生柵格圖案。此處理程序針對每一連續層級建立增加之細節。
使用指紋資料之例示性密碼學密鑰產生
圖11說明用於使用指紋資料之密鑰產生之方法1100之實施例的示意性方塊圖。使用指紋資料來選擇生物識別描述符階層之第一層級處之第一層級指紋類型(1102)。獲得基於第一層級指紋類型之第一密鑰分量(1104)。選擇第二層級巨集奇異點分佈(1106)。至少基於此經選擇第二層級巨集奇異點分佈來獲得關聯第二密鑰分量(1108)。使用指紋資料來選擇生物識別描述符階層之第三層級處之第三層級隆脊映像(1110)。獲得第三密鑰分量(1112)。使用指紋資料來選擇生物識別描述符階層之第四層級處之第四層級柵格圖案(1114)。獲得與經選擇第四層級隆脊映像相關聯之第四密鑰分量(1116)。接著使用四個密鑰分量以獲得密碼學密鑰。
圖12說明用於產生密碼學密鑰之聲明處理程序之實施例的邏輯流程圖。在一層級處不存在匹配的情況下,選擇彼層級處之最接近的生物識別描述符(1202)。此會產生若干候選密鑰分量作為替代可能性。較佳地在為正確之可能性方面排序且測試候選密鑰分量(1204)。測試密鑰候選者之最可能組合,且若未成功,則測試密鑰分量之第二最可能組合,等等,直至已考慮密鑰分量之最不可能但仍可能的組合。
在用以測試候選密鑰分量(1204)之另一實施例中,向每一候選密鑰分量指派至經修改多項式點之偏移。藉由組合已知密鑰分量與經修改多項式點而計算多項式點。在計算足夠數目個此等多項式點之後,內插此等多項式點,從而產生候選密碼學密鑰。以引用之方式併入本文中的由P.Bohannon、M.Jakobsson及S.Srikwan公開於Public Key Cryptography:Lecture Notes in Computer Science第1751卷第373頁至第390頁(2000年)中的「Cryptographic approaches to privacy in forensic DNA databases」中描述一種用於自經儲存之經修改多項式點及偏移計算多項式點的方法。
當候選密碼學密鑰為對稱密鑰時,則藉由解密至少一個經儲存密文來測試候選密碼學密鑰以驗證結果。對於不對稱或公用密鑰密碼邏輯方法,藉由解密運用對應公用密鑰所加密之密文或藉由計算對應公用密鑰且比較對應公用密鑰與經儲存公用密鑰來驗證候選密碼學密鑰。若成功地驗證候選密碼學密鑰(1206),則輸出候選密碼學密鑰作為密碼學密鑰(1208)。
在一些狀況下,較大數目(N)個生物識別描述符相對地相似於指紋資料。此問題導致產生同一密碼學密鑰之困難,此係因為每當執行密鑰提取時就可選擇N個相對相似生物識別描述符中之不同者。
為了幫助減輕此問題,可重新排序階層中具有錯誤之層級處之生物識別描述符,以輔助選擇彼層級處之同一生物識別描述符。在一例示性實施例中,獲得相似於指紋資料之N個生物識別描述符之集合(1210)。自此集合選擇最相似於實際指紋資料的生物識別描述符中之一者且將其稱為「匹配」(1212)。重新排序N個生物識別描述符之集合使得「匹配」落於N個生物識別描述符之集合當中的位置N/2中(1214)。儲存經修訂階層且將其運用經更新版本識別符傳輸至密碼學伺服器以供此後使用。在後續密鑰提取期間,選擇位置N/2處之最相似生物識別描述符(1216)。
在仍未找到選擇之狀況下,至少應將位置N/2及N/2+1以及N/2+2處之生物識別描述符選擇為候選者以供測試。在使用此途徑的情況下,最接近的匹配在位置N/2中(在N個最接近的生物識別描述符中間),因此,選擇正確生物識別描述符之機率會增加。該途徑甚至在相似於實際指紋資料之眾多生物識別描述符的情況下仍為穩定的,此係因為最接近的匹配位於其他接近的候選者中間的N/2處。若在此途 徑之後成功地驗證候選密碼學密鑰(1218),則輸出候選密碼學密鑰作為密碼學密鑰(1220)。
在一些狀況下,一層級中沒有生物識別描述符足夠相似於指紋資料以選擇候選密鑰分量。在其他狀況下,不驗證候選密碼學密鑰中之任一者。在諸如此等情形之狀況下,將實際指紋資料插入至生物識別描述符中。舉例而言,當在一層級處選擇生物識別描述符的過程中發生錯誤時,器件產生用於該層級之新生物識別描述符集合,或與較高層級處之生物識別描述符中之一者相關聯的至少一新子集。新生物識別描述符中之至少一者包括與使用者識別符相關聯之實際指紋資料。運用新生物識別描述符集合或子集來修訂用於關聯識別符之階層(1224),且更新階層之版本識別符。將階層之經更新版本及使用者識別符傳輸至密碼學伺服器。此後接著將階層之經更新版本用於關聯使用者識別符。自本端器件清除指紋資料及基於實際指紋資料之實際生物識別描述符以防止未經授權存取。插入實際指紋資料之此途徑確保在每一層級處存在匹配於用於彼使用者之實際指紋資料的生物識別描述符。插入實際指紋資料之此途徑可結合或代替先前所描述之重新排序生物識別描述符的方法而使用。
圖13說明用於產生使用者特定階層之方法1300之實施例的邏輯流程圖。在一實施例中,將用於使用者之指紋資料包括於階層中之生物識別描述符中以產生使用者特定階層。
在此例示性實施例中,首先建立經預產生之通用階層(1302)。通用階層之最初兩個層級係由上文所描述之生物識別描述符組成,例如,指紋之類型及三角形與核心之分佈。為了建立通用階層之第三層級,將複數個隆脊映像與m*n柵格重疊。柵格之胞元較佳地經定大小使得單一小花紋可擬合於一個胞元內,但兩個小花紋將不可能落於任何一個胞元內部。若小花紋位於柵格之特定胞元內,則彼胞元等於 「1」一否則,該胞元等於「0」。接著判定柵格圖案,且將向量映射至柵格圖案。此處理程序會產生複數個通用柵格圖案及對應通用向量。可使用其他準則來選擇胞元以產生柵格圖案,例如,胞元中之小花紋數目、隆脊之密度等等。
接著比較通用柵格圖案與自實際指紋提取之機率資料。舉例而言,基於實際指紋之資料庫來產生小花紋之密度映像,且比較密度映像與通用柵格圖案。基於實際指紋之資料庫來產生小花紋點之機率分佈。接著基於實際指紋資料而向通用柵格圖案指派機率分佈。可捨棄超出機率之臨限值的一些通用柵格圖案。亦可考慮實際指紋之其他特性,且將其他特性用作對產生通用柵格圖案之約束。將通用柵格圖案映射至通用向量。接著將通用柵格圖案及/或通用向量插入於通用階層中作為第四層級中之生物識別描述符。
將通用階層用作開始點來針對使用者產生密碼學密鑰。獲得用於使用者之指紋集合之指紋資料。自指紋集合中之第一指紋之隆脊映像導出小花紋之柵格圖案,且將指紋柵格圖案映射至指紋向量。比較指紋向量與通用階層之第四層級中之複數個通用向量(1304),且判定通用柵格圖案中之一者是否為可能匹配(1306)。
當匹配為可能時,將其為與指紋向量之可能匹配的通用向量指定為稀疏向量。稀疏向量可為確切匹配,或在基於指紋柵格圖案之指紋向量的第一相似性參數內。舉例而言,當相似性參數包括漢明距離(hamming distance)時,稀疏向量則可與指紋向量相隔在第一指定臨限值內之最小漢明距離(例如,min_ham等於或小於2)。可使用其他類型之相似性參數或其他方式以量測指紋資料之間的相似性,且可使用生物識別描述符。
