TWI614890B - Inducing localized strain in vertical nanowire transistors - Google Patents

Inducing localized strain in vertical nanowire transistors Download PDF

Info

Publication number
TWI614890B
TWI614890B TW104138451A TW104138451A TWI614890B TW I614890 B TWI614890 B TW I614890B TW 104138451 A TW104138451 A TW 104138451A TW 104138451 A TW104138451 A TW 104138451A TW I614890 B TWI614890 B TW I614890B
Authority
TW
Taiwan
Prior art keywords
interlayer dielectric
nanowire
layer
vertical
gate electrode
Prior art date
Application number
TW104138451A
Other languages
Chinese (zh)
Other versions
TW201633530A (en
Inventor
尙 皮耶 柯林基
張廣興
卡羅斯H 迪雅茲
Original Assignee
台灣積體電路製造股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US14/599,247 external-priority patent/US9466668B2/en
Application filed by 台灣積體電路製造股份有限公司 filed Critical 台灣積體電路製造股份有限公司
Publication of TW201633530A publication Critical patent/TW201633530A/en
Application granted granted Critical
Publication of TWI614890B publication Critical patent/TWI614890B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • H01L29/1033Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure
    • H01L29/1054Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure with a variation of the composition, e.g. channel with strained layer for increasing the mobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Thin Film Transistor (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

一種裝置包含半導體基板和所述半導體基板上方的垂直奈米導線。所述垂直奈米導線包含底部源極/汲極區域、所述底部源極/汲極區域上方的通道區域,以及所述通道區域上方的頂部源極/汲極區域。頂部層間介電質(ILD)包圍所述頂部源極/汲極區域。所述裝置進一步包含包圍所述底部源極/汲極區域的底部層間介電質、包圍所述通道區域的柵電極以及應變施加層,所述應變施加層具有在所述頂部層間介電質、所述底部層間介電質和所述柵電極的相對側上的垂直部分,並且接觸所述頂部層間介電質、所述底部層間介電質和所述柵電極的相對側壁。 A device includes a semiconductor substrate and a vertical nanowire above the semiconductor substrate. The vertical nanowire includes a bottom source / drain region, a channel region above the bottom source / drain region, and a top source / drain region above the channel region. A top interlayer dielectric (ILD) surrounds the top source / drain region. The device further includes a bottom interlayer dielectric surrounding the bottom source / drain region, a gate electrode surrounding the channel region, and a strain applying layer, the strain applying layer having the top interlayer dielectric, The bottom interlayer dielectric and vertical portions on opposite sides of the gate electrode, and contact the top interlayer dielectric, the bottom interlayer dielectric, and opposite sidewalls of the gate electrode.

Description

在垂直奈米導線電晶體中誘發局部應變 Local strain induced in vertical nanowire transistors

本發明涉及半導體領域技術,特別涉及半導體領域中的垂直電晶體技術。 The present invention relates to the technology of the semiconductor field, and in particular to the technology of vertical transistors in the field of semiconductors.

垂直電晶體在近期得到了研究。在垂直電晶體中,可以是由半導體材料形成的垂直奈米導線的垂直柱在基板上形成,所述基板可以是整體半導體晶片或絕緣體上半導體(SOI)晶片。柵極介電質和柵電極形成為包圍奈米導線,其中奈米導線的被包圍的部分形成相應的垂直電晶體的通道。形成源極和汲極,其中一個在通道下面,且另一個覆蓋在通道上面。垂直電晶體具有柵極全包圍結構,因為柵極可能完全包圍所述通道。通過所述全包圍柵極結構,垂直電晶體的驅動電流較高,並且短通道效應是最小化的。 Vertical transistors have recently been studied. In the vertical transistor, a vertical pillar, which may be a vertical nanowire formed of a semiconductor material, is formed on a substrate, which may be a monolithic semiconductor wafer or a semiconductor-on-insulator (SOI) wafer. The gate dielectric and the gate electrode are formed to surround the nanowire, wherein the enclosed portion of the nanowire forms a corresponding vertical transistor channel. A source and a drain are formed, one of which is under the channel and the other is over the channel. The vertical transistor has a fully enclosed gate structure because the gate may completely surround the channel. With the all-enclosed gate structure, the driving current of the vertical transistor is high, and the short channel effect is minimized.

本揭露的一實施例提供一裝置,其包括:半導體基板;該半導體基板上方的垂直奈米導線,該垂直奈米導線包括:底部源極/汲極區域;該底部源極/汲極區域上方的通道區域;以及該通道區域上方的頂部源極/汲極區域;頂部層間介電質(ILD),其包圍該頂部源極/汲極區域;底部層間介電質,其包圍該底部源極/汲極區域;柵電極,其包圍該通道區域;以及應變施加層,其包括在該頂部層間介電質、該底部層間介電質和該柵電極 的相對側上的垂直部分,並且接觸該頂部層間介電質、該底部層間介電質和該柵電極的相對側壁。 An embodiment of the present disclosure provides a device including: a semiconductor substrate; a vertical nano-wire above the semiconductor substrate, the vertical nano-wire including: a bottom source / drain region; above the bottom source / drain region A channel region; and a top source / drain region above the channel region; a top interlayer dielectric (ILD) surrounding the top source / drain region; a bottom interlayer dielectric surrounding the bottom source / Drain region; a gate electrode surrounding the channel region; and a strain applying layer including the top interlayer dielectric, the bottom interlayer dielectric, and the gate electrode And a vertical portion on the opposite side of and contact the top interlayer dielectric, the bottom interlayer dielectric, and the opposite sidewall of the gate electrode.

在本揭露的一實施例中,該應變施加層形成包圍該頂部層間介電質、該底部層間介電質和該柵電極的完整的環。該裝置進一步包括多個垂直奈米導線,該多個垂直奈米導線包括該垂直奈米導線,其中該完整環包圍該多個垂直奈米導線。該頂部層間介電質、該底部層間介電質和該柵電極中的至少一者沿所有橫向方向中延伸以接觸該應變施加層。該柵電極具有的楊氏模量,其低於該頂部層間介電質和該底部層間介電質以及垂直奈米導線的楊氏模量(Young's modulus)。該裝置進一步包括介於該底部的楊氏模量與該柵電極之間的額外介電質層,其中該額外介電質層具有的楊氏模量,其低於該頂部的楊氏模量、該底部的楊氏模量、該垂直奈米導線和該柵電極的楊氏模量。該裝置還進一步包括介於該頂部的楊氏模量與該柵電極之間的額外介電質層,其中該額外介電質層具有楊氏模量,其低於該頂部的楊氏模量、該底部的楊氏模量、該垂直奈米導線和該柵電極的楊氏模量。此外,該裝置進一步包括頂部硬質層,該頂部硬質層在該頂部的楊氏模量上方並且包圍該頂部源極/汲極區域,其中該應變施加層的該垂直部分進一步與該頂部硬質層的相對側壁接觸。 In an embodiment of the present disclosure, the strain applying layer forms a complete ring surrounding the top interlayer dielectric, the bottom interlayer dielectric, and the gate electrode. The device further includes a plurality of vertical nanowires, the plurality of vertical nanowires including the vertical nanowire, wherein the complete ring surrounds the plurality of vertical nanowires. At least one of the top interlayer dielectric, the bottom interlayer dielectric, and the gate electrode extends in all lateral directions to contact the strain applying layer. The gate electrode has a Young's modulus that is lower than the Young's modulus of the top interlayer dielectric and the bottom interlayer dielectric and the vertical nanowire. The device further includes an additional dielectric layer between the Young's modulus at the bottom and the gate electrode, wherein the additional dielectric layer has a Young's modulus that is lower than the Young's modulus at the top , Young's modulus of the bottom, Young's modulus of the vertical nanowire and the gate electrode. The device further includes an additional dielectric layer between the Young's modulus of the top and the gate electrode, wherein the additional dielectric layer has a Young's modulus that is lower than the Young's modulus of the top , Young's modulus of the bottom, Young's modulus of the vertical nanowire and the gate electrode. In addition, the device further includes a top hard layer above the Young's modulus of the top and surrounding the top source / drain region, wherein the vertical portion of the strain application layer is further in contact with the top hard layer. Opposite sidewall contact.

本揭露的另一實施例提供一裝置,其包括:半導體基板;該半導體基板上方的多個垂直奈米導線,其中該多個垂直奈米導線中每一者包括:底部源極/汲極區域;該底部源極/汲極區域上方的通道區域;以及該通道區域上方的頂部源極/汲極區域;頂部層間介電質,其包圍該多個垂直奈米導線中每一者的該頂部源極/汲極區域;底部層間介電質,其包圍該多個垂直奈米導線中每一者的該底部源極/汲極區域;柵電極,其包圍該多個垂直奈米導線中每一者的該通道區域;以及應變施加層,其包圍該頂部層間介電質、該底部層間介電質和該柵電極的側壁並且與該頂部層間介電質、該底部層間介電質和該柵電極的側壁物理接觸。 Another embodiment of the present disclosure provides a device including: a semiconductor substrate; a plurality of vertical nanowires above the semiconductor substrate, wherein each of the plurality of vertical nanowires includes: a bottom source / drain region A channel region above the bottom source / drain region; and a top source / drain region above the channel region; a top interlayer dielectric surrounding the top of each of the plurality of vertical nanowires A source / drain region; a bottom interlayer dielectric surrounding the bottom source / drain region of each of the plurality of vertical nanowires; a gate electrode surrounding each of the plurality of vertical nanowires One of the channel region; and a strain-applying layer that surrounds the top interlayer dielectric, the bottom interlayer dielectric, and a sidewall of the gate electrode and is in contact with the top interlayer dielectric, the bottom interlayer dielectric, and the The sidewalls of the gate electrode are in physical contact.

本揭露的又一實施例提供一裝置,其包括:半導體基板;該半導體基板上方的垂直半導體奈米導線;包括四個邊緣的層的堆疊,其中該層堆疊包圍該垂直半導體奈米導線並且包括:該半導體基板上方的底部層間介電質層間介電質;該底部層間介電質上方的柵電極;以及該柵電極上方的頂部層間介電質,其中該底部層間介電質、該柵電極和該頂部層間介電質是相連的;以及應變施加層,其從該垂直半導體奈米導線的底部的第一層延伸到該垂直半導體奈米導線的頂部表面的第二層,其中該應變施加層具有高度和小於該高度的厚度,其中該層堆疊的該四個邊緣接觸該應變施加層的側壁。 Yet another embodiment of the present disclosure provides a device including: a semiconductor substrate; a vertical semiconductor nanowire above the semiconductor substrate; a stack of four edge-containing layers, wherein the layer stack surrounds the vertical semiconductor nanowire and includes : A bottom interlayer dielectric above the semiconductor substrate; a gate electrode above the bottom interlayer dielectric; and a top interlayer dielectric above the gate electrode, wherein the bottom interlayer dielectric and the gate electrode And the top interlayer dielectric is connected; and a strain applying layer extending from a first layer on the bottom of the vertical semiconductor nanowire to a second layer on the top surface of the vertical semiconductor nanowire, wherein the strain is applied The layer has a height and a thickness less than the height, wherein the four edges of the layer stack contact the sidewall of the strain-applying layer.

20‧‧‧基板 20‧‧‧ substrate

22‧‧‧源極/汲極區域 22‧‧‧Source / Drain Region

22A‧‧‧底部源極/汲極區域 22A‧‧‧ bottom source / drain region

22B‧‧‧嵌入部分 22B‧‧‧Embedded

23‧‧‧通道區域 23‧‧‧ passage area

25‧‧‧磊晶部分 25‧‧‧Epicenter

26‧‧‧奈米導線 26‧‧‧Nano wire

26A、26B、26C‧‧‧部分 Part 26A, 26B, 26C ‧‧‧

28、60、64、160‧‧‧硬質光阻 28, 60, 64, 160‧‧‧ rigid photoresist

30、40、92、102‧‧‧介電質層 30, 40, 92, 102‧‧‧ dielectric layers

32‧‧‧柵極介電質層 32‧‧‧ Gate dielectric layer

34‧‧‧柵電極層 34‧‧‧Gate electrode layer

36‧‧‧犧牲氧化物 36‧‧‧ sacrificial oxide

38‧‧‧低粘度間隔物 38‧‧‧Low viscosity spacer

42‧‧‧不可滲透層 42‧‧‧Impermeable layer

44‧‧‧氧化物環 44‧‧‧oxide ring

46‧‧‧拉伸應變 46‧‧‧ tensile strain

48‧‧‧源極/汲極區域 48‧‧‧Source / Drain Region

50、150‧‧‧電晶體 50, 150‧‧‧ Transistors

52、56‧‧‧源極/汲極接點插塞 52, 56‧‧‧ source / drain contact plugs

54‧‧‧柵極接點插塞 54‧‧‧Gate contact plug

62‧‧‧開口 62‧‧‧ opening

66‧‧‧間隔物 66‧‧‧ spacer

70、72、80、82、170、172‧‧‧線 Lines 70, 72, 80, 82, 170, 172‧‧‧

84‧‧‧應變施加層 84‧‧‧ strain application layer

86‧‧‧底部介電質層 86‧‧‧Bottom dielectric layer

88‧‧‧頂部介電質層 88‧‧‧ top dielectric layer

90‧‧‧硬質頂層 90‧‧‧ hard top

146‧‧‧壓縮應力 146‧‧‧compressive stress

164‧‧‧半導體罩蓋 164‧‧‧Semiconductor cover

166‧‧‧氧化物區域 166‧‧‧oxide region

D1‧‧‧深度 D1‧‧‧ Depth

H1‧‧‧高度 H1‧‧‧ height

T1‧‧‧厚度 T1‧‧‧thickness

W1、W2‧‧‧水平寬度 W1, W2‧‧‧Horizontal width

由以下詳細說明與附隨圖式得以最佳瞭解本揭露之各方面。注意,根據產業之標準實施方式,各種特徵並非依比例繪示。實際上,為了清楚討論,可任意增大或縮小各種特徵的尺寸。 The aspects of this disclosure are best understood from the following detailed description and accompanying drawings. Note that according to industry standard implementations, various features are not drawn to scale. In fact, for clarity of discussion, the dimensions of various features may be arbitrarily increased or reduced.

