TWI614061B - Composite membrane utilized in membrane distillation - Google Patents

Composite membrane utilized in membrane distillation Download PDF

Info

Publication number
TWI614061B
TWI614061B TW104141552A TW104141552A TWI614061B TW I614061 B TWI614061 B TW I614061B TW 104141552 A TW104141552 A TW 104141552A TW 104141552 A TW104141552 A TW 104141552A TW I614061 B TWI614061 B TW I614061B
Authority
TW
Taiwan
Prior art keywords
water
layer
membrane
methacrylate
composite film
Prior art date
Application number
TW104141552A
Other languages
Chinese (zh)
Other versions
TW201720515A (en
Inventor
林伯儒
李雨霖
陳俊宏
Original Assignee
財團法人紡織產業綜合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財團法人紡織產業綜合研究所 filed Critical 財團法人紡織產業綜合研究所
Priority to TW104141552A priority Critical patent/TWI614061B/en
Publication of TW201720515A publication Critical patent/TW201720515A/en
Application granted granted Critical
Publication of TWI614061B publication Critical patent/TWI614061B/en

Links

Abstract

一種應用於膜蒸餾的複合膜,包含疏水性多孔膜、第一水膠層與第二水膠層。疏水性多孔膜包含相對的第一表面與第二表面,其中第一表面對應於膜蒸餾的熱端,第二表面對應於膜蒸餾的冷端。第二水膠層連接第一水膠層與疏水性多孔膜的第一表面,其中第二水膠層的含水率介於50%至90%之間,且第一水膠層的含水率大於第二水膠層的含水率。 A composite membrane applied to membrane distillation, comprising a hydrophobic porous membrane, a first aqueous rubber layer and a second aqueous rubber layer. The hydrophobic porous membrane comprises opposing first and second surfaces, wherein the first surface corresponds to the hot end of the membrane distillation and the second surface corresponds to the cold end of the membrane distillation. The second water layer is connected to the first surface of the first water layer and the hydrophobic porous film, wherein the water content of the second water layer is between 50% and 90%, and the moisture content of the first water layer is greater than The water content of the second water layer.

Description

用於膜蒸餾的複合膜 Composite membrane for membrane distillation

本發明是關於一種應用於膜蒸餾的膜材。 This invention relates to a film for use in membrane distillation.

由於水資源短缺,海水淡化或是水資源回收再利用已是膜蒸餾(membrane distillation)技術發展最重要的應用之一。膜蒸餾技術主要是利用具有疏水性的微多孔薄膜將高溫溶液與低溫溶液隔開,水蒸氣會因為高溫側與低溫側之間的蒸氣壓差,從高溫側經由薄膜上的膜孔流向低溫側,然後在低溫側凝結成液體。此蒸氣壓差是由兩側流體之間的溫度梯度所造成的。 Due to water shortages, desalination or water recycling has become one of the most important applications for membrane distillation. The membrane distillation technology mainly uses a hydrophobic microporous membrane to separate the high temperature solution from the low temperature solution. The water vapor flows from the high temperature side to the low temperature side through the membrane pore on the membrane due to the vapor pressure difference between the high temperature side and the low temperature side. And then condense into a liquid on the low temperature side. This vapor pressure difference is caused by the temperature gradient between the fluids on both sides.

由於膜蒸餾技術可以獲得極佳的處理水質,故除了海水淡化處理以外,以膜蒸餾技術進行廢水處理也逐漸受到重視。由於廢水中大都含具有界面活性的物質或是體積較大的油污,前者會使得廢水的表面張力大幅度下降,造成膜材的潤濕,後者會使得膜材堵塞導致通量大幅度下降,這兩種現象皆會使得膜蒸餾程序終止,使膜蒸餾技術難以應用於廢水的處理。 Since membrane distillation technology can obtain excellent treatment water quality, in addition to seawater desalination treatment, wastewater treatment by membrane distillation technology has also received increasing attention. Since most of the wastewater contains interfacially active substances or large oil stains, the former will cause the surface tension of the wastewater to drop drastically, causing the membrane to be wetted, and the latter will cause the membrane to clog and cause a large drop in flux. Both phenomena cause the membrane distillation process to be terminated, making membrane distillation technology difficult to apply to wastewater treatment.

本發明提供了一種用於膜蒸餾的複合膜,用以解決膜蒸餾技術應用於廢水時膜孔容易堵塞或是潤濕的問題,以延長膜蒸餾的操作時間。 The invention provides a composite membrane for membrane distillation, which solves the problem that the membrane pores are easily blocked or wetted when the membrane distillation technology is applied to waste water, so as to prolong the operation time of membrane distillation.

本發明之一實施方式提供了一種應用於膜蒸餾的複合膜,包含疏水性多孔膜、第一水膠層與第二水膠層。疏水性多孔膜包含相對的第一表面與第二表面,其中第一表面對應於膜蒸餾的熱端,第二表面對應於膜蒸餾的冷端。第二水膠層連接第一水膠層與疏水性多孔膜的第一表面,其中第二水膠層的含水率介於50%至90%之間,且第一水膠層的含水率大於第二水膠層的含水率,其中含水率的定義如下:

Figure TWI614061BD00001
其中Ws代表潤濕後的水膠層重量,Wd代表乾燥後的水膠層重量。 One embodiment of the present invention provides a composite membrane for use in membrane distillation comprising a hydrophobic porous membrane, a first aqueous rubber layer and a second aqueous rubber layer. The hydrophobic porous membrane comprises opposing first and second surfaces, wherein the first surface corresponds to the hot end of the membrane distillation and the second surface corresponds to the cold end of the membrane distillation. The second water layer is connected to the first surface of the first water layer and the hydrophobic porous film, wherein the water content of the second water layer is between 50% and 90%, and the moisture content of the first water layer is greater than The water content of the second water layer, wherein the water content is defined as follows:
Figure TWI614061BD00001
Where Ws represents the weight of the water layer after wetting, and Wd represents the weight of the water layer after drying.