接著根據向量之機率分佈而自通用階層獲得複數個第四層級柵格圖案及對應第四層級向量。比較稀疏向量與複數個第四層級向量, 且針對每一比較而計算相似性參數。基於相似性參數來選擇不同於稀疏向量之第四層級向量。在一例示性實施例中,選擇與稀疏向量相隔大於第二指定臨限值之相似性參數的第四層級向量(或與經選擇第三層級柵格圖案相關聯之第四層級向量之子集)(1308)。舉例而言,相似性參數可包括漢明距離,且選擇最小漢明距離在臨限值內(例如,min_ham等於或大於5)之合成向量。此處理程序確保稀疏向量足夠不同於其他第四層級向量(或與經選擇第三層級柵格圖案相關聯之第四層級向量之子集)以在密鑰提取期間予以穩固地選擇。替代地或除了此處理程序以外,亦僅選擇在彼此之最小漢明距離內的第四層級向量(或與經選擇第三層級柵格圖案相關聯之第四層級向量之子集)。舉例而言,選擇彼此相隔之漢明距離等於或小於5的第四層級向量。因此,經選擇第四層級向量彼此足夠相似使得區別稀疏向量。在一例示性實施例中,稀疏向量相較於其他經選擇第四層級向量(或子集中與經選擇第三層級柵格圖案相關聯之其他第四層級向量)具有指示與生物識別資料之較大相似性的相似性參數。
在選擇預定數目個第四層級向量之後,將稀疏向量插入至經選擇第四層級向量中(1310),且隨機化其次序。接著更新通用階層以包括稀疏向量及經選擇第四層級向量作為第四層級中之生物識別描述符(1312)。可接著如本文中所描述而使用經更新階層來產生密碼學密鑰。雖然此處理程序係關於第四層級處之生物識別描述符予以描述,但可在其他層級處執行相似處理程序,例如,第三層級隆脊映像,或第五層級或更低層級處之任何生物識別描述符。舉例而言,可更新階層之一或多個層級以包括相較於該層級處之其他生物識別描述符具有指示與生物識別資料之較大相似性的相似性參數之生物識別描述符。
向經更新階層指派經更新版本號,且將經更新階層儲存為用於使用者之生物識別鎖資訊之部分。將經更新階層及版本號以及關聯使 用者識別符傳輸至密碼學伺服器。密碼學伺服器接收經更新階層及版本號以及關聯使用者識別符。密碼學伺服器將經更新階層及版本號儲存為與使用者識別符相關聯之生物識別鎖資訊。當運用使用者識別符而自用戶端器件接收針對產生密碼學密鑰之請求時,密碼學伺服器將與使用者識別符相關聯之經更新階層傳輸至用戶端器件。
當匹配為不可能(1306)時,可將自與使用者相關聯之指紋資料導出的向量插入至階層中。相似地,如上文所描述,獲得複數個第四層級柵格圖案或對應第四層級向量(1314)。自與使用者識別符相關聯之實際指紋資料獲得小花紋之柵格圖案。自此柵格圖案導出向量且將向量插入至第四層級柵格圖案中(1316)(例如,在與經選擇第三層級柵格圖案相關聯之第四層級向量之子集內)。因此,更新階層以包括基於與使用者識別符相關聯之生物識別資料的至少一個生物識別描述符。
修訂通用階層之第四層級以包括基於與使用者相關聯之指紋資料的向量(1320)。更新階層之版本識別符。將階層之經更新版本、經更新版本識別符及使用者識別符傳輸至密碼學伺服器。接著由密碼學伺服器儲存階層之經更新版本,且此後將其用於關聯使用者識別符。自本端器件清除指紋資料及基於實際指紋資料之實際向量以防止未經授權存取。
插入實際指紋資料之此途徑確保在階層之第四層級處存在匹配於實際指紋資料之向量。另外,該途徑會幫助加速將階層之第四層級中之生物識別描述符匹配至指紋資料的處理程序。雖然此處理程序係關於第四層級處之生物識別描述符予以描述,但可在其他層級處執行相似處理程序,例如,第三層級隆脊映像,或第五層級或更低層級處之任何生物識別描述符。舉例而言,可更新階層之一或多個層級以包括基於使用者指紋資料之生物識別描述符。另外,將基於使用者指紋 資料之生物識別描述符插入至一層級中的此處理程序可連同本文中所描述之另一處理程序一起被執行。舉例而言,可選擇層級中之其他生物識別描述符以與基於使用者指紋資料之生物識別描述符相隔大於指定臨限值之相似性參數。
較佳地,最初執行密鑰產生,且不針對同一使用者重複密鑰產生。一旦最初自指紋資料產生密碼學密鑰,在一些狀況下,就亦可自密碼學密鑰產生公用密鑰。因此,公用密鑰被產生或係至少部分地基於密鑰分量或其子集。將公用密鑰及生物識別鎖資訊傳輸至密碼學伺服器410。密碼學伺服器410儲存公用密鑰及生物識別鎖資訊,以及具有關聯使用者識別符之生物識別描述符階層之任何經更新版本。
當使用者需要加密或解密訊息或使用密碼學密鑰來執行鑑認時,在密鑰產生之後執行密鑰復原。在一些實施例中,密鑰復原相似於密鑰產生之處理程序。
圖14說明用於使用至少一個指紋來復原密碼學密鑰之方法1400之實施例的邏輯流程圖。獲得生物識別描述符階層及用於至少一個指紋之資料(1402)。在一個實例中,以壓縮格式自密碼學伺服器下載階層。壓縮格式可減少下載時間,但器件接著需要提取階層之資料。替代地,可下載階層之完整描述性版本,從而需要器件進行較少處理,但需要較長下載時間。在另一替代例中,私用資訊擷取(private information retrieval;PIR)系統可互動式地查詢密碼學伺服器以下載階層,以便限制在不影響資訊之安全性的情況下必須傳送之資訊的量。
在獲得階層之後或與獲得階層並行地,獲得用於使用者之至少一個指紋之資料,例如,藉由掃描或成像該指紋。指紋資料包括指紋之至少一個影像或指紋之多個影像,或提供指紋中之巨集奇異點及小花紋之位置的其他資訊。
對於階層之第一層級,自指紋資料偵測指紋特徵以判定指紋之類型(1404)。舉例而言,處理指紋影像以判定任何核心及三角形之數目及位置。接著基於任何經偵測核心及三角形之數目及位置來判定指紋之類型。接著比較經判定指紋類型與階層之第一層級中之六個不同類型。基於該比較,選擇六個指紋類型中之一者,且獲得與經選擇指紋類型相關聯之第一密鑰分量(1406)。
對於階層之第二層級,自指紋資料偵測指紋資料中之三角形及核心之分佈(1408)。舉例而言,自指紋資料獲得核心及三角形之方位及位置。此資訊可包括經偵測核心及三角形之間或基軸之間的距離及角度之向量。接著比較此資訊與第二層級中之三角形及核心分佈子集,該子集係與經選擇指紋類型相關聯。基於此比較,選擇子集中之核心及三角形分佈中之一者,且獲得關聯第二密鑰分量(1410)。
對於階層之第三層級,藉由處理指紋資料以判定複數個點處的隆脊之定向而獲得隆脊映像(1412)。比較隆脊映像與階層中之第三層級隆脊映像子集,該子集係與經選擇核心及三角形分佈相關聯。基於此比較,選擇子集中之第三層級隆脊映像中之一者,且獲得關聯第三密鑰分量「s」(1414)。
對於階層之第四層級,處理指紋資料以判定小花紋之柵格圖案(1416)。首先,將自指紋資料導出之隆脊映像與經選擇第三層級隆脊映像對準。旋轉及平移自指紋資料導出之隆脊映像,直至其隆脊定向與經選擇第三層級隆脊映像對準。接著將各種小花紋定位於經對準隆脊映像上。此等小花紋可包括(例如)隆脊末端、隆脊分叉、島狀隆脊、點狀或極短隆脊、橋狀物、坡尖、環圈、雙分叉及三分叉。接著將預定義m*n柵格重疊至經對準隆脊映像之區域上。