圖1A到1Q是根據一些示例性實施例在垂直NMOS電晶體的製造中的中間階段的截面圖;圖2A到2G是根據替代示例性實施例在垂直NMOS電晶體的製造中的中間階段的截面圖;圖3A到3G是根據一些示例性實施例在垂直PMOS電晶體的製造中的中間階段的截面圖;圖4說明用於模擬NMOS電晶體中的應力的垂直NMOS結構;圖5說明垂直NMOS結構中的類比應力;圖6說明用於模擬PMOS電晶體中的應力的垂直PMOS結構;圖7說明垂直PMOS結構中的類比應力;圖8說明垂直電晶體中的應力,所述垂直電晶體包含兩個 矽區域之間的鍺通道;圖9說明圖8中所示的垂直電晶體中的模擬應力;圖10A、10B、10C和10D說明根據一些實施例的垂直奈米導線電晶體的透視圖、俯視圖和截面圖;圖11說明根據一些實施例具有軟柵電極的垂直奈米導線電晶體的截面圖;圖12說明根據一些實施例具有在柵電極下方的軟介電質層的垂直奈米導線電晶體的截面圖;圖13說明根據一些實施例具有在柵電極上方的軟介電質層的垂直奈米導線電晶體的截面圖;圖14說明根據一些實施例的垂直奈米導線電晶體的截面圖,其中顯示了接點插塞;圖15說明根據替代實施例的垂直奈米導線電晶體的俯視圖;以及圖16示意性地說明奈米導線26的多個可用形狀。 1A to 1Q are cross-sectional views of an intermediate stage in the manufacture of a vertical NMOS transistor according to some exemplary embodiments; FIGS. 2A to 2G are cross-sectional views of an intermediate stage in the manufacture of a vertical NMOS transistor according to alternative exemplary embodiments 3A to 3G are cross-sectional views of an intermediate stage in the manufacture of a vertical PMOS transistor according to some exemplary embodiments; FIG. 4 illustrates a vertical NMOS structure for simulating stress in an NMOS transistor; FIG. 5 illustrates a vertical NMOS Analog stress in the structure; Figure 6 illustrates a vertical PMOS structure used to simulate stress in a PMOS transistor; Figure 7 illustrates an analog stress in a vertical PMOS structure; Figure 8 illustrates stress in a vertical transistor, the vertical transistor contains Two Germanium channels between silicon regions; Figure 9 illustrates simulated stress in the vertical transistor shown in Figure 8; Figures 10A, 10B, 10C, and 10D illustrate a perspective, top view of a vertical nanowire transistor according to some embodiments And cross-sectional views; FIG. 11 illustrates a cross-sectional view of a vertical nanowire electrical transistor with a soft gate electrode according to some embodiments; FIG. 12 illustrates a vertical nanowire electrical circuit with a soft dielectric layer under the gate electrode according to some embodiments A cross-sectional view of a crystal; FIG. 13 illustrates a cross-sectional view of a vertical nanowire transistor having a soft dielectric layer over a gate electrode according to some embodiments; FIG. 14 illustrates a cross-section of a vertical nanowire transistor according to some embodiments FIG. 15 shows a contact plug; FIG. 15 illustrates a top view of a vertical nanowire transistor according to an alternative embodiment; and FIG. 16 schematically illustrates a number of available shapes of the nanowire 26.

以下揭示內容提供許多不同的實施例或範例,用於實施本揭露之不同特徵。器件與配置的特定範例之描述如下,以簡化本揭露之揭示內容。當然,這些僅為範例,並非用於限制。例如,以下描述在第二特徵上或上方形成第一特徵,可包含第一與第二特徵直接接觸的之實施例,亦可包含在該第一與第二特徵之間形成其他特徵的實施例,因而該第一與第二特徵並非直接接觸。此外,本揭露可在不同範例中重複器件符號與/或字母。此重複係為了簡化與清楚之目的,而非描述不同實施例與/或所討論架構之間的關係。 The following disclosure provides many different embodiments or examples for implementing different features of the disclosure. Specific examples of devices and configurations are described below to simplify the disclosure of this disclosure. Of course, these are just examples and are not intended to be limiting. For example, the following description forms a first feature on or above a second feature, and may include an embodiment in which the first and second features are in direct contact, or an embodiment in which other features are formed between the first and second features. Therefore, the first and second features are not in direct contact. In addition, the disclosure may repeat device symbols and / or letters in different examples. This repetition is for simplicity and clarity, rather than describing the relationship between the different embodiments and / or the architecture in question.

再者,本揭露可使用空間相對用語,例如「之下」、「低於」、「較低」、「高於」、「較高」等類似用語之簡單說明,以描述圖式 中一器件或特徵與另一器件或特徵的關係。空間相對用語係用以包括除了裝置在圖式中描述的位向之外,還有在使用中或步驟中之不同位向。該裝置或可被重新定位(旋轉90度或是其他位向),並且可相應解釋本揭露案使用的空間對應描述。 Furthermore, this disclosure can use spatially relative terms such as "under", "below", "lower", "above", "higher" and other similar terms to describe diagrams The relationship between one device or feature and another device or feature. The spatial relative terminology is used to include different orientations in use or steps in addition to the orientation of the device as described in the drawings. The device may be repositioned (rotated 90 degrees or in other orientations), and the corresponding description of the space used in this disclosure may be explained accordingly.

圖1A說明用於形成垂直MOS電晶體的初始步驟。提供作為半導體晶片的一部分的基板20。基板20可以是半導體基板,例如,矽基板,然而也可以使用例如鍺化矽、碳化矽等其它材料。基板20也可以是整體半導體基板或絕緣體上矽基板。在一些實施例中,基板20輕微地摻雜有p型雜質。區域22形成於基板20中,例如,通過植入步驟。區域22可以是所得垂直MOS電晶體的源極區域或汲極區域中的一個,並且因此在下文中被稱作第一源極/汲極區域。在說明書通篇中,當區域被稱作“源極/汲極”區域時,所述區域可以是源極區域或汲極區域。第一源極/汲極區域22(也被稱作底部源極/汲極區域)可以重摻雜有n型雜質,例如,舉例來說,磷、砷等等,雜質濃度介於大約1x1019/cm3與大約1x1021/cm3之間。 FIG. 1A illustrates the initial steps for forming a vertical MOS transistor. A substrate 20 is provided as part of a semiconductor wafer. The substrate 20 may be a semiconductor substrate, for example, a silicon substrate, but other materials such as silicon germanium and silicon carbide may also be used. The substrate 20 may also be a monolithic semiconductor substrate or a silicon-on-insulator substrate. In some embodiments, the substrate 20 is slightly doped with a p-type impurity. The region 22 is formed in the substrate 20, for example, by an implantation step. The region 22 may be one of a source region or a drain region of the resulting vertical MOS transistor, and is therefore referred to as a first source / drain region hereinafter. Throughout the description, when a region is referred to as a "source / drain" region, the region may be a source region or a drain region. The first source / drain region 22 (also referred to as the bottom source / drain region) may be heavily doped with n-type impurities, such as, for example, phosphorus, arsenic, etc., with an impurity concentration between approximately 1 × 10 19 / cm3 and about 1x10 21 / cm3.

奈米導線26在基板20上方形成,其中第一源極/汲極區域22可延伸到奈米導線26中。在一些實施例中,奈米導線26具有介於大約10nm與大約40nm之間的水平尺寸W1。然而,應理解在說明書的通篇中敘述的值僅僅是實例,並且可以變為不同值。奈米導線26的高度H1可以介於大約10nm與大約45nm之間。硬質光阻28在奈米導線26上方形成,並且可以包括氮化矽,然而可以使用例如氧化矽或氮氧化物等其它材料。奈米導線26的形成可以包含在植入基板20的表面部分以形成源極/汲極區域22之後,執行磊晶以使半導體層(例如,矽、鍺化矽、III-V半導體或類似物)在基板20上方增長,在磊晶層上方形成硬質光阻層,並且隨後使硬質光阻層和磊晶層圖案化以相應地形成硬質光阻28和奈米導線26。磊晶層可具有均勻結構,所述均勻結構具有例如矽或鍺化矽等均勻材料。替代地,磊晶層可具有包含一個以上層的異構結構。舉例來說,奈米導線26的部分26C可以由鍺或鍺化矽形 成,並且部分26A和26B可以由矽或鍺化矽形成。在部分26A、26B和26C都包含鍺化矽的實施例中,部分26C中的鍺百分比大於部分26A和26B中的鍺百分比。在用於形成奈米導線26的圖案化中,可以執行略微過蝕刻,使得基板20的頂部部分形成奈米導線26的底部部分。相應的奈米導線26因此包含在第一源極/汲極區域22上方的磊晶部分25。磊晶部分25可以是p型區域、內部區域或n型區域,並且可以是在磊晶期間原位摻雜的。 A nanowire 26 is formed above the substrate 20, wherein the first source / drain region 22 may extend into the nanowire 26. In some embodiments, the nanowire 26 has a horizontal dimension W1 between about 10 nm and about 40 nm. It should be understood, however, that the values recited throughout the specification are merely examples and may be changed to different values. The height H1 of the nanowire 26 may be between about 10 nm and about 45 nm. The hard photoresist 28 is formed over the nanowire 26 and may include silicon nitride, however other materials such as silicon oxide or oxynitride may be used. The formation of the nanowire 26 may include, after implanting a surface portion of the substrate 20 to form the source / drain regions 22, performing epitaxy to make a semiconductor layer (for example, silicon, silicon germanium, III-V semiconductor, or the like) ) Is grown over the substrate 20, a hard photoresist layer is formed over the epitaxial layer, and then the hard photoresist layer and the epitaxial layer are patterned to form the hard photoresist 28 and the nanowire 26 accordingly. The epitaxial layer may have a uniform structure having a uniform material such as silicon or silicon germanium. Alternatively, the epitaxial layer may have a heterogeneous structure including more than one layer. For example, the portion 26C of the nanowire 26 may be formed of germanium or silicon germanide And portions 26A and 26B may be formed of silicon or silicon germanium. In embodiments where sections 26A, 26B, and 26C all include silicon germanide, the percentage of germanium in section 26C is greater than the percentage of germanium in sections 26A and 26B. In the patterning for forming the nanowire 26, a slight over-etching may be performed so that the top portion of the substrate 20 forms a bottom portion of the nanowire 26. The corresponding nanowire 26 therefore contains an epitaxial portion 25 above the first source / drain region 22. The epitaxial portion 25 may be a p-type region, an internal region, or an n-type region, and may be doped in-situ during the epitaxy.

參考圖1B,形成介電質層30。在一些實施例中,介電質層30包括例如氧化矽等氧化物。介電質層30的頂部表面高於硬質光阻28。接下來,如圖1C中所示,執行化學機械拋光(CMP)以使介電質層30的頂部表面與硬質光阻28的頂部表面齊平。在隨後的步驟中,如圖1D中所示,在介電質層30上執行回蝕,並且介電質層30是凹陷的。在一些實施例中,介電質層30的頂部表面同源極/汲極區域22與磊晶部分25之間的介面齊平或低於所述介面,然而介電質層30的頂部表面可以高於所述介面或與所述介面處於相同高度。 Referring to FIG. 1B, a dielectric layer 30 is formed. In some embodiments, the dielectric layer 30 includes an oxide such as silicon oxide. The top surface of the dielectric layer 30 is higher than the hard photoresist 28. Next, as shown in FIG. 1C, chemical mechanical polishing (CMP) is performed to make the top surface of the dielectric layer 30 flush with the top surface of the hard photoresist 28. In a subsequent step, as shown in FIG. 1D, etch-back is performed on the dielectric layer 30, and the dielectric layer 30 is recessed. In some embodiments, the interface between the top surface of the dielectric layer 30 and the source / drain region 22 and the epitaxial portion 25 is flush or lower than the interface, however, the top surface of the dielectric layer 30 may be Higher than or at the same height as the interface.

圖1E說明柵極介電質層32的形成。在一些實施例中,柵極介電質層32形成於保形沉積過程中。柵極介電質層32可以包括高k介電質材料,例如,二氧化鉿、氧化鋯或類似物。Hf、Al、La、Lu、Zr、Ti、Ta、Ba、Sr的其它氧化物和/或氮化物和/或類似者也可以用於柵極介電質層32中。如圖1F中所示,隨後執行蝕刻步驟以移除柵極介電質層32的水平部分,而柵極介電質層32的垂直部分留在奈米導線26的側壁上。接下來,柵電極層34在柵極介電質層32上方形成,如另外在圖1F中所示。柵電極層34可以包含Al、Ti、Ta、W、Mo、Ru、Pt、Co、Ni、Pd、Nb或其合金。在其它實施例中,柵電極層34還包含金屬化合物,例如,TiN、TaC或TaN。 FIG. 1E illustrates the formation of a gate dielectric layer 32. In some embodiments, the gate dielectric layer 32 is formed during a conformal deposition process. The gate dielectric layer 32 may include a high-k dielectric material, such as hafnium dioxide, zirconia, or the like. Other oxides and / or nitrides of Hf, Al, La, Lu, Zr, Ti, Ta, Ba, Sr and / or the like may also be used in the gate dielectric layer 32. As shown in FIG. 1F, an etching step is subsequently performed to remove the horizontal portion of the gate dielectric layer 32, while the vertical portion of the gate dielectric layer 32 is left on the sidewall of the nanowire 26. Next, a gate electrode layer 34 is formed over the gate dielectric layer 32, as further shown in FIG. 1F. The gate electrode layer 34 may include Al, Ti, Ta, W, Mo, Ru, Pt, Co, Ni, Pd, Nb, or an alloy thereof. In other embodiments, the gate electrode layer 34 further includes a metal compound, such as TiN, TaC, or TaN.