複合膜中包含有含水率不同的兩水膠層以捕捉界面活性粒子(團),避免疏水性多孔膜遭界面活性粒子(團)潤濕。複合膜更以具有較高含水率的水膠層接觸熱端的廢水,以讓廢水中的油污不易沾附而堆積在複合膜上,以避免複合膜因堵塞而導致通量下降,進而有效延長複合膜的操作壽命。 The composite film contains a two-water gel layer having different water contents to capture the interface active particles (cluster), and the hydrophobic porous film is prevented from being wetted by the interface active particles. The composite membrane contacts the hot-end wastewater with a water-mud layer with a higher water content, so that the oil in the wastewater is less likely to adhere and accumulate on the composite membrane, so as to prevent the composite membrane from being clogging and causing a decrease in flux, thereby effectively prolonging the composite. The operational life of the membrane.

100‧‧‧複合膜 100‧‧‧Composite film

110‧‧‧疏水性多孔膜 110‧‧‧hydrophobic porous membrane

112‧‧‧第一表面 112‧‧‧ first surface

114‧‧‧第二表面 114‧‧‧ second surface

116‧‧‧膜孔 116‧‧‧ film hole

120‧‧‧第一水膠層 120‧‧‧First water layer

130‧‧‧第二水膠層 130‧‧‧Second water layer

200‧‧‧熱端 200‧‧‧ hot end

210‧‧‧廢水 210‧‧‧ Wastewater

212‧‧‧油污 212‧‧‧ oil stains

220‧‧‧界面活性粒子(團) 220‧‧‧Interfacial active particles (group)

222‧‧‧親水端 222‧‧‧Hydrophilic end

224‧‧‧厭水端 224‧‧‧Live end

300‧‧‧冷端 300‧‧‧ cold end

為讓本發明之上述和其他目的、特徵、優點與實施例能更明顯易懂,所附圖式之詳細說明如下:第1圖為本發明之應用於膜蒸餾之複合膜一實施例於應用 時的剖面示意圖。 The above and other objects, features, advantages and embodiments of the present invention will become more apparent and understood. Schematic diagram of the time.

第2圖為本發明之複合膜之不同實施例於一段操作時間後之通量-導電率的關係圖。 Figure 2 is a graph of flux-conductivity for a different embodiment of the composite membrane of the present invention after a period of operation.

以下將以圖式及詳細說明清楚說明本發明之精神,任何所屬技術領域中具有通常知識者在瞭解本發明之較佳實施例後,當可由本發明所教示之技術,加以改變及修飾,其並不脫離本發明之精神與範圍。 The spirit and scope of the present invention will be apparent from the following description of the preferred embodiments of the invention. The spirit and scope of the invention are not departed.

紡織廠的染整廢水是一種水量大、水溫高的工業廢水,是一種相當有潛力以膜蒸餾技術進行廢水回收再利用的對象。但如前所述,在染整製程中所添加的化學物質,如均染劑、柔軟劑及其他有機物等物質,都是容易使膜堵塞或潤濕的物質,如不加以解決即無法直接以膜蒸餾技術處理該廢水。此外,又因為染整廢水中的成分過於複雜,難以針對特定成份進行篩除,因此,本發明便提出一種改良的複合膜,用以提升膜蒸餾處理廢水的能力。 Dyeing and finishing wastewater of textile mills is an industrial wastewater with large water volume and high water temperature. It is a kind of object with considerable potential for wastewater recycling and reuse. However, as mentioned above, chemicals added in the dyeing and finishing process, such as leveling agents, softeners, and other organic substances, are substances that easily block or wet the film. If they are not solved, they cannot be directly The membrane distillation technique treats the wastewater. In addition, since the components in the dyeing and finishing wastewater are too complicated to be screened for specific components, the present invention proposes an improved composite membrane for improving the ability of membrane distillation to treat wastewater.

參照第1圖,其為本發明之應用於膜蒸餾之複合膜一實施例於應用時的剖面示意圖。複合膜100包含有疏水性多孔膜110以及設置於疏水性多孔膜110上之第一水膠層120與第二水膠層130。疏水性多孔膜110包含有相對的第一表面112以及第二表面114,第一表面112為對應於熱端200,第二表面114則為對應於冷端300。第二水膠層130設置在疏水性多孔膜110的第一表面112上,第一水膠層120再設置於第二水膠 層130上。更具體地說,第一水膠層120與第二水膠層130皆設置於疏水性多孔膜110對應於熱端200的一側,而第二水膠層130連接第一水膠層120以及疏水性多孔膜110。 Referring to Figure 1, there is shown a cross-sectional view of an embodiment of a composite membrane for membrane distillation of the present invention in use. The composite film 100 includes a hydrophobic porous film 110 and a first water layer 120 and a second water layer 130 disposed on the hydrophobic porous film 110. The hydrophobic porous membrane 110 includes an opposing first surface 112 corresponding to the hot end 200 and a second surface 114 corresponding to the cold end 300. The second water gel layer 130 is disposed on the first surface 112 of the hydrophobic porous film 110, and the first water gel layer 120 is further disposed on the second water gel On layer 130. More specifically, the first water layer 120 and the second water layer 130 are disposed on one side of the hydrophobic porous film 110 corresponding to the hot end 200, and the second water layer 130 is connected to the first water layer 120 and The hydrophobic porous film 110.

疏水性多孔膜110具有多個膜孔116,膜孔116連通疏水性多孔膜110的第一表面112與第二表面114。前述的熱端200係指複合膜100兩側溫度相對較高的一端,其包含具有較高溫度以進行膜蒸餾處理的流體,如高溫的廢水210。冷端300則是複合膜100兩側溫度相對較低的一端,熱端200中的水氣(體積微小的液態水)會穿過第一水膠層120與第二水膠層130後通過疏水性多孔膜110上的膜孔116到達冷端300後,在冷端300處凝結為液體的水而被收集。通過此種膜蒸餾手法所得到的水由於是由水氣所凝結而成,因此幾乎不具有雜質存在。 The hydrophobic porous membrane 110 has a plurality of membrane pores 116 that communicate with the first surface 112 and the second surface 114 of the hydrophobic porous membrane 110. The aforementioned hot end 200 refers to a relatively high temperature side of the composite film 100, which contains a fluid having a relatively high temperature for film distillation treatment, such as high temperature wastewater 210. The cold end 300 is a relatively low temperature end of the composite membrane 100, and the water vapor (small liquid water) in the hot end 200 passes through the first water gel layer 120 and the second water gel layer 130 and then passes through the hydrophobic layer. The film pores 116 on the porous membrane 110 reach the cold end 300 and are collected as liquid water at the cold end 300 to be collected. Since the water obtained by such a membrane distillation method is formed by condensation of moisture, there is almost no impurity present.

複合膜100中的第一水膠層120與第二水膠層130皆為高含水率水膠層,其中第一水膠層120與第二水膠層130分別具有不同的含水率,且第一水膠層120的含水率大於第二水膠層130的含水率。此處所指之含水率的定義為:

Figure TWI614061BD00002
The first water gel layer 120 and the second water gel layer 130 in the composite film 100 are both high water content water gel layers, wherein the first water gel layer 120 and the second water gel layer 130 respectively have different water content, and the first The water content of the first water gel layer 120 is greater than the water content of the second water gel layer 130. The water content referred to here is defined as:
Figure TWI614061BD00002

其中Ws代表潤濕後的水膠層,如第一水膠層120或第二水膠層130的重量,Wd代表乾燥後的水膠層重量。此處所指之潤濕後的水膠層的重量是將水膠層浸泡於水中一段時間之後取出,並待水膠層表面之水滴自然滴落之後所秤得的重量,而乾燥後的水膠層的重量是指將水膠層進行乾燥處理一 段時間之後,將其取出所量測得到的重量。 Wherein Ws represents the wetted water layer, such as the weight of the first water layer 120 or the second water layer 130, and Wd represents the weight of the water layer after drying. The weight of the wetted water gel layer referred to herein is the weight obtained after the water gel layer is immersed in water for a period of time, and the water droplets on the surface of the water gel layer are naturally dripped, and the dried water gel The weight of the layer means that the water layer is dried. After a period of time, it was taken out of the measured weight.

第一水膠層120與第二水膠層130在複合膜100中分別扮演不同的角色,第一水膠層120具有較高的含水率,以提供複合膜100潤滑的表面防止油污沾附以及用以防止膜孔116遭具有界面活性特性的粒子(團)潤濕。第二水膠層130具有較小的網目尺寸,以提供進一步過濾髒污以及防止水團直接通過膜孔116之功效。 The first water gel layer 120 and the second water gel layer 130 respectively play different roles in the composite film 100, and the first water gel layer 120 has a high water content to provide a lubricating surface of the composite film 100 to prevent oil staining and It is used to prevent the film pores 116 from being wetted by particles having a property of interfacial activity. The second water gel layer 130 has a smaller mesh size to provide further filtration of soiling and to prevent the water mass from passing directly through the film aperture 116.

第一水膠層120由於具有較高的含水率,因此可以讓高溫的廢水210快速地流過複合膜100的表面。具體而言,位在較外層,即與熱端200之廢水210接觸的第一水膠層120,具有較高的含水率,其可以提供複合膜100濕潤的表面,以讓熱端200中的廢水210在流經複合膜100的時候,廢水210中的髒污,包含油污212、具有界面活性特性的界面活性粒子(團)220以及其他有機或無機的污染物等,從複合膜100的表面滑開,而不易沾附於複合膜100的表面造成堵塞。於部分實施例中,相較於第二水膠層130具有較高含水率的第一水膠層120的含水率介於90%至98%之間,舉例而言,第一水膠層120的含水率可為90%、92%、94%、96%或是98%。若是第一水膠層120的含水率過低,例如低於90%,將會導致廢水210中的髒污無法從複合膜100的表面滑開,而若是第一水膠層120含水率過高,如高於98%,將會影響複合膜100結構強度下降,因而影響操作壽命。 Since the first water-repellent layer 120 has a high water content, the high-temperature wastewater 210 can be quickly flowed over the surface of the composite film 100. Specifically, the first water layer 120 located in the outer layer, that is, in contact with the wastewater 210 of the hot end 200, has a higher moisture content, which can provide a wetted surface of the composite film 100 to allow the hot end 200 to When the wastewater 210 flows through the composite membrane 100, the dirt in the wastewater 210 includes oil stains 212, interface active particles (groups) 220 having interface-active properties, and other organic or inorganic contaminants, etc., from the surface of the composite membrane 100. Sliding open, and not easily adhering to the surface of the composite film 100 causes clogging. In some embodiments, the first water gel layer 120 having a higher water content than the second water gel layer 130 has a moisture content of between 90% and 98%, for example, the first water gel layer 120. The moisture content can be 90%, 92%, 94%, 96% or 98%. If the moisture content of the first water-repellent layer 120 is too low, for example, less than 90%, the dirt in the wastewater 210 may not be slid away from the surface of the composite film 100, and if the water content of the first water-repellent layer 120 is too high. If it is higher than 98%, it will affect the structural strength of the composite film 100, thus affecting the operating life.

由於第一水膠層120相較於第二水膠層130較為接近熱端200,因此第一水膠層120相較於第二水膠層130具有 較大的網目尺寸,藉以先隔離廢水210中具有較大尺寸的髒污。舉例而言,第一水膠層120的網目尺寸介於0.2μm至10μm之間。若是第一水膠層120的網目尺寸過小,如小於0.2μm,則會導致複合膜100的通量大幅下降,影響膜蒸餾的效率。若是第一水膠層120的網目尺寸過大,如大於10μm,則因為第一水膠層120的含水率較高,因此同樣會降低複合膜100的結構強度,影響複合膜100的操作壽命。 Since the first water gel layer 120 is closer to the hot end 200 than the second water gel layer 130, the first water gel layer 120 has a second water gel layer 130 as compared with the second water gel layer 130. A larger mesh size is used to isolate the larger size of the wastewater 210 from contamination. For example, the first water gel layer 120 has a mesh size of between 0.2 μm and 10 μm. If the mesh size of the first water-repellent layer 120 is too small, such as less than 0.2 μm, the flux of the composite film 100 is greatly reduced, which affects the efficiency of membrane distillation. If the mesh size of the first water-repellent layer 120 is too large, such as greater than 10 μm, since the water content of the first water-repellent layer 120 is high, the structural strength of the composite film 100 is also lowered, which affects the operational life of the composite film 100.

第一水膠層120與第二水膠層130可更用以進一步阻擋廢水210中具有界面活性特性的界面活性粒子(團)220穿過疏水性多孔膜110上的膜孔116,以避免疏水性多孔膜110之膜孔116被帶有界面活性粒子(團)220的廢水210潤濕的現象發生。具體而言,若是有界面活性粒子(團)220未順著第一水膠層120的表面滑開而進入第一水膠層120,則因為界面活性粒子(團)220包含有親水端222以及厭水端224,廢水210中的界面活性粒子(團)220會被具有高含水率的第一水膠層120捕捉而停留在第一水膠層120中。換言之,界面活性粒子(團)220不易進入第二水膠層130與疏水性多孔膜110。如此一來,便可以解決膜孔116被界面活性粒子(團)220潤濕的問題。 The first water gel layer 120 and the second water gel layer 130 may further serve to further block the interface active particles (sets) 220 having interfacial activity characteristics in the wastewater 210 from passing through the film holes 116 on the hydrophobic porous film 110 to avoid hydrophobicity. The pores 116 of the porous membrane 110 are wetted by the wastewater 210 with the interface-active particles (sets) 220. Specifically, if the interface active particles (clusters) 220 do not slide along the surface of the first water gel layer 120 and enter the first water gel layer 120, the interface active particles (cluster) 220 include the hydrophilic end 222 and At the water-repellent end 224, the interface-active particles (sets) 220 in the wastewater 210 are captured by the first water-based layer 120 having a high water content and remain in the first water-based layer 120. In other words, the interface active particles (sets) 220 are less likely to enter the second water gel layer 130 and the hydrophobic porous film 110. In this way, the problem that the membrane pores 116 are wetted by the interface active particles (cluster) 220 can be solved.

第二水膠層130的含水率小於第一水膠層120的含水率。於部分的實施例中,第二水膠層130的含水率介於50%至90%之間,舉例而言,第二水膠層130的含水率可為50%、55%、60%、65%、70%、75%、80%、85%或90%。若是第二水膠層130的含水率過低,如低於50%,則無法提供攔截界面活性粒子(團)220的功效。 The water content of the second water gel layer 130 is smaller than the water content of the first water gel layer 120. In some embodiments, the second water layer 130 has a water content of between 50% and 90%. For example, the second water layer 130 may have a water content of 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85% or 90%. If the moisture content of the second water-based layer 130 is too low, such as less than 50%, the effect of intercepting the interfacial active particles (sets) 220 cannot be provided.

由於第二水膠層130是位於第一水膠層120以及疏水性多孔膜110之間,因此,第二水膠層130的網目尺寸為小於第一水膠層120的網目尺寸,以作為過濾的防線。於部分實施例中,第二水膠層130的網目尺寸介於0.01μm至1μm之間。若是第二水膠層130的網目尺寸過小,如小於0.01μm,則會導致複合膜100的通量嚴重下降,大幅影響膜蒸餾的效率。若是第二水膠層130的網目尺寸過大,如大於1μm,則會造成水團直接通過而讓疏水性多孔膜110之膜孔116潤濕。 Since the second water layer 130 is located between the first water layer 120 and the hydrophobic porous film 110, the mesh size of the second water layer 130 is smaller than the mesh size of the first water layer 120 for filtering. Line of defense. In some embodiments, the second water gel layer 130 has a mesh size of between 0.01 μm and 1 μm. If the mesh size of the second water-repellent layer 130 is too small, such as less than 0.01 μm, the flux of the composite film 100 is seriously degraded, which greatly affects the efficiency of membrane distillation. If the mesh size of the second water-repellent layer 130 is too large, such as greater than 1 μm, the water mass will pass directly to wet the film pores 116 of the hydrophobic porous film 110.

第一水膠層120與第二水膠層130的厚度為在結構強度允許的情況下越薄越好。根據不同的網目尺寸與材料選擇,第一水膠層120的厚度介於0.5μm至5000μm之間,第二水膠層130的厚度介於0.01μm至1000μm之間。 The thickness of the first water-based layer 120 and the second water-based layer 130 is as thin as possible in the case where the structural strength permits. The thickness of the first water-based layer 120 is between 0.5 μm and 5000 μm, and the thickness of the second water-based layer 130 is between 0.01 μm and 1000 μm, depending on the mesh size and material selection.

第一水膠層120與第二水膠層130的材料可為多醣類材料、蛋白質類材料、聚乙烯醇系材料(polyvinyl alcohol,PVA)、聚乙二醇系材料(polyethylene glycol,PEG)或聚氧化乙烯系材料(polyethylene oxide,PEO)、壓克力系材料、聚氨酯材料、纖維素系材料、甲殼素系材料、海藻酸系材料及其改質物、共聚物或其組合物。前數多醣類材料可為卡德蘭膠(curdlan)、瓊脂糖(agarose)或洋菜膠(agar)。前述壓克力系材料中的單體可為丙烯酸2-羥基乙酯(2-hydroxyethyl acrylate,HEA)、甲基丙烯酸羥基乙酯(hydroxyethyl methacrylate,HEMA)、甲基丙烯酸羥基乙氧基乙酯(hydroxyethoxyethyl methacrylate,HEEMA)、甲基丙烯酸羥基二乙氧基乙酯(hydroxydiethoxyethyl methacrylate, HDEEMA)、甲基丙烯酸甲氧基乙酯(methoxyethyl methacrylate,MEMA)、甲基丙烯酸甲氧基乙氧基乙酯(methoxyethoxyethyl methacrylate,MEEMA)、甲基丙烯酸甲氧基二乙氧基乙酯(methoxydiethoxyethyl methacrylate,MDMEEMA)、二甲基丙烯酸乙二醇酯(ethylene glycol dimethacrylate,EGDMA)、N-乙烯基-2-吡咯烷酮(N-vinyl-2-pyrrolidone,NVP)、異丙基烯醯胺(N-isopropyl AAm,NIPAAm)、壓克力酸(acrylic acid,AA)、甲基丙烯酸(methyl acrylate acid,MAA)、N-(2-羥基丙基)甲基丙烯醯胺(N-(2-hydroxypropyl)methacrylamide,HPMA)、乙二醇(ethylene glycol,EG)、丙烯酸聚(乙二醇)酯(poly(ethylene glycol)acrylate,PEGA)、甲基丙烯酸聚(乙二醇)酯(poly(ethylene glycol)methacrylate,PEGMA)、二丙烯酸聚(乙二醇)酯(poly(ethylene glycol)diacrylate,PEGDA)、二甲基丙烯酸聚(乙二醇)酯(poly(ethylene glycol)dimethacrylate,PEGDMA)、丙烯酸β-丙烯醯氧酯(β-carboxyethyl acrylate)、丙烯酸2-(二甲胺基)乙酯(2-(dimethylamino)ethyl acrylate)、甲基醚丙烯酸乙二醇酯(ethylene glycol methyl ether acrylate)、丙烯酸2-乙氧基乙酯(2-ethoxyethyl acrylate)及其改質物、共聚物或其組合物。 The material of the first water gel layer 120 and the second water gel layer 130 may be a polysaccharide material, a protein material, a polyvinyl alcohol (PVA), or a polyethylene glycol (PEG). Or a polyethylene oxide (PEO) material, an acrylic material, a polyurethane material, a cellulose material, a chitin material, an alginic acid material, a modified product thereof, a copolymer or a combination thereof. The former polysaccharide material may be curdlan, agarose or agar. The monomer in the acrylic material may be 2-hydroxyethyl acrylate (HEA), hydroxyethyl methacrylate (HEMA), hydroxyethoxyethyl methacrylate ( Hydroxyethoxyethyl methacrylate, HEEMA), hydroxydiethoxyethyl methacrylate HDEEMA), methoxyethyl methacrylate (MEMA), methoxyethoxyethyl methacrylate (MEEMA), methoxydiethoxyethyl methacrylate Methacrylate, MDMEEMA), ethylene glycol dimethacrylate (EGDMA), N-vinyl-2-pyrrolidone (NVP), isopropyl olefinamide (N- Isopropyl AAm, NIPAAm), acrylic acid (AA), methyl acrylate acid (MAA), N-(2-hydroxypropyl)methacrylamide (N-(2-hydroxypropyl) Methacrylamide (HPMA), ethylene glycol (EG), poly(ethylene glycol) acrylate (PEGA), poly(ethylene glycol) methacrylate (poly(ethylene glycol) Methacrylate, PEGMA), poly(ethylene glycol) diacrylate (PEGDA), poly(ethylene glycol) dimethacrylate (PEGDMA), acrylic acid β- --carboxyethyl acrylate, 2-(dimethyl acrylate) Ethyl 2-(dimethylamino)ethyl acrylate, ethylene glycol methyl ether acrylate, 2-ethoxyethyl acrylate, modified product, copolymerization Or a composition thereof.

疏水性多孔膜110之材料可為聚四氟乙烯、聚丙烯、聚偏二氟乙烯、聚烯烴或其組合物。疏水性多孔膜110中之膜孔116的孔徑為介於0.01~5.00μm之間。若是膜孔116的 孔徑過小,則通量太小而降低過濾效率,若是膜孔116的孔徑過大,則會導致膜孔易被其他液體或雜質通過而使過濾純度降低。 The material of the hydrophobic porous film 110 may be polytetrafluoroethylene, polypropylene, polyvinylidene fluoride, polyolefin or a combination thereof. The pore size of the membrane pores 116 in the hydrophobic porous membrane 110 is between 0.01 and 5.00 μm. If it is the film hole 116 If the pore diameter is too small, the flux is too small to reduce the filtration efficiency. If the pore diameter of the membrane pores 116 is too large, the membrane pores are easily passed by other liquids or impurities to lower the filtration purity.

參照第2圖,其為本發明之複合膜之不同實施例於一段操作時間後之通量-導電率的關係圖。第2圖中空心的點表示膜通量(對應於左邊的縱座標),實心的點表示在冷端所量測到的導電率(對應於右邊的縱座標),橫軸表示操作時間。第2圖中所使用的熱端的廢水為染整廠所排出的廢水,熱端廢水的溫度約為攝氏60度,熱端熱水的流量約為2L/min,冷端冷水的流量約為2L/min,冷端冷水的溫度約為攝氏25度。 Referring to Figure 2, there is shown a graph of flux-conductivity for a different embodiment of the composite membrane of the present invention after a period of operation. The hollow dots in Fig. 2 indicate the membrane flux (corresponding to the ordinate on the left), the solid dots indicate the conductivity measured at the cold end (corresponding to the ordinate on the right), and the horizontal axis indicates the operation time. The hot end wastewater used in Figure 2 is the wastewater discharged from the dyeing and finishing plant. The temperature of the hot end wastewater is about 60 degrees Celsius, the hot end hot water flow rate is about 2 L/min, and the cold end cold water flow rate is about 2 L. /min, the cold end cold water temperature is about 25 degrees Celsius.

於第2圖中,比較例為不具有第一水膠層的膜材,即比較例之膜材包含疏水性多孔膜以及設置於其表面之水膠層。比較例之疏水性多孔膜的材料為聚四氟乙烯,膜孔孔徑為0.1μm。比較例之水膠層的材料為重量百分濃度10%聚乙烯醇(PVA),其含水率為69.0%,其網目尺寸為0.07μm。實驗例1至實驗例3中的複合膜則包含有疏水性多孔膜、第一水膠層以及位於兩者之間的第二水膠層,實驗例1至實驗例3之疏水性多孔膜的材料為聚四氟乙烯,膜孔孔徑為0.1μm。實驗例1之第一水膠層的材料為重量百分濃度10%聚乙烯醇(PVA),其含水率為87.8%,其網目尺寸為0.3μm;實驗例1之第二水膠層的材料為重量百分濃度10%聚乙烯醇(PVA),其含水率為69.0%,其網目尺寸為0.07μm。實驗例2之第一水膠層的材料為重量百分濃度7%聚乙烯醇(PVA),其含水率為90.2%,其網目尺寸為0.5μm;實驗例2之第二水膠層的材料 為重量百分濃度10%聚乙烯醇(PVA),其含水率為69.0%,其網目尺寸為0.07μm。實驗例3之第一水膠層的材料為重量百分濃度5%聚乙烯醇(PVA),其含水率為92.8%,其網目尺寸為0.7μm,實驗例3之第二水膠層的材料為重量百分濃度10%聚乙烯醇(PVA),其含水率為69.0%,其網目尺寸為0.07μm。 In Fig. 2, the comparative example is a film material having no first water-containing rubber layer, that is, the film material of the comparative example contains a hydrophobic porous film and a water-based rubber layer provided on the surface thereof. The material of the hydrophobic porous film of the comparative example was polytetrafluoroethylene, and the pore diameter of the membrane was 0.1 μm. The material of the water-repellent layer of the comparative example was a 10% by weight polyvinyl alcohol (PVA) having a water content of 69.0% and a mesh size of 0.07 μm. The composite film of Experimental Example 1 to Experimental Example 3 comprises a hydrophobic porous film, a first water-based rubber layer, and a second water-based rubber layer therebetween, and the hydrophobic porous film of Experimental Examples 1 to 3 The material was polytetrafluoroethylene and the pore diameter of the membrane was 0.1 μm. The material of the first water gel layer of Experimental Example 1 was a 10% by weight polyvinyl alcohol (PVA) having a water content of 87.8% and a mesh size of 0.3 μm; the material of the second water gel layer of Experimental Example 1 It is a 10% by weight polyvinyl alcohol (PVA) having a water content of 69.0% and a mesh size of 0.07 μm. The material of the first water gel layer of Experimental Example 2 was 7% by weight of polyvinyl alcohol (PVA), the water content was 90.2%, and the mesh size was 0.5 μm; the material of the second water gel layer of Experimental Example 2 It is a 10% by weight polyvinyl alcohol (PVA) having a water content of 69.0% and a mesh size of 0.07 μm. The material of the first water gel layer of Experimental Example 3 was a weight percent concentration of 5% polyvinyl alcohol (PVA) having a water content of 92.8% and a mesh size of 0.7 μm. The material of the second water gel layer of Experimental Example 3 It is a 10% by weight polyvinyl alcohol (PVA) having a water content of 69.0% and a mesh size of 0.07 μm.

從實驗結果可以得知,在經過24小時的操作時間之後,無論是比較例或是實驗例在冷端所量測到的導電率皆未出現明顯的變化。這表示在經過24小時的操作之後,疏水性多孔膜的膜孔未被潤濕,反映出在疏水性多孔膜上加設水膠層確實可以解決膜孔因界面活性粒子(團)而潤濕的問題。然而,從實驗結果可以知道,隨著操作時間越來越長,僅具有一層水膠層的膜材(即比較例),其通量明顯的下降,這可能與水膠層被欲過濾液體中的污染物堵塞有關。反之,使用兩層含水率不同的水膠層的複合膜(即實驗例1至實驗例3),其通量下滑的程度較比較例和緩。隨著第一水膠層含水率提高到90%以上(實驗例2及實施例3),則維持通量的效果更明顯(尤其是實驗例3)。因此,在疏水性多孔膜以及水膠層上另外再加設一層具有更高含水率的水膠層,確實可以解決廢水中的油污或是髒污粒子團堵塞而導致通量下降的問題,進而延長複合膜應用於膜蒸餾的操作壽命。此外,當所加設的水膠層的含水率越高時,將可更有效地延長複合膜的操作壽命。 It can be seen from the experimental results that no significant change in the conductivity measured at the cold end of either the comparative example or the experimental example after the operation time of 24 hours. This means that after 24 hours of operation, the pores of the hydrophobic porous membrane are not wetted, reflecting that the addition of a water-based gel layer on the hydrophobic porous membrane can indeed solve the problem that the pores of the membrane are wetted by interfacial active particles. The problem. However, it can be known from the experimental results that as the operation time becomes longer and longer, the membrane having only one layer of water gel layer (ie, the comparative example) has a marked decrease in flux, which may be related to the liquid layer to be filtered. The pollutants are blocked. On the contrary, the use of two composite membranes of water gel layers having different water contents (ie, Experimental Example 1 to Experimental Example 3) showed a lower degree of flux decline than the comparative example. As the water content of the first water gel layer was increased to 90% or more (Experimental Example 2 and Example 3), the effect of maintaining flux was more remarkable (especially Experimental Example 3). Therefore, adding a layer of water-containing glue layer with a higher water content to the hydrophobic porous film and the water-based rubber layer can solve the problem that the oil in the waste water or the clogging of the dirty particle clusters causes the flux to drop, and further Extend the operational life of the composite membrane for membrane distillation. In addition, the operational life of the composite membrane can be more effectively extended as the moisture content of the applied water-based layer is higher.

綜上所述,複合膜中包含有含水率不同的兩水膠層以捕捉界面活性粒子(團),避免疏水性多孔膜遭界面活性粒子(團)潤濕。複合膜更以具有較高含水率的水膠層接觸熱端的 廢水,以讓廢水中的油污不易沾附而堆積在複合膜上,以避免複合膜因堵塞而導致通量下降,進而有效延長複合膜的操作壽命。 In summary, the composite film contains a two-water gel layer having different water contents to capture the interface active particles (cluster), and the hydrophobic porous film is prevented from being wetted by the interface active particles (cluster). The composite film contacts the hot end with a water gel layer with a higher water content. The waste water is deposited on the composite membrane so that the oil in the waste water is not easily adhered to prevent the composite membrane from being clogging, thereby reducing the flux, thereby effectively prolonging the operational life of the composite membrane.

雖然本發明已以一較佳實施例揭露如上,然其並非用以限定本發明,任何熟習此技藝者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。 Although the present invention has been described above in terms of a preferred embodiment, it is not intended to limit the invention, and it is obvious to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention. The scope of the invention is defined by the scope of the appended claims.

100‧‧‧複合膜 100‧‧‧Composite film

110‧‧‧疏水性多孔膜 110‧‧‧hydrophobic porous membrane

112‧‧‧第一表面 112‧‧‧ first surface

114‧‧‧第二表面 114‧‧‧ second surface

116‧‧‧膜孔 116‧‧‧ film hole

120‧‧‧第一水膠層 120‧‧‧First water layer

130‧‧‧第二水膠層 130‧‧‧Second water layer

200‧‧‧熱端 200‧‧‧ hot end

210‧‧‧廢水 210‧‧‧ Wastewater

212‧‧‧油污 212‧‧‧ oil stains

220‧‧‧界面活性粒子(團) 220‧‧‧Interfacial active particles (group)

222‧‧‧親水端 222‧‧‧Hydrophilic end

224‧‧‧厭水端 224‧‧‧Live end

300‧‧‧冷端 300‧‧‧ cold end

Claims (10)

一種應用於膜蒸餾的複合膜,包含:疏水性多孔膜,包含相對的第一表面與第二表面,其中所述第一表面對應於膜蒸餾的熱端,所述第二表面對應於膜蒸餾的冷端;第一水膠層;以及第二水膠層,連接所述第一水膠層與所述疏水性多孔膜之所述第一表面,其中所述第二水膠層的含水率介於50%至90%之間,且所述第一水膠層的含水率大於所述第二水膠層的含水率,其中含水率的定義如下: 其中Ws代表潤濕後的水膠層重量,Wd代表乾燥後的水膠層重量。 A composite membrane for membrane distillation, comprising: a hydrophobic porous membrane comprising opposing first and second surfaces, wherein the first surface corresponds to a hot end of membrane distillation, and the second surface corresponds to membrane distillation a cold water layer; a first water gel layer; and a second water gel layer connecting the first water gel layer and the first surface of the hydrophobic porous film, wherein a moisture content of the second water gel layer Between 50% and 90%, and the water content of the first water layer is greater than the water content of the second water layer, wherein the water content is defined as follows: Where Ws represents the weight of the water layer after wetting, and Wd represents the weight of the water layer after drying. 如請求項1所述之複合膜,其中所述第一水膠層的含水率介於90%至98%。 The composite film of claim 1, wherein the first water-based layer has a water content of from 90% to 98%. 如請求項1所述之複合膜,其中所述第一水膠層的網目尺寸介於0.2μm至10μm之間。 The composite film of claim 1, wherein the first water-based layer has a mesh size of between 0.2 μm and 10 μm. 如請求項1所述之複合膜,其中所述第二水膠層的網目尺寸介於0.01μm至1μm之間。 The composite film of claim 1, wherein the second water-based layer has a mesh size of between 0.01 μm and 1 μm. 如請求項1所述之複合膜,其中所述第一水膠層的厚度介於0.5μm至5000μm之間。 The composite film of claim 1, wherein the first water-based layer has a thickness of between 0.5 μm and 5000 μm. 如請求項1所述之複合膜,其中所述第二水膠層的厚度介於0.01μm至1000μm之間。 The composite film of claim 1, wherein the second water-based layer has a thickness of between 0.01 μm and 1000 μm. 如請求項1所述之複合膜,其中所述第一水膠層與所述第二水膠層的材料包含蛋白質類材料、聚乙烯醇系材料(polyvinyl alcohol,PVA)、聚乙二醇系材料(polyethylene glycol,PEG)或聚氧化乙烯系材料(polyethylene oxide,PEO)、壓克力系材料、聚氨酯材料、纖維素系材料、甲殼素系材料、海藻酸系材料及其改質物、共聚物或其組合物。 The composite film according to claim 1, wherein the material of the first water layer and the second water layer comprises a protein material, a polyvinyl alcohol (PVA), a polyethylene glycol system. Polyethylene glycol (PEG) or polyethylene oxide (PEO), acrylic materials, polyurethane materials, cellulose materials, chitin materials, alginic acid materials and their modified materials, copolymers Or a composition thereof. 如請求項1所述之複合膜,其中所述第一水膠層與所述第二水膠層的材料包含卡德蘭膠(curdlan)、瓊脂糖(agarose)或洋菜膠(agar)。 The composite film of claim 1, wherein the material of the first water gel layer and the second water gel layer comprises curdlan, agarose or agar. 如請求項7所述之複合膜,其中所述壓克力系材料中的單體為丙烯酸2-羥基乙酯(2-hydroxyethyl acrylate,HEA)、甲基丙烯酸羥基乙酯(hydroxyethyl methacrylate,HEMA)、甲基丙烯酸羥基乙氧基乙酯(hydroxyethoxyethyl methacrylate,HEEMA)、甲基丙烯酸羥基二乙氧基乙酯(hydroxydiethoxyethyl methacrylate,HDEEMA)、甲基丙烯酸甲氧基乙酯(methoxyethyl methacrylate,MEMA)、甲基丙烯酸甲氧基乙氧基乙酯(methoxyethoxyethyl methacrylate,MEEMA)、甲基丙烯酸甲氧基二乙氧基乙酯(methoxydiethoxyethyl methacrylate,MDMEEMA)、二甲基丙烯酸乙二醇酯(ethylene glycol dimethacrylate,EGDMA)、N-乙烯基-2-吡咯烷酮(N-vinyl-2-pyrrolidone,NVP)、異丙基烯醯胺(N-isopropyl AAm,NIPAAm)、壓克力酸(acrylic acid,AA)、甲基丙烯酸(methyl acrylate acid,MAA)、N-(2-羥基丙基)甲基丙烯醯胺(N-(2-hydroxypropyl)methacrylamide,HPMA)、乙二醇(ethylene glycol,EG)、丙烯酸聚(乙二醇)酯(poly(ethylene glycol)acrylate,PEGA)、甲基丙烯酸聚(乙二醇)酯(poly(ethylene glycol)methacrylate,PEGMA)、二丙烯酸聚(乙二醇)酯(poly(ethylene glycol)diacrylate,PEGDA)、二甲基丙烯酸聚(乙二醇)酯(poly(ethylene glycol)dimethacrylate,PEGDMA)、丙烯酸β-丙烯醯氧酯(β-carboxyethyl acrylate)、丙烯酸2-(二甲胺基)乙酯(2-(dimethylamino)ethyl acrylate)、甲基醚丙烯酸乙二醇酯(ethylene glycol methyl ether acrylate)、丙烯酸2-乙氧基乙酯(2-ethoxyethyl acrylate)及其改質物、共聚物或其組合物。 The composite film according to claim 7, wherein the monomer in the acrylic material is 2-hydroxyethyl acrylate (HEA) or hydroxyethyl methacrylate (HEMA). , hydroxyethoxyethyl methacrylate (HEEMA), hydroxydiethoxyethyl methacrylate Methacrylate,HDEEMA), methoxyethyl methacrylate (MEMA), methoxyethoxyethyl methacrylate (MEEMA), methoxydiethoxyethyl methacrylate (methoxydiethoxyethyl methacrylate, MDMEEMA), ethylene glycol dimethacrylate (EGDMA), N-vinyl-2-pyrrolidone (NVP), isopropyl olefinamide ( N-isopropyl AAm, NIPAAm), acrylic acid (AA), methyl acrylate acid (MAA), N-(2-hydroxypropyl)methacrylamide (N-(2-) Hydroxypropyl)methacrylamide, HPMA), ethylene glycol (EG), poly(ethylene glycol) acrylate (PEGA), poly(ethylene glycol) methacrylate (poly(ethylene) Glycol) methacrylate, PEGMA), poly(ethylene glycol) diacrylate (PEGDA), poly(ethylene glycol) dimethacrylate (PEGDMA), acrylic acid --carboxyethyl acrylate, β 2-(dimethylamino)ethyl acrylate, ethylene glycol methyl ether acrylate, 2-ethoxyethyl acrylate And its modified materials, copolymers or combinations thereof. 如請求項1所述之複合膜,其中所述疏水性 多孔膜的材料包含聚四氟乙烯、聚丙烯、聚偏二氟乙烯或其組合物。 The composite membrane of claim 1, wherein the hydrophobicity The material of the porous membrane comprises polytetrafluoroethylene, polypropylene, polyvinylidene fluoride or a combination thereof.
TW104141552A 2015-12-10 2015-12-10 Composite membrane utilized in membrane distillation TWI614061B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW104141552A TWI614061B (en) 2015-12-10 2015-12-10 Composite membrane utilized in membrane distillation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW104141552A TWI614061B (en) 2015-12-10 2015-12-10 Composite membrane utilized in membrane distillation

Publications (2)

Publication Number Publication Date
TW201720515A TW201720515A (en) 2017-06-16
TWI614061B true TWI614061B (en) 2018-02-11

Family

ID=59687773

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104141552A TWI614061B (en) 2015-12-10 2015-12-10 Composite membrane utilized in membrane distillation

Country Status (1)

Country Link
TW (1) TWI614061B (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201542287A (en) * 2014-05-09 2015-11-16 Taiwan Textile Res Inst Composite membrane utilized in membrane distillation

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201542287A (en) * 2014-05-09 2015-11-16 Taiwan Textile Res Inst Composite membrane utilized in membrane distillation

Also Published As

Publication number Publication date
TW201720515A (en) 2017-06-16

Similar Documents

Publication Publication Date Title
TWI549743B (en) Composite membrane utilized in membrane distillation
Zhang et al. A free-standing calcium alginate/polyacrylamide hydrogel nanofiltration membrane with high anti-fouling performance: preparation and characterization
Goetz et al. All cellulose electrospun water purification membranes nanotextured using cellulose nanocrystals
Obaid et al. Effective and reusable oil/water separation membranes based on modified polysulfone electrospun nanofiber mats
Wang et al. The impact of low-surface-energy functional groups on oil fouling resistance in membrane distillation
Ma et al. Functionalized electrospun nanofibrous microfiltration membranes for removal of bacteria and viruses
Zhang et al. Taro leaf-inspired and superwettable nanonet-covered nanofibrous membranes for high-efficiency oil purification
Zhang et al. Investigation of membrane fouling mechanisms using blocking models in the case of shear-enhanced ultrafiltration
Dizge et al. Influence of type and pore size of membranes on cross flow microfiltration of biological suspension
Chen et al. A self-cleaning zwitterionic nanofibrous membrane for highly efficient oil-in-water separation
WO2011159699A2 (en) Superhydrophilic and oleophobic porous materials and methods for making and using the same
US20220032282A1 (en) Grafted polysulfone membranes
Xu et al. Mechanistic insights of a thermoresponsive interface for fouling control of thin-film composite nanofiltration membranes
CN102527252B (en) Antibacterial composite reverse osmosis membrane
Wang et al. Development of alginate hydrogel modified multifunctional filtration membrane with robust anti-fouling property for efficient water purification
Yuan et al. Modified superhydrophilic/underwater superoleophobic mullite fiber-based porous ceramic for oil-water separation
CN114653221B (en) Low-nonspecific adsorption virus-removing porous membrane and preparation method thereof
TWI614061B (en) Composite membrane utilized in membrane distillation
CN102527253A (en) Antibacterial antioxidative composite reverse osmosis membrane
Chen et al. Separation of single and mixed anionic dyes in saline solutions using uncharged polyacrylonitrile-tris (hydroxymethyl) aminomethane (PAN-Tris) ultrafiltration membrane: performance and mechanism
CN114653222A (en) Low-nonspecific adsorption virus removal filter membrane and preparation method thereof
KR20230029818A (en) composite filter media
TW202211971A (en) Composite porous filter membrane, method of making the same, filter and method for removing impurity from liquid
CN105169808A (en) PTFE filtration tensioned-membrane
JP2008062119A (en) Filter medium, its manufacturing method, filtration treatment device, and filtration treatment method