選擇柵格中符合指定準則之胞元以產生柵格圖案(1418)。在一個實例中,計數經重疊柵格之每一胞元中的小花紋之數目,且選擇具有 最大數目個小花紋之K數目個胞元,其中K為參數(例如,K=8)。當兩個胞元具有相同數目個小花紋時,則可基於該等胞元在自指紋區域之中心開始及向外旋轉之螺旋形上的外觀次序來選擇該等胞元。接著比較經選擇胞元之柵格圖案與階層之第四層級中之柵格圖案。在一實施例中,將柵格圖案映射至具有漢明權數(hamming weight)x之向量。接著比較此經映射向量與自第四層級柵格圖案產生之向量。選擇最接近地對應於經映射向量(例如,與經映射向量相隔最小漢明距離)之第四層級向量。經選擇第四層級向量之索引(亦即,經選擇第四層級向量在向量序列中之位置)為「向量號」且將其用以獲得第四密鑰分量(1420)。
接著使用四個密鑰分量或其子集以獲得密碼學密鑰(1422)。在一例示性實施例中,第一密鑰分量提供2個熵位元,第二密鑰分量提供7個熵位元,第三密鑰分量提供6個熵位元,且第四密鑰分量提供10個熵位元。密碼學密鑰因此具有25個熵位元。藉由針對兩個手指執行此處理程序,產生總共50個熵位元。此外,因為階層中沒有一個生物識別描述符為用於所有指紋資料之範本或匹配,所以沒有可能使能夠存取階層及生物識別鎖資訊之未經授權使用者判定哪些生物識別描述符對應於該使用者或哪些生物識別描述符可對應於另一使用者或被合成地產生。因此,相較於儲存對應於使用者指紋資料之單一範本的其他方法,使用者之生物識別資料之安全性會增加。
圖15說明用於使用不同指紋子集來產生密碼學密鑰之方法1500之實施例的示意性方塊圖。在此實施例中,使用多項式內插方法以獲得密碼學密鑰。在獲得定額之多項式點之後,使用諸如以引用之方式併入本文中的由A.Shamir撰寫且公開於Communications of the ACM 22(11)第612頁至第613頁之論文「How to share a secret」中所描述之方法的方法來內插多項式點之組合。此方法係基於用以界定k-1次多 項式之k數目個點。在使用k-1個正整數a 1,…,a k-1的情況下,多項式可被定義為:f(x)=a 0+a 1 x+a 2 x 2+a 3 x 3+…+a k-1 x k-1
可運用任何n個點來內插多項式(例如,設定i=1,...n)以擷取(i,f(i))。在給出k個此等對之任何子集的情況下,可使用內插來獲得多項式之係數。將密碼學密鑰設定為常數項a0。為了判定多項式,由對應於N個指紋之N個密鑰分量界定n個點。舉例而言,將拇指之指紋1502用作指紋資料以產生密鑰分量來判定第一多項式點1504。將食指之指紋j用作指紋資料以產生密鑰分量來判定第二多項式點1508。在獲得定額之多項式點之後,內插多項式點之組合以獲得多項式f(x)之係數。
圖16說明用於密鑰產生之方法1600之實施例的邏輯流程圖。根據一個例示性實施,密碼學伺服器1630向複數個用戶端器件1640提供加密服務。作為加密服務之部分,密碼學伺服器1630獲得經預產生生物識別描述符階層(1602)。經預產生階層由複數個用戶端器件用於產生與使用者識別符相關聯之密碼學密鑰。在一實施例中,在不使用複數個使用者之生物識別資料的情況下產生經預產生生物識別描述符階層1922。一般而言,可基於經隨機地收集或合成地產生的來自實際生物識別物之資料來產生生物識別描述符。
器件1640自使用者接收針對加密及使用者識別符之請求(1604)。當使用者先前尚未向加密服務註冊時,器件1640傳輸請求以運用關聯使用者識別符來建立新註冊使用者(1606)。密碼學伺服器1630將經預產生生物識別描述符階層傳輸至器件1640以用於產生密碼學密鑰(1608)。器件1640自使用者獲得指紋資料,且使用經預產生生物識別描述符階層來嘗試密鑰復原,如本文中所描述。
器件1640可藉由插入階層之一或多個層級處之生物識別描述符 或重新排序一層級中之一或多個生物識別描述符或執行其他修改而更新經預產生生物識別描述符階層以輔助密碼學密鑰產生,如本文中所描述。器件將具有經更新版本號之任何經更新階層及使用者識別符傳輸至密碼學伺服器(1614),且密碼學伺服器1630將具有經更新版本識別符之經更新階層儲存為與使用者識別符相關聯之生物識別鎖資訊(1616)。此後將階層之經更新版本用於與使用者識別符相關聯之加密請求。然而,繼續傳輸經預產生生物識別描述符階層以供新使用者或不具有關聯經更新階層之複數個使用者中之其他者使用。
器件1640繼續使用指紋資料來獲得密碼學密鑰且使用如本文中所描述之密鑰產生方法來獲得經更新階層(1618)。當加密服務為公用密鑰密碼系統時,器件1640使用密碼學密鑰來判定公用密鑰。器件1640將公用密鑰及關聯使用者識別符傳輸至密碼學伺服器1630。密碼學伺服器將公用密鑰儲存為與使用者識別符相關聯之生物識別鎖資訊之部分,其中公用密鑰係至少部分地基於如本文中所描述之密鑰分量或其子集(1622)。器件1640清除密碼學密鑰及指紋資料以免於對資訊之未經授權存取(1624)。
圖17說明用於將加密服務提供至複數個器件1730之方法1700之實施例的邏輯流程圖。第一使用者器件1730a接收針對訊息加密及使用者識別符之請求(1702)。第一器件1730a將針對與使用者相關聯之生物識別鎖資訊的請求(包括使用者識別符)傳輸至密碼學伺服器1740(1704)。密碼學伺服器1740以用於產生密碼學密鑰之生物識別鎖資訊及經預產生生物識別描述符階層或與使用者識別符相關聯之生物識別描述符階層之經更新版本作出回應(1706)。生物識別鎖資訊可包括產生密碼學密鑰所需要之指紋集合之識別符、階層之版本及其他組態資訊。第一器件1730a掃描指紋集合且獲得指紋資料(1708),且繼續(例如)使用如本文中所描述之實施例而運用指紋資料及階層來獲得密碼 學密鑰(1710)。器件1730a接著使用密碼學密鑰來加密訊息(1712)。器件1730a將經加密訊息及使用者識別符傳輸至經請求目的地(1714),諸如器件1730b。器件1730b接收經加密訊息且請求與使用者識別符相關聯之公用密鑰(1716)。密碼學伺服器1740接收請求且以與使用者識別符相關聯之公用密鑰作出回應(1718)。器件1730b現在可操作以使用公用密鑰來解密訊息(1720)。當加密工作階段完成時,器件1730a清除密碼學密鑰及指紋資料。此動作會免於對生物識別資訊及密碼學密鑰之未經授權存取。
較詳細的例示性器件及密碼學伺服器
圖18說明經組態以用於使用生物識別資料之密碼學密鑰產生之器件1802之實施例的示意性方塊圖。器件1802之處理電路1804包括生物識別密鑰產生模組/電路1806。生物識別密鑰產生模組/電路1806之各種模組及功能包括影像處理模組/電路1808、特徵偵測模組/電路1810、映像模組/電路1812、柵格圖案模組/電路1814、比較模組/電路1816及密鑰產生器模組/電路1818。雖然各種模組被展示為分離模組,但可將該等模組之功能中之一或多者組合成另一模組或將功能進一步分段成額外模組。另外,模組可整合至一或多個器件中或可為分離器件。亦可將額外模組或其他組件包括於器件1802中以執行本文中所描述之功能性。