圖1G說明犧牲氧化物36的形成,所述犧牲氧化物沉積到高於硬質光阻28的頂部表面的水平。隨後執行CMP以使犧牲氧化物36的頂部表面與硬質光阻28的頂部表面齊平。如圖1H中所示,隨後執行回蝕步驟以 移除柵電極層34的垂直部分和柵極介電質層32的曝露部分。柵極介電質層32的移除部分在柵電極層34的水平部分上方。柵極介電質層32的剩餘的垂直部分在下文中被稱作柵極介電質32。 FIG. 1G illustrates the formation of a sacrificial oxide 36 that is deposited to a level above the top surface of the hard photoresist 28. CMP is then performed so that the top surface of the sacrificial oxide 36 is flush with the top surface of the hard photoresist 28. As shown in Figure 1H, an etch-back step is subsequently performed to The vertical portion of the gate electrode layer 34 and the exposed portion of the gate dielectric layer 32 are removed. The removed portion of the gate dielectric layer 32 is above the horizontal portion of the gate electrode layer 34. The remaining vertical portion of the gate dielectric layer 32 is hereinafter referred to as a gate dielectric 32.

接下來,參考圖1I,進一步圖案化柵電極34。柵電極層34的剩餘部分在下文中被稱作柵電極34。柵極介電質32和柵電極34形成所得垂直MOS電晶體的柵極堆疊。在圖1I中的結構的俯視圖中,柵極介電質32和柵電極34包圍奈米導線26。 Next, referring to FIG. 1I, the gate electrode 34 is further patterned. The remaining portion of the gate electrode layer 34 is hereinafter referred to as a gate electrode 34. The gate dielectric 32 and the gate electrode 34 form a gate stack of the resulting vertical MOS transistor. In a plan view of the structure in FIG. 1I, the gate dielectric 32 and the gate electrode 34 surround the nanowire 26.

接下來,如圖1J中所示,低粘度間隔物38形成在奈米導線26的側壁上,並且在柵電極34上方。低粘度間隔物38包圍奈米導線26的頂部部分並且與其接觸。選擇低粘度間隔物38的材料,使得在用於奈米導線26的隨後氧化的溫度下(例如,介於大約400℃與大約1,000℃之間),低粘度間隔物38至少經軟化以具有一定粘度,並且因此應力可以在奈米導線26中更有效地生成。在一些實施例中,低粘度間隔物38包括硼摻雜磷酸基矽酸鹽玻璃(BPSG)、鍺化矽氧化物或類似物,其具有低於氧化矽的熔化和軟化溫度。換句話說,當以逐漸增大的溫度加熱時,低粘度間隔物38與氧化矽相比更早變軟。根據示例性實施例,低粘度間隔物38的厚度T1可以介於大約0.5nm與大約4nm之間。 Next, as shown in FIG. 1J, a low-viscosity spacer 38 is formed on the sidewall of the nanowire 26 and above the gate electrode 34. The low-viscosity spacer 38 surrounds and contacts the top portion of the nanowire 26. The material of the low-viscosity spacer 38 is selected such that the low-viscosity spacer 38 is at least softened at a temperature for the subsequent oxidation of the nanowire 26 (eg, between about 400 ° C and about 1,000 ° C). Viscosity, and therefore stress, can be generated more efficiently in the nanowire 26. In some embodiments, the low viscosity spacer 38 includes boron-doped phosphate silicate glass (BPSG), silicon germanium oxide, or the like, which has a melting and softening temperature below that of silicon oxide. In other words, when heated at a gradually increasing temperature, the low-viscosity spacer 38 becomes softer earlier than silicon oxide. According to an exemplary embodiment, the thickness T1 of the low-viscosity spacer 38 may be between about 0.5 nm and about 4 nm.

圖1K說明介電質層40的形成和CMP步驟。在一些實施例中,介電質層40包括氧化矽(SiO2),然而也可以使用其它介電質材料。介電質層40和低粘度間隔物38隨後被回蝕,如圖1L中所示,並且因此介電質層40和低粘度間隔物38的頂部表面是凹陷的。所得介電質層40和低粘度間隔物38的深度D1可具有大於例如大約2nm的深度D1。因此奈米導線26的頂部部分在介電質層40的頂部表面上方突出。 FIG. 1K illustrates the formation of the dielectric layer 40 and the CMP steps. In some embodiments, the dielectric layer 40 includes silicon oxide (SiO 2 ), but other dielectric materials may be used. The dielectric layer 40 and the low-viscosity spacer 38 are subsequently etched back, as shown in FIG. 1L, and thus the top surfaces of the dielectric layer 40 and the low-viscosity spacer 38 are recessed. The depth D1 of the resulting dielectric layer 40 and the low-viscosity spacer 38 may have a depth D1 greater than, for example, about 2 nm. The top portion of the nanowire 26 therefore protrudes above the top surface of the dielectric layer 40.

根據一些實施例,硬質光阻28可以被移除,並且所得的結構如圖1M中所示。在替代實施例中,硬質光阻28在稍後的步驟中被移除,例如,在圖1O中所示的步驟之後的步驟中,並且在圖1P中所示的步驟之 前。不可滲透層42形成在突出奈米導線26的頂部表面和側壁上。不可滲透層42由氧氣(O2)不可滲透的材料形成。不可滲透層42的厚度也是足夠大的以阻止氧氣的滲透,並且根據示例性實施例所述厚度可以在大約1nm與大約5nm之間。不可滲透層42具有罩蓋的形狀,具有頂部部分和在頂部部分下方並且連接到頂部部分的環形部分。環形部分包圍低粘度間隔物38。 According to some embodiments, the hard photoresist 28 may be removed and the resulting structure is shown in FIG. 1M. In an alternative embodiment, the hard photoresist 28 is removed in a later step, for example, in a step after the step shown in FIG. 10, and before the step shown in FIG. 1P. An impermeable layer 42 is formed on the top surface and the side wall of the protruding nanowire 26. The impermeable layer 42 is formed of a material that is impermeable to oxygen (O 2 ). The thickness of the impermeable layer 42 is also large enough to prevent the penetration of oxygen, and the thickness may be between about 1 nm and about 5 nm according to an exemplary embodiment. The impermeable layer 42 has the shape of a cover with a top portion and a ring portion below the top portion and connected to the top portion. The annular portion surrounds the low-viscosity spacer 38.

圖1M中的結構隨後可經歷局部氧化過程,在此期間圖1M中的結構放置在含氧環境中並且被加熱。含氧環境可以包括例如氧氣(O2)。在局部氧化中,相應的晶片可以被加熱到介於大約450℃與大約1,000℃之間的升高溫度。局部氧化可以在介於大約1分鐘與大約100分鐘之間的一段時間執行。在其它實施例中,在低溫下例如使用化學氧化劑或氧化等離子通過化學氧化執行氧化。在局部氧化期間,不可滲透層42防止氧氣的穿透,並且因此受不可滲透層42保護的奈米導線26的部分並未被氧化。由於局部氧化,氧氣穿透介電質層40的頂部部分,並且因此奈米導線26的中間部分經氧化以形成氧化物環44,所述環包圍並且延伸到奈米導線26中。經氧化的中間部分接近不可滲透層42與介電質層40之間的介面。氧化物環44延伸超過奈米導線26的相應的側壁。所得的奈米導線26因此包含氧化物環44上方的第一部分、氧化物環44下方的第二部分以及由氧化物環44包圍的第三部分。奈米導線26的第一部分和第二部分可具有類似水平寬度W1,而第三部分具有小於水平寬度W1的第二水平寬度W2。氧化物環44可以接觸下方低粘度層38和下方不可滲透層42。 The structure in FIG. 1M may then undergo a local oxidation process during which the structure in FIG. 1M is placed in an oxygen-containing environment and heated. The oxygen-containing environment may include, for example, oxygen (O 2 ). In local oxidation, the corresponding wafer may be heated to an elevated temperature between about 450 ° C and about 1,000 ° C. Local oxidation can be performed over a period of time between about 1 minute and about 100 minutes. In other embodiments, the oxidation is performed at a low temperature by chemical oxidation using, for example, a chemical oxidizing agent or an oxidizing plasma. During the partial oxidation, the impermeable layer 42 prevents the penetration of oxygen, and therefore the portion of the nanowire 26 protected by the impermeable layer 42 is not oxidized. Due to the local oxidation, oxygen penetrates the top portion of the dielectric layer 40 and thus the middle portion of the nanowire 26 is oxidized to form an oxide ring 44 that surrounds and extends into the nanowire 26. The oxidized intermediate portion approaches the interface between the impermeable layer 42 and the dielectric layer 40. The oxide ring 44 extends beyond the corresponding sidewall of the nanowire 26. The resulting nanowire 26 therefore includes a first portion above the oxide ring 44, a second portion below the oxide ring 44, and a third portion surrounded by the oxide ring 44. The first and second portions of the nanowire 26 may have a similar horizontal width W1, while the third portion has a second horizontal width W2 that is smaller than the horizontal width W1. The oxide ring 44 may contact the lower low-viscosity layer 38 and the lower impermeable layer 42.

由於局部氧化,所生成的氧化物環44具有的體積大於奈米導線26的氧化部分的體積。氧化物環44因此在奈米導線26的氧化部分上方在體積上擴展,生成奈米導線26中的拉伸應變(tensile strain)46。在氧化期間,低粘度間隔物38至少略微地軟化,並且因此奈米導線26更容易具有形狀改變和體積改變,並且因此容易生成拉伸應變46。低粘度間隔物38因此充當潤滑劑用於拉伸應變46的生成。根據類比結果,拉伸應變46可以高達大約2G帕 斯卡到大約8G帕斯卡。低粘度間隔物38的形成可以被忽略,前提是應變被希望是在相應的電晶體的上部部分(汲極側)中集中的。 Due to local oxidation, the resulting oxide ring 44 has a volume larger than that of the oxidized portion of the nanowire 26. The oxide ring 44 thus expands in volume over the oxidized portion of the nanowire 26, generating a tensile strain 46 in the nanowire 26. During the oxidation, the low-viscosity spacer 38 softens at least slightly, and therefore the nanowire 26 is more likely to have a change in shape and volume, and therefore it is easier to generate tensile strain 46. The low viscosity spacer 38 thus acts as a lubricant for the generation of tensile strain 46. By analogy, the tensile strain 46 can be as high as about 2GPa Ska to about 8G Pascal. The formation of the low-viscosity spacer 38 can be ignored, provided that the strain is expected to be concentrated in the upper part (drain side) of the corresponding transistor.

接下來,參考圖1O,不可滲透層42的頂部部分(此部分在奈米導線26上方)被移除。如果硬質光阻28(圖1L)尚未被移除,那麼它也可以在這個階段被移除。包圍奈米導線26的頂部部分的不可滲透層42的側壁部分可以是不被移除的。圖1P說明奈米導線26的頂部部分的摻雜以形成源極/汲極區域48,其中摻雜步驟可以通過植入n型雜質實現。在說明書通篇中,源極/汲極區域48也被稱作頂部源極/汲極區域。源極/汲極區域48可以是重摻雜到介於大約1x1019/cm3與大約1x1021/cm3之間的雜質濃度的。由柵電極34包圍的奈米導線26的至少一部分並未在此步驟中摻雜,所述部分形成所得垂直MOS電晶體50的通道。替代地,導線的頂部部分的摻雜可以在應變生成氧化物的生長之前執行。 Next, referring to FIG. 10, the top portion of the impermeable layer 42 (this portion is above the nanowire 26) is removed. If the hard photoresist 28 (FIG. 1L) has not been removed, it can also be removed at this stage. The side wall portion of the impermeable layer 42 surrounding the top portion of the nanowire 26 may not be removed. FIG. 1P illustrates the doping of the top portion of the nanowire 26 to form a source / drain region 48, where the doping step can be achieved by implanting an n-type impurity. Throughout the description, the source / drain region 48 is also referred to as the top source / drain region. The source / drain region 48 may be heavily doped to an impurity concentration between about 1 × 10 19 / cm 3 and about 1 × 10 21 / cm 3. At least a portion of the nanowire 26 surrounded by the gate electrode 34 is not doped in this step, and the portion forms a channel of the resulting vertical MOS transistor 50. Alternatively, the doping of the top portion of the wire may be performed before the growth of the strain generating oxide.

圖1Q說明柵極接點插塞54和源極/汲極接點插塞52和56的形成。柵極接點插塞54可以包括金屬,所述金屬包括W、Ti、Ni、Co或其矽化物,包含TiSi2、NiSi2、WSi2、CoSi2或類似物。柵極接點插塞54電耦合到柵電極34。源極接點插塞52和汲極接點插塞56相應地電耦合到源極區域48和汲極區域22。因此形成MOS電晶體50。MOS電晶體50是NMOS電晶體,並且因此拉伸應變46(圖1N)幫助改進其驅動電流離子。 FIG. 1Q illustrates the formation of the gate contact plug 54 and the source / drain contact plugs 52 and 56. The gate contact plug 54 may include a metal including W, Ti, Ni, Co, or a silicide thereof, including TiSi2, NiSi2, WSi2, CoSi2, or the like. The gate contact plug 54 is electrically coupled to the gate electrode 34. The source contact plug 52 and the drain contact plug 56 are electrically coupled to the source region 48 and the drain region 22, respectively. Thus, a MOS transistor 50 is formed. The MOS transistor 50 is an NMOS transistor, and thus the tensile strain 46 (FIG. 1N) helps improve its drive current ions.

圖2A到2G說明根據替代實施例在NMOS電晶體的形成中的中間階段的截面圖。除非另外規定,否則在這些實施例中的器件的材料和形成方法實質上與相似器件相同,所述器件由與圖1A到1Q中所示的實施例中的相似參考標號表示。因此可在圖1A到1Q中所示的實施例的討論中找到關於圖2A到2G中所示的組件的形成過程和材料的細節。 2A to 2G illustrate cross-sectional views at an intermediate stage in the formation of an NMOS transistor according to an alternative embodiment. Unless otherwise specified, the materials and formation methods of the devices in these embodiments are substantially the same as similar devices, which are denoted by similar reference numerals as in the embodiments shown in FIGS. 1A to 1Q. Details on the formation process and materials of the components shown in FIGS. 2A to 2G can therefore be found in the discussion of the embodiment shown in FIGS. 1A to 1Q.

