TWI614210B - Method of manufacturing nanomaterial - Google Patents

Method of manufacturing nanomaterial Download PDF

Info

Publication number
TWI614210B
TWI614210B TW105131131A TW105131131A TWI614210B TW I614210 B TWI614210 B TW I614210B TW 105131131 A TW105131131 A TW 105131131A TW 105131131 A TW105131131 A TW 105131131A TW I614210 B TWI614210 B TW I614210B
Authority
TW
Taiwan
Prior art keywords
treatment
dispersion
ball milling
graphene
solvent
Prior art date
Application number
TW105131131A
Other languages
Chinese (zh)
Other versions
TW201811664A (en
Inventor
江偉宏
廖家樑
Original Assignee
國立臺灣科技大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立臺灣科技大學 filed Critical 國立臺灣科技大學
Priority to TW105131131A priority Critical patent/TWI614210B/en
Application granted granted Critical
Publication of TWI614210B publication Critical patent/TWI614210B/en
Publication of TW201811664A publication Critical patent/TW201811664A/en

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)

Abstract

一種奈米材料的製造方法,包括下列步驟。對分散液進行均質處理與超音波處理的至少一者,其中分散液包含基材與溶劑。在對分散液進行均質處理與超音波處理的至少一者之後,對分散液進行球磨處理。A method of manufacturing a nanomaterial, comprising the following steps. The dispersion is subjected to at least one of a homogenization treatment and an ultrasonic treatment, wherein the dispersion liquid comprises a substrate and a solvent. After the dispersion is subjected to at least one of homogenization treatment and ultrasonic treatment, the dispersion is subjected to a ball milling treatment.

Description

奈米材料的製造方法Method for manufacturing nano material

本發明是有關於一種材料的製造方法,且特別是有關於一種奈米材料的製造方法。The present invention relates to a method of making a material, and more particularly to a method of making a nanomaterial.

目前有許多具有高機械強度、高光穿透性、良好熱傳導或導電性的奈米材料陸續被提出,諸如石墨烯(graphene)等。藉由這些材料特性可以衍生出許多可能的應用,如光電、能源儲存、綠能發電、環境生醫感測或功能性複合材料等。At present, many nano materials having high mechanical strength, high light transmittance, good heat conduction or electrical conductivity have been proposed, such as graphene. Many of the possible applications can be derived from these material properties, such as photovoltaics, energy storage, green power generation, environmental biosensing or functional composites.

目前奈米材料的研究和應用的關鍵是如何發展出大規模、低成本且可控制的奈米材料的製造方法。以石墨烯的製作為例,一般液相機械剝離法(超音波震盪)所需的製程時間長,無法進行大規模生產,且所製作出的石墨烯的品質不佳。氧化石墨還原法雖然能夠以相對較低的成本製備出大量的石墨烯,然而所製造出的石墨烯的品質不佳。原因在於,使用氧化石墨還原法所製作的石墨烯的電子結構以及晶體的完整性均受到强氧化劑嚴重的破壞,使其電子性質受到影響,使得在微電子器件方面的應用受到限制。化學氣相沉積法雖然可以製得大面積且性能優異的石墨烯,但現階段工藝的不成熟、較高的成本與低產率限制了其大規模生產的應用。此外,採用球磨法與均質法來製作石墨烯也都存在產率不高的問題。因此,如何以高產率與高品質的方式來製作奈米材料為目前業界研究發展的目標。At present, the key to the research and application of nanomaterials is how to develop large-scale, low-cost and controllable nanomaterial manufacturing methods. Taking the production of graphene as an example, the liquid phase mechanical peeling method (ultrasonic oscillation) generally requires a long process time, cannot be mass-produced, and the quality of the produced graphene is not good. Although the graphite oxide reduction method can produce a large amount of graphene at a relatively low cost, the quality of the produced graphene is not good. The reason is that the electronic structure of the graphene produced by the graphite oxide reduction method and the crystal integrity are severely damaged by the strong oxidant, and the electronic properties thereof are affected, so that the application in the microelectronic device is limited. Although chemical vapor deposition can produce graphene with large area and excellent performance, the immaturity, high cost and low yield of the current stage limit its large-scale production application. In addition, the use of ball milling and homogenization to produce graphene also has a problem of low yield. Therefore, how to produce nanomaterials in high yield and high quality is the current research and development goal of the industry.

本發明提供一種奈米材料的製造方法,其可獲得高產率與高品質的奈米材料。The present invention provides a method for producing a nano material which can obtain a high yield and high quality nano material.

本發明提出一種奈米材料的製造方法,包括下列步驟。對分散液進行均質處理與超音波處理的至少一者,其中分散液包含基材與溶劑。在對分散液進行均質處理與超音波處理的至少一者之後,對分散液進行球磨處理。The present invention provides a method of producing a nanomaterial comprising the following steps. The dispersion is subjected to at least one of a homogenization treatment and an ultrasonic treatment, wherein the dispersion liquid comprises a substrate and a solvent. After the dispersion is subjected to at least one of homogenization treatment and ultrasonic treatment, the dispersion is subjected to a ball milling treatment.

依照本發明的一實施例所述,在上述的奈米材料的製造方法中,基材例如是石墨、二硫化鉬或氮化硼。According to an embodiment of the present invention, in the method for producing a nanomaterial, the substrate is, for example, graphite, molybdenum disulfide or boron nitride.