影像處理模組/電路1808自經掃描指紋集合獲得指紋之一或多個影像。影像處理模組/電路1808可將影像與指紋之其他影像對準、裁剪影像、濾波影像,或執行其他處理。在一實施例中,產生包括複數個二維(2D)座標的指紋之表面映像。2D座標包括(例如)笛卡爾(Cartesian)(x,y)座標、球面(r,θ)座標或圓柱(y,r)座標。2D座標可參考指紋影像中所界定之基軸或其他經界定參考平面。表面映像中之每一2D點可包括紋理資料。舉例而言,紋理資料包括諸如RGB值或亮 度值或灰階之色彩資訊。
特徵偵測模組/電路1810處理指紋之表面映像以偵測一或多個特徵。舉例而言,指紋之特徵包括拱形、核心、三角形、鬥形,或其他隆脊圖案以及小花紋點。小花紋點為局域隆脊特性,其包括(例如)隆脊末端、隆脊分叉、島狀隆脊、點狀或極短隆脊、橋狀物、坡尖、環圈、雙分叉及三分叉。亦可偵測表面映像上的其他類型之特徵,諸如孔隙或疤痕。在一實施例中,特徵偵測模組/電路1810存取表示指紋之各種特徵的特徵範本或向量。特徵偵測模組/電路1810比較表面映像之子集與特徵向量。匹配濾波器、相關性濾波器、Gabor濾波器(具有Gabor小波、對數Gabor小波)及傅立葉變換(Fourier transform)可用以執行特徵向量與子集之間的比較。基於該比較,特徵偵測模組/電路1810判定指紋中之特徵之存在、類型及位置。基於經偵測特徵及其相對方位,特徵偵測模組/電路1810可操作以判定指紋類型,諸如拱形、帳形、左旋形、右旋形、平鬥形及雙鬥形。
特徵偵測模組/電路1810輸出用於表面映像之特徵資料。特徵資料包括具有2D座標及特徵類型之特徵清單。在一實施例中,特徵資料進一步包括該等特徵相對於其他特徵之相對置放。舉例而言,其可包括特徵之間的隆脊線之距離或數目。特徵資料可進一步包括特徵之定向角。當特徵包括向量或梯度向量時,特徵資料包括向量座標,諸如向量之定向角及用於向量之值。
映像模組/電路1812可操作以自指紋之表面映像或自合成隆脊映像導出隆脊映像、密度映像及輪廓映像,如本文中所描述。柵格圖案模組可操作以將m*n柵格重疊於表面映像或隆脊映像上方,且判定關於柵格之胞元的指定準則,諸如小花紋或隆脊之數目。柵格圖案模組/電路1814可操作以產生柵格圖案且將柵格圖案映射至向量中,如本文中所描述。比較模組/電路1816可操作以比較指紋資料與階層中之 生物識別描述符且判定最接近的匹配。密鑰產生器模組/電路1818使用本文中所描述之方法來產生基於密鑰分量之密碼學密鑰。
器件1802進一步包括耦接至處理電路1804之記憶體/儲存器件1820。記憶體/儲存器件1820儲存(例如)生物識別描述符階層1822及與使用者識別符1826相關聯之生物識別鎖資訊1824。器件1802包括用於經由通信網路環境進行通信之網路介面電路。器件1802包括經組態以掃描或成像指紋資料或以其他方式自生物識別物1834捕捉指紋資料之生物感測器電路1830,其中該生物識別物包括指紋集合。
圖19說明經組態以用於將加密服務提供至複數個用戶端器件之密碼學伺服器1902之實施例的示意性方塊圖。密碼學伺服器1902包括處理電路1904、網路介面電路1928及記憶體/儲存器件1920。處理電路1904包括將加密服務提供至如本文中所描述之複數個用戶端器件的至少一加密服務電路/模組1906。在一例示性實施例中,密碼學伺服器1902產生儲存於記憶體/儲存器件1920中之經預產生生物識別描述符階層1922及用於該經預產生生物識別描述符階層之一或多個層級之生物識別描述符。在一實施例中,針對複數個使用者預產生經預產生生物識別描述符階層1922,例如,在不使用複數個使用者之生物識別資料的情況下產生生物識別描述符階層1922。一般而言,生物識別描述符可基於來自實際生物識別物之資料被產生或被合成地產生。當在針對使用者之密碼學密鑰產生期間修改或更新經預產生生物識別描述符階層時,將經更新生物識別描述符階層儲存為與使用者識別符相關聯之生物識別鎖資訊之部分。
加密服務電路/模組之各種模組及功能包括映像模組/電路1908、柵格圖案模組/電路1910、特徵偵測模組/電路1912及密鑰關聯模組/電路1916。雖然各種模組被展示為分離模組,但可將該等模組之功能中之一或多者組合成另一模組或將功能進一步分段成額外模組。另外, 模組可整合至一或多個器件中或可為分離器件。亦可將額外模組或其他組件包括於密碼學伺服器1902中以執行本文中所描述之功能性。
映像模組/電路1908可操作以合成地產生複數個隆脊映像或使用實際生物識別資料來產生複數個隆脊映像或合成地產生以用於經預產生生物識別描述符階層1922之一或多個層級。映像模組/電路1908進一步可操作以(例如)使用本文中所描述之方法來產生複數個密度映像及輪廓映像。
特徵偵測模組/電路1912處理輪廓映像以偵測一或多個特徵,諸如小花紋點及隆脊特性。舉例而言,特徵偵測模組/電路1912可操作以自輪廓映像偵測特徵以用於產生如本文中所描述之隆脊映像,諸如小花紋之位置及數目以及隆脊之密度。在一實施例中,特徵偵測模組/電路1912存取表示各種特徵之特徵範本或向量。特徵偵測模組/電路1912比較輪廓映像之子集與特徵向量。匹配濾波器、相關性濾波器、Gabor濾波器(具有Gabor小波、對數Gabor小波)及傅立葉變換可用以執行特徵向量與子集之間的比較。基於該比較,特徵偵測模組/電路1912判定指紋中之特徵之存在、類型、位置或其他指定準則。
特徵偵測模組/電路1912輸出用於輪廓映像之特徵資料。特徵資料包括具有2D座標及特徵類型之特徵清單。在一實施例中,特徵資料進一步包括該等特徵相對於其他特徵之相對置放。舉例而言,其可包括特徵之間的隆脊線之距離或數目。特徵資料可進一步包括特徵之定向角。當特徵包括向量或梯度向量時,特徵資料包括向量座標,諸如向量之定向角及用於向量之值。
柵格圖案模組/電路1910可操作以自輪廓映像及特徵資料產生柵格圖案及向量。舉例而言,柵格圖案模組/電路1910可操作以將m*n柵格重疊於輪廓映像上方,且判定關於柵格之胞元的指定準則,諸如小花紋或隆脊之數目。柵格圖案模組/電路1910可操作以產生柵格圖案 且將柵格圖案映射至向量中,如本文中所描述。密鑰關聯模組/電路1916可操作以將密鑰分量關聯至經預產生生物識別描述符階層1922中之每一生物識別描述符。
密碼學伺服器1902進一步包括耦接至處理電路1904之記憶體/儲存器件1920。記憶體/儲存器件1920儲存(例如)經預產生生物識別描述符階層1922及與使用者識別符1926相關聯之生物識別鎖資訊1924。記憶體/儲存器件1920亦可儲存包括複數個公用密鑰及關聯使用者識別符之公用密鑰資料庫1918。在一實施例中,使用關聯密碼學密鑰來產生複數個公用密鑰中之一些,該等關聯密碼學密鑰係使用如本文中所描述之生物識別資料予以產生。密碼學伺服器1902亦包括可操作地耦接至處理電路1904以用於經由通信網路環境而至及自複數個用戶端器件進行通信之網路介面電路。