這些實施例的初始步驟實質上與圖1A到1I中所示的相同。接下來,參考圖2A,低粘度間隔物38形成在奈米導線26的側壁上,並且包圍奈米導線26。低粘度間隔物38可以包括例如BPSG或鍺化矽氧化物。還形 成了不可滲透層42,所述不可滲透層可以例如由氮化矽形成。在這些實施例中,不可滲透層42形成包圍低粘度間隔物38的環。因此在下文中不可滲透層42被稱作不可滲透環42。 The initial steps of these embodiments are substantially the same as those shown in FIGS. 1A to 1I. Next, referring to FIG. 2A, a low-viscosity spacer 38 is formed on a side wall of the nanowire 26 and surrounds the nanowire 26. The low viscosity spacer 38 may include, for example, BPSG or silicon germanium oxide. Return It becomes an impermeable layer 42, which can be formed, for example, from silicon nitride. In these embodiments, the impermeable layer 42 forms a ring surrounding the low viscosity spacer 38. Therefore, the impermeable layer 42 is hereinafter referred to as an impermeable ring 42.

參考圖2B,形成介電質層40,隨後是CMP步驟,其中硬質光阻28和不可滲透層42可充當CMP止擋層。介電質層40隨後凹陷,如圖2C中所示,隨後是局部氧化步驟以生成氧化物區域44,如圖2D中所示。通過氧化奈米導線26的頂部部分(頂部環)執行局部氧化。氧化物環44的頂端基本上與奈米導線26的頂部表面齊平。氧化物環44還延伸超過奈米導線26的相應的側壁。同樣,由於奈米導線26的氧化部分的體積的擴展,拉伸應力可以在奈米導線26中生成,其中低粘度間隔物38使得拉伸應力的生成更加容易。低粘度間隔物38的形成可以被忽略,前提是應變被希望是在相應的電晶體的上部部分(汲極側)中集中的。 Referring to FIG. 2B, a dielectric layer 40 is formed, followed by a CMP step, in which a hard photoresist 28 and an impermeable layer 42 can serve as a CMP stop layer. The dielectric layer 40 is then recessed, as shown in FIG. 2C, followed by a local oxidation step to generate an oxide region 44, as shown in FIG. 2D. Local oxidation is performed by oxidizing the top portion (top ring) of the nanowire 26. The top of the oxide ring 44 is substantially flush with the top surface of the nanowire 26. The oxide ring 44 also extends beyond the corresponding sidewall of the nanowire 26. Also, due to the expansion of the volume of the oxidized portion of the nanowire 26, tensile stress can be generated in the nanowire 26, with the low-viscosity spacer 38 making it easier to generate tensile stress. The formation of the low-viscosity spacer 38 can be ignored, provided that the strain is expected to be concentrated in the upper part (drain side) of the corresponding transistor.

圖2E說明介電質層40的補充。接下來,如圖2F中所示,執行植入以形成源極/汲極區域48。源極/汲極區域48可以是重摻雜到介於大約1x1019/cm3與大約1x1021/cm3之間的n型雜質濃度的。隨後形成接點插塞52、54和56以完成垂直MOS電晶體50的形成,如圖2G中所示。替代地,電晶體的頂部部分的摻雜可以在應變生成氧化物的生長之前實現。 FIG. 2E illustrates the supplementation of the dielectric layer 40. Next, as shown in FIG. 2F, implantation is performed to form a source / drain region 48. The source / drain region 48 may be heavily doped to an n-type impurity concentration between about 1 × 10 19 / cm 3 and about 1 × 10 21 / cm 3. Contact plugs 52, 54, and 56 are then formed to complete the formation of the vertical MOS transistor 50, as shown in FIG. 2G. Alternatively, the doping of the top portion of the transistor may be achieved before the growth of the strain-generating oxide.

圖3A到3G說明根據替代實施例在垂直PMOS電晶體的形成中的中間階段的截面圖。除非另外規定,否則在這些實施例中的器件的材料和形成方法實質上與相似器件相同,所述器件由與圖1A到2G中所示的實施例中的相似參考標號表示。因此可在圖1A到2G中所示的實施例的討論中找到關於圖3A到3G中所示的組件的形成過程和材料的細節。 3A to 3G illustrate cross-sectional views at an intermediate stage in the formation of a vertical PMOS transistor according to an alternative embodiment. Unless otherwise specified, the materials and formation methods of the devices in these embodiments are substantially the same as similar devices, which are denoted by similar reference numerals as in the embodiments shown in FIGS. 1A to 2G. Details on the formation process and materials of the components shown in FIGS. 3A to 3G can therefore be found in the discussion of the embodiment shown in FIGS. 1A to 2G.

這些實施例的初始步驟類似於圖1A到1I中所示的。在這些實施例中,源極/汲極區域22是p型的。接下來,參考圖3A,形成介電質層40,隨後是介電質層40的回蝕。在回蝕之後,奈米導線26的頂部部分高於介電質層40的頂部表面。硬質光阻層60隨後形成在硬質光阻28和介電質層40上 方。根據一些實施例,硬質光阻層60可以包括氮化矽,然而可以使用氧氣難以穿透的不同材料。接下來,如圖3B中所示,例如在CMP步驟中,硬質光阻28和與硬質光阻28重疊的硬質光阻層60的部分被移除。奈米導線26的頂部表面穿過硬質光阻60曝露。類似於圖1A到2G中所示的實施例,對於垂直PMOS電晶體,可以形成低粘度間隔物38以包圍奈米導線26,如圖3B中示意性地說明的。 The initial steps of these embodiments are similar to those shown in FIGS. 1A to 1I. In these embodiments, the source / drain region 22 is p-type. Next, referring to FIG. 3A, a dielectric layer 40 is formed, followed by etch-back of the dielectric layer 40. After the etch-back, the top portion of the nanowire 26 is higher than the top surface of the dielectric layer 40. A hard photoresist layer 60 is then formed on the hard photoresist 28 and the dielectric layer 40 square. According to some embodiments, the hard photoresist layer 60 may include silicon nitride, but different materials that are difficult for oxygen to penetrate may be used. Next, as shown in FIG. 3B, for example, in the CMP step, the hard photoresist 28 and the portion of the hard photoresist layer 60 overlapping the hard photoresist 28 are removed. The top surface of the nanowire 26 is exposed through the hard photoresist 60. Similar to the embodiment shown in FIGS. 1A to 2G, for vertical PMOS transistors, a low viscosity spacer 38 may be formed to surround the nanowire 26 as schematically illustrated in FIG. 3B.

圖3C說明奈米導線26的凹陷,其包含蝕刻奈米導線26。開口62因此形成於硬質光阻60中。剩餘的奈米導線26的頂部表面可以基本上與硬質光阻60的底部表面齊平或低於所述硬質光阻的底部表面。硬質光阻層64隨後形成為硬質光阻60和介電質層40上方的基本上保形層,並且延伸到開口62中。硬質光阻層64具有的厚度小於硬質光阻60的厚度的一半,並且可以小於硬質光阻60的厚度的大約25%。根據一些實施例硬質光阻層64可以包括氮化矽,然而也可以使用氧氣難以穿透的其它材料。 FIG. 3C illustrates a depression of the nanowire 26 including an etched nanowire 26. The opening 62 is thus formed in the hard photoresist 60. The top surface of the remaining nanowire 26 may be substantially flush with or lower than the bottom surface of the hard photoresist 60. The hard photoresist layer 64 is then formed as a substantially conformal layer over the hard photoresist 60 and the dielectric layer 40 and extends into the opening 62. The hard photoresist layer 64 has a thickness less than half the thickness of the hard photoresist 60 and may be less than about 25% of the thickness of the hard photoresist 60. According to some embodiments, the hard photoresist layer 64 may include silicon nitride, but other materials that are difficult for oxygen to penetrate may also be used.

圖3E說明硬質光阻層64的水平部分(圖3D)的移除,其可以例如通過非等向性蝕刻步驟實現。開口62中的硬質光阻層64的剩餘部分形成間隔物66,所述間隔物是硬質光阻60的側壁上的環。然而間隔物環66和硬質光阻60可以由相同材料或不同材料形成。由於它們在不同過程中形成,所以在間隔物環66與硬質光阻60之間可能存在可識別的介面,無論它們是否由相同材料形成。奈米導線26的一部分穿過間隔物環66的中心區域曝露。 FIG. 3E illustrates the removal of the horizontal portion (FIG. 3D) of the hard photoresist layer 64, which can be achieved, for example, by an anisotropic etching step. The remainder of the hard photoresist layer 64 in the opening 62 forms a spacer 66, which is a ring on the side wall of the hard photoresist 60. However, the spacer ring 66 and the hard photoresist 60 may be formed of the same material or different materials. Because they are formed in different processes, there may be an identifiable interface between the spacer ring 66 and the hard photoresist 60, whether or not they are formed of the same material. A portion of the nanowire 26 is exposed through the center region of the spacer ring 66.

接下來,如圖3F中所示,執行局部氧化以氧化奈米導線26的頂部部分。在一些實施例中,選擇所述過程條件使得奈米導線26的全部的頂層得到氧化,並且因此所得氧化物區域44的邊緣部分延伸超過奈米導線26的相應的側壁,並且直接在硬質光阻60下方延伸。氧化物區域44的邊緣部分(所述邊緣部分由硬質光阻60重疊)也可以具有環形狀。由於奈米導線26的氧化部分的體積的擴展,並且進一步由於硬質光阻60抑制體積的擴展的事實,在奈米導線26中生成壓縮應力146。在局部氧化之後,形成例如接點插塞 52、54和56等剩餘的組件以完成PMOS電晶體150的形成,如圖3G中所示。在所得的PMOS電晶體150中,氧化物區域44的剩餘部分也可以形成環,其中源極/汲極接點插塞52延伸穿過氧化物環44以電耦合到源極/汲極區域48。 Next, as shown in FIG. 3F, local oxidation is performed to oxidize the top portion of the nanowire 26. In some embodiments, the process conditions are selected such that all top layers of the nanowire 26 are oxidized, and thus the edge portion of the resulting oxide region 44 extends beyond the corresponding sidewall of the nanowire 26 and directly on the hard photoresist 60 extends below. The edge portion of the oxide region 44, which is overlapped by the hard photoresist 60, may also have a ring shape. Due to the expansion of the volume of the oxidized portion of the nanowire 26 and further due to the fact that the hard photoresist 60 suppresses the expansion of the volume, a compressive stress 146 is generated in the nanowire 26. After local oxidation, for example contact plugs are formed The remaining components such as 52, 54, and 56 complete the formation of the PMOS transistor 150, as shown in FIG. 3G. In the resulting PMOS transistor 150, the remainder of the oxide region 44 may also form a ring, where the source / drain contact plug 52 extends through the oxide ring 44 to be electrically coupled to the source / drain region 48. .

圖4說明用於模擬在NMOS電晶體50(圖1Q和2G)中生成的拉伸應力的結構。在類比結構中,半導體罩蓋164位於奈米導線26上方並且連接到奈米導線26。半導體罩蓋164的外部部分的氧化產生氧化物區域166。氧化物區域166的部分在半導體罩蓋164的邊緣部分下方延伸並且由半導體罩蓋164的邊緣部分重疊。氧化物區域166的形成引起半導體罩蓋164的氧化部分的體積的擴展,並且因此在奈米導線26中生成拉伸應力。在圖5中應力的模擬結果顯示為線70,其中奈米導線26中的拉伸應力作為距離D1(圖4)的函數得到說明,其中距離D1是從半導體罩蓋164的底部測量的。指示拉伸應力的結果可以高達8G帕斯卡,並且當距離D1小於大約0.02μm時應力可仍然較高。這意味著高拉伸應力可以形成於垂直NMOS電晶體的通道中,前提是通道距離半導體罩蓋164的底部的距離小於大約0.02μm。線70通過包圍奈米導線26的低粘度層38(圖6)模擬。如果低粘度層38被硬質氧化矽代替,那麼相應的模擬結果顯示為線72。與線70相比,當距離D1增大時線72比線70下降的更快。這意味著如果並未形成低粘度層38那麼在通道中生成高拉伸應力是更加困難的,除非通道形成為非常接近半導體罩蓋164的底部。 FIG. 4 illustrates a structure for simulating tensile stress generated in the NMOS transistor 50 (FIGS. 1Q and 2G). In the analog structure, the semiconductor cover 164 is positioned above and connected to the nanowire 26. Oxidation of an outer portion of the semiconductor cover 164 generates an oxide region 166. A portion of the oxide region 166 extends below an edge portion of the semiconductor cover 164 and overlaps by an edge portion of the semiconductor cover 164. The formation of the oxide region 166 causes the volume of the oxidized portion of the semiconductor cover 164 to expand, and thus a tensile stress is generated in the nanowire 26. The simulation results of the stress in FIG. 5 are shown as lines 70, where the tensile stress in the nanowire 26 is illustrated as a function of the distance D1 (FIG. 4), where the distance D1 is measured from the bottom of the semiconductor cover 164. The result indicating the tensile stress can be as high as 8G Pascal, and the stress can still be higher when the distance D1 is less than about 0.02 μm. This means that high tensile stress can be formed in the channel of the vertical NMOS transistor, provided that the distance of the channel from the bottom of the semiconductor cover 164 is less than about 0.02 μm. The wire 70 is simulated by a low viscosity layer 38 (FIG. 6) surrounding the nanowire 26. If the low-viscosity layer 38 is replaced by hard silicon oxide, the corresponding simulation results are shown as lines 72. Compared with the line 70, the line 72 decreases faster than the line 70 as the distance D1 increases. This means that it is more difficult to generate high tensile stress in the channel if the low viscosity layer 38 is not formed, unless the channel is formed very close to the bottom of the semiconductor cover 164.