依照本發明的一實施例所述,在上述的奈米材料的製造方法中,奈米材料例如是石墨烯(graphene)、石墨烯量子點(GQDs)、二硫化鉬(MoS 2)奈米材料或氮化硼(BN)奈米材料。 According to an embodiment of the present invention, in the method for manufacturing a nano material, the nano material is, for example, graphene, graphene quantum dots (GQDs), molybdenum disulfide (MoS 2 ) nanomaterials. Or boron nitride (BN) nanomaterials.

依照本發明的一實施例所述,在上述的奈米材料的製造方法中,溶劑例如是N-甲基吡咯烷酮(N-Methyl-2-Pyrrolidone,NMP)、二甲基亞碸(DMSO)或N,N-二甲基甲醯胺(DMF)。According to an embodiment of the present invention, in the method for producing a nano material, the solvent is, for example, N-Methyl-2-Pyrrolidone (NMP), dimethyl hydrazine (DMSO) or N,N-dimethylformamide (DMF).

依照本發明的一實施例所述,在上述的奈米材料的製造方法中,溶劑的濃度例如是70%至100%。According to an embodiment of the present invention, in the method for producing a nanomaterial, the concentration of the solvent is, for example, 70% to 100%.

依照本發明的一實施例所述,在上述的奈米材料的製造方法中,球磨處理的時間例如是0.5小時至4小時,且球磨處理的轉速例如是500 rpm至1750 rpm。According to an embodiment of the present invention, in the method for producing a nanomaterial, the time of the ball milling treatment is, for example, 0.5 hours to 4 hours, and the rotation speed of the ball milling treatment is, for example, 500 rpm to 1750 rpm.

依照本發明的一實施例所述,在上述的奈米材料的製造方法中,可依序對分散液進行均質處理、超音波處理與球磨處理。According to an embodiment of the present invention, in the method for producing a nanomaterial, the dispersion may be subjected to homogenization treatment, ultrasonic treatment, and ball milling treatment in sequence.

依照本發明的一實施例所述,在上述的奈米材料的製造方法中,可依序對分散液進行超音波處理、均質處理與球磨處理。According to an embodiment of the present invention, in the method for producing a nanomaterial, the dispersion may be subjected to ultrasonic treatment, homogenization treatment, and ball milling treatment in sequence.

依照本發明的一實施例所述,在上述的奈米材料的製造方法中,可依序對分散液進行均質處理與球磨處理。According to an embodiment of the present invention, in the method for producing a nanomaterial, the dispersion may be subjected to a homogenization treatment and a ball milling treatment in sequence.

依照本發明的一實施例所述,在上述的奈米材料的製造方法中,可依序對分散液進行超音波處理與球磨處理。According to an embodiment of the present invention, in the method for producing a nanomaterial, the dispersion may be subjected to ultrasonic treatment and ball milling in sequence.

基於上述,在本發明所提出的奈米材料的製造方法中,由於先對分散液進行均質處理與超音波處理的至少一者,再對分散液進行球磨處理,因此可獲得高產率與高品質的奈米材料。Based on the above, in the method for producing a nanomaterial according to the present invention, since at least one of the homogenization treatment and the ultrasonic treatment is performed on the dispersion, the dispersion is subjected to ball milling treatment, thereby obtaining high yield and high quality. Nano material.

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。The above described features and advantages of the invention will be apparent from the following description.

圖1為本發明一實施例的奈米材料的製造流程圖。1 is a flow chart showing the manufacture of a nanomaterial according to an embodiment of the present invention.

請參照圖1,進行步驟S100,對分散液進行均質處理與超音波處理的至少一者,其中分散液包含基材與溶劑。基材例如是石墨、二硫化鉬或氮化硼。舉例來說,使用石墨作為基材,可製作出石墨烯或石墨烯量子點的奈米材料。此外,使用二硫化鉬作為基材,可製作出二硫化鉬奈米材料。使用氮化硼作為基材,可製作出氮化硼奈米材料。溶劑可選用具有高分散能力的化學配方,以提高產率。溶劑例如是N-甲基吡咯烷酮、二甲基亞碸(DMSO)或N,N-二甲基甲醯胺(DMF)。溶劑的濃度例如是70%至100%。Referring to FIG. 1, step S100 is performed to perform at least one of a homogenization treatment and an ultrasonic treatment on the dispersion liquid, wherein the dispersion liquid comprises a substrate and a solvent. The substrate is, for example, graphite, molybdenum disulfide or boron nitride. For example, using graphite as a substrate, a nanomaterial of graphene or graphene quantum dots can be produced. Further, using molybdenum disulfide as a substrate, a molybdenum disulfide nanomaterial can be produced. A boron nitride nanomaterial can be produced by using boron nitride as a substrate. The solvent can be selected from chemical formulations with high dispersibility to increase the yield. The solvent is, for example, N-methylpyrrolidone, dimethyl hydrazine (DMSO) or N,N-dimethylformamide (DMF). The concentration of the solvent is, for example, 70% to 100%.