圖20說明用於提供加密服務之方法2000之實施例的邏輯流程圖。獲得具有複數個層級之生物識別描述符階層,其中生物識別描述符階層之第一層級處之第一複數個生物識別描述符中之每一者係與不同第一密鑰分量相關聯,且生物識別描述符階層之第二層級處之第二複數個生物識別描述符中之每一者係與不同第二密鑰分量相關聯(2002)。在一例示性實施例中,伺服器將加密服務提供至複數個用戶端器件。作為加密服務之部分,密碼學伺服器獲得意欲由複數個用戶端器件使用以產生與使用者識別符相關聯之密碼學密鑰的生物識別描述符階層。
將生物識別描述符階層傳輸至用戶端器件(2004)。在一實施例中,回應於與用戶端器件之異動之起始而將生物識別描述符階層傳輸至用戶端器件。舉例而言,伺服器自用戶端器件接收請求以向伺服器註冊使用者以用於加密服務,其中請求包括與使用者相關聯之使用者識別符。伺服器回應於此情形而將生物識別描述符階層傳輸至用戶端 器件。在另一實例中,伺服器自用戶端器件接收請求以產生用於與使用者識別符相關聯之註冊使用者之密碼學密鑰,且伺服器回應於此情形而將生物識別描述符階層傳輸至用戶端器件。
在一些而非所有實施例中,伺服器自用戶端器件接收經更新生物識別描述符階層,其中經更新生物識別描述符階層中之至少一個生物識別描述符包括與使用者識別符相關聯之生物識別資料(2006)。在一些而非所有實施例中,伺服器自用戶端器件接收經更新生物識別描述符階層,其中經更新生物識別描述符階層之第二層級中之第二複數個生物識別描述符之子集包括:一稀疏生物識別描述符,其相對於自與使用者識別符相關聯之生物識別資料導出的生物識別描述符具有小於第一指定臨限值之相似性參數;及複數個經選擇生物識別描述符,其與稀疏生物識別描述符相隔大於第二指定臨限值之相似性參數。伺服器自具有關聯使用者識別符之用戶端器件接收任何經更新生物識別描述符階層。伺服器儲存具有關聯使用者識別符之經更新生物識別物階層。
諸圖所說明之組件、步驟、特徵及/或功能中之一或多者可被重新配置及/或組合成單一組件、步驟、特徵或功能,或體現於若干組件、步驟或功能中。在不脫離本文中所揭示之新穎特徵的情況下亦可添加額外元件、組件、步驟及/或功能。諸圖所說明之裝置、器件及/或組件可經組態以執行諸圖所描述之方法、特徵或步驟中之一或多者。本文中所描述之新穎演算法亦可有效率地實施於軟體中及/或嵌入於硬體中。
又,應注意,可將實施例描述為被描繪為流程圖、結構圖或方塊圖之處理程序。儘管流程圖可將操作描述為依序處理程序,但可並行地或同時地執行許多操作。另外,可重新配置操作之次序。處理程序在其操作完成時終止。處理程序可對應於方法、函式、程序、次常 式、子程式等等。當處理程序對應於函式時,處理程序之終止對應於函式返回至呼叫函式或主函式。
此外,儲存媒體可表示用於儲存資料之一或多個器件,包括唯讀記憶體(ROM)、隨機存取記憶體(RAM)、磁碟儲存媒體、光學儲存媒體、快閃記憶體器件,及/或用於儲存資訊之其他機器可讀媒體。術語「機器可讀媒體」包括但不限於攜帶型或固定儲存器件、光學儲存器件、無線通道,以及能夠儲存、含有或攜載指令及/或資料之各種其他媒體。
此外,實施例可藉由硬體、軟體、韌體、中間軟體、微碼或其任何組合予以實施。當以軟體、韌體、中間軟體或微碼予以實施時,用以執行必要任務之程式碼或碼段可儲存於諸如儲存媒體或其他儲存體之機器可讀媒體中。處理器可執行必要任務。碼段可表示程序、函式、子程式、程式、常式、次常式、模組、軟體套件、類別,或指令、資料結構或程式陳述之任何組合。可藉由傳遞及/或接收資訊、資料、引數、參數或記憶體內容將一碼段耦接至另一碼段或硬體電路。可經由包括記憶體共用、訊息傳遞、符記傳遞、網路傳輸等等之任何合適方式來傳遞、轉發或傳輸資訊、引數、參數、資料等等。
可運用經設計以執行本文中所描述之功能的一般用途處理器、數位信號處理器(DSP)、特殊應用積體電路(ASIC)、場可程式化閘陣列(FPGA)或其他可程式化邏輯組件、離散閘或電晶體邏輯、離散硬體組件或其任何組合來實施或執行結合本文中所揭示之實例所描述的各種說明性邏輯區塊、模組、電路、元件及/或組件。一般用途處理器可為微處理器,但在替代例中,處理器可為任何習知處理器、控制器、微控制器或狀態機。處理器亦可被實施為計算組件之組合,例如,DSP與微處理器之組合、數個微處理器、結合DSP核心之一或多個微處理器,或任何其他此類組態。
結合本文中所揭示之實例所描述的方法或演算法可以處理單元、程式設計指令或其他指導的形式直接地體現於硬體、可由處理器執行之軟體模組或此兩者之組合中,且可含於單一器件中或橫越多個器件而分佈。軟體模組可駐留於RAM記憶體、快閃記憶體、ROM記憶體、EPROM記憶體、EEPROM記憶體、暫存器、硬碟、抽取式磁碟、CD-ROM或此項技術中所知的任何其他形式之儲存媒體中。儲存媒體可耦接至處理器,使得處理器可自儲存媒體讀取資訊及將資訊寫入至儲存媒體。在替代例中,儲存媒體可與處理器成一體式。
熟習此項技術者將進一步瞭解,結合本文中所揭示之實施例所描述的各種說明性邏輯區塊、模組、電路及演算法步驟可被實施為電子硬體、電腦軟體或此兩者之組合。為了清楚地說明硬體與軟體之此互換性,上文已大體上在功能性方面描述各種說明性組件、區塊、模組、電路及步驟。此功能性被實施為硬體抑或軟體取決於特定應用及強加於總系統上之設計約束。
本文中所描述之本發明之各種特徵可在不脫離本發明之情況下實施於不同系統中。應注意,前述實施例僅僅為實例,且不應被認作限制本發明。實施例之描述意欲為說明性的,且不限制申請專利範圍之範疇。因而,本發明之教示可容易應用於其他類型之裝置,且許多替代例、修改及變化對於熟習此項技術者而言將顯而易見。
100a‧‧‧第一層級生物識別描述符
100b‧‧‧第一層級生物識別描述符
100n‧‧‧第一層級生物識別描述符
102a‧‧‧第二層級生物識別描述符
102b‧‧‧第二層級生物識別描述符
102c‧‧‧第二層級生物識別描述符
102d‧‧‧第二層級生物識別描述符
102n‧‧‧第二層級生物識別描述符
104a‧‧‧第三層級生物識別描述符
104b‧‧‧第三層級生物識別描述符
104c‧‧‧第三層級生物識別描述符
104d‧‧‧第三層級生物識別描述符
106a‧‧‧第N層級生物識別描述符
106b‧‧‧第N層級生物識別描述符
106c‧‧‧第N層級生物識別描述符
106d‧‧‧第N層級生物識別描述符
106e‧‧‧第N層級生物識別描述符
110‧‧‧生物識別描述符階層
112‧‧‧第一層級
114‧‧‧第二層級
116‧‧‧第三層級
118‧‧‧第N層級
120‧‧‧第一密鑰分量A
122‧‧‧第二密鑰分量B
124‧‧‧第三密鑰分量C
126‧‧‧第N密鑰分量
128‧‧‧密碼學密鑰
130‧‧‧使用者生物識別資料