圖6說明用於模擬在垂直PMOS電晶體150(圖3G)中生成的壓縮應力的結構。在類比結構中,半導體罩蓋164位於奈米導線26上方並且連接到奈米導線26。半導體罩蓋164的氧化產生氧化物區域166。形成硬質光阻160以抑制由氧化物區域166的形成引起的體積擴展,並且因此在奈米導線26中生成壓縮應力。在圖7中作為線170顯示應力的模擬結果,其中奈米導線26中的壓縮應力被說明為距離半導體罩蓋164的底部的距離D1(圖6)的函數。指示壓縮應力的結果也可以高達-8G帕斯卡,並且當距離D1小於大約0.02μm時應力可仍然較高。這意味著高拉伸應力可以形成於垂直PMOS電晶體 的通道中,前提是通道距離半導體罩蓋164的底部的距離小於大約0.02μm。此外,線170通過包圍奈米導線26的低粘度層38(圖6)模擬。如果低粘度層38被質氧化矽代替,那麼相應的結果顯示為線172。與線170相比,當距離D1增大時線172比線170下降的更快。這意味著如果並未形成低粘度層38那麼在通道中生成高壓縮應力是更加困難的,除非通道形成為非常接近半導體罩蓋164的底部。 FIG. 6 illustrates a structure for simulating a compressive stress generated in the vertical PMOS transistor 150 (FIG. 3G). In the analog structure, the semiconductor cover 164 is positioned above and connected to the nanowire 26. Oxidation of the semiconductor cover 164 generates an oxide region 166. The hard photoresist 160 is formed to suppress the volume expansion caused by the formation of the oxide region 166, and thus a compressive stress is generated in the nanowire 26. The stress simulation results are shown as a line 170 in FIG. 7, where the compressive stress in the nanowire 26 is illustrated as a function of the distance D1 (FIG. 6) from the bottom of the semiconductor cover 164. The results indicating the compressive stress can also be as high as -8G Pascal, and the stress can still be higher when the distance D1 is less than about 0.02 μm. This means that high tensile stress can be formed in vertical PMOS transistors It is assumed that the distance between the channel and the bottom of the semiconductor cover 164 is less than about 0.02 μm. In addition, the wire 170 is simulated by a low viscosity layer 38 (FIG. 6) surrounding the nanowire 26. If the low-viscosity layer 38 is replaced by a quality silicon oxide, the corresponding result is shown as line 172. Compared with the line 170, the line 172 drops faster than the line 170 as the distance D1 increases. This means that it is more difficult to generate high compressive stress in the channel if the low viscosity layer 38 is not formed, unless the channel is formed very close to the bottom of the semiconductor cover 164.

根據一些實施例,所生成的應力可以集中在通道區域中,方法是採用具有低楊氏模量(Young's modulus)的半導體材料以形成通道區域。舉例來說,如圖1Q、2G和3G中所示,通道區域可以包含基本上由純鍺或鍺化矽形成的部分26C。奈米導線26的上覆部分26A和下伏部分26B可以由其中不包括鍺的矽形成,或者可以由鍺化矽形成,其中鍺的濃度小於在部分26C中的鍺的濃度。 According to some embodiments, the generated stress may be concentrated in the channel region by using a semiconductor material having a low Young's modulus to form the channel region. For example, as shown in FIGS. 1Q, 2G, and 3G, the channel region may include a portion 26C formed substantially of pure germanium or silicon germanium. The overlying portion 26A and the underlying portion 26B of the nanowire 26 may be formed of silicon not including germanium therein, or may be formed of silicon germanium, where the concentration of germanium is less than the concentration of germanium in portion 26C.

圖8說明用於模擬壓縮應力的集中度的結構,其中奈米導線部分26A和26B是矽奈米導線部分,並且部分26C是鍺奈米導線部分。模擬應力在圖9中顯示。通過線80顯示了部分26C中的應力顯著大於鄰近部分26A和26B中的應力。作為比較,如果部分26A、26B和26C都由矽形成,那麼模擬應力將顯示為線82,其顯示了部分26C中的壓縮應力並未大於部分26A和26B中的壓縮應力。 FIG. 8 illustrates a structure for simulating the concentration of compressive stress, in which the nanowire portions 26A and 26B are silicon nanowire portions, and the portion 26C is a germanium nanowire portion. The simulated stress is shown in FIG. 9. It is shown by line 80 that the stress in portion 26C is significantly greater than that in adjacent portions 26A and 26B. For comparison, if portions 26A, 26B, and 26C are all formed of silicon, the simulated stress will be shown as line 82, which shows that the compressive stress in portion 26C is not greater than the compressive stress in portions 26A and 26B.

圖10A、10B、10C和10D說明根據一些示例性實施例的垂直奈米導線電晶體的透視圖、俯視圖和截面圖。除非另外規定,否則在這些實施例中的器件的材料和形成方法實質上與相似器件相同,所述器件由與圖1A到1Q中所示的實施例中的相似參考標號表示。因此可在圖1A到1Q中所示的實施例的討論中找到關於圖10A到15中所示的組件的形成過程和材料的細節。 10A, 10B, 10C, and 10D illustrate a perspective view, a top view, and a cross-sectional view of a vertical nanowire wire transistor according to some exemplary embodiments. Unless otherwise specified, the materials and formation methods of the devices in these embodiments are substantially the same as similar devices, which are denoted by similar reference numerals as in the embodiments shown in FIGS. 1A to 1Q. Details on the formation process and materials of the components shown in FIGS. 10A to 15 can therefore be found in the discussion of the embodiment shown in FIGS. 1A to 1Q.

圖10A說明根據本揭露的一些實施例的垂直奈米導線電晶體50的透視圖。多個奈米導線26形成為接近彼此並且形成奈米導線組。根據 本揭露的一些實施例,奈米導線26佈置為包含一或多個行和一或多個列的陣列。舉例來說,行的數目和列的數目可以在介於1與大約5之間的範圍中。多個奈米導線26也可以佈置在除陣列外的其它圖案中。舉例來說,多個奈米導線26可以佈置為六邊形圖案。例如柵極介電質、柵電極、接點插塞或類似物等垂直奈米導線電晶體50的一些特徵並未在圖10A中顯示,並且可以在截面圖中發現。 FIG. 10A illustrates a perspective view of a vertical nanowire wire transistor 50 according to some embodiments of the present disclosure. A plurality of nanowires 26 are formed close to each other and form a nanowire group. according to In some embodiments of the present disclosure, the nanowires 26 are arranged in an array including one or more rows and one or more columns. For example, the number of rows and the number of columns may be in a range between 1 and about 5. A plurality of nanowires 26 may also be arranged in a pattern other than the array. For example, a plurality of nanowires 26 may be arranged in a hexagonal pattern. Some features of the vertical nanowire transistor 50 such as a gate dielectric, a gate electrode, a contact plug, or the like are not shown in FIG. 10A and can be found in a cross-sectional view.

奈米導線26形成多個垂直奈米導線電晶體,其中奈米導線26中每一者與相應的柵極介電質32和柵電極34(未在圖10A中顯示,參考圖11到14)形成垂直奈米導線電晶體。多個垂直奈米導線電晶體的源極區域(源極區域22和汲極區域48中的一個(圖11到14)經互連以形成共用源極。多個垂直奈米導線電晶體的汲極區域(源極區域22和汲極區域48中的另一個(圖11到14)經互連以形成共用汲極。多個垂直奈米導線電晶體還共用共用柵電極34(圖11到14)。因此,多個垂直奈米導線電晶體組合起來充當單個垂直奈米導線電晶體,其也使用參考標號50表示。 The nanowire 26 forms a plurality of vertical nanowire transistors, each of which is associated with a corresponding gate dielectric 32 and a gate electrode 34 (not shown in FIG. 10A, refer to FIGS. 11 to 14). A vertical nanowire transistor is formed. The source regions (one of the source regions 22 and the drain regions 48 (FIGS. 11 to 14) of the plurality of vertical nanowire transistors are interconnected to form a common source. The drains of the plurality of vertical nanowire transistors The electrode region (the other of the source region 22 and the drain region 48 (Figures 11 to 14) is interconnected to form a common drain. Multiple vertical nanowire transistors also share a common gate electrode 34 (Figures 11 to 14 Therefore, multiple vertical nanowire transistors are combined to act as a single vertical nanowire transistor, which is also denoted by reference numeral 50.

根據一些實施例,應變施加層84形成為包圍奈米導線電晶體50的區域的環。應變施加層84用於將所希望的應變施加到垂直奈米導線電晶體50的選定區域。根據本揭露的一些實施例,應變施加層84將壓縮應變(compressive strain)施加到奈米導線26。舉例來說,當相應的奈米導線電晶體50是PMOS電晶體時,可以施加壓縮應變。根據本揭露的替代實施例,應變施加層84將拉伸應變施加到奈米導線26。舉例來說,當相應的奈米導線電晶體50是NMOS電晶體時,可以施加拉伸應變。 According to some embodiments, the strain applying layer 84 is formed as a ring surrounding a region of the nanowire transistor 50. The strain applying layer 84 is used to apply a desired strain to a selected area of the vertical nanowire transistor 50. According to some embodiments of the present disclosure, the strain applying layer 84 applies a compressive strain to the nanowire 26. For example, when the corresponding nanowire transistor 50 is a PMOS transistor, a compressive strain may be applied. According to an alternative embodiment of the present disclosure, the strain applying layer 84 applies a tensile strain to the nanowire 26. For example, when the corresponding nanowire transistor 50 is an NMOS transistor, a tensile strain may be applied.

圖10B說明垂直奈米導線電晶體50的一些特徵的俯視圖。在一些例示性實施例中,多個奈米導線26被說明為形成陣列。俯視圖可以從頂部源極/汲極區域48(參考圖10C)的水平獲得,其中奈米導線26的所說明的部分是奈米導線26的頂部源極/汲極部分。俯視圖也可以從通道區域23的水平獲得,其中奈米導線26的所說明的部分是奈米導線26的通道區域23。俯視 圖也可以從底部源極/汲極區域的水平獲得,其中奈米導線26的所說明的部分是奈米導線26的底部源極/汲極區域22A。如圖10B中所示,應變施加層84可形成包圍奈米導線26的完整環。在一些示例性實施例中,頂部源極/汲極區域48是汲極區域,並且底部源極/汲極區域22A是源極區域。根據替代實施例,頂部源極/汲極區域48是源極區域,並且底部源極/汲極區域22A是汲極區域。 FIG. 10B illustrates a top view of some features of the vertical nanowire transistor 50. In some exemplary embodiments, multiple nanowires 26 are illustrated as forming an array. The top view can be obtained from the level of the top source / drain region 48 (refer to FIG. 10C), where the illustrated portion of the nanowire 26 is the top source / drain portion of the nanowire 26. The top view can also be obtained from the level of the channel region 23, wherein the illustrated portion of the nanowire 26 is the channel region 23 of the nanowire 26. Looking down The diagram can also be obtained from the level of the bottom source / drain region, where the illustrated portion of the nanowire 26 is the bottom source / drain region 22A of the nanowire 26. As shown in FIG. 10B, the strain applying layer 84 may form a complete loop surrounding the nanowire 26. In some exemplary embodiments, the top source / drain region 48 is a drain region, and the bottom source / drain region 22A is a source region. According to an alternative embodiment, the top source / drain region 48 is a source region, and the bottom source / drain region 22A is a drain region.

應變施加層84可以由介電質材料形成,所述介電質材料可以是氧化物(例如,氧化矽),氮化物(例如,氮化矽)、氮氧化物(例如,氮氧化矽)、碳化物(例如,碳化矽)或其多層。形成過程經調節以在應變施加層84中生成所希望的應變,使得應變施加層84可施加所希望的應變到奈米導線26。 The strain applying layer 84 may be formed of a dielectric material, which may be an oxide (for example, silicon oxide), a nitride (for example, silicon nitride), an oxynitride (for example, silicon oxynitride), Carbide (for example, silicon carbide) or multiple layers thereof. The formation process is adjusted to generate a desired strain in the strain application layer 84 so that the strain application layer 84 can apply the desired strain to the nanowire 26.

為了最大化應變施加作用,應變施加層84形成為接近奈米導線26。在一些示例性實施例中,應變施加層84與奈米導線26中的最近的一個之間的距離D1和D2小於大約15nm。距離D1和D2也可以在大約5nm與大約10nm之間的範圍中。並且,應變施加層84的俯視圖形狀可以是矩形、圓形、橢圓、六邊形或類似物,其中應變施加層84的俯視圖形狀可以取決於奈米導線26的佈置選擇,使得應變施加層84與奈米導線26之間的距離最小化,前提是沒有違反設計規則。 To maximize the strain application effect, the strain application layer 84 is formed close to the nanowire 26. In some exemplary embodiments, the distances D1 and D2 between the strain applying layer 84 and the nearest one of the nanowires 26 are less than about 15 nm. The distances D1 and D2 may also be in a range between about 5 nm and about 10 nm. In addition, the shape of the top view of the strain application layer 84 may be rectangular, circular, elliptical, hexagonal, or the like, wherein the shape of the top view of the strain application layer 84 may depend on the layout selection of the nanowire 26, so that the strain application layer 84 and The distance between the nanowires 26 is minimized, provided that no design rules are violated.

圖10C是垂直奈米導線電晶體50的截面圖,其中截面圖是從含有圖10B中的B-B'的平面中獲得的。如圖10C中所示,奈米導線26中每一者包含底部部分22A,所述底部部分是底部源極/汲極區域22的部分。奈米導線26中每一者包含形成相應的垂直奈米導線電晶體50的通道區域的中間部分23。奈米導線26中每一者進一步包含形成垂直奈米導線電晶體50的頂部源極/汲極區域的頂部部分48。柵極介電質32包圍通道區域23。 FIG. 10C is a cross-sectional view of the vertical nanowire transistor 50, where the cross-sectional view is obtained from a plane containing BB ′ in FIG. 10B. As shown in FIG. 10C, each of the nanowires 26 includes a bottom portion 22A, which is a portion of the bottom source / drain region 22. Each of the nanowires 26 includes a middle portion 23 forming a channel region of a corresponding vertical nanowire transistor 50. Each of the nanowires 26 further includes a top portion 48 forming a top source / drain region of the vertical nanowire transistor 50. A gate dielectric 32 surrounds the channel region 23.

也被稱作底部層間介電質(ILD)的底部介電質層86形成為包圍底部源極/汲極區域22的奈米導線部分22A。柵電極34形成在底部ILD 86 上方並且包圍柵極介電質32中每一者。也被稱作頂部ILD的頂部介電質層88形成為包圍頂部源極/汲極區域48,頂部源極/汲極區域48也可以是奈米導線26的部分。 A bottom dielectric layer 86, also referred to as a bottom interlayer dielectric (ILD), is formed as a nanowire portion 22A surrounding the bottom source / drain region 22. Gate electrode 34 is formed at the bottom ILD 86 Above and surrounds each of the gate dielectrics 32. A top dielectric layer 88, also referred to as a top ILD, is formed to surround the top source / drain region 48. The top source / drain region 48 may also be part of the nanowire 26.