均質處理可使基材均勻分散於溶劑中,並提供剪切力來降低基材的層狀結構之間的凡得瓦力。均質處理例如是藉由均質機來進行。均質處理的時間例如是0.5小時至4小時。均質處理的轉速例如是8000 rpm至30000 rpm。Homogenization allows the substrate to be uniformly dispersed in the solvent and provides shear to reduce the van der Waals between the layered structures of the substrate. The homogenization treatment is carried out, for example, by a homogenizer. The time of the homogenization treatment is, for example, 0.5 hours to 4 hours. The rotational speed of the homogenization treatment is, for example, 8,000 rpm to 30,000 rpm.

超音波處理可使溶劑分子插層至基材的層狀結構之間且吸附在基材表面,而達到降低凡得瓦力的效果。超音波處理例如是藉由超音波震盪機來進行。超音波處理的時間例如是2小時至6小時。超音波處理的頻率例如是37 kHz至80 kHz。Ultrasonic treatment allows solvent molecules to be intercalated between the layered structures of the substrate and adsorbed on the surface of the substrate to achieve a reduced van der Waals effect. Ultrasonic processing is performed, for example, by an ultrasonic oscillator. The time of the ultrasonic processing is, for example, 2 hours to 6 hours. The frequency of ultrasonic processing is, for example, 37 kHz to 80 kHz.

進行步驟S102,在對分散液進行均質處理與超音波處理的至少一者之後,對分散液進行球磨處理。球磨處理可提供剝層的能量而得到奈米材料。球磨處理的時間例如是0.5小時至4小時,且球磨處理的轉速例如是500 rpm至1750 rpm。In step S102, after at least one of the homogenization treatment and the ultrasonic treatment of the dispersion liquid, the dispersion liquid is subjected to a ball milling treatment. The ball milling process provides the energy of the delamination to obtain a nanomaterial. The time of the ball milling treatment is, for example, 0.5 hours to 4 hours, and the rotational speed of the ball milling treatment is, for example, 500 rpm to 1750 rpm.

此外,藉由本實施例的奈米材料的製造方法可製作出的奈米材料例如是石墨烯、石墨烯量子點、二硫化鉬奈米材料或氮化硼奈米材料等,但本發明並不以此為限。另外,上述奈米材料可應用於如光電、能源儲存、綠能發電、環境生醫感測或功能性複合材料等領域。具體來說,上述奈米材料可應用於透明導電薄膜、生化感測器、超級電容器、鋰離子電池、高頻電子元件、光感測器、水質純化或高效能導熱片等元件。In addition, the nano material which can be produced by the method for producing a nano material of the present embodiment is, for example, graphene, graphene quantum dots, molybdenum disulfide nano material or boron nitride nano material, but the present invention does not This is limited to this. In addition, the above nano materials can be applied to fields such as photovoltaic, energy storage, green power generation, environmental biomedical sensing or functional composite materials. Specifically, the above nano material can be applied to transparent conductive films, biochemical sensors, supercapacitors, lithium ion batteries, high frequency electronic components, photo sensors, water purification or high performance thermal conductive sheets.

基於上述實施例可知,在上述實施例的奈米材料的製造方法中,由於先對分散液進行均質處理與超音波處理的至少一者,再對分散液進行球磨處理,因此可獲得高產率與高品質的奈米材料。詳細來說,可利用球磨處理提供主要物理作用力(如,剪應力)來合成奈米材料,並在球磨處理之前藉由均質處理及/或超音波處理來導入其他物理作用力(高速攪拌及/或超音波震盪)來提高奈米材料的產率,且所製作出的奈米材料的品質佳。According to the above embodiment, in the method for producing a nanomaterial according to the above embodiment, since at least one of the homogenization treatment and the ultrasonic treatment is performed on the dispersion, the dispersion is subjected to ball milling treatment, thereby obtaining high yield and High quality nano material. In detail, ball milling can be used to provide primary physical forces (eg, shear stress) to synthesize nanomaterials, and other physical forces (high-speed agitation and introduction) can be introduced by homogenization and/or ultrasonic treatment prior to ball milling. / or ultrasonic shock) to improve the yield of nanomaterials, and the quality of the nanomaterials produced is good.

此外,上述實施例的奈米材料的製造方法相較於其他液相剝離系統具有簡易且快速的合成程序,且與傳統超音波震盪的方式相比,可以達到大量工業化的製造程序。Further, the method for producing a nanomaterial of the above embodiment has a simple and rapid synthesis procedure as compared with other liquid phase stripping systems, and a large number of industrialized manufacturing processes can be achieved as compared with the conventional ultrasonic oscillating mode.

圖2至圖5為本發明其他實施例的奈米材料的製造流程圖。圖2至圖5中的分散液的組成以及均質處理、超音波處理與球磨處理的參數條件可參考圖1的實施例中的說明,於此不再贅述。此外,在圖2至圖5的實施例中,為了便於說明,以使用石墨作為基材而製作出石墨烯的奈米材料為例來進行說明,但本發明並不以此為限。亦即,所述技術領域具有通常知識者可將圖2至圖5的奈米材料的製造方法用於製造其他奈米材料。2 to 5 are flow charts showing the manufacture of a nano material according to another embodiment of the present invention. The composition of the dispersion in FIGS. 2 to 5 and the parameter conditions of the homogenization treatment, the ultrasonic treatment, and the ball milling treatment can be referred to the description in the embodiment of FIG. 1, and details are not described herein again. Further, in the examples of FIGS. 2 to 5, for convenience of explanation, a nanomaterial in which graphene is produced using graphite as a substrate will be described as an example, but the invention is not limited thereto. That is, those skilled in the art can use the method of manufacturing the nanomaterial of FIGS. 2 to 5 to manufacture other nanomaterials.

以下,藉由圖2至圖5來說明圖1的奈米材料的製造方法的各種態樣。請參照圖2,依序對分散液進行均質處理(步驟S200)、超音波處理(步驟S202)與球磨處理(步驟S204)。請參照圖3,依序對分散液進行超音波處理(步驟S300)、均質處理(步驟S302)與球磨處理(步驟S304)。請參照圖4,依序對分散液進行均質處理(步驟S400)與球磨處理(步驟S402)。請參照圖5,依序對分散液進行超音波處理(步驟S500)與球磨處理(步驟S502)。Hereinafter, various aspects of the method for producing the nanomaterial of Fig. 1 will be described with reference to Figs. 2 to 5 . Referring to Fig. 2, the dispersion is subjected to homogenization treatment (step S200), ultrasonic treatment (step S202), and ball milling treatment (step S204). Referring to Fig. 3, the dispersion is subjected to ultrasonic processing (step S300), homogenization processing (step S302), and ball milling processing (step S304). Referring to Fig. 4, the dispersion is subjected to homogenization treatment (step S400) and ball milling treatment (step S402). Referring to Fig. 5, the dispersion is subjected to ultrasonic treatment (step S500) and ball milling (step S502).

在圖2至圖5的實施例中,均質處理可使石墨均勻分散於溶劑中,並提供剪切力來降低石墨層之間的凡得瓦力。超音波處理可使溶劑分子插層至石墨層之間且吸附在石墨表面,而達到降低凡得瓦力的效果。球磨處理可提供剝層的能量而得到石墨烯。In the embodiment of Figures 2 through 5, the homogenization treatment allows the graphite to be uniformly dispersed in the solvent and provides shear to reduce the van der Waals force between the graphite layers. Ultrasonic treatment allows solvent molecules to be intercalated between the graphite layers and adsorbed on the graphite surface to achieve a reduced van der Waals effect. The ball milling process provides the energy of the delamination to obtain graphene.

基於上述實施例可知,上述實施例是先對分散液進行均質處理與超音波處理的至少一者,再對分散液進行球磨處理,因此可獲得高產率與高品質的奈米材料。According to the above embodiment, in the above embodiment, at least one of the homogenization treatment and the ultrasonic treatment of the dispersion liquid is performed, and the dispersion liquid is subjected to ball milling treatment, whereby a nano material having high yield and high quality can be obtained.

實驗例1:石墨烯的製作Experimental Example 1: Production of graphene

在實驗例1中,所使用的分散液包含作為基材的石墨與作為溶劑的N-甲基吡咯烷酮(NMP,70%、80%或100%)。均質處理所使用的均質機為T10 basic /S10N-10G(商品名,德國IKA公司製),轉速設定為30000 rpm。超音波處理所使用的超音波震盪機為Elma sonic P60H(商品名,德國Elma公司製),頻率設定為37 kHz。球磨處理所使用的球磨機為RETSCH High Energy Ball Milling E max(商品名,德國RETSCH股份有限公司製),轉速設定為1500 rpm。 In Experimental Example 1, the dispersion used contained graphite as a substrate and N-methylpyrrolidone (NMP, 70%, 80% or 100%) as a solvent. The homogenizer used for the homogenization treatment was T10 basic / S10N-10G (trade name, manufactured by IKA, Germany), and the rotation speed was set to 30,000 rpm. The ultrasonic oscillator used in the ultrasonic processing was an Elma sonic P60H (trade name, manufactured by Elma, Germany), and the frequency was set to 37 kHz. The ball mill used for the ball milling treatment was RETSCH High Energy Ball Milling E max (trade name, manufactured by RETSCH, Germany), and the number of revolutions was set to 1,500 rpm.

各實例與比較實例的實驗設計與實驗結果如下表1所示。The experimental design and experimental results of each example and comparative example are shown in Table 1 below.

表1 <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> 實例 </td><td> 製造方法 </td><td> 溶劑 </td><td> I<sub>D</sub>/I<sub>G</sub>比 </td><td> 2D帶位置 (cm<sup>-1</sup>) </td><td> 導電紙的 電阻值 (Ω/□) </td><td> 產率 (%) </td></tr><tr><td> 步驟1 (1小時) </td><td> 步驟2 (1小時) </td><td> 步驟3 (1小時) </td></tr><tr><td> 實例1 </td><td> 均質處理 </td><td> 超音波 處理 </td><td> 球磨處理 </td><td> 80% NMP/ 20% 水 </td><td> 0.343 </td><td> 2702.66 </td><td> 120.2±7.86 </td><td> 43.88 </td></tr><tr><td> 實例2 </td><td> 均質處理 </td><td> 超音波 處理 </td><td> 球磨處理 </td><td> 100% NMP </td><td> 0.431 </td><td> 2702.50 </td><td> 179.2±14.90 </td><td> 19.60 </td></tr><tr><td> 實例3 </td><td> 均質處理 </td><td> 超音波 處理 </td><td> 球磨處理 </td><td> 70% NMP/ 30% 水 </td><td> 0.373 </td><td> 2707.46 </td><td> 287.2±41.70 </td><td> 37.08 </td></tr><tr><td> 實例4 </td><td> 超音波 處理 </td><td> 均質處理 </td><td> 球磨處理 </td><td> 100% NMP </td><td> 0.461 </td><td> 2708.77 </td><td> 335.3±33.28 </td><td> 15.52 </td></tr><tr><td> 實例5 </td><td> 均質處理 </td><td> - </td><td> 球磨處理 </td><td> 100% NMP </td><td> 0.527 </td><td> 2709.57 </td><td> 176.7±4.33 </td><td> 12.35 </td></tr><tr><td> 實例6 </td><td> - </td><td> 超音波 處理 </td><td> 球磨處理 </td><td> 100% NMP </td><td> 0.460 </td><td> 2709.48 </td><td> 805.4±38.88 </td><td> 10.85 </td></tr><tr><td> 比較實例1 </td><td> - </td><td> - </td><td> 球磨處理 </td><td> 100% NMP </td><td> 0.418 </td><td> 2710.53 </td><td> 397.7±22.08 </td><td> 5.80 </td></tr><tr><td> 比較實例2 </td><td> 均質處理 </td><td> - </td><td> - </td><td> 100% NMP </td><td> 0.210 </td><td> 2710.22 </td><td> 14782.75± 5522.24 </td><td> 0.68 </td></tr><tr><td> 比較實例3 </td><td> - </td><td> 超音波 處理 </td><td> - </td><td> 100% NMP </td><td> 0..329 </td><td> 2709.59 </td><td> 1185.98± 280.36 </td><td> 0.15 </td></tr><tr><td> 石墨 </td><td> - </td><td> - </td><td> - </td><td> - </td><td> 0.0718 </td><td> 2716.14 </td><td> N/A </td><td> - </td></tr></TBODY></TABLE>Table 1         <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> Instance</td><td> Manufacturing Method </td><td> Solvent</td ><td> I<sub>D</sub>/I<sub>G</sub> ratio</td><td> 2D band position (cm<sup>-1</sup>) </td> <td> Resistance value of conductive paper (Ω/□) </td><td> Yield (%) </td></tr><tr><td> Step 1 (1 hour) </td>< Td> Step 2 (1 hour) </td><td> Step 3 (1 hour) </td></tr><tr><td> Instance 1 </td><td> Homogenization </td> <td> Ultrasonic processing</td><td> Ball milling treatment</td><td> 80% NMP/ 20% water</td><td> 0.343 </td><td> 2702.66 </td>< Td> 120.2±7.86 </td><td> 43.88 </td></tr><tr><td> Example 2 </td><td> Homogeneous Treatment</td><td> Ultrasonic Processing</ Td><td> Ball Milling</td><td> 100% NMP </td><td> 0.431 </td><td> 2702.50 </td><td> 179.2±14.90 </td><td> 19.60 </td></tr><tr><td> Example 3 </td><td> Homogeneous Treatment</td><td> Ultrasonic Processing</td><td> Ball Milling</td>< Td> 70% NMP/ 30% water</td><td> 0.373 </td><td> 2707.46 </td><td> 287.2±41.70 </td><td> 37.08 </td></tr ><tr><td> Instance 4 </td><td> Ultrasonic Processing</t d><td> homogenization treatment</td><td> ball milling treatment</td><td> 100% NMP </td><td> 0.461 </td><td> 2708.77 </td><td> 335.3 ±33.28 </td><td> 15.52 </td></tr><tr><td> Instance 5 </td><td> Homogenization </td><td> - </td><td> Ball Milling Treatment</td><td> 100% NMP </td><td> 0.527 </td><td> 2709.57 </td><td> 176.7±4.33 </td><td> 12.35 </td> </tr><tr><td> Instance 6 </td><td> - </td><td> Ultrasonic Processing</td><td> Ball Milling</td><td> 100% NMP < /td><td> 0.460 </td><td> 2709.48 </td><td> 805.4±38.88 </td><td> 10.85 </td></tr><tr><td> Comparative Example 1 </td><td> - </td><td> - </td><td> Ball Milling</td><td> 100% NMP </td><td> 0.418 </td><td> 2710.53 </td><td> 397.7±22.08 </td><td> 5.80 </td></tr><tr><td> Comparative Example 2 </td><td> Homogeneous Treatment</td>< Td> - </td><td> - </td><td> 100% NMP </td><td> 0.210 </td><td> 2710.22 </td><td> 14782.75± 5522.24 </td ><td> 0.68 </td></tr><tr><td> Comparative Example 3 </td><td> - </td><td> Ultrasonic Processing</td><td> - </ Td><td> 100% NMP </td><td> 0..329 </td><td> 2709.59 </td><td> 1185.98± 28 0.36 </td><td> 0.15 </td></tr><tr><td> Graphite</td><td> - </td><td> - </td><td> - </ Td><td> - </td><td> 0.0718 </td><td> 2716.14 </td><td> N/A </td><td> - </td></tr></ TBODY></TABLE>

1.1:產率 利用可見光紫外光分光光譜儀來量測其產率。由表1可知,由於實例1至實例6是在對分散液進行均質處理與超音波處理的至少一者之後,對分散液進行球磨處理,來製作石墨烯,因此具有較高的產率。其中,實例1的產率更是高達43.88%。此外,採用均質處理的比較實例2與採用超音波處理的比較實例3無法提供較多的能量以及剪應力來剝層石墨,因此產率較低。相較於採用均質處理的比較實例2與採用超音波處理的比較實例3,採用球磨處理的比較實例1可以得到更高產率的石墨烯。然而,由於比較實例1至比較實例3僅對分散液進行單一種處理方式來製作石墨烯,因此產率遠低於實例1至實例6。1.1: Yield The yield was measured using a visible light ultraviolet spectrophotometer. As is apparent from Table 1, since Examples 1 to 6 are at least one of the homogenization treatment and the ultrasonic treatment of the dispersion, the dispersion is subjected to a ball milling treatment to produce graphene, and thus has a high yield. Among them, the yield of Example 1 was even higher as 43.88%. Further, Comparative Example 2 using the homogenization treatment and Comparative Example 3 using the ultrasonic treatment failed to provide more energy and shear stress to peel the graphite, and thus the yield was low. Comparative Example 1 using ball milling treatment resulted in a higher yield of graphene than Comparative Example 2 using homogenization treatment and Comparative Example 3 using ultrasonic treatment. However, since Comparative Example 1 to Comparative Example 3 were only subjected to a single treatment of the dispersion to produce graphene, the yield was much lower than that of Examples 1 to 6.

1.2:I D/I G比 反應完的石墨烯分散液透過收集的方式得到石墨烯粉體,可使用拉曼光譜來獲得的I D/I G比(其中,I D為D帶(D band)的強度,I G為G帶(G band)的強度),進而藉由I D/I G比來得知石墨烯的缺陷程度。當I D/I G比越小時,石墨烯的缺陷程度低,亦即品質較佳。由表1可知,實例1至實例6的I D/I G比的數值低,因此石墨烯的缺陷程度低,且品質較佳。 1.2: I D /I G is a graphene powder obtained by collecting the graphene dispersion, and the I D /I G ratio can be obtained by Raman spectroscopy (wherein I D is a D band (D band) The intensity of I G is the intensity of the G band, and the degree of defect of graphene is known by the ratio of I D /I G . When the I D /I G ratio is smaller, the degree of defects of graphene is low, that is, the quality is better. As is apparent from Table 1, the values of the I D /I G ratio of Examples 1 to 6 are low, and thus the degree of defects of graphene is low and the quality is good.

1.3:2D帶(2D band)位置 可利用拉曼光譜中2D帶的位置,來推算石墨烯的層數。當2D帶位於波數越小的位置時,表示石墨烯的層數越少,亦即品質較佳。由表1可知,相較於未經反應的石墨,經過反應後的石墨烯的2D帶位於波數較小的位置,亦即層數較少,且品質較佳。其中,由實例1至實例6的2D帶位於波數較小的位置可知,實例1至實例6的層數較少,且品質較佳。1.3: 2D band position The position of the 2D band in the Raman spectrum can be used to estimate the number of layers of graphene. When the 2D band is located at a position where the wave number is smaller, it means that the number of layers of graphene is smaller, that is, the quality is better. As can be seen from Table 1, the 2D band of the graphene after the reaction is located at a position where the wave number is small, that is, the number of layers is small and the quality is better than that of the unreacted graphite. Among them, the 2D bands of Examples 1 to 6 are located at positions where the wave number is small, and the number of layers of Examples 1 to 6 is small and the quality is good.

1.4:電阻值1.4: Resistance value

將石墨烯粉體製作成導電紙,並且測量其電阻值。由表1可知,實例1與實例2的電阻值分別為120.2 Ω/□與179.2 Ω/□,且比較實例1的電阻值為397.7Ω/□。由此可知,實例1與實例2的石墨烯的電阻低,可應用至導電材料領域。The graphene powder was made into a conductive paper, and its resistance value was measured. As can be seen from Table 1, the resistance values of Examples 1 and 2 were 120.2 Ω/□ and 179.2 Ω/□, respectively, and the resistance value of Comparative Example 1 was 397.7 Ω/□. It can be seen that the graphenes of Examples 1 and 2 have low electrical resistance and can be applied to the field of conductive materials.

實驗例2:將石墨烯應用於表面增強拉曼散射(SERS)Experimental Example 2: Application of Graphene to Surface Enhanced Raman Scattering (SERS)

石墨烯可應用至表面增強拉曼散射的領域。詳細來說,可將石墨烯作為成長金屬奈米銀粒子的載體,利用一大氣常壓微電漿技術裝置將金屬奈米銀粒子跟石墨烯形成複合材料。接著,以激光染料羅丹明6G(Rhodamine 6G,以下簡稱R6G)作為標準待測物分子,量測R6G溶液(濃度為10 -4M)在銀-石墨烯複合材料上的表面增強拉曼散射光譜,並進一步計算增強因子(Enhance Factor)的數值,結果如下表2所示。 Graphene can be applied to the field of surface enhanced Raman scattering. In detail, graphene can be used as a carrier for the growing metal nano-silver particles, and the metal nano-silver particles and the graphene are composited by an atmospheric atmospheric micro-plasma technology device. Next, the laser-enhanced Rhodamine 6G (R6G) was used as the standard analyte molecule to measure the surface-enhanced Raman scattering of R6G solution (concentration 10 -4 M) on silver-graphene composites. And further calculate the value of the enhancement factor (Enhance Factor), the results are shown in Table 2 below.

表2 <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> 實例 </td><td> 量測方式 </td><td> 波數 </td><td> 增強因子 </td></tr><tr><td> 1647.2 cm<sup>-1</sup></td><td> 774.3 cm<sup>-1</sup></td><td> 610.8 cm<sup>-1</sup></td></tr><tr><td> 比較實例4 </td><td> R6G粉末 </td><td> 27.09 </td><td> 20.60 </td><td> 26.67 </td><td> 1 </td></tr><tr><td> 比較實例5 </td><td> R6G溶液塗佈在銀與傳統氧化石墨烯的複合材料上 </td><td> 81.15 </td><td> 87.71 </td><td> 139.12 </td><td> 4.79×10<sup>4</sup></td></tr><tr><td> 實例7 </td><td> R6G溶液塗佈在銀與實例1的石墨烯的複合材料上 </td><td> 874.99 </td><td> 581.70 </td><td> 1270.46 </td><td> 4.37×10<sup>5</sup></td></tr></TBODY></TABLE>Table 2         <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> Instance</td><td> Measurement Method</td><td> Wave Number< /td><td> Enhancement factor</td></tr><tr><td> 1647.2 cm<sup>-1</sup></td><td> 774.3 cm<sup>-1</sup ></td><td> 610.8 cm<sup>-1</sup></td></tr><tr><td> Comparative Example 4 </td><td> R6G Powder</td>< Td> 27.09 </td><td> 20.60 </td><td> 26.67 </td><td> 1 </td></tr><tr><td> Comparative Example 5 </td><td > R6G solution is coated on the composite of silver and traditional graphene oxide</td><td> 81.15 </td><td> 87.71 </td><td> 139.12 </td><td> 4.79×10 <sup>4</sup></td></tr><tr><td> Example 7 </td><td> The R6G solution was coated on the composite of silver and graphene of Example 1</td ><td> 874.99 </td><td> 581.70 </td><td> 1270.46 </td><td> 4.37×10<sup>5</sup></td></tr></TBODY ></TABLE>

由表2的結果可知,相較於比較實例4與比較實例5,使用實例1的石墨烯所製成的銀-石墨烯複合材料可大幅地增強拉曼散射效應的訊號強度。From the results of Table 2, the silver-graphene composite material produced using the graphene of Example 1 can greatly enhance the signal intensity of the Raman scattering effect as compared with Comparative Example 4 and Comparative Example 5.

綜上所述,在上述實施例的奈米材料的製造方法中,由於先對分散液進行均質處理與超音波處理的至少一者,再對分散液進行球磨處理,因此可獲得高產率與高品質的奈米材料。As described above, in the method for producing a nanomaterial according to the above embodiment, since at least one of the homogenization treatment and the ultrasonic treatment is performed on the dispersion, the dispersion is subjected to ball milling treatment, thereby obtaining high yield and high. Quality nano material.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and any one of ordinary skill in the art can make some changes and refinements without departing from the spirit and scope of the present invention. The scope of the invention is defined by the scope of the appended claims.

S100、S102、S200、S202、S204、S300、S302、S304、S400、S402、S500、S502‧‧‧步驟S100, S102, S200, S202, S204, S300, S302, S304, S400, S402, S500, S502‧‧

圖1為本發明一實施例的奈米材料的製造流程圖。 圖2至圖5為本發明其他實施例的奈米材料的製造流程圖。1 is a flow chart showing the manufacture of a nanomaterial according to an embodiment of the present invention. 2 to 5 are flow charts showing the manufacture of a nano material according to another embodiment of the present invention.

S100、S102‧‧‧步驟 S100, S102‧‧‧ steps

Claims (5)

一種奈米材料的製造方法,包括:依序對分散液進行均質處理、超音波處理與球磨處理,其中所述分散液包含基材與溶劑,所述基材為石墨,所述溶劑為N-甲基吡咯烷酮,且所述溶劑的濃度為70%至100%。 A method for producing a nano material, comprising: sequentially performing a homogenization treatment, an ultrasonic treatment and a ball milling treatment on a dispersion, wherein the dispersion comprises a substrate and a solvent, the substrate is graphite, and the solvent is N- Methylpyrrolidone, and the concentration of the solvent is from 70% to 100%. 如申請專利範圍第1項所述的奈米材料的製造方法,其中所述奈米材料包括石墨烯或石墨烯量子點。 The method of producing a nanomaterial according to claim 1, wherein the nanomaterial comprises graphene or graphene quantum dots. 如申請專利範圍第1項所述的奈米材料的製造方法,其中所述球磨處理的時間為0.5小時至4小時,且所述球磨處理的轉速為500rpm至1750rpm。 The method for producing a nanomaterial according to claim 1, wherein the ball milling treatment time is 0.5 hours to 4 hours, and the ball milling treatment rotation speed is 500 rpm to 1750 rpm. 一種奈米材料的製造方法,包括:依序對分散液進行超音波處理、均質處理與球磨處理,其中所述分散液包含基材與溶劑,所述基材為石墨,所述溶劑為N-甲基吡咯烷酮,且所述溶劑的濃度為70%至100%。 A method for producing a nano material, comprising: ultrasonically treating, dispersing, and ball-milling a dispersion, wherein the dispersion comprises a substrate and a solvent, the substrate is graphite, and the solvent is N- Methylpyrrolidone, and the concentration of the solvent is from 70% to 100%. 一種奈米材料的製造方法,包括:依序對分散液進行超音波處理與球磨處理,其中所述分散液包含基材與溶劑,所述基材為石墨,所述溶劑為N-甲基吡咯烷酮,且所述溶劑的濃度為70%至100%。 A method for producing a nano material, comprising: ultrasonically treating and performing a ball milling treatment on a dispersion, wherein the dispersion comprises a substrate and a solvent, the substrate is graphite, and the solvent is N-methylpyrrolidone And the concentration of the solvent is from 70% to 100%.
TW105131131A 2016-09-28 2016-09-28 Method of manufacturing nanomaterial TWI614210B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW105131131A TWI614210B (en) 2016-09-28 2016-09-28 Method of manufacturing nanomaterial

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW105131131A TWI614210B (en) 2016-09-28 2016-09-28 Method of manufacturing nanomaterial

Publications (2)

Publication Number Publication Date
TWI614210B true TWI614210B (en) 2018-02-11
TW201811664A TW201811664A (en) 2018-04-01

Family

ID=62014677

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105131131A TWI614210B (en) 2016-09-28 2016-09-28 Method of manufacturing nanomaterial

Country Status (1)

Country Link
TW (1) TWI614210B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201522215A (en) * 2013-12-13 2015-06-16 Nat Inst Chung Shan Science & Technology Manufacturing method for a graphite sheet
TW201620827A (en) * 2014-12-11 2016-06-16 中原大學 Method for producing a graphene
CN105861865A (en) * 2016-06-03 2016-08-17 南昌航空大学 Method for preparing graphene reinforced aluminum matrix composite material by microwave sintering

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201522215A (en) * 2013-12-13 2015-06-16 Nat Inst Chung Shan Science & Technology Manufacturing method for a graphite sheet
TW201620827A (en) * 2014-12-11 2016-06-16 中原大學 Method for producing a graphene
CN105861865A (en) * 2016-06-03 2016-08-17 南昌航空大学 Method for preparing graphene reinforced aluminum matrix composite material by microwave sintering

Also Published As

Publication number Publication date
TW201811664A (en) 2018-04-01

Similar Documents

Publication Publication Date Title
Qiu et al. Reliable molecular trace-detection based on flexible SERS substrate of graphene/Ag-nanoflowers/PMMA
Liu et al. Plasmonic coupling of Au nanoclusters on a flexible MXene/Graphene oxide fiber for ultrasensitive SERS sensing
Du et al. A facile chemical exfoliation method to obtain large size boron nitride nanosheets
Mensing et al. Facile preparation of graphene–metal phthalocyanine hybrid material by electrolytic exfoliation
Liao et al. Oxidative etching of hexagonal boron nitride toward nanosheets with defined edges and holes
Romanov et al. Highly efficient thermophones based on freestanding single-walled carbon nanotube films
Kumar et al. An asymmetric electrically conducting self-aligned graphene/polymer composite thin film for efficient electromagnetic interference shielding
Li et al. Controlled-layer and large-area MoS 2 films encapsulated Au nanoparticle hybrids for SERS
Hu et al. Water flattens graphene wrinkles: laser shock wrapping of graphene onto substrate-supported crystalline plasmonic nanoparticle arrays
Li et al. Few-layer MoS2-encapsulated Cu nanoparticle hybrids fabricated by two-step annealing process for surface enhanced Raman scattering
Sharma et al. Study of optical and electrical properties of graphene oxide
Wang et al. Highly efficient production of graphene by an ultrasound coupled with a shear mixer in supercritical CO2
Barberio et al. Laser-plasma driven Synthesis of Carbon-based Nanomaterials
Wang et al. Unusual functionalization of reduced graphene oxide for excellent chemical surface-enhanced Raman scattering by coupling with ZnO
Okigawa et al. Electrical characterization of graphene films synthesized by low-temperature microwave plasma chemical vapor deposition
Wang et al. Improving dielectric properties of poly (vinylidene fluoride) composites: effects of surface functionalization of exfoliated graphene
Yoon et al. A case study: effect of defects in CVD-grown graphene on graphene enhanced Raman spectroscopy
Jiang et al. Copper/silver nanoparticle incorporated graphene films prepared by a low-temperature solution method for transparent conductive electrodes
Shruthi et al. Reducing graphene oxide using hydroiodic acid fumes and low temperature annealing for enhanced electrical conductivity
Ayhan CVD graphene-based flexible and transparent SERS substrate towards L-tyrosine detection
Wu et al. Dielectric properties and thermal conductivity of polyvinylidene fluoride synergistically enhanced with silica@ multi-walled carbon nanotubes and boron nitride
Hu et al. Functionalized Ti3C2Tx MXene with layer-dependent band gap for flexible NIR photodetectors
Roy et al. Structural, spectroscopic and electrical properties of liquid phase exfoliated few layered two-dimensional tungsten disulfide (WS2) using anionic surfactant
Kimiagar et al. Investigation of the effects of temperature and time on reduction of graphene oxide by microwave hydrothermal reactor
Jadhav et al. Temperature-dependent photoluminescence of graphene oxide