Claims (34)

  1. 一種用於密碼學密鑰產生之方法,其包含:獲得生物識別資料;使用該生物識別資料來選擇一生物識別描述符階層之一第一層級處之一第一生物識別描述符,其中該第一生物識別描述符與該生物識別描述符階層之一第二層級處之生物識別描述符之一子集相關聯;獲得與該第一生物識別描述符相關聯之一第一密鑰分量;使用該第一生物識別描述符及該生物識別資料自該第二層級處之生物識別描述符之該子集選擇一第二生物識別描述符;獲得與該第二生物識別描述符相關聯之一第二密鑰分量;及使用至少該第一密鑰分量及該第二密鑰分量來產生一密碼學密鑰。
  2. 如請求項1之方法,其中選擇該第二生物識別描述符包含:獲得與該第一生物識別描述符相關聯的該第二層級處之生物識別描述符之該子集;及比較該生物識別資料與生物識別描述符之該子集;及選擇該第二生物識別描述符。
  3. 如請求項1之方法,其進一步包含:獲得該生物識別描述符階層之至少一個額外較低層級;及對於每一額外較低層級,選擇一額外生物識別描述符,且至少基於該額外生物識別描述符來獲得一額外密鑰分量。
  4. 如請求項3之方法,其中使用至少該第一密鑰分量及該第二密鑰分量來產生該密碼學密鑰包含:對於每一額外較低層級,使用至少該第一密鑰分量、該第二 密鑰分量及該額外密鑰分量來產生該密碼學密鑰。
  5. 如請求項1之方法,其中該生物識別資料包括用於一指紋集合中之至少一個指紋之指紋資料。
  6. 如請求項5之方法,其中該生物識別描述符階層之該第一層級包括複數個指紋類型,且該生物識別描述符階層之該第二層級包括複數個巨集奇異點分佈。
  7. 如請求項6之方法,其中該生物識別描述符階層進一步包含包括複數個第三層級隆脊映像之一第三層級。
  8. 如請求項7之方法,其進一步包含:處理該指紋資料以基於該指紋集合中之該至少一個指紋來獲得一隆脊映像;使用基於該指紋集合中之該至少一個指紋之該隆脊映像來選擇一第三層級隆脊映像;及基於該經選擇第三層級隆脊映像來獲得一第三密鑰分量。
  9. 如請求項8之方法,其中處理該指紋資料以基於該指紋集合中之該至少一個指紋來獲得一隆脊映像包含:判定該指紋集合中之該至少一個指紋中之複數個點處的隆脊之一定向;將該複數個點處的該等隆脊之該經判定定向表示為向量以產生該隆脊映像。
  10. 如請求項7之方法,其中該生物識別描述符階層進一步包含包括複數個第四層級柵格圖案之一第四層級。
  11. 如請求項10之方法,其進一步包含:處理該指紋資料以基於該指紋集合中之該至少一個指紋來獲得一柵格圖案;使用基於該指紋集合中之該至少一個指紋之該柵格圖案來選 擇一第四層級柵格圖案;及基於該經選擇第四層級柵格圖案來獲得一第四密鑰分量。
  12. 如請求項11之方法,其中處理該指紋資料以基於該指紋集合中之該至少一個指紋來獲得該柵格圖案包含:將該隆脊映像對準至該經選擇第三層級隆脊映像;將一m*n柵格重疊於該隆脊映像上;選擇該m*n柵格中符合一指定準則之胞元;及基於該等經選擇胞元來產生一柵格圖案。
  13. 一種用於密碼學密鑰產生之器件,其包含:一生物感測器電路,其經組態以獲得生物識別資料;一處理電路,其耦接至該生物感測器電路,其中該處理電路經組態以:使用該生物識別資料來選擇一生物識別描述符階層之一第一層級處之一第一生物識別描述符,其中該第一生物識別描述符與該生物識別描述符階層之一第二層級處之生物識別描述符之一子集相關聯;獲得與該第一生物識別描述符相關聯之一第一密鑰分量;使用該第一生物識別描述符及該生物識別資料自該第二層級處之生物識別描述符之該子集選擇一第二生物識別描述符;獲得與該第二生物識別描述符相關聯之一第二密鑰分量;及使用至少該第一密鑰分量及該第二密鑰分量來產生一密碼學密鑰。
  14. 如請求項13之器件,其中該處理電路經進一步組態以:獲得與該第一生物識別描述符相關聯的該第二層級處之生物 識別描述符之該子集;及比較該生物識別資料與生物識別描述符之該子集;及選擇該第二生物識別描述符。
  15. 如請求項14之器件,其中該處理電路經進一步組態以:獲得該生物識別描述符階層之一額外較低層級;及對於該額外較低層級,選擇該額外較低層級處之一額外生物識別描述符,且至少基於該經選擇額外生物識別描述符來獲得一額外密鑰分量。
  16. 如請求項15之器件,其中該處理電路經進一步組態以:使用至少該第一密鑰分量、該第二密鑰分量及該額外密鑰分量來產生該密碼學密鑰。
  17. 一種非暫態電腦可讀儲存媒體,其上儲存有指令,其在由一或多個處理器執行時致使該一或多個處理器:獲得生物識別資料;使用該生物識別資料來選擇一生物識別描述符階層之一第一層級處之一第一生物識別描述符,其中該第一生物識別描述符與該生物識別描述符階層之一第二層級處之生物識別描述符之一子集相關聯;獲得與該第一生物識別描述符相關聯之一第一密鑰分量;使用該第一生物識別描述符及該生物識別資料自該第二層級處之生物識別描述符之該子集選擇一第二生物識別描述符;獲得與該第二生物識別描述符相關聯之一第二密鑰分量;及使用至少該第一密鑰分量及該第二密鑰分量來產生一密碼學密鑰。
  18. 一種用於密碼學密鑰產生之器件,其包含:用於獲得生物識別資料的構件; 用於使用該生物識別資料來選擇一生物識別描述符階層之一第一層級處之一第一生物識別描述符的構件,其中該第一生物識別描述符與該生物識別描述符階層之一第二層級處之生物識別描述符之一子集相關聯;用於獲得與該第一生物識別描述符相關聯之一第一密鑰分量的構件;用於使用該第一生物識別描述符及該生物識別資料自該第二層級處之生物識別描述符之該子集選擇一第二生物識別描述符的構件;用於獲得與該第二生物識別描述符相關聯之一第二密鑰分量的構件;及用於使用至少該第一密鑰分量及該第二密鑰分量來產生一密碼學密鑰的構件。
  19. 一種用於密碼學密鑰產生之伺服器,其包含:一網路介面,其經組態以與一用戶端器件通信;一處理電路,其可操作地耦接至該網路介面,其中該處理電路經組態以:獲得具有複數個層級之一生物識別描述符階層,其中該生物識別描述符階層之一第一層級處之第一複數個生物識別描述符中之每一者係與一不同第一密鑰分量相關聯,且該生物識別描述符階層之一第二層級處之第二複數個生物識別描述符中之每一者係與一不同第二密鑰分量相關聯,且其中該第一層級處之一第一生物識別描述符與該第二層級處之生物識別描述符之一子集相關聯;及將該生物識別描述符階層傳輸至該用戶端器件,其中該生物識別描述符階層使用至少與該第一生物識別描述符相關聯 之一第一密鑰分量及與使用該第一生物識別描述符自生物識別描述符之該子集選擇之一第二生物識別描述符相關聯之一第二密鑰分量來促進該用戶端器件處之一密碼學密鑰之一產生。