另外,硬質頂層90可以形成在頂部ILD 88上方。根據本揭露的一些實施例,硬質頂層90是傳導層,並且可以由摻雜矽(例如,在奈米導線的頂部上磊晶地生長摻雜多晶矽或摻雜矽)或矽化物形成。硬質頂層90可以電氣方式間耦合個體頂部源極/汲極區域48以形成共用頂部源極/汲極區域。 In addition, a hard top layer 90 may be formed over the top ILD 88. According to some embodiments of the present disclosure, the hard top layer 90 is a conductive layer and may be formed of doped silicon (eg, doped polycrystalline silicon or doped silicon epitaxially grown on top of a nanowire) or silicide. The hard top layer 90 may electrically couple the individual top source / drain regions 48 to form a common top source / drain region.

應變施加層84包圍且因此包含其中包含奈米導線26、底部ILD 86、柵極介電質32、柵電極34、頂部ILD 88和硬質頂層90的整個區域的相對側上的部分。此外,應變施加層84可以與底部ILD 86的側壁、柵電極34、頂部ILD 88和硬質頂層90物理接觸。底部源極/汲極區域22可以包含在半導體基板20中的嵌入部分22B,其中嵌入部分22B以電氣方式間耦合個體底部源極/汲極奈米導線部分22A以形成共用底部源極/汲極區域。根據一些實施例,嵌入部分22B可橫向延伸超過應變施加層84的外邊緣。在替代實施例中,嵌入部分22B被限制在由應變施加層84包圍的區域正下方的區域中。 The strain-applying layer 84 surrounds and therefore includes portions on opposite sides of the entire region including the nanowire 26, the bottom ILD 86, the gate dielectric 32, the gate electrode 34, the top ILD 88, and the hard top layer 90 therein. Further, the strain applying layer 84 may be in physical contact with the sidewall of the bottom ILD 86, the gate electrode 34, the top ILD 88, and the hard top layer 90. The bottom source / drain region 22 may include an embedded portion 22B in the semiconductor substrate 20, where the embedded portion 22B electrically couples individual bottom source / drain nanowire portions 22A to form a common bottom source / drain. region. According to some embodiments, the embedded portion 22B may extend laterally beyond the outer edge of the strain applying layer 84. In an alternative embodiment, the embedded portion 22B is confined in a region immediately below the region surrounded by the strain applying layer 84.

根據本揭露的一些實施例,應變施加層84延伸到半導體基板20,並且可以接觸嵌入源極/汲極區域22B,在一些實施例中嵌入源極/汲極區域22B是半導體基板20的部分。應變施加層84可包含或可不包含連接到所說明的垂直應變施加層84的底端並且向外延伸的一些水平部分(未顯示)。應變施加層84可以形成為保形層,其中其高度H1顯著大於例如其厚度T1的五倍或更大。 According to some embodiments of the present disclosure, the strain application layer 84 extends to the semiconductor substrate 20 and may contact the embedded source / drain region 22B, which is part of the semiconductor substrate 20 in some embodiments. The strain applying layer 84 may or may not include some horizontal portions (not shown) connected to the bottom end of the illustrated vertical strain applying layer 84 and extending outward. The strain applying layer 84 may be formed as a conformal layer in which its height H1 is significantly larger than, for example, five times or more its thickness T1.

圖10D是垂直奈米導線電晶體50的截面圖,其中截面圖是從含有圖10B中的A-A'的平面中獲得的。此截面圖類似於圖10C中所示的截面圖,不同之處在於說明瞭更多奈米導線26。另外,圖10D說明在一個方向上(例如,朝向左側)嵌入部分22B可延伸離開應變施加層84的外緣足夠遠, 使得嵌入部分22B可用於連接到源極/汲極接點插塞(如圖14中所示)。 FIG. 10D is a cross-sectional view of the vertical nanowire transistor 50, where the cross-sectional view is obtained from a plane containing AA ′ in FIG. 10B. This cross-sectional view is similar to the cross-sectional view shown in FIG. 10C, except that more nanowires 26 are illustrated. In addition, FIG. 10D illustrates that the embedded portion 22B can extend sufficiently far from the outer edge of the strain applying layer 84 in one direction (for example, toward the left side) The embedded portion 22B is made available for connection to a source / drain contact plug (as shown in FIG. 14).

圖11、12和13說明根據各種示例性實施例的垂直奈米導線電晶體50的截面圖,其中應變集中到奈米導線26的不同部分。在下文的討論中,壓縮應變用作實例來說明本揭露的概念。對應的垂直奈米導線電晶體50相應地是PMOS裝置。應瞭解拉伸應變也可以根據其它實施例施加,其中通過應變施加層84施加的應變是拉伸應變。對應的垂直奈米導線電晶體50相應地是NMOS裝置。 FIGS. 11, 12, and 13 illustrate cross-sectional views of a vertical nanowire transistor 50 in which strain is concentrated on different portions of the nanowire 26 according to various exemplary embodiments. In the following discussion, compressive strain is used as an example to illustrate the concept of the present disclosure. The corresponding vertical nanowire transistor 50 is a PMOS device accordingly. It should be understood that tensile strain may also be applied according to other embodiments, where the strain applied through the strain application layer 84 is a tensile strain. The corresponding vertical nanowire transistor 50 is a corresponding NMOS device.

圖11示意性地說明一些實施例,其中應變集中到通道區域23。參考圖11,包含部分22A、23和48的奈米導線26由具有相對高的第一楊氏模量的材料形成。換句話說,奈米導線26由相對硬質的材料形成。實現的是材料的模量可以受其大小影響。舉例來說,整體矽具有等於大約180GPa的高楊氏模量。當形成為奈米導線而非整體區域時,矽的楊氏模量減小,有時低至大約80GPa。因此,當選擇適當材料以形成奈米導線時,需要考慮例如大小等因素以便獲得所希望的模量。 FIG. 11 schematically illustrates some embodiments in which strain is concentrated in the channel region 23. Referring to FIG. 11, the nanowire 26 including portions 22A, 23 and 48 is formed of a material having a relatively high first Young's modulus. In other words, the nanowire 26 is formed of a relatively hard material. What is achieved is that the modulus of a material can be affected by its size. For example, the overall silicon has a high Young's modulus equal to about 180 GPa. When formed as a nanowire rather than a whole area, the Young's modulus of silicon decreases, sometimes as low as about 80 GPa. Therefore, when selecting an appropriate material to form a nanowire, factors such as size need to be considered in order to obtain a desired modulus.

柵電極34經選擇以具有第二楊氏模量。根據一些實施例,第二楊氏模量小於奈米導線26的第一楊氏模量。根據替代實施例,第二楊氏模量等於或大於奈米導線26的第一楊氏模量。柵電極34由傳導材料形成。在一些示例性實施例中,柵電極34由鋁形成,其具有等於大約69GPa的楊氏模量。頂部ILD 88和底部ILD 86由具有大於柵電極34的楊氏模量的第三楊氏模量的材料形成。因此,通過施加應變(壓縮或拉伸)的應變施加層84,應變最終被賦予給奈米導線26。此外,由於柵電極34比上覆ILD 88和下伏ILD 86更軟,所以應變集中到通道區域23。圖11中的箭頭示意性地說明應變是如何集中的。 The gate electrode 34 is selected to have a second Young's modulus. According to some embodiments, the second Young's modulus is less than the first Young's modulus of the nanowire 26. According to an alternative embodiment, the second Young's modulus is equal to or greater than the first Young's modulus of the nanowire 26. The gate electrode 34 is formed of a conductive material. In some exemplary embodiments, the gate electrode 34 is formed of aluminum, which has a Young's modulus equal to about 69 GPa. The top ILD 88 and the bottom ILD 86 are formed of a material having a third Young's modulus greater than the Young's modulus of the gate electrode 34. Therefore, the strain is finally applied to the nanowire 26 by the strain applying layer 84 that applies a strain (compression or stretching). In addition, since the gate electrode 34 is softer than the overlying ILD 88 and the underlying ILD 86, strain is concentrated in the channel region 23. The arrows in Figure 11 schematically illustrate how the strain is concentrated.

另外,為了最大化通道區域23中的應變,奈米導線26的第一楊氏模量也可以大於頂部ILD 88和底部ILD 86這兩者的楊氏模量以及柵電極34的楊氏模量,使得應變集中到奈米導線26而非集中到頂部ILD 88和底部 ILD 86以及柵電極34。 In addition, in order to maximize the strain in the channel region 23, the first Young's modulus of the nanowire 26 may also be greater than the Young's modulus of both the top ILD 88 and the bottom ILD 86 and the Young's modulus of the gate electrode 34. So that the strain is concentrated on the nanowire 26 instead of the top ILD 88 and the bottom ILD 86 and gate electrode 34.

根據一些示例性實施例,柵電極34的楊氏模量小於頂部ILD 88和底部ILD 86這兩者的楊氏模量大約5GPa或更大,使得應變可以有效地集中到通道區域23。此外,柵電極34的楊氏模量可以小於頂部ILD 88和底部ILD 86這兩者的楊氏模量的大約80%或小於大約50%。柵電極34的楊氏模量可以介於頂部ILD 88和底部ILD 86這兩者的楊氏模量的大約20%與大約80%之間。應瞭解材料的楊氏模量受各種因素的影響,例如,材料本身、孔隙度、形成條件(例如,溫度)、大小等等。因此,相同材料可能不具有相同的楊氏模量。 According to some exemplary embodiments, the Young's modulus of the gate electrode 34 is smaller than the Young's modulus of both the top ILD 88 and the bottom ILD 86 by about 5 GPa or more, so that strain can be effectively concentrated in the channel region 23. In addition, the Young's modulus of the gate electrode 34 may be less than about 80% or less than about 50% of the Young's modulus of both the top ILD 88 and the bottom ILD 86. The Young's modulus of the gate electrode 34 may be between about 20% and about 80% of the Young's modulus of both the top ILD 88 and the bottom ILD 86. It should be understood that the Young's modulus of a material is affected by various factors, such as the material itself, porosity, formation conditions (eg, temperature), size, and so on. Therefore, the same material may not have the same Young's modulus.

如圖11中所示,當垂直奈米導線電晶體50是PMOS電晶體時,應變施加層84經配置以施加壓縮應變到由應變施加層84包圍的區域。壓縮應變集中到通道區域23,並且因此通道區域23中的空穴遷移率得到改進。在替代實施例中,當垂直奈米導線電晶體50是NMOS電晶體時,應變施加層84經配置以施加拉伸應變到由應變施加層84包圍的區域。拉伸應變也集中到通道區域23,並且因此通道區域23中的電子遷移率得到改進。 As shown in FIG. 11, when the vertical nanowire transistor 50 is a PMOS transistor, the strain applying layer 84 is configured to apply a compressive strain to a region surrounded by the strain applying layer 84. The compressive strain is concentrated in the channel region 23, and thus the hole mobility in the channel region 23 is improved. In an alternative embodiment, when the vertical nanowire transistor 50 is an NMOS transistor, the strain applying layer 84 is configured to apply a tensile strain to a region surrounded by the strain applying layer 84. The tensile strain is also concentrated in the channel region 23, and thus the electron mobility in the channel region 23 is improved.

圖11還示意性地說明揭示奈米導線26中的應變分配的模擬結果,其中在截面圖的右側上顯示了模擬結果。X軸表示應變的量值,並且Y軸表示奈米導線26中的垂直位置。類比結果指示在對應於通道區域的位置處應變具有比對應於源極區域22A和汲極區域48的更大的量值,指示應變集中到通道區域23,其中奈米導線的源極部分22A和汲極部分48具有小得多的應變。 FIG. 11 also schematically illustrates the results of a simulation that reveals the strain distribution in the nanowire 26, with the simulation results shown on the right side of the cross-sectional view. The X-axis represents the magnitude of the strain, and the Y-axis represents the vertical position in the nanowire 26. The analog result indicates that the strain at the position corresponding to the channel region has a larger magnitude than that corresponding to the source region 22A and the drain region 48, indicating that the strain is concentrated in the channel region 23, where the source portion 22A of the nanowire and the The drain portion 48 has a much smaller strain.

圖12示意性地說明一些實施例,其中應變集中到底部源極/汲極接合區域,所述區域是接近通道區域23與相應的下伏源極/汲極部分22A之間的介面的區域。在這些實施例中,介電質層92形成於底部ILD 86與柵電極34之間。介電質層92由與ILDs 86和88以及柵電極34相比較軟的相對軟的材料形成。換句話說,介電質層92的楊氏模量小於底部ILD 86、頂部 ILD 88和柵電極34的楊氏模量。介電質層92的楊氏模量也可以小於硬質頂層90的楊氏模量。在一些示例性實施例中,介電質層92的楊氏模量可以小於底部ILD 86、頂部ILD 88和柵電極34的楊氏模量的80%或介於所述楊氏模量的大約20%與大約80%之間,以有效地集中應變。 FIG. 12 schematically illustrates some embodiments in which strain is concentrated to a bottom source / drain junction region, which is a region near the interface between the channel region 23 and the corresponding underlying source / drain portion 22A. In these embodiments, a dielectric layer 92 is formed between the bottom ILD 86 and the gate electrode 34. The dielectric layer 92 is formed of a relatively soft material that is softer than the ILDs 86 and 88 and the gate electrode 34. In other words, the Young's modulus of the dielectric layer 92 is less than the bottom ILD 86, the top Young's modulus of the ILD 88 and the gate electrode 34. The Young's modulus of the dielectric layer 92 may be smaller than the Young's modulus of the hard top layer 90. In some exemplary embodiments, the Young's modulus of the dielectric layer 92 may be less than 80% of the Young's modulus of the bottom ILD 86, the top ILD 88, and the gate electrode 34 or between about the Young's modulus Between 20% and about 80% to effectively focus strain.

介電質層92的頂部表面可以接觸柵電極34的底部表面,並且可以基本上與通道區域23和相應的下伏源極/汲極部分22A之間的介面齊平。介電質層92可充當相應的垂直奈米導線電晶體50的柵極間隔物。介電質層92可沿所有橫向方向延伸以接觸應變施加層84。介電質層92的候選材料包含(並且不限於)硼摻雜磷酸基矽酸鹽玻璃(BPSG)、磷酸基矽酸鹽玻璃(PSG)和硼矽酸鹽玻璃(BSG)。介電質層92的厚度可以大於大約5nm,或大於大約10nm。 The top surface of the dielectric layer 92 may contact the bottom surface of the gate electrode 34 and may be substantially flush with the interface between the channel region 23 and the corresponding underlying source / drain portion 22A. The dielectric layer 92 may serve as a gate spacer for the corresponding vertical nanowire transistor 50. The dielectric layer 92 may extend in all lateral directions to contact the strain applying layer 84. Candidate materials for the dielectric layer 92 include (and are not limited to) boron-doped phosphate silicate glass (BPSG), phosphate silicate glass (PSG), and borosilicate glass (BSG). The thickness of the dielectric layer 92 may be greater than about 5 nm, or greater than about 10 nm.

由於介電質層92與底部ILD 86、頂部ILD 88、柵電極34和硬質頂層90相比更軟,所以應變集中到底部接合區域,所述區域是接近通道區域23與底部源極/汲極區域22A之間的接合的奈米導線26的部分。圖12中的箭頭示意性地說明應變是如何集中的。圖12還示意性地說明揭示奈米導線26中的應變分配的模擬結果(在截面圖的右側上)。X軸表示應變的量值,並且Y軸表示奈米導線26中的垂直位置。類比結果指示應變集中到底部接合區域,其中奈米導線26的其餘部分具有小得多的應變。 Since the dielectric layer 92 is softer than the bottom ILD 86, the top ILD 88, the gate electrode 34 and the hard top layer 90, the strain is concentrated in the bottom bonding region, which is close to the channel region 23 and the bottom source / drain The portion of the nanowire 26 bonded between the regions 22A. The arrows in Figure 12 schematically illustrate how the strain is concentrated. FIG. 12 also schematically illustrates the results of a simulation (on the right side of the cross-sectional view) that reveals the strain distribution in the nanowire 26. The X-axis represents the magnitude of the strain, and the Y-axis represents the vertical position in the nanowire 26. An analog result indicates that the strain is concentrated in the bottom junction area, with the rest of the nanowire 26 having much less strain.

有利的是,應變到底部接合區域的集中度引起垂直奈米導線電晶體50的性能的提高。舉例來說,如果底部源極/汲極區域22A是源極區域,那麼載流子注入速度將提高。另一方面,如果底部源極/汲極區域22A是汲極區域,那麼峰值載流子速度將提高。 Advantageously, the concentration of strain to the bottom junction region results in an improvement in the performance of the vertical nanowire transistor 50. For example, if the bottom source / drain region 22A is a source region, the carrier injection speed will increase. On the other hand, if the bottom source / drain region 22A is a drain region, the peak carrier velocity will increase.

圖13示意性地說明一些實施例,其中應變集中到頂部源極/汲極接合區域,所述區域是接近通道區域23與相應的上覆源極/汲極區域48之間的介面的區域。這些實施例類似於圖12中所示的實施例,不同之處在於軟介電質層92介於頂部ILD 88與柵電極34之間。 FIG. 13 schematically illustrates some embodiments in which strain is concentrated in a top source / drain junction region, which is a region near the interface between the channel region 23 and the corresponding overlying source / drain region 48. These embodiments are similar to the embodiment shown in FIG. 12, except that a soft dielectric layer 92 is interposed between the top ILD 88 and the gate electrode 34.

在這些實施例中,介電質層92的底部表面可以接觸柵電極34的頂部表面。介電質層92也可以充當柵極間隔物。由於介電質層92與底部ILD 86、頂部ILD 88、柵電極34和硬質頂層90相比更軟,所以應變集中到奈米導線26的頂部接合區域。圖13中的箭頭示意性地說明應變是如何集中的。圖13還示意性地說明揭示奈米導線26中的應變分配的模擬結果。X軸表示應變的量值,並且Y軸表示奈米導線26中的垂直位置。類比結果指示應變集中到頂部接合區域,其中奈米導線26的其餘部分具有小得多的應變。 In these embodiments, the bottom surface of the dielectric layer 92 may contact the top surface of the gate electrode 34. The dielectric layer 92 may also function as a gate spacer. Since the dielectric layer 92 is softer than the bottom ILD 86, the top ILD 88, the gate electrode 34, and the hard top layer 90, strain is concentrated on the top junction area of the nanowire 26. The arrows in FIG. 13 schematically illustrate how the strain is concentrated. FIG. 13 also schematically illustrates the results of a simulation revealing strain distribution in the nanowire 26. The X-axis represents the magnitude of the strain, and the Y-axis represents the vertical position in the nanowire 26. An analog result indicates that the strain is concentrated in the top junction area, with the rest of the nanowire 26 having much less strain.

有利的是,應變到頂部接合區域的集中度引起垂直奈米導線電晶體50的性能的提高。舉例來說,如果頂部源極/汲極區域48是源極區域,那麼載流子注入速度將提高。另一方面,如果頂部源極/汲極區域48是汲極區域,那麼峰值載流子速度將提高。 Advantageously, the concentration of strain to the top junction region results in an improvement in the performance of the vertical nanowire transistor 50. For example, if the top source / drain region 48 is a source region, the carrier injection speed will increase. On the other hand, if the top source / drain region 48 is a drain region, the peak carrier velocity will increase.

圖14說明垂直奈米導線電晶體50的截面圖,其中說明瞭接點插塞56、52和54。所述截面圖是從含有圖10B中的線A-A'的平面中獲得的。ILD 94形成為包圍應變施加層84,並且可延伸到頂部源極/汲極區域48和硬質頂層90的頂部表面上方的水平。ILD 94可以由均質介電質材料形成,或可能具有包含多個層的複合結構。源極/汲極接點插塞56穿透ILD 94以電耦合到底部源極/汲極區域22B。源極/汲極接點插塞54穿透ILD 94以電耦合到傳導頂部硬質層90,並且因此電耦合到頂部源極/汲極區域48。柵極接點插塞54穿透ILD 94以電耦合到柵電極34。介電質層102形成為電隔離柵極接點插塞54與硬質頂層90。 FIG. 14 illustrates a cross-sectional view of a vertical nanowire transistor 50, in which the contact plugs 56, 52, and 54 are illustrated. The cross-sectional view is obtained from a plane containing a line AA ′ in FIG. 10B. The ILD 94 is formed to surround the strain applying layer 84 and may extend to a level above the top surface of the top source / drain region 48 and the hard top layer 90. The ILD 94 may be formed of a homogeneous dielectric material or may have a composite structure including multiple layers. The source / drain contact plug 56 penetrates the ILD 94 to be electrically coupled to the bottom source / drain region 22B. The source / drain contact plug 54 penetrates the ILD 94 to be electrically coupled to the conductive top hard layer 90, and thus is electrically coupled to the top source / drain region 48. The gate contact plug 54 penetrates the ILD 94 to be electrically coupled to the gate electrode 34. The dielectric layer 102 is formed to electrically isolate the gate contact plug 54 and the hard top layer 90.

圖15說明根據其它替代實施例的垂直奈米導線電晶體50的俯視圖。這些實施例類似於圖11、12和13中所示的實施例,不同之處在於應變施加層包含在Y方向上的層34、86、88和90的相對側上但是不在X方向上的層34、86、88和90的相對側上的部分。因此,如圖15中所示,應變施加層84並不形成環。當截面圖是從含有圖15中的線B-B'的平面中獲得時,根據這些實施例的垂直奈米導線電晶體50的截面圖可仍然與圖11、12和13中所示的 相同。 FIG. 15 illustrates a top view of a vertical nanowire transistor 50 according to another alternative embodiment. These embodiments are similar to those shown in Figures 11, 12, and 13, except that the strain-applying layer includes layers on opposite sides of layers 34, 86, 88, and 90 in the Y direction but not in the X direction 34, 86, 88, and 90 on opposite sides. Therefore, as shown in FIG. 15, the strain applying layer 84 does not form a ring. When the cross-sectional view is obtained from a plane containing the line BB ′ in FIG. 15, the cross-sectional views of the vertical nanowire transistor 50 according to these embodiments may still be the same as those shown in FIGS. 11, 12, and 13. the same.

雖然術語“奈米導線”用於描述垂直半導體特徵,但是“奈米導線26”的大小可以大於典型的奈米範圍。另外,奈米導線26的形狀可採用任何適用形狀。圖16示意性地說明用於奈米導線26的多個可用形狀。舉例來說,奈米導線26的俯視圖形狀包含圓形、橢圓形、具有圓化轉角的矩形、具有相對鋒利轉角的矩形、長條帶、三角形、六邊形或類似物。 Although the term "nanowire" is used to describe vertical semiconductor features, the size of "nanowire 26" can be larger than the typical nanometer range. In addition, the shape of the nanowire 26 may be any suitable shape. FIG. 16 schematically illustrates a number of available shapes for the nanowire 26. For example, the shape of the top view of the nanowire 26 includes a circle, an oval, a rectangle with a rounded corner, a rectangle with a relatively sharp corner, a long strip, a triangle, a hexagon, or the like.

如圖10A、10B、10C、10D和11到15中所示的實施例具有一些有利的特徵。應變可以穿過共用應變施加層施加到多個奈米導線。因此製造過程得到了顯著簡化。另外,有可能定制應變所集中的奈米導線的區域。 The embodiments shown in FIGS. 10A, 10B, 10C, 10D, and 11 to 15 have some advantageous features. Strain can be applied to multiple nanowires through a common strain applying layer. The manufacturing process is therefore significantly simplified. In addition, it is possible to customize the area of the nanowire where the strain is concentrated.

根據本揭露的一些實施例,一種裝置包含半導體基板和半導體基板上方的垂直奈米導線。所述垂直奈米導線包含底部源極/汲極區域、底部源極/汲極區域上方的通道區域,以及所述通道區域上方的頂部源極/汲極區域。頂部ILD包圍頂部源極/汲極區域。所述裝置進一步包含包圍底部源極/汲極區域的底部ILD、包圍通道區域的柵電極以及應變施加層,所述應變施加層具有在頂部ILD、底部ILD和柵電極的相對側上的垂直部分,並且接觸所述頂部ILD、底部ILD和柵電極的相對側壁。 According to some embodiments of the present disclosure, a device includes a semiconductor substrate and a vertical nanowire above the semiconductor substrate. The vertical nanowire includes a bottom source / drain region, a channel region above the bottom source / drain region, and a top source / drain region above the channel region. The top ILD surrounds the top source / drain region. The device further includes a bottom ILD surrounding a bottom source / drain region, a gate electrode surrounding a channel region, and a strain applying layer having a vertical portion on opposite sides of the top ILD, bottom ILD, and gate electrode And contact opposite sidewalls of the top ILD, the bottom ILD, and the gate electrode.

根據本揭露的替代實施例,一種裝置包含半導體基板和所述半導體基板上方的多個垂直奈米導線。所述多個垂直奈米導線中每一者包含底部源極/汲極區域、所述底部源極/汲極區域上方的通道區域,以及所述通道區域上方的頂部源極/汲極區域。頂部ILD包圍所述多個垂直奈米導線中每一者的頂部源極/汲極區域。底部ILD包圍所述多個垂直奈米導線中每一者的底部源極/汲極區域。柵電極包圍所述多個垂直奈米導線中每一者的通道區域。應變施加層包圍頂部ILD、底部ILD和柵電極的側壁並且與頂部ILD、底部ILD和柵電極的側壁物理接觸。 According to an alternative embodiment of the present disclosure, a device includes a semiconductor substrate and a plurality of vertical nano-wires above the semiconductor substrate. Each of the plurality of vertical nanowires includes a bottom source / drain region, a channel region above the bottom source / drain region, and a top source / drain region above the channel region. The top ILD surrounds the top source / drain region of each of the plurality of vertical nanowires. The bottom ILD surrounds the bottom source / drain region of each of the plurality of vertical nanowires. A gate electrode surrounds a channel region of each of the plurality of vertical nanowires. The strain applying layer surrounds and physically contacts the sidewalls of the top ILD, the bottom ILD, and the gate electrode.

根據本揭露的其它替代實施例,一種裝置包含半導體基 板、所述半導體基板上方的多個垂直奈米導線,以及具有四個邊緣的層的堆疊,其中所述層堆疊包圍所述垂直半導體奈米導線。所述層堆疊包含半導體基板上方的底部ILD、底部ILD上方的柵電極以及柵電極上方的頂部ILD,其中所述底部ILD、柵電極和頂部ILD是相連的。應變施加層從奈米導線的底部的第一層延伸到奈米導線的頂部表面的第二層。所述應變施加層具有高度和小於高度的厚度。所述層堆疊的四個邊緣接觸應變施加層的側壁。 According to other alternative embodiments of the present disclosure, a device includes a semiconductor-based A board, a plurality of vertical nanowires above the semiconductor substrate, and a stack of layers having four edges, wherein the layer stack surrounds the vertical semiconductor nanowires. The layer stack includes a bottom ILD above the semiconductor substrate, a gate electrode above the bottom ILD, and a top ILD above the gate electrode, wherein the bottom ILD, the gate electrode, and the top ILD are connected. The strain applying layer extends from a first layer on the bottom of the nanowire to a second layer on the top surface of the nanowire. The strain application layer has a height and a thickness less than the height. The four edges of the layer stack contact the side walls of the strain applying layer.

前述內容概述一些實施方式的特徵,因而熟知此技藝之人士可更加理解本申請案揭示內容之各方面。熟知此技藝之人士應理解可輕易使用本申請案揭示內容作為基礎,用於設計或修飾其他製程與結構而實現與本申請案該之實施方式具有相同目的與/或達到相同優點。熟知此技藝之人士亦應理解此均等架構並不脫離本申請案揭示內容的精神與範圍,以及熟知此技藝之人士可進行各種變化、取代與替換,而不脫離本申請案揭示內容之精神與範圍。 The foregoing outlines the features of some embodiments, so that those skilled in the art may better understand the aspects disclosed in this application. Those skilled in the art should understand that the disclosure of this application can be easily used as a basis for designing or modifying other processes and structures to achieve the same purpose and / or achieve the same advantages as the implementation described in this application. Those familiar with this technology should also understand that this equal structure does not depart from the spirit and scope of the disclosure of this application, and that those skilled in this technology can make various changes, substitutions and substitutions without departing from the spirit and scope of this disclosure. range.

20‧‧‧基板 20‧‧‧ substrate

22‧‧‧源極/汲極區域 22‧‧‧Source / Drain Region

25‧‧‧磊晶部分 25‧‧‧Epicenter

26‧‧‧奈米導線 26‧‧‧Nano wire

26A、26B、26C‧‧‧部分 Part 26A, 26B, 26C ‧‧‧

30、40‧‧‧介電質層 30, 40‧‧‧ dielectric layer

32‧‧‧柵極介電質層 32‧‧‧ Gate dielectric layer

34‧‧‧柵電極層 34‧‧‧Gate electrode layer

38‧‧‧低粘度間隔物 38‧‧‧Low viscosity spacer

42‧‧‧不可滲透層 42‧‧‧Impermeable layer

44‧‧‧氧化物環 44‧‧‧oxide ring

48‧‧‧源極/汲極區域 48‧‧‧Source / Drain Region

50‧‧‧電晶體 50‧‧‧ Transistor

52、56‧‧‧源極/汲極接點插塞 52, 56‧‧‧ source / drain contact plugs

54‧‧‧柵極接點插塞 54‧‧‧Gate contact plug

Claims (10)

一種半導體裝置,其包括:半導體基板;該半導體基板上方的垂直奈米導線,該垂直奈米導線包括:底部源極/汲極區域;該底部源極/汲極區域上方的通道區域;以及該通道區域上方的頂部源極/汲極區域;頂部層間介電質(ILD),其包圍該頂部源極/汲極區域;底部層間介電質,其包圍該底部源極/汲極區域;柵電極,其包圍該通道區域;以及應變施加層,其包括在該頂部層間介電質、該底部層間介電質和該柵電極的相對側上的垂直部分,並且接觸該頂部層間介電質、該底部層間介電質和該柵電極的相對側壁。 A semiconductor device includes: a semiconductor substrate; a vertical nanowire above the semiconductor substrate, the vertical nanowire including: a bottom source / drain region; a channel region above the bottom source / drain region; and the Top source / drain region above the channel region; top interlayer dielectric (ILD), which surrounds the top source / drain region; bottom interlayer dielectric, which surrounds the bottom source / drain region; gate An electrode surrounding the channel region; and a strain applying layer including vertical portions on opposite sides of the top interlayer dielectric, the bottom interlayer dielectric, and the gate electrode, and contacting the top interlayer dielectric, The bottom interlayer dielectric and opposite sidewalls of the gate electrode. 根據請求項1所述的裝置,其中該應變施加層形成包圍該頂部層間介電質、該底部層間介電質和該柵電極的完整的環。 The device according to claim 1, wherein the strain applying layer forms a complete ring surrounding the top interlayer dielectric, the bottom interlayer dielectric, and the gate electrode. 根據請求項2所述的裝置,其進一步包括多個垂直奈米導線,該多個垂直奈米導線包括該垂直奈米導線,其中該完整環包圍該多個垂直奈米導線。 The device according to claim 2, further comprising a plurality of vertical nanowires, the plurality of vertical nanowires including the vertical nanowire, wherein the complete ring surrounds the plurality of vertical nanowires. 根據請求項1所述的裝置,其中該頂部層間介電質、該底部層間介電質和該柵電極中的至少一者沿所有橫向方向延伸以接觸該應變施加層。 The device according to claim 1, wherein at least one of the top interlayer dielectric, the bottom interlayer dielectric, and the gate electrode extends in all lateral directions to contact the strain applying layer. 根據請求項1所述的裝置,其中該柵電極具有楊氏模量,其低於該頂部層間介電質、該底部層間介電質以及垂直奈米導線的楊氏模量。 The device according to claim 1, wherein the gate electrode has a Young's modulus that is lower than the Young's modulus of the top interlayer dielectric, the bottom interlayer dielectric, and the vertical nanowire. 根據請求項1所述的裝置,其進一步包括介於該底部層間介電質與該柵電極之間的額外介電質層,其中該額外介電質層具有楊氏模量,其低於該頂部層間介電質、該底部層間介電質、該垂直奈米導線和該柵電極的楊氏模量。 The device according to claim 1, further comprising an additional dielectric layer between the bottom interlayer dielectric and the gate electrode, wherein the additional dielectric layer has a Young's modulus, which is lower than the Young's modulus Young's modulus of the top interlayer dielectric, the bottom interlayer dielectric, the vertical nanowire, and the gate electrode. 根據請求項1所述的裝置,其進一步包括介於該頂部層間介電質與該柵電極之間的額外介電質層,其中該額外介電質層具有楊氏模量,其低於該頂部層間介電質、該底部層間介電質、該垂直奈米導線和該柵電極的楊氏模量。 The device according to claim 1, further comprising an additional dielectric layer between the top interlayer dielectric and the gate electrode, wherein the additional dielectric layer has a Young's modulus, which is lower than the Young's modulus Young's modulus of the top interlayer dielectric, the bottom interlayer dielectric, the vertical nanowire, and the gate electrode. 根據請求項1所述的裝置,其進一步包括頂部硬質層,該頂部硬質層在該頂部層間介電質上方並且包圍該頂部源極/汲極區域,其中該應變施加層的該垂直部分進一步與該頂部硬質層的相對側壁接觸。 The device according to claim 1, further comprising a top hard layer above the top interlayer dielectric and surrounding the top source / drain region, wherein the vertical portion of the strain application layer further communicates with Opposite sidewalls of the top hard layer are in contact. 一種半導體裝置,其包括:半導體基板;該半導體基板上方的多個垂直奈米導線,其中該多個垂直奈米導線中的每一者包括:底部源極/汲極區域;該底部源極/汲極區域上方的通道區域;以及該通道區域上方的頂部源極/汲極區域;頂部層間介電質(ILD),其包圍該多個垂直奈米導線中每一者的該頂部源極/汲極區域;底部層間介電質,其包圍該多個垂直奈米導線中每一者的該底部源極/汲極區域;柵電極,其包圍該多個垂直奈米導線中每一者的該通道區域;以及應變施加層,其包圍並且實體接觸該頂部層間介電質、該底部層間介電質和該柵電極的側壁。 A semiconductor device includes: a semiconductor substrate; a plurality of vertical nanowires above the semiconductor substrate, wherein each of the plurality of vertical nanowires includes: a bottom source / drain region; and the bottom source / A channel region above the drain region; and a top source / drain region above the channel region; a top interlayer dielectric (ILD) that surrounds the top source / of each of the plurality of vertical nanowires Drain region; bottom interlayer dielectric that surrounds the bottom source / drain region of each of the plurality of vertical nanowires; gate electrode that surrounds each of the plurality of vertical nanowires The channel region; and a strain applying layer that surrounds and physically contacts the top interlayer dielectric, the bottom interlayer dielectric, and a sidewall of the gate electrode. 一種半導體裝置,其包括:半導體基板;該半導體基板上方的垂直半導體奈米導線;包括四個邊緣的層的堆疊,其中該層堆疊包圍該垂直半導體奈米導線並且包括:該半導體基板上方的底部層間介電質(ILD);該底部層間介電質上方的柵電極;以及該柵電極上方的頂部層間介電質,其中該底部層間介電質、該柵電極和該頂部層間介電質是相連的;以及應變施加層,其從該垂直半導體奈米導線的底部的第一層延伸到該垂直半導體奈米導線的頂部表面的第二層,其中該應變施加層具有高度和小於該高度的厚度,其中該層堆疊的該四個邊緣接觸該應變施加層的側壁。 A semiconductor device includes: a semiconductor substrate; a vertical semiconductor nanowire above the semiconductor substrate; a stack of four edge-containing layers, wherein the layer stack surrounds the vertical semiconductor nanowire and includes: a bottom above the semiconductor substrate Interlayer dielectric (ILD); a gate electrode above the bottom interlayer dielectric; and a top interlayer dielectric above the gate electrode, wherein the bottom interlayer dielectric, the gate electrode, and the top interlayer dielectric are Connected; and a strain applying layer extending from a first layer on the bottom of the vertical semiconductor nanowire to a second layer on the top surface of the vertical semiconductor nanowire, wherein the strain applying layer has a height and a height less than the height Thickness, wherein the four edges of the layer stack contact the sidewall of the strain-applying layer.
TW104138451A 2015-01-16 2015-11-20 Inducing localized strain in vertical nanowire transistors TWI614890B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14/599,247 2015-01-16
US14/599,247 US9466668B2 (en) 2013-02-08 2015-01-16 Inducing localized strain in vertical nanowire transistors

Publications (2)

Publication Number Publication Date
TW201633530A TW201633530A (en) 2016-09-16
TWI614890B true TWI614890B (en) 2018-02-11

Family

ID=56465598

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104138451A TWI614890B (en) 2015-01-16 2015-11-20 Inducing localized strain in vertical nanowire transistors

Country Status (2)

Country Link
CN (1) CN105810720B (en)
TW (1) TWI614890B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106057682B (en) * 2016-08-09 2019-06-07 北京大学 A kind of integrated approach of the vertical nano-wire device of air sidewall structure
US10347745B2 (en) 2016-09-19 2019-07-09 Globalfoundries Inc. Methods of forming bottom and top source/drain regions on a vertical transistor device
CN106298778A (en) * 2016-09-30 2017-01-04 中国科学院微电子研究所 Semiconductor device, method of manufacturing the same, and electronic apparatus including the same
US11081484B2 (en) 2016-09-30 2021-08-03 Institute of Microelectronics, Chinese Academy of Sciences IC unit and method of manufacturing the same, and electronic device including the same
CN111162074B (en) * 2018-11-07 2022-07-26 中芯国际集成电路制造(上海)有限公司 Semiconductor structure and forming method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050255667A1 (en) * 2004-05-14 2005-11-17 Applied Materials, Inc., A Delaware Corporation Method of inducing stresses in the channel region of a transistor
US20090242990A1 (en) * 2008-03-28 2009-10-01 Kabushiki Kaisha Toshiba Semiconductor device and manufacturing method of same
US20110068418A1 (en) * 2009-09-23 2011-03-24 Macronix International Co., Ltd. Substrate symmetrical silicide source/drain surrounding gate transistor
US20120223288A1 (en) * 2011-03-04 2012-09-06 Samsung Electronics Co., Ltd. Semiconductor device, method of manufacturing the same, and electronic device including the semiconductor device
US20140197458A1 (en) * 2013-01-14 2014-07-17 Taiwan Semiconductor Manufacturing Company, Ltd. FinFET Device and Method of Fabricating Same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100660881B1 (en) * 2005-10-12 2006-12-26 삼성전자주식회사 Semiconductor devices comprising transistors having vertical channel and method of manufacturing the same
JP5066590B2 (en) * 2010-06-09 2012-11-07 ユニサンティス エレクトロニクス シンガポール プライベート リミテッド Semiconductor device and manufacturing method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050255667A1 (en) * 2004-05-14 2005-11-17 Applied Materials, Inc., A Delaware Corporation Method of inducing stresses in the channel region of a transistor
US20090242990A1 (en) * 2008-03-28 2009-10-01 Kabushiki Kaisha Toshiba Semiconductor device and manufacturing method of same
US20110068418A1 (en) * 2009-09-23 2011-03-24 Macronix International Co., Ltd. Substrate symmetrical silicide source/drain surrounding gate transistor
US20120223288A1 (en) * 2011-03-04 2012-09-06 Samsung Electronics Co., Ltd. Semiconductor device, method of manufacturing the same, and electronic device including the semiconductor device
US20140197458A1 (en) * 2013-01-14 2014-07-17 Taiwan Semiconductor Manufacturing Company, Ltd. FinFET Device and Method of Fabricating Same

Also Published As

Publication number Publication date
CN105810720A (en) 2016-07-27
CN105810720B (en) 2019-05-10
TW201633530A (en) 2016-09-16

Similar Documents

Publication Publication Date Title
US9466668B2 (en) Inducing localized strain in vertical nanowire transistors
TWI722304B (en) A semiconductor device and method of forming the same
KR101423429B1 (en) Method for inducing strain in vertical semiconductor columns
US9590038B1 (en) Semiconductor device having nanowire channel
KR100618900B1 (en) Mos field effect transistor having a plurality of channels and method of fabricating the same
US9087856B2 (en) Semiconductor device with buried bit line and method for fabricating the same
KR101081066B1 (en) single gate inverter nanowire mesh
TWI614890B (en) Inducing localized strain in vertical nanowire transistors
KR100781580B1 (en) A dual structure finfet and the manufacturing method the same
US10916468B2 (en) Semiconductor device with buried local interconnects
CN107068671A (en) Semiconductor device and its manufacture method
JP2011066151A (en) Semiconductor device and method of manufacturing the same
JP2009094229A (en) Field-effect transistor and production process therefor
KR102461174B1 (en) Semiconductor device
US9466729B1 (en) Etch stop region based fabrication of bonded semiconductor structures
TW201729280A (en) Semiconductor device structure
CN105355652B (en) Metal gate structure and its manufacturing method
CN112018186B (en) Nanowire/sheet device with self-aligned spacers, method of manufacturing the same, and electronic apparatus
CN108695382B (en) Semiconductor device and method for manufacturing the same
WO2013171873A1 (en) Semiconductor device
JP2010010587A (en) Semiconductor element and method of manufacturing semiconductor element
JP2010157588A (en) Semiconductor device and method of manufacturing same
JP2012015345A (en) Semiconductor device
JP2013235880A (en) Semiconductor device and method of manufacturing the same
CN110718548A (en) Semiconductor device with a plurality of transistors