  20. 如請求項19之伺服器,其中該處理電路經進一步組態以:自該用戶端器件接收一公用密鑰,其中該公用密鑰係至少部分地基於該第一密鑰分量及該第二密鑰分量。
  21. 如請求項19之伺服器,其中該第一複數個生物識別描述符及該第二複數個生物識別描述符被合成地預產生。
  22. 如請求項21之伺服器,其中該第一複數個生物識別描述符包括複數個經合成產生之隆脊映像,且其中該第二複數個生物識別描述符包括複數個經合成產生之柵格圖案。
  23. 如請求項21之伺服器,其中該處理電路經進一步組態以:自該用戶端器件接收一經更新生物識別描述符階層,其中該經更新生物識別描述符階層中之至少一個生物識別描述符包括與一使用者識別符相關聯之生物識別資料。
  24. 如請求項21之伺服器,其中該處理電路經進一步組態以:自該用戶端器件接收一經更新生物識別描述符階層,其中該經更新生物識別描述符階層之該第二層級中之該第二複數個生物識別描述符之一子集包括:一稀疏生物識別描述符,其相對於自與一使用者識別符相關聯之生物識別資料導出的一生物識別描述符具有小於一第一指定臨限值之一相似性參數;及複數個經選擇生物識別描述符,其與該稀疏生物識別描述符相隔大於一第二指定臨限值之一相似性參數。
  25. 如請求項19之伺服器,其中該處理電路經組態以回應於與該用 戶端器件之一異動之一起始而將該生物識別描述符階層傳輸至該用戶端器件。
  26. 一種用於密碼學密鑰產生之方法,其包含:獲得具有複數個層級之一生物識別描述符階層,其中該生物識別描述符階層之一第一層級處之第一複數個生物識別描述符中之每一者係與一不同第一密鑰分量相關聯,且該生物識別描述符階層之一第二層級處之第二複數個生物識別描述符中之每一者係與一不同第二密鑰分量相關聯,且其中該第一層級處之一第一生物識別描述符與該第二層級處之生物識別描述符之一子集相關聯;及將該生物識別描述符階層傳輸至一用戶端器件,其中該生物識別描述符階層使用至少與該第一生物識別描述符相關聯之一第一密鑰分量及與使用該第一生物識別描述符自生物識別描述符之該子集選擇之一第二生物識別描述符相關聯之一第二密鑰分量來促進該用戶端器件處之一密碼學密鑰之一產生。
  27. 如請求項26之方法,其進一步包含:自該用戶端器件接收一公用密鑰,其中該公用密鑰係至少部分地基於該第一密鑰分量及該第二密鑰分量。
  28. 如請求項26之方法,其中該第一複數個生物識別描述符及該第二複數個生物識別描述符被合成地預產生。
  29. 如請求項28之方法,其中該第一複數個生物識別描述符包括複數個經合成產生之隆脊映像,且其中該第二複數個生物識別描述符包括複數個經合成產生之柵格圖案。
  30. 如請求項28之方法,其進一步包含:自該用戶端器件接收一經更新生物識別描述符階層,其中該經更新生物識別描述符階層中之至少一個生物識別描述符包括 與一使用者識別符相關聯之生物識別資料。
  31. 如請求項28之方法,其進一步包含:自該用戶端器件接收一經更新生物識別描述符階層,其中該經更新生物識別描述符階層之該第二層級中之該第二複數個生物識別描述符之一子集包括:一稀疏生物識別描述符,其相對於自與一使用者識別符相關聯之生物識別資料導出的一生物識別描述符具有小於一第一指定臨限值之一相似性參數;及複數個經選擇生物識別描述符,其與該稀疏生物識別描述符相隔大於一第二指定臨限值之一相似性參數。
  32. 如請求項31之方法,其中回應於與該用戶端器件之一異動之一起始而將該生物識別描述符階層傳輸至該用戶端器件。
  33. 一種非暫態電腦可讀儲存媒體,其上儲存有指令,其在由一或多個處理器執行時致使該一或多個處理器:獲得具有複數個層級之一生物識別描述符階層,其中該生物識別描述符階層之一第一層級處之第一複數個生物識別描述符中之每一者係與一不同第一密鑰分量相關聯,且該生物識別描述符階層之一第二層級處之第二複數個生物識別描述符中之每一者係與一不同第二密鑰分量相關聯,且其中該第一層級處之一第一生物識別描述符與該第二層級處之生物識別描述符之一子集相關聯;及將該生物識別描述符階層傳輸至一用戶端器件,其中該生物識別描述符階層使用至少與該第一生物識別描述符相關聯之一第一密鑰分量及與使用該第一生物識別描述符自生物識別描述符之該子集選擇之一第二生物識別描述符相關聯之一第二密鑰分量來促進該用戶端器件處之一密碼學密鑰之一產生。
  34. 一種用於密碼學密鑰產生之器件,其包含: 用於獲得具有複數個層級之一生物識別描述符階層的構件,其中該生物識別描述符階層之一第一層級處之第一複數個生物識別描述符中之每一者係與一不同第一密鑰分量相關聯,且該生物識別描述符階層之一第二層級處之第二複數個生物識別描述符中之每一者係與一不同第二密鑰分量相關聯,且其中該第一層級處之一第一生物識別描述符與該第二層級處之生物識別描述符之一子集相關聯;及用於將該生物識別描述符階層傳輸至一用戶端器件的構件,其中該生物識別描述符階層使用至少與該第一生物識別描述符相關聯之一第一密鑰分量及與使用該第一生物識別描述符自生物識別描述符之該子集選擇之一第二生物識別描述符相關聯之一第二密鑰分量來促進該用戶端器件處之一密碼學密鑰之一產生。
TW105109554A 2015-04-06 2016-03-25 用於密碼學密鑰產生之方法、器件及伺服器與其非暫態電腦可讀儲存媒體 TWI615012B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14/679,840 2015-04-06
US14/679,840 US9621342B2 (en) 2015-04-06 2015-04-06 System and method for hierarchical cryptographic key generation using biometric data

Publications (2)

Publication Number Publication Date
TW201703455A TW201703455A (zh) 2017-01-16
TWI615012B true TWI615012B (zh) 2018-02-11

Family

ID=57017832

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105109554A TWI615012B (zh) 2015-04-06 2016-03-25 用於密碼學密鑰產生之方法、器件及伺服器與其非暫態電腦可讀儲存媒體

Country Status (7)

Country Link
US (1) US9621342B2 (zh)
EP (1) EP3281355A2 (zh)
JP (1) JP2018510593A (zh)
KR (1) KR101891288B1 (zh)
CN (1) CN107431617A (zh)
TW (1) TWI615012B (zh)
WO (1) WO2016200465A2 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI700604B (zh) * 2019-10-04 2020-08-01 國立中山大學 虹膜辨識方法與電腦程式產品

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11301670B2 (en) 2012-09-07 2022-04-12 Stone Lock Global, Inc. Methods and apparatus for collision detection in biometric verification
US11594072B1 (en) 2012-09-07 2023-02-28 Stone Lock Global, Inc. Methods and apparatus for access control using biometric verification
US11017212B2 (en) 2012-09-07 2021-05-25 Stone Lock Global, Inc. Methods and apparatus for biometric verification
US11017213B1 (en) 2012-09-07 2021-05-25 Stone Lock Global, Inc. Methods and apparatus for biometric verification
US11017211B1 (en) * 2012-09-07 2021-05-25 Stone Lock Global, Inc. Methods and apparatus for biometric verification
US11275929B2 (en) 2012-09-07 2022-03-15 Stone Lock Global, Inc. Methods and apparatus for privacy protection during biometric verification
US11017214B1 (en) 2012-09-07 2021-05-25 Stone Lock Global, Inc. Methods and apparatus for biometric verification
US11163984B2 (en) 2012-09-07 2021-11-02 Stone Lock Global, Inc. Methods and apparatus for constructing biometrical templates using facial profiles of users
US11163983B2 (en) 2012-09-07 2021-11-02 Stone Lock Global, Inc. Methods and apparatus for aligning sampling points of facial profiles of users
JP6819575B2 (ja) * 2015-03-31 2021-01-27 日本電気株式会社 生体パターン情報処理装置、生体パターン情報処理方法、およびプログラム
WO2016175334A1 (ja) 2015-04-30 2016-11-03 真旭 徳山 端末装置およびコンピュータプログラム
DE102015225778A1 (de) * 2015-12-17 2017-06-22 Deutsche Post Ag Vorrichtung und Verfahren für die personalisierte Bereitstellung eines Schlüssels
US10133857B2 (en) * 2016-05-18 2018-11-20 Bank Of America Corporation Phalangeal authentication device
CN109145829A (zh) * 2018-08-24 2019-01-04 中共中央办公厅电子科技学院 一种基于深度学习和同态加密的安全高效的人脸识别方法
US11042620B2 (en) * 2019-03-05 2021-06-22 King Abdulaziz University Securing electronic documents with fingerprint/biometric data
US11275820B2 (en) * 2019-03-08 2022-03-15 Master Lock Company Llc Locking device biometric access
US11038878B2 (en) * 2019-03-14 2021-06-15 Hector Hoyos Computer system security using a biometric authentication gateway for user service access with a divided and distributed private encryption key
EP3719679B1 (en) * 2019-04-03 2021-06-09 Fondation de L'institut de Recherche Idiap A method for protecting biometric templates, and a system and method for verifying a speaker´s identity
CN110061828B (zh) * 2019-04-04 2021-05-04 西安电子科技大学 无可信中心的分布式数字签名方法
US11070376B2 (en) * 2019-06-26 2021-07-20 Verizon Patent And Licensing Inc. Systems and methods for user-based authentication
CN111130763B (zh) * 2019-11-20 2021-06-22 复旦大学 一种基于集成加密技术的密钥备份与恢复方法
KR20210089486A (ko) 2020-01-08 2021-07-16 삼성전자주식회사 키를 안전하게 관리하기 위한 장치 및 방법
USD976904S1 (en) 2020-12-18 2023-01-31 Stone Lock Global, Inc. Biometric scanner
TWI767682B (zh) * 2021-04-30 2022-06-11 中華電信股份有限公司 Ecqv衍生子憑證產生系統、方法及電腦可讀媒介
JP6946592B1 (ja) * 2021-06-10 2021-10-06 真旭 徳山 認証システム、認証装置、認証方法、及びプログラム
CN118511172A (zh) * 2022-01-28 2024-08-16 维萨国际服务协会 用以在重试检测期间导出丢失数据的多级指纹

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080101663A1 (en) * 2006-10-31 2008-05-01 Motorola, Inc. Methods for gray-level ridge feature extraction and associated print matching
US20140032924A1 (en) * 2012-07-30 2014-01-30 David M. Durham Media encryption based on biometric data
WO2015047385A1 (en) * 2013-09-30 2015-04-02 Intel Corporation Cryptographic key generation based on multiple biometrics

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6035398A (en) * 1997-11-14 2000-03-07 Digitalpersona, Inc. Cryptographic key generation using biometric data
US8380630B2 (en) * 2000-07-06 2013-02-19 David Paul Felsher Information record infrastructure, system and method
US7310734B2 (en) * 2001-02-01 2007-12-18 3M Innovative Properties Company Method and system for securing a computer network and personal identification device used therein for controlling access to network components
US7844827B1 (en) 2005-08-04 2010-11-30 Arcot Systems, Inc. Method of key generation using biometric features
US7962755B2 (en) * 2006-04-28 2011-06-14 Ceelox, Inc. System and method for biometrically secured, transparent encryption and decryption
SG139580A1 (en) * 2006-07-20 2008-02-29 Privylink Pte Ltd Method for generating cryptographic key from biometric data
JP2010533344A (ja) * 2007-07-12 2010-10-21 イノベーション インベストメンツ、エルエルシー 識別認証および保護アクセスシステム、構成要素、および方法
US20100080425A1 (en) 2008-09-29 2010-04-01 Board of regents of the Nevada System of Higher Education, on Behalf of the University of Minutiae-based template synthesis and matching
FR2974924B1 (fr) * 2011-05-06 2013-06-14 Morpho Procedes d'enrolement et de verification biometrique, systemes et dispositifs associes.
FR2988196B1 (fr) * 2012-03-19 2014-03-28 Morpho Procede d'authentification d'un individu porteur d'un objet d'identification
US20160219046A1 (en) * 2012-08-30 2016-07-28 Identity Validation Products, Llc System and method for multi-modal biometric identity verification
US20140211944A1 (en) * 2012-09-24 2014-07-31 Daniel Joseph Lutz System and method of protecting, storing and decrypting keys over a computerized network
US9165130B2 (en) * 2012-11-21 2015-10-20 Ca, Inc. Mapping biometrics to a unique key
US8965066B1 (en) * 2013-09-16 2015-02-24 Eye Verify LLC Biometric template security and key generation
US9832190B2 (en) * 2014-06-29 2017-11-28 Microsoft Technology Licensing, Llc Managing user data for software services

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080101663A1 (en) * 2006-10-31 2008-05-01 Motorola, Inc. Methods for gray-level ridge feature extraction and associated print matching
US20140032924A1 (en) * 2012-07-30 2014-01-30 David M. Durham Media encryption based on biometric data
WO2015047385A1 (en) * 2013-09-30 2015-04-02 Intel Corporation Cryptographic key generation based on multiple biometrics

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI700604B (zh) * 2019-10-04 2020-08-01 國立中山大學 虹膜辨識方法與電腦程式產品

Also Published As

Publication number Publication date
WO2016200465A2 (en) 2016-12-15
US9621342B2 (en) 2017-04-11
TW201703455A (zh) 2017-01-16
KR20170118949A (ko) 2017-10-25
WO2016200465A3 (en) 2017-01-19
KR101891288B1 (ko) 2018-08-24
US20160294555A1 (en) 2016-10-06
EP3281355A2 (en) 2018-02-14
CN107431617A (zh) 2017-12-01
JP2018510593A (ja) 2018-04-12

Similar Documents

Publication Publication Date Title
TWI615012B (zh) 用於密碼學密鑰產生之方法、器件及伺服器與其非暫態電腦可讀儲存媒體
Joseph et al. Retracted article: a multimodal biometric authentication scheme based on feature fusion for improving security in cloud environment
US9165130B2 (en) Mapping biometrics to a unique key
EP3918751B1 (en) System and method for producing a unique stable biometric code for a biometric hash
US11223478B2 (en) Biometric authentication with template privacy and non-interactive re-enrollment
WO2017071493A1 (zh) 身份识别、业务处理以及生物特征信息的处理方法和设备
EP3655874B1 (en) Method and electronic device for authenticating a user
EP3121991A1 (en) System and method of user authentication using digital signatures
US11552944B2 (en) Server, method for controlling server, and terminal device
CN114868358A (zh) 隐私保护生物特征认证
US20230246839A1 (en) System and method for complex confirmation of biometric information without stored biometric data
CN112084476A (zh) 生物识别身份验证方法、客户端、服务器、设备及系统
KR102008101B1 (ko) 함수 암호를 이용한 안전한 바이오 인증 방법
CN114596639B (zh) 一种生物特征识别方法、装置、电子设备及存储介质
CN114996727A (zh) 基于掌纹掌静脉识别的生物特征隐私加密方法及系统
Conti et al. Fingerprint traits and RSA algorithm fusion technique
KR101838432B1 (ko) 바이오매트릭스와 함수암호-내적을 이용한 인증 방법 및 시스템
CN110633559A (zh) 一种基于区块链的金融安全存证平台系统及方法
CN103761509B (zh) 基于加密电路的免对齐指纹匹配方法及计算电路
KR101949579B1 (ko) 바이오매트릭스를 이용하여 키를 생성하는 방법 및 시스템
Hachim et al. Voice-Authentication Model Based on Deep Learning for Cloud Environment
KR20220082061A (ko) 키 생성 장치, 키 이용 장치, 및 키 생성 방법
WO2024201229A2 (en) System and method for complex confirmation of biometric information without stored biometric data
Prabhu et al. MODELING OF OPTIMAL MULTI KEY HOMOMORPHIC ENCRYPTION WITH DEEP LEARNING BIOMETRIC BASED AUTHENTICATION SYSTEM FOR CLOUD COMPUTING
CN117296054A (zh) 多因素认证系统和方法

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees