TWI612851B - System for an extreme ultraviolet light source, method of aligning an irradiating amplified light beam generated from an extreme ultraviolet light system relative to a target material, and extreme ultraviolet light system - Google Patents

System for an extreme ultraviolet light source, method of aligning an irradiating amplified light beam generated from an extreme ultraviolet light system relative to a target material, and extreme ultraviolet light system Download PDF

Info

Publication number
TWI612851B
TWI612851B TW103109580A TW103109580A TWI612851B TW I612851 B TWI612851 B TW I612851B TW 103109580 A TW103109580 A TW 103109580A TW 103109580 A TW103109580 A TW 103109580A TW I612851 B TWI612851 B TW I612851B
Authority
TW
Taiwan
Prior art keywords
amplified
illumination
target material
location
sensor
Prior art date
Application number
TW103109580A
Other languages
Chinese (zh)
Other versions
TW201444418A (en
Inventor
弗拉迪米爾B 弗魯羅夫
伊格爾V 佛蒙柯維
Original Assignee
Asml荷蘭公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US14/035,847 external-priority patent/US8872144B1/en
Priority claimed from US14/184,777 external-priority patent/US9000405B2/en
Application filed by Asml荷蘭公司 filed Critical Asml荷蘭公司
Publication of TW201444418A publication Critical patent/TW201444418A/en
Application granted granted Critical
Publication of TWI612851B publication Critical patent/TWI612851B/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G2/00Apparatus or processes specially adapted for producing X-rays, not involving X-ray tubes, e.g. involving generation of a plasma
    • H05G2/001Production of X-ray radiation generated from plasma
    • H05G2/008Production of X-ray radiation generated from plasma involving an energy-carrying beam in the process of plasma generation

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • X-Ray Techniques (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

一種用於極紫外線光源的系統包括一或更多個光學元件經定位用以接收一反射放大光束,並用以引導該反射放大光束進入第一、第二及第三通道,該反射放大光束包括與一標靶材料相互作用的一照射放大光束的至少一部分之反射;一感測源自於該第一通道之光線的第一感應器;一感測源自於該第二通道及該第三通道之光線的第二感應器,該第二感應器具有一較該第一感應器為低的採集率;以及一與一電腦可讀取儲存媒體耦合的電子處理器,該媒體儲存指令,當執行時,致使該處理器:自該第一感應器及該第二感應器接收數據,並根據該接收的數據,確定該照射放大光束相對於該標靶材料於一個以上的維度中的一處所。 A system for a very ultraviolet light source includes one or more optical elements positioned to receive a reflected amplified beam and to direct the reflected amplified beam into first, second, and third channels, the reflected amplified beam comprising a target material interacting with at least a portion of the reflected light beam; a first sensor that senses light from the first channel; a sensing originating from the second channel and the third channel a second sensor of light having a lower acquisition rate than the first sensor; and an electronic processor coupled to a computer readable storage medium, the media storage instructions, when executed And causing the processor to: receive data from the first sensor and the second sensor, and determine, according to the received data, a location of the illuminated amplified beam in one or more dimensions relative to the target material.

Description

用於極紫外線光源的系統、將自極紫外光系統產生之照射放大光束相 對於標靶材料對準的方法及極紫外光系統 A system for an extreme ultraviolet light source that amplifies a beam of light generated by an extreme ultraviolet light system Method for alignment of target materials and extreme ultraviolet light system 相關申請案之交叉參考 Cross-reference to related applications

本申請案主張於2013年3月15日提出申請的美國臨時專利申請案第61/787,228號,標題為用於極紫外線光源之光束定位控制技術;於2013年9月24日提出申請的美國專利申請案第14/035,847號,標題為用於針對極紫外線雷射激發電漿源的雷射光束聚焦控制的系統與方法;以及於2014年2月20日提出申請的美國專利申請案第14/184,777號,標題為用於極紫外線光源之光束定位控制之權益,其之整個內容於此併入本案以為參考資料。 U.S. Provisional Patent Application Serial No. 61/787,228, filed on Mar. U.S. Patent Application Serial No. 14/035,847, entitled,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, No. 184,777, entitled The Role of Beam Positioning Control for Extremely Ultraviolet Light Sources, the entire contents of which is incorporated herein by reference.

發明領域 Field of invention

本公開的主題係有關於用於極紫外線(EUV)光源之光束定位控制。 The subject matter of the present disclosure relates to beam positioning control for extreme ultraviolet (EUV) sources.

發明背景 Background of the invention

極紫外線(EUV)光,例如,具有約為50奈米或較低之波長的電磁輻射(往往亦視為軟x-射線),並包括位在約13奈米的一波長下的光線,能夠用於光微影蝕刻製程以於基板中,例如,矽晶圓產生極小的特徵。 Extreme ultraviolet (EUV) light, for example, having electromagnetic radiation of about 50 nanometers or less (often also referred to as soft x-rays) and including light at a wavelength of about 13 nm, capable of Used in photolithographic etching processes to produce extremely small features in a substrate, for example, germanium wafers.

產生EUV光的方法包括,但非必要地限定在,將具有一成分,例如,氙、鋰或錫其之發射線係位在EUV範圍的一材料轉換成一電漿狀態。於該一方法中,通常稱為雷射激發電漿(LPP),該電漿能夠藉由利用一能夠視為驅動雷射的放大光束照射一標靶材料,例如,微滴、流或是團簇形式之材料而產生。針對此製程,該電漿典型地係於一密封容器,例如,一真空室內產生,並使用不同型式的量測設備監控。 The method of producing EUV light includes, but is not necessarily limited to, converting a material having a composition, for example, yttrium, lithium or tin, in the EUV range to a plasma state. In this method, commonly referred to as laser-excited plasma (LPP), the plasma can illuminate a target material, such as a droplet, stream, or mass, by utilizing an amplified beam that can be considered to drive a laser. Produced in the form of a cluster of materials. For this process, the plasma is typically produced in a sealed container, such as a vacuum chamber, and monitored using different types of measuring equipment.

發明概要 Summary of invention

於一個一般觀點中,一種用於極紫外線光源的系統包括一或更多個光學元件經定位用以接收一反射的放大光束,並用以引導該反射的放大光束進入第一、第二及第三通道,該反射的放大光束包括與一標靶材料相互作用的一照射的放大光束的至少一部分之反射;一感測源自於該第一通道之光線的第一感應器;一感測源自於該第二通道及該第三通道之光線的第二感應器,該第二感應器具有一較該第一感應器為低的採集率;以及一與一電腦可讀取儲存媒體耦合的電子處理器,該媒體儲存指令,當執行時,致使該處理器:自該第一感應器及該第二感應器接收數據,並根據該接收的數據,確定該照射放大光束相對於該標靶材料於一個以上的維度中的一處所。 In one general aspect, a system for an extreme ultraviolet light source includes one or more optical elements positioned to receive a reflected amplified beam and to direct the reflected amplified beam into the first, second, and third a channel, the reflected amplified beam comprising a reflection of at least a portion of an illuminated amplified beam that interacts with a target material; a first sensor that senses light from the first channel; a sensed source a second sensor for the light of the second channel and the third channel, the second sensor having a lower acquisition rate than the first sensor; and an electronic processing coupled to a computer readable storage medium The media storage instruction, when executed, causes the processor to: receive data from the first sensor and the second sensor, and determine, according to the received data, the illuminated amplified beam relative to the target material One of more than one dimension.

實作可包括一或更多個以下特性。 Implementations may include one or more of the following characteristics.

該媒體可進一步儲存指令,當執行時,致使該處 理器確定對基於該經確定的位置的該照射放大光束的調整。該經確定的調整可包括距離,於一個以上的維度中,以移動該照射放大光束。 The medium can further store instructions that, when executed, cause the location The processor determines an adjustment to the illuminated amplified beam based on the determined position. The determined adjustment can include a distance, in more than one dimension, to move the illumination to amplify the beam.

致使該處理器確定該照射放大光束之一位置的該等指令可包括,當執行時,致使該處理器確定於與該照射放大光束之傳播的一方向平行之一方向上,該照射放大光束相對於該標靶材料的一聚焦位置之一處所,以及確定於與該照射放大光束之傳播的方向垂直之一第一橫方向上,該照射放大光束相對於該標靶材料的該聚焦位置之一處所的指令。該等指令可進一步包括,當執行時,致使該處理器確定於與該第一橫方向垂直並且與該照射放大光束之傳播的方向垂直之一第二橫方向上,該照射放大光束之該聚焦位置之一處所的指令。 The instructions causing the processor to determine the position of one of the illumination amplified beams may include, when executed, causing the processor to determine a direction parallel to a direction of propagation of the illumination amplified beam, the illumination amplification beam being relative to One of a focus position of the target material, and one of the focus positions of the illumination magnified beam relative to the target material in a first transverse direction determined to be perpendicular to a direction of propagation of the illumination amplified beam Instructions. The instructions can further include, when executed, causing the processor to determine the focus of the illumination amplified beam in a second transverse direction that is perpendicular to the first lateral direction and perpendicular to the direction of propagation of the illumination amplified beam The instruction of one of the locations.

該系統亦包括一散光光學元件,定位在該第三通道,修改該反射放大光束之波前。 The system also includes an astigmatism optical element positioned in the third channel to modify the wavefront of the reflected amplified beam.

該系統亦包括多重部分反射非散光光學元件,分別定位在該第三通道中的一不同處所並分別地接收至少部分之該反射放大光束,該多重部分反射光學元件之每一者形成一光束其依循介於該標靶材料與該第二探測器之間的一不同長度之一路徑。 The system also includes multiple partially reflective non-diffusing optical elements positioned at a different location in the third channel and respectively receiving at least a portion of the reflected amplified beam, each of the multiple partially reflective optical elements forming a beam of light A path of a different length between the target material and the second detector is followed.

該第一、第二及第三通道可為三個分開的路徑,分別由引導一部分之反射放大光束的一或更多個折射或反射光學元件所界定。 The first, second, and third channels can be three separate paths defined by one or more refractive or reflective optical elements that direct a portion of the reflected amplified beam.

該反射放大光束可包括一預脈衝光束及一驅動 光束的一反射,該驅動光束係為一放大光束一經相互作用將該標靶材料轉換成電漿,以及該預脈衝及驅動光束可包括不同的波長,並且該系統可進一步包括一或更多個光譜濾波器其僅對該預脈衝光束及該驅動光束的其中之一者為可穿透的。 The reflected amplified beam may include a pre-pulse beam and a drive a reflection of the beam of light that is an amplified beam that converts the target material into a plasma upon interaction, and the pre-pulse and drive beam can comprise different wavelengths, and the system can further include one or more The spectral filter is only permeable to one of the pre-pulsed beam and the driven beam.

該第一感應器能夠在一高的採集率下感測源自於該第一通道的光線指向;該第二感應器能夠包括一二維成像感應器感測源自於該第二通道及該第三通道之光線並測量該光線之強度分佈;以及當執行時,致使該處理器,根據該接收的數據,確定該照射放大光束之一處所的該等指令能夠致使致使該處理器確定該照射放大光束於一個以上的維度相對於該標靶材料的一焦點位置。 The first sensor is capable of sensing a light ray originating from the first channel at a high acquisition rate; the second sensor can include a two-dimensional imaging sensor sensing the second channel and the a third channel of light and measuring an intensity distribution of the light; and, when executed, causing the processor to determine, based on the received data, the instructions of the one of the illuminated amplified beams to cause the processor to determine the illumination Amplifying the beam in more than one dimension relative to a focus position of the target material.

於另一個一般觀點中,將一照射放大光束相對於一標靶材料的對準作業包括存取一反射放大光束之第一、第二及第三測量,由一第一感應器取得的該第一測量,由採集率較該第一感應器為低的一第二感應器取得的第二及第三測量,而該反射放大光束係為源自於一標靶材料的該照射放大光束之一反射;確定,根據該第一測量,於與該照射放大光束之傳播的方向垂直之一方向上,該放大光束相對於該標靶材料的一第一處所;確定,根據該第二測量,於與該照射放大光束之傳播的方向垂直之一方向上,該放大光束相對於該標靶材料的一第二處所;確定,根據該第三測量,於與該照射放大光束之傳播的方向平行之一方向上,該放大光束相對於該標靶材料的一焦點位置之一處 所;以及根據該第一處所、該第二處所或是該焦點位置之處所將該照射放大光束相對於該標靶材料重新定位以將該照射放大光束相對於該標靶材料對準。 In another general aspect, aligning an illumination amplified beam with respect to a target material includes accessing a first, second, and third measurements of a reflected amplified beam, the first obtained by a first sensor a second, third measurement obtained by a second sensor having a lower acquisition rate than the first sensor, and the reflected amplified beam is one of the illumination amplified beams derived from a target material Determining, according to the first measurement, a first position of the amplified beam relative to the target material in a direction perpendicular to a direction of propagation of the illumination amplified beam; determining, according to the second measurement, a direction in which the direction of propagation of the amplified light beam is perpendicular, a second position of the amplified light beam relative to the target material; determining, according to the third measurement, in a direction parallel to a direction of propagation of the amplified light beam One of the focus positions of the magnifying beam relative to the target material And reorienting the illumination amplified beam relative to the target material to align the illumination amplified beam with respect to the target material depending on the first location, the second location, or the focus location.

實作可包括一或更多個以下特性。 Implementations may include one or more of the following characteristics.

對於該放大光束之該焦點位置的處所之調整能夠根據該焦點位置之該確定的處所而加以確定,以及將該照射放大光束重新定位作業可包括根據對於該焦點位置之該處所的確定調整而移動該照射放大光束之該焦點位置。 Adjusting the location of the focus position of the magnified beam can be determined based on the determined location of the focus position, and repositioning the illumination magnifying beam can include moving in accordance with the determined adjustment of the location for the focus position This illumination amplifies the focus position of the beam.

能夠根據一或更多的該確定第一處所或是該確定第二處所而確定對於該放大光束的調整。 The adjustment to the amplified beam can be determined based on one or more of the determined first location or the determined second location.

該放大光束能夠為一脈衝光,該確定的第一處所可為該放大光束焦點於與該標靶材料行進的一方向平行之一方向上相對於該標靶材料的一處所,以及對於與該放大光束對準之該確定的調整可為介於該放大光束與該標靶材料之間於與該標靶材料行進的方向平行之該方向上的一段距離,以及將該照射放大光束脈衝重新定位作業可包括於該放大光束中產生與介於該放大光束與該標靶材料之間該段距離相配合的一延遲,以致一接續的脈衝光與一標靶材料相交。 The amplified beam can be a pulsed light, and the determined first location can be a location of the amplified beam in a direction parallel to a direction in which the target material travels relative to the target material, and for the amplification The determined adjustment of the beam alignment may be a distance between the magnifying beam and the target material in a direction parallel to a direction in which the target material travels, and repositioning the illuminated magnifying beam pulse A delay may be generated in the magnified beam that cooperates with the distance between the magnified beam and the target material such that a subsequent pulsed light intersects a target material.

該確定的第二處所可包括該放大光束在與該標靶材料行進方向垂直以及與該放大光束傳播的一方向垂直的一方向上之一處所,以及對於該放大光束之對準的該確定調整可包括介於該放大光束與該標靶材料處所之間的一段距離,以及將該照射放大光束重新定位作業可包括根據 該確定的調整產生一輸出,該輸出係足以致使一操縱該放大光束的光學總成之重新定位;以及對該光學總成提供輸出。 The determined second location may include the amplified beam in a direction that is perpendicular to a direction of travel of the target material and perpendicular to a direction in which the amplified beam propagates, and the determined adjustment for alignment of the amplified beam may be Included between the magnifying beam and the location of the target material, and repositioning the illumination beam may include The determined adjustment produces an output sufficient to cause repositioning of an optical assembly that manipulates the amplified beam; and providing an output to the optical assembly.

將該照射放大光束重新定位作業可包括根據對該焦點位置之該處所的確定調整產生一輸出,該輸出係足以致使將該放大光束聚焦的一光學元件之重新定位;以及對包括該光學元件的一光學總成提供輸出。 Relocating the illumination amplified beam may include generating an output based on the determined adjustment of the location of the focus position, the output being sufficient to cause repositioning of an optical component that focuses the amplified beam; and for including the optical component An optical assembly provides an output.

該第三測量可包括該反射放大光束之一影像,以及確定該放大光束之該焦點位置的一處所之作業可包括分析該影像以確定該反射放大光束之一形狀。分析該反射放大光束之一形狀的作業可包括確定該反射放大光束之橢圓率的作業。 The third measurement can include an image of the reflected amplified beam and an operation of determining a location of the focus of the amplified beam can include analyzing the image to determine a shape of the reflected amplified beam. The act of analyzing the shape of one of the reflected amplified beams may include the act of determining the ellipticity of the reflected amplified beam.

該第三測量可包括在複數處所所取樣之該反射放大光束的影像,以及確定該放大光束之該焦點位置的一處所的作業可包括比較在複數處所中二或更多個處所該反射放大光束之寬度。 The third measurement can include an image of the reflected amplified beam sampled at the plurality of locations, and an operation of determining a location of the focus position of the amplified beam can include comparing the reflected amplified beam at two or more locations in the plurality of locations The width.

於另一個一般性觀點中,一極紫外光系統包括一產生照射放大光束的來源;一操縱系統其於一真空室中操縱該照射放大光束朝向一標靶材料並聚焦;一光束定位系統其包括一或更多個光學元件,該等光學元件經定位以接收一自該標靶材料反射的反射放大光束,並用以引導該反射放大光束進入第一、第二及第三通道;一感測源自於該第一通道之光線的第一感應器;一感測源自於該第二通道及該第三通道之光線,包括一二維成像感應器,的第二感 應器,該第二感應器具有一較該第一感應器為低的採集率;以及一與一電腦可讀取儲存媒體耦合的電子處理器,該媒體儲存指令,當執行時,致使該處理器自該第一感應器及該第二感應器接收數據,並根據該接收的數據,確定該照射放大光束相對於該標靶材料於一個維度以上的一處所。 In another general aspect, a polar ultraviolet light system includes a source that produces an illumination amplified beam; a steering system that manipulates the illumination amplified light beam toward a target material in a vacuum chamber and focuses; a beam positioning system that includes One or more optical elements positioned to receive a reflected amplified beam reflected from the target material and configured to direct the reflected amplified beam into the first, second, and third channels; a sensing source a first sensor from the light of the first channel; a second sense of sensing light from the second channel and the third channel, including a two-dimensional imaging sensor The second sensor has a lower acquisition rate than the first sensor; and an electronic processor coupled to a computer readable storage medium, the media storage instruction, when executed, causes the processor Receiving data from the first sensor and the second sensor, and determining, according to the received data, a location of the illuminated amplified beam above a dimension relative to the target material.

實作可包括一或更多個以下的特性。該媒體可進一步儲存指令,當執行時,致使該處理器確定根據該確定處所對該照射放大光束的該處所的一調整。該確定的調整可包括於一個維度以上的一調整。 Implementations may include one or more of the following characteristics. The medium can further store instructions that, when executed, cause the processor to determine an adjustment of the location of the amplified light beam for the illumination based on the determined location. The determined adjustment may include an adjustment above one dimension.

致使該處理器確定該照射放大光束相對於該標靶材料的該等指令可包括,當執行時,致使該處理器確定於與該照射放大光束之傳播的一方向平行之一方向上,該照射放大光束相對於該標靶材料的一焦點之一處所,以及確定於一第一及第二橫方向上,每一者係與該照射放大光束之傳播的方向垂直,該照射放大光束焦點位置相對於該標靶材料的一處所的指令,。 Having the processor determine that the instructions to illuminate the amplified light beam relative to the target material can include, when executed, causing the processor to determine one direction parallel to a direction of propagation of the illumination amplified beam, the illumination amplification a position of the light beam relative to a focus of the target material, and determined in a first and second transverse directions, each of which is perpendicular to a direction of propagation of the illumination amplified beam, the focus position of the illumination amplified beam being relative to The instruction of a location of the target material.

該等指令可進一步包括,當執行時,致使該處理器確定根據該放大光束之該確定處所對該放大光束的一調整,以及對該操縱系統提供該產生的輸出。 The instructions can further include, when executed, causing the processor to determine an adjustment of the amplified beam in accordance with the determined location of the amplified beam and to provide the generated output to the steering system.

以上說明的任一技術之實作可包括用於改裝一已存在EUV光源的方法、製程、裝置、套件或預先裝配的系統,除存在一電腦可讀取媒體上的可執行指令或是設備。一或更多的實作之該等細節係於伴隨的圖式及以下說 明中提出。由該說明及圖式,以及由該等申請專利範圍,其他的特性將為顯而易見的。 Implementations of any of the techniques described above may include a method, process, apparatus, kit, or pre-assembled system for retrofitting an existing EUV source, except that there is an executable instruction or device on a computer readable medium. The details of one or more of the implementations are tied to the accompanying drawings and below. Presented in the Ming Dynasty. Other features will be apparent from the description and drawings, and claims.

100‧‧‧LPP EUV光源 100‧‧‧LPP EUV light source

105‧‧‧標靶處所 105‧‧‧ Target premises

107‧‧‧內部 107‧‧‧Internal

110‧‧‧放大光束 110‧‧‧Amplified beam

114‧‧‧標靶混合物 114‧‧‧Target mixture

115‧‧‧驅動雷射系統 115‧‧‧Drive laser system

120‧‧‧光束運輸系統 120‧‧‧beam transport system

122‧‧‧聚焦總成 122‧‧‧ Focus assembly

124‧‧‧度量衡系統 124‧‧‧Metrics and Weights System

125‧‧‧標靶材料輸送系統 125‧‧‧Target material conveying system

126‧‧‧標靶材料輸送控制系統 126‧‧‧Target material conveying control system

127‧‧‧標靶材料供給裝置 127‧‧‧Target material supply device

130‧‧‧真空室 130‧‧‧vacuum room

135‧‧‧收集器鏡 135‧‧‧Collector mirror

140‧‧‧孔口 140‧‧‧孔口

145‧‧‧中間處所 145‧‧‧ middle premises

150‧‧‧護罩 150‧‧‧Shield

155‧‧‧主控制器 155‧‧‧Master controller

15‧‧‧微滴探測回饋系統 15‧‧‧Drop Detection and Feedback System

157‧‧‧雷射控制系統 157‧‧‧Laser Control System

158‧‧‧光束控制系統 158‧‧‧ Beam Control System

165‧‧‧光源探測器 165‧‧‧Light source detector

175‧‧‧導引雷射 175‧‧‧Guided laser

180‧‧‧驅動雷射系統 180‧‧‧Drive laser system

181,182,183‧‧‧功率放大器 181,182,183‧‧‧Power Amplifier

184‧‧‧光線 184‧‧‧Light

185‧‧‧輸出窗 185‧‧‧ Output window

186‧‧‧曲面鏡 186‧‧‧ curved mirror

187‧‧‧空間濾波器 187‧‧‧ Spatial Filter

188‧‧‧曲面鏡 188‧‧‧ curved mirror

189‧‧‧輸入窗 189‧‧‧ input window

190‧‧‧輸出窗 190‧‧‧ Output window

191‧‧‧光線 191‧‧‧Light

192‧‧‧摺疊式反射鏡 192‧‧‧Folding mirror

193‧‧‧輸入窗 193‧‧‧ input window

194‧‧‧輸出窗 194‧‧‧ Output window

195‧‧‧輸出光束 195‧‧‧Output beam

196‧‧‧摺疊式反射鏡 196‧‧‧Folding mirror

197‧‧‧孔口 197‧‧‧孔口

200‧‧‧光學成像系統 200‧‧‧ Optical Imaging System

205‧‧‧LPP EUV光源 205‧‧‧LPP EUV light source

210‧‧‧微影術工具 210‧‧‧ lithography tools

215‧‧‧驅動雷射系統 215‧‧‧Drive laser system

216‧‧‧照射放大光束 216‧‧‧Amplified magnifying beam

217‧‧‧反射放大光束 217‧‧‧Reflected amplified beam

217a,217b‧‧‧返回光束 217a, 217b‧‧‧ return beam

220‧‧‧操縱系統 220‧‧‧Control system

222,224‧‧‧光學元件 222,224‧‧‧Optical components

226‧‧‧聚焦系統 226‧‧‧ Focus System

227,228‧‧‧致動系統 227,228‧‧‧ actuation system

240‧‧‧真空室 240‧‧‧vacuum room

242‧‧‧標靶處所 242‧‧‧ Target premises

244‧‧‧焦面 244‧‧ ‧ focal plane

246‧‧‧標靶材料 246‧‧‧ Target materials

247‧‧‧標靶材料供給裝置 247‧‧‧Target material supply device

248‧‧‧標靶材料流 248‧‧‧Target material flow

260‧‧‧光束定位系統 260‧‧‧beam positioning system

262‧‧‧界面 262‧‧‧ interface

263‧‧‧界面 263‧‧‧ interface

280‧‧‧控制器 280‧‧‧ Controller

282‧‧‧電子處理器 282‧‧‧Electronic processor

284‧‧‧電子儲存裝置 284‧‧‧Electronic storage device

300‧‧‧成像系統 300‧‧‧ imaging system

305‧‧‧光源 305‧‧‧Light source

316,317‧‧‧通道 316,317‧‧‧ channel

335‧‧‧窗口 335‧‧‧ window

340‧‧‧光學元件 340‧‧‧Optical components

405‧‧‧摺疊式反射鏡 405‧‧‧Folding mirror

410a,410b‧‧‧部分反射性光學元件 410a, 410b‧‧‧Partial reflective optical components

411,412,413‧‧‧光束 411,412,413‧‧‧beam

415-417‧‧‧通道 415-417‧‧‧ channel

420,421‧‧‧感應器 420,421‧‧‧ sensor

422a-422d‧‧‧感測元件 422a-422d‧‧‧Sensor components

424,425‧‧‧影像 424,425‧‧ images

426,428,430‧‧‧再現 426,428,430‧‧‧Reproduction

432,434,436‧‧‧光學元件 432,434,436‧‧‧Optical components

442‧‧‧光學元件/光譜濾波器 442‧‧‧Optical components/spectral filters

505‧‧‧斑點 505‧‧‧ spots

700‧‧‧光束定位系統 700‧‧‧ Beam Positioning System

705‧‧‧摺疊式反射鏡 705‧‧‧Folding mirror

710a,710b‧‧‧部分反射性光學元件 710a, 710b‧‧‧Partial reflective optical components

711,712,713‧‧‧光束 711,712,713‧‧‧beam

715,716,717‧‧‧通道 715,716,717‧‧ channels

720,721‧‧‧感應器 720,721‧‧‧ sensor

732‧‧‧光學元件 732‧‧‧Optical components

734‧‧‧光學總成 734‧‧‧Optical assembly

736‧‧‧光學元件 736‧‧‧Optical components

740‧‧‧平坦反射元件 740‧‧‧flat reflective elements

741‧‧‧空間濾波器 741‧‧‧ Spatial Filter

742,743‧‧‧透鏡 742,743‧‧ lens

744‧‧‧孔口 744‧‧‧孔口

745‧‧‧開口 745‧‧‧ openings

746‧‧‧散光光學元件 746‧‧‧Astigmatism optics

748‧‧‧透鏡 748‧‧‧ lens

750,750A-750C‧‧‧影像 750,750A-750C‧‧ images

751‧‧‧感應器 751‧‧‧ sensor

752,754‧‧‧斑點 752, 754 ‧ ‧ spots

752A,754A‧‧‧再現 752A, 754A‧‧‧Reproduction

752B,754B‧‧‧再現 752B, 754B‧‧‧Reproduction

752C,754C‧‧‧再現 752C, 754C‧‧‧Reproduction

1100‧‧‧光束定位系統 1100‧‧‧beam positioning system

1110a,1110b‧‧‧部分反射光學元件 1110a, 1110b‧‧‧Partial reflective optics

1111,1112,1113‧‧‧光束 1111,1112,1113‧‧·beam

1115,1116,1117‧‧‧通道 1115, 1116, 1117‧‧ channels

1120,1121‧‧‧感應器 1120, 1121‧‧‧ sensor

1132,1134‧‧‧光學元件 1132, 1134‧‧‧ Optical components

1140‧‧‧偏光鏡 1140‧‧‧ polarizer

1142‧‧‧光譜濾波器 1142‧‧‧Spectral filter

1144‧‧‧濾波器控制器 1144‧‧‧Filter controller

1146‧‧‧平坦反射性元件 1146‧‧‧flat reflective elements

1148‧‧‧透鏡 1148‧‧‧ lens

1150‧‧‧散光光學元件 1150‧‧‧Astigmatism optics

1152‧‧‧感應器 1152‧‧‧ sensor

1200‧‧‧光學總成 1200‧‧‧Optical assembly

1202‧‧‧透鏡 1202‧‧‧ lens

1204‧‧‧光源 1204‧‧‧Light source

1205a,1205b‧‧‧部分反射性光學元件 1205a, 1205b‧‧‧Partial reflective optical components

1210,1211,1212,1213‧‧‧斑點 1210, 1211, 1212, 1213‧‧ spot

1210A,1211A‧‧‧斑點 1210A, 1211A‧‧ spot

1210B,1211B‧‧‧斑點 1210B, 1211B‧‧ spot

1210C‧‧‧斑點 1210C‧‧ spot

1218a,1218b‧‧‧光束 1218a, 1218b‧‧‧ Beam

1221‧‧‧感應器 1221‧‧‧ sensor

1225,1226‧‧‧點 1225, 1226‧‧ points

1250‧‧‧影像 1250‧‧ images

1400‧‧‧光學總成 1400‧‧‧Optical assembly

1400B‧‧‧流程 1400B‧‧‧ Process

1402‧‧‧透鏡 1402‧‧ lens

1405a-1405e‧‧‧部分反射性光學元件 1405a-1405e‧‧‧Partial reflective optical components

1410-1414‧‧‧斑點 1410-1414‧‧ spot

1450,1460,1470,1480‧‧‧步驟 1450, 1460, 1470, 1480 ‧ steps

1505A-1505C‧‧‧影像 1505A-1505C‧‧‧Image

1520A-1520C‧‧‧斑點 1520A-1520C‧‧ spot

1600‧‧‧流程 1600‧‧‧ Process

1610-1650‧‧‧步驟 1610-1650‧‧ steps

圖1A係為一雷射激發電漿極紫外線光源的一方塊圖。 Figure 1A is a block diagram of a laser-excited plasma extreme ultraviolet light source.

圖1B係為能夠於圖1A之該光源中使用的一驅動雷射系統的一實例之一方塊圖。 Figure 1B is a block diagram of an example of a drive laser system that can be used in the light source of Figure 1A.

圖2A係為包括一光源及一微影技術工具的一成像系統的一實例之一俯視圖。 2A is a top plan view of an example of an imaging system including a light source and a lithography tool.

圖2B係為圖2A之該光源的一部分側透視圖。 Figure 2B is a partial side perspective view of the light source of Figure 2A.

圖2C係為圖2A之該光源沿著線2C-2C所取的一橫截面俯視圖。 2C is a cross-sectional top view of the light source of FIG. 2A taken along line 2C-2C.

圖3A係為包括一光源及一微影技術工具的一成像系統的另一實例之一俯視圖。 3A is a top plan view of another example of an imaging system including a light source and a lithography tool.

圖3B係為圖3A之該光源的一部分側透視圖。 Figure 3B is a partial side perspective view of the light source of Figure 3A.

圖3C係為圖3A之該光源沿著線3C-3C所取的一橫截面俯視圖。 Figure 3C is a cross-sectional top view of the light source of Figure 3A taken along line 3C-3C.

圖4係為一示範光束定位系統。 Figure 4 is an exemplary beam positioning system.

圖5A-5C係為在一象限感應器上形成一光斑的一反射光束之示範性影像。 5A-5C are exemplary images of a reflected beam forming a spot on a quadrant sensor.

圖6係為一象限感應器隨著介於一照射放大光束與一標靶材料之間的一段距離變化之該反應的一示範性圖表。 Figure 6 is an exemplary graph of the reaction of a quadrant sensor as a function of distance between an illumination beam and a target material.

圖7顯示另一示範性光束定位系統的一方塊圖。 Figure 7 shows a block diagram of another exemplary beam positioning system.

圖8A-8C顯示照射放大光束相對於一標靶材料之側視圖。 Figures 8A-8C show side views of an illumination amplified beam relative to a target material.

圖9A-9C係為源自於將二反射光束成像的一感應器之影像的實例。 Figures 9A-9C are examples of images derived from an inductor that images a two reflected beam.

圖10A及10B係為隨著介於一照射放大光束與一標靶材料之間的一段距離變化之感應器反應的示範性圖表。 10A and 10B are exemplary graphs of sensor responses as a function of distance between a source of illumination and a target material.

圖11顯示另一示範性光束定位系統的一方塊圖。 Figure 11 shows a block diagram of another exemplary beam positioning system.

圖12及14顯示示範性光學總成的方塊圖。 Figures 12 and 14 show block diagrams of exemplary optical assemblies.

圖13A-13C顯示照射放大光束相對於一標靶材料的側視圖。 Figures 13A-13C show side views of an illumination amplified beam relative to a target material.

圖14B係為用於調整相對一標靶材料的一焦點位置的一示範性製程之一流程圖。 Figure 14B is a flow diagram of an exemplary process for adjusting a focus position relative to a target material.

圖15A-15C係為源自於將二反射光束成像的一感應器之影像的實例。 15A-15C are examples of images derived from an inductor that images a two reflected beam.

圖16係為用於將一照射放大光束相對於標靶材料對準的一示範性製程之一流程圖。 Figure 16 is a flow diagram of an exemplary process for aligning an illumination amplified beam with respect to a target material.

較佳實施例之詳細說明 Detailed description of the preferred embodiment

本發明揭示用於根據反射放大光束之測量對準或是其他方式控制一雷射激發電漿(LPP)極紫外線(EUV)光源中放大光束的技術。該LPP EUV光源藉由引導一放大光束(一照射放大光束或是一前向光束)朝向接收一標靶材料的一標靶處所而產生EUV光線。該標靶材料包括當轉換成 電漿時放射EUV光線的一材料。當該照射放大光束撞擊該標靶材料時,該標靶材料能夠吸收該放大光束並轉換成電漿及/或該標靶材料能夠將該照射放大光束反射以產生該反射放大光束(微滴反射光束或是返回光束)。 The present invention discloses techniques for controlling the magnification of a laser-excited plasma (LPP) extreme ultraviolet (EUV) source based on the measurement alignment of the reflected amplified beam or otherwise. The LPP EUV source produces EUV light by directing an amplified beam (either an amplified beam or a forward beam) toward a target location that receives a target material. The target material includes when converted into A material that emits EUV light when it is plasma. When the illumination amplification beam strikes the target material, the target material can absorb the amplified beam and convert it into a plasma and/or the target material can reflect the illumination amplified beam to generate the reflected amplified beam (droplet reflection Beam or return beam).

在使用該EUV光源期間,該照射放大光束可自該標靶處所移離,降低將標靶材料轉換成電漿的可能性。如以下所論及,該反射放大光束之測量係用以監測該照射放大光束於多重維度相對於該標靶材料的處所。該監控的處所係用以確定對於該照射放大光束的調整,因此於該光源之作業期間該照射放大光束保持與該標靶處所對準。以下論及的該等技術容許監控該放大光束相對於該標靶位置的該焦點位置以及控制光束焦點,因此其保持位在相對於該標靶位置的一最理想位置。 During use of the EUV source, the illumination amplified beam can be removed from the target, reducing the likelihood of converting the target material into a plasma. As discussed below, the measurement of the reflected amplified beam is used to monitor the illumination of the amplified beam in multiple dimensions relative to the target material. The monitored location is used to determine an adjustment to the illumination amplified beam such that the illumination amplified beam remains aligned with the target during operation of the source. The techniques discussed below allow monitoring of the focus position of the magnified beam relative to the target position and controlling the beam focus so that it remains in an optimal position relative to the target position.

複數的物理效果會導致該放大光束自該標靶處所移離。例如,諸如將該照射放大光束聚焦的透鏡或曲面鏡的一聚焦光學元件之加熱會改變該聚焦光學元件之焦距,以及沿著一與該照射放大光束之傳播方向平行的“z”方向移動該照射放大光束之一焦面。操縱並引導該照射放大光束朝向該標靶處所的轉動鏡及其他光學元件發生的振動會在與該放大光束之傳播方向橫向的“x”及/或“y”方向上將該放大光束在移離該標靶處所。針對脈衝放大光束,在該焦點位置與該標靶材料之間沿著該“x”方向,與該微滴行進朝向該標靶處所所沿路徑平行,的移動可指示該脈衝在該標靶材料之前或之後抵達該標靶區域。 The complex physical effect causes the magnified beam to move away from the target. For example, heating of a focusing optical element such as a lens or curved mirror that focuses the illumination amplified beam changes the focal length of the focusing optical element and moves along a "z" direction parallel to the direction of propagation of the illumination amplified beam. Irradiating one of the focal planes of the amplified beam. Manipulating and directing the vibration of the rotating magnifying beam toward the rotating mirror of the target and other optical elements will shift the magnifying beam in the "x" and / or "y" directions transverse to the direction of propagation of the magnifying beam From the target premises. For pulsed amplification of the beam, movement between the focal position and the target material along the "x" direction, parallel to the path along which the droplet travels toward the target, may indicate that the pulse is at the target material Arrived in the target area before or after.

為確定該放大光束之處所,個別的感應器,具有不同的數據採集率,係用以將該反射放大光束成像,以及源自於該等感應器的數據係用以確定該放大光束於多重維度中之位置。因為致使該照射放大光束相對於該標靶處所移動的該等物理效應之時標變化,所以使用具有不同的數據採集率的感應器能夠提供附加的資訊。例如,在將該放大光束聚焦的透鏡上的熱效應,諸如該透鏡材料經由吸收該放大光束或是該電漿的加熱,其致使該放大光束之焦面沿著該“z”方向移動較於該“x”及/或“y”方向上的一些移動出現更為緩慢,這會是由光學元件之高頻振動所產生。 To determine where the amplified beam is, individual sensors have different data acquisition rates for imaging the reflected amplified beam, and the data derived from the sensors are used to determine the amplified beam in multiple dimensions. The location in the middle. The use of sensors having different data acquisition rates can provide additional information because of the time-scale changes that cause the physical effects of the illumination-amplified beam to move relative to the target. For example, a thermal effect on a lens that focuses the magnifying beam, such as the lens material, by absorbing the magnifying beam or heating of the plasma, causing the focal plane of the magnifying beam to move in the "z" direction compared to the Some movements in the "x" and / or "y" directions occur more slowly, which can be caused by high frequency vibrations of the optical components.

就其本身而論,以下論及的監控技術可藉由調整該照射放大光束於多重維度中相對於該標靶處所或標靶材料的處所而改良一EUV光源之性能,因此改良該照射放大光束之對準並增加由該光源產生的EUV光線總量。 For its part, the monitoring technique discussed below can improve the performance of an EUV source by adjusting the illumination to amplify the beam in multiple dimensions relative to the location of the target location or target material, thus improving the illumination amplification beam. Align and increase the total amount of EUV light produced by the source.

在討論該等監測技術之前更為詳細地論述該EUV光源。圖4顯示一光束定位系統260的一實例,該系統監測並確定該照射放大光束於多重維度中相對於該標靶材料的處所。該光束定位系統260亦可產生信號,當提供至與光學組件耦合的致動器或是其他元件時,致使該等組件改變位置以將該照射放大光束重新定位。 The EUV source is discussed in more detail before discussing these monitoring techniques. 4 shows an example of a beam positioning system 260 that monitors and determines the location of the illumination magnified beam in multiple dimensions relative to the target material. The beam positioning system 260 can also generate signals that, when provided to an actuator or other component coupled to the optical assembly, cause the components to change position to reposition the illumination amplified beam.

參考圖1A,在一標靶處所105利用一沿著光束路徑朝向標靶混合物114行進的放大光束110照射該標靶混合物114而形成一LPP EUV光源100。該標靶處所105,其亦係視為該照射場所,係位於一真空室130之一內部107。當該 放大光束110撞擊該標靶混合物114時,該標靶混合物114內的一標靶材料係經轉換成一電漿狀態其具有一成分其之放射線位於該EUV範圍中。該產生的電漿具有某些視該標靶混合物114內該標靶材料的成份而定的特性。該等特性可包括藉由該電漿產生的該EUV光線之波長以及自該電漿釋放的碎片之型式及總量。 Referring to FIG. 1A, an target LPS EUV source 100 is formed by illuminating a target mixture 114 with a magnifying beam 110 traveling along a beam path toward a target mixture 114 at a target location 105. The target location 105, which is also considered to be the location of illumination, is located within one of the interiors 107 of a vacuum chamber 130. When When the magnifying beam 110 strikes the target mixture 114, a target material in the target mixture 114 is converted to a plasma state having a composition in which the radiation is located in the EUV range. The resulting plasma has certain characteristics depending on the composition of the target material within the target mixture 114. The characteristics may include the wavelength of the EUV light generated by the plasma and the type and total amount of debris released from the plasma.

該光源100亦包括一標靶材料輸送系統125,輸送、控制及引導為液體微滴、液體流、固體微粒或團塊、包含於液體微滴內的固體微粒或是包含於一液體流內的固體微粒的形式的該標靶混合物114。該標靶混合物114包括該標靶材料諸如,例如,水、錫,鋰、氙或當轉換成電漿狀態時具有一位於該EUV範圍中的放射線的任何材料。例如,該成分錫可使用當作純錫(Si);當作錫化合物,例如,SnBr4、SnBr2、SnH4;當作錫合金,例如,錫-鎵合金、錫-銦合金、錫-銦-鎵合金或是該等合金的任何結合物。該標靶混合物114亦可包括雜質諸如非標靶微粒。因此,在無雜質的情況下,該標靶混合物114係僅以該標靶材料製成。該標靶混合物114係藉由該標靶材料輸送系統125輸送進入該真空室130之該內部107以及至該標靶處所105。 The light source 100 also includes a target material delivery system 125 for transporting, controlling, and directing liquid droplets, liquid streams, solid particles or agglomerates, solid particles contained within the liquid droplets, or contained within a liquid stream. The target mixture 114 is in the form of solid particles. The target mixture 114 includes the target material such as, for example, water, tin, lithium, cesium or any material having a radiation in the EUV range when converted to a plasma state. For example, the composition can be used as pure tin, tin (Si); as a tin compound, e.g., SnBr 4, SnBr 2, SnH 4; as a tin alloy, for example, tin - gallium alloy, tin - indium alloys, tin - Indium-gallium alloys or any combination of such alloys. The target mixture 114 can also include impurities such as non-target particles. Thus, in the absence of impurities, the target mixture 114 is made only from the target material. The target mixture 114 is delivered into the interior 107 of the vacuum chamber 130 and to the target location 105 by the target material delivery system 125.

該光源100包括一驅動雷射系統115,由於該雷射系統115之該增益介質或該等增益介質內的一居量反轉而產生該放大光束110。該光源100於該雷射系統115與該標靶處所105之間包括一光束輸送系統,該光束輸送系統包括一光束運輸系統120及一聚焦總成122。該光束運輸系統120自 該雷射系統115接收該放大光束110並如所需地操縱及修改該放大光束110以及將該放大光束110輸出至該聚焦總成122。該聚焦總成122接收該放大光束110並將該光束110聚焦至該標靶處所105。 The light source 100 includes a drive laser system 115 that is generated due to the gain medium of the laser system 115 or a reversal of a quantity within the gain medium. The light source 100 includes a beam delivery system between the laser system 115 and the target location 105. The beam delivery system includes a beam delivery system 120 and a focusing assembly 122. The beam transport system 120 The laser system 115 receives the amplified beam 110 and manipulates and modifies the amplified beam 110 as desired and outputs the amplified beam 110 to the focusing assembly 122. The focus assembly 122 receives the amplified beam 110 and focuses the beam 110 to the target location 105.

於一些實作中,該雷射系統115可包括一或更多個光學放大器、雷射及/或燈用於提供一或更多的主脈衝及,於一些例子中,一或更多個預脈衝。每一光學放大器包括一增益介質能夠在一高增益下於光學上放大該所需波長,一激發源及內部光學元件。該光學放大器可或未具有構成一雷射腔室的雷射鏡或是其他回饋裝置。因此,由於該雷射放大器之該增益介質中的居量反轉甚至無雷射腔室,該雷射系統115產生一放大光束110。此外,該雷射系統115可產生一放大光束110,假若無一雷射腔室以提供足夠的回饋至該雷射系統115則該放大光束係為一相干雷射光束。該用語“放大光束”包含以下一或更多者:源自於該雷射系統115的光線其係僅放大而非必然地為一相干雷射震盪以及源自於雷射系統115的光線係經放大並亦係為一相干雷射震盪。 In some implementations, the laser system 115 can include one or more optical amplifiers, lasers, and/or lamps for providing one or more main pulses and, in some examples, one or more pre- pulse. Each optical amplifier includes a gain medium capable of optically amplifying the desired wavelength, an excitation source and internal optical components, at a high gain. The optical amplifier may or may not have a laser mirror or other feedback device that forms a laser chamber. Thus, the laser system 115 produces an amplified beam 110 due to the reversal of the gain in the gain medium of the laser amplifier or even the absence of a laser chamber. In addition, the laser system 115 can generate an amplified beam 110 that is a coherent laser beam if there is no laser chamber to provide sufficient feedback to the laser system 115. The term "amplifying beam" includes one or more of the following: light rays originating from the laser system 115 are only amplified, not necessarily a coherent laser oscillation, and the light rays originating from the laser system 115 are Amplification is also a coherent laser oscillation.

位於該雷射系統115中的該等光學放大器可包括作為一增益介質的一包括二氧化碳(CO2)之填充氣體並可在介於約9100與約11000奈米之間的一波長下放大光線,更特定言之,在約10600奈米,大於或等於的一增益下。於該雷射系統115中所用之適合的放大器及雷射可包括一脈衝雷射裝置,例如,一脈衝式、氣體放電二氧化碳雷射裝置 在約9300奈米或約10600奈米下,例如,利用DC或RF激發產生輻射,在相對高的功率,例如,10kW或更高以及高脈衝重複率,例如,50kHz或更高下作業。位於該雷射系統115中該等光學放大器亦可包括一冷卻系統諸如水,可在較高功率下操作該雷射系統115時使用。 The optical amplifiers located in the laser system 115 can include a carbon dioxide (CO 2 ) fill gas as a gain medium and can amplify light at a wavelength between about 9100 and about 11,000 nm. More specifically, at about 10600 nm, a gain greater than or equal to. Suitable amplifiers and lasers for use in the laser system 115 can include a pulsed laser device, for example, a pulsed, gas-discharged carbon dioxide laser device at about 9300 nm or about 10600 nm, for example, utilizing The DC or RF excitation produces radiation at a relatively high power, for example, 10 kW or higher and a high pulse repetition rate, for example, 50 kHz or higher. Located in the laser system 115, the optical amplifiers can also include a cooling system such as water that can be used when operating the laser system 115 at higher power.

圖1B顯示一示範驅動雷射系統180的一方塊圖。該驅動雷射系統180可使用作為該光源100中該驅動雷射系統115。該驅動雷射系統180包括三個功率放大器181、182及183。任何或所有功率放大器181、182及183可包括內部光學元件(未顯示)。 FIG. 1B shows a block diagram of an exemplary driven laser system 180. The drive laser system 180 can be used as the drive laser system 115 in the light source 100. The drive laser system 180 includes three power amplifiers 181, 182, and 183. Any or all of the power amplifiers 181, 182, and 183 can include internal optical components (not shown).

光線184自該功率放大器181經由一輸出窗185退出並係反射離開一曲面鏡186。反射後,通過一空間濾波器187的該光線184,係反射離開一曲面鏡188,並係經由一輸入窗189進入該功率放大器182。該光線184係於該功率放大器182中經放大並重新引導經由一輸出窗190自該功率放大器182而出作為光線191。利用摺疊式反射鏡192將該光線191導向該放大器183並經由一輸入窗193進入該放大器183。該放大器183將該光線191放大並將該光線191經由一輸出窗194自該放大器183引導而出作為一輸出光束195。一摺疊式反射鏡196將該輸出光束195引導向上(自頁面而出)並朝向該光束運輸系統120。 Light 184 exits from the power amplifier 181 via an output window 185 and is reflected off a curved mirror 186. After reflection, the light 184 passing through a spatial filter 187 is reflected off a curved mirror 188 and enters the power amplifier 182 via an input window 189. The light ray 184 is amplified and redirected from the power amplifier 182 from the power amplifier 182 as a light ray 191 via an output window 190. The ray 191 is directed to the amplifier 183 by a folding mirror 192 and enters the amplifier 183 via an input window 193. The amplifier 183 amplifies the light 191 and directs the light 191 from the amplifier 183 via an output window 194 as an output beam 195. A folding mirror 196 directs the output beam 195 upward (from the page) and toward the beam transport system 120.

該空間濾波器187界定一孔口197,例如,其可為一直徑介於約2.2公厘與3公厘之間的圓圈。該曲面鏡186及188,例如,可為離軸拋物線反射鏡,其之焦距分別約為1.7 公尺及2.3公尺。該空間濾波器187可經定位以致該孔口197與該驅動雷射系統180之一焦點相一致。 The spatial filter 187 defines an aperture 197, which may be, for example, a circle having a diameter between about 2.2 mm and 3 mm. The curved mirrors 186 and 188, for example, may be off-axis parabolic mirrors having focal lengths of about 1.7, respectively. Metric and 2.3 meters. The spatial filter 187 can be positioned such that the aperture 197 coincides with a focus of the drive laser system 180.

再次參考圖1A,該光源100包括一收集器鏡135其具有一孔口140以容許該放大光束110通過並抵達該標靶處所105。該收集器鏡135,例如,可為一橢球鏡,其在該標靶處所105具有一主要焦點以及在一中間處所145具有一次級焦點(亦視為一中間焦點),其中該EUV光線可自該光源100輸出並可輸入至,例如,一積體電路光束定位工具(未顯示)。該光源100亦可包括一開端式、中空圓錐護罩150(例如,一氣體錐),由該收集器鏡135朝向該標靶處所105成錐形以減少電漿產生之進入該聚焦總成122及/或該光束運輸系統120的碎片總量,同時容許該放大光束110抵達該標靶處所105。為此目地,可於該護罩中提供一被導向該標靶處所105的氣流。 Referring again to FIG. 1A, the light source 100 includes a collector mirror 135 having an aperture 140 to allow the amplified beam 110 to pass through and reach the target location 105. The collector mirror 135, for example, can be an ellipsoidal mirror having a primary focus at the target location 105 and a primary focus (also referred to as an intermediate focus) in an intermediate location 145, wherein the EUV light can The light source 100 is outputted and can be input to, for example, an integrated circuit beam positioning tool (not shown). The light source 100 can also include an open ended, hollow conical shroud 150 (eg, a gas cone) that is tapered toward the target location 105 by the collector mirror 135 to reduce plasma generation into the focusing assembly 122. And/or the total amount of debris of the beam transport system 120 while allowing the amplified beam 110 to reach the target location 105. To this end, an air flow directed to the target space 105 can be provided in the shield.

該光源100亦可包括一主控制器155其係連接至一微滴探測回饋系統156、一雷射控制系統157及一光束控制系統158。該光源100可包括一或更多個標靶或微滴成像器160,提供一微滴,例如,相對於該標靶處所105之位置的輸出指示,並將此輸出提供至該微滴探測回饋系統156,例如,能夠計算微滴位置及軌道,由之能夠以一微滴一微滴方式為基礎或是平均方式計算一微滴位置誤差。該微滴探測回饋系統156因此提供該微滴位置誤差作為該主控制器155的一輸入。該主控制器155因此可提供一雷射位置、方向及時序修正信號,例如,至該雷射控制系統157,可用 於,例如,控制該雷射時序電路及/或提供至該光束控制系統158以控制光束運輸系統120之一放大光束位置及塑形作業,改變該真空室130內該光束焦斑之處所及/或焦度。 The light source 100 can also include a main controller 155 coupled to a droplet detection feedback system 156, a laser control system 157, and a beam control system 158. The light source 100 can include one or more targets or droplet imagers 160 that provide a droplet, for example, an output indication relative to the location of the target location 105, and provide this output to the droplet detection feedback System 156, for example, can calculate droplet position and orbit, from which a droplet position error can be calculated on a droplet-to-microdrop basis or on an average basis. The droplet detection feedback system 156 thus provides the droplet position error as an input to the main controller 155. The main controller 155 can thus provide a laser position, direction and timing correction signal, for example, to the laser control system 157, available For example, controlling the laser timing circuit and/or providing to the beam steering system 158 to control the beam position and shaping operation of one of the beam delivery systems 120, changing the focal spot of the beam within the vacuum chamber 130 Or power.

該標靶材料輸送系統125包括一標靶材料輸送控制系統126其可在感應源自於該主控制器155的一信號後作動,例如,以當一標靶材料供給裝置127釋放微滴時修正該等微滴之釋放點,改正抵達該需要的標靶處所105之該等微滴的誤差。 The target material delivery system 125 includes a target material delivery control system 126 that can be actuated after sensing a signal originating from the primary controller 155, for example, to correct when a target material supply device 127 releases droplets. The release points of the droplets correct the errors of the droplets arriving at the desired target location 105.

此外,該光源100可包括一光源探測器165測量一或更多EUV光線參數,包括但非限定在,脈衝能量、隨波長變化的能量分布、一特定波長頻帶內的能量、一特定波長頻帶外的能量、以及EUV強度及/或平均功率之角分布。 該光源探測器165產生一回饋信號供該主控制器155使用。 該回饋信號,例如,可為指示參數中之誤差,諸如該等雷射脈衝之時序及焦點,以恰當地在正確場所以及用於有效且有效率地產生EUV光線的時間截住該等微滴。 In addition, the light source 100 can include a light source detector 165 to measure one or more EUV light parameters including, but not limited to, pulse energy, energy distribution as a function of wavelength, energy in a particular wavelength band, and a specific wavelength band. The energy, as well as the angular distribution of EUV intensity and/or average power. The light source detector 165 generates a feedback signal for use by the main controller 155. The feedback signal, for example, can be an error in the indicated parameters, such as the timing and focus of the laser pulses, to properly intercept the droplets at the correct location and for efficient and efficient generation of EUV light. .

該光源100亦可包括一導引雷射175其能夠用於對準不同段之該光源100或是有助於操縱該放大光束110至該標靶處所105。與該導引雷射175有關,該光源100包括一度量衡系統124,其係安置在該聚焦總成122內以自該導引雷射175及該放大光束110取樣一部分之光線。於其他實作中,該度量衡系統124係安置在該光束運輸系統120中。該度量衡系統124可包括一取樣或重新引導一光線子集的光學元件,該光學元件係由能夠抵擋導引雷射光束及該放大 光束110之功率的任何材料製成。一光束分析系統係由該度量衡系統124以及該主控制器155構成,因為該主控制器155分析源自於該導引雷射175之該取樣光線並使用此資訊以經由該光束控制系統158調整該聚焦總成122內之組件。 The light source 100 can also include a guiding laser 175 that can be used to align the different segments of the light source 100 or to facilitate manipulation of the amplified beam 110 to the target location 105. In connection with the pilot laser 175, the light source 100 includes a metrology system 124 disposed within the focus assembly 122 to sample a portion of the light from the pilot laser 175 and the amplified beam 110. In other implementations, the metrology system 124 is housed in the beam transport system 120. The metrology system 124 can include an optical component that samples or redirects a subset of rays that is capable of resisting directing the laser beam and the amplification The material of the power of the beam 110 is made of any material. A beam analysis system is comprised of the metrology system 124 and the main controller 155 because the main controller 155 analyzes the sampled light originating from the pilot laser 175 and uses this information to adjust via the beam control system 158. The components within the focus assembly 122.

因此,總之,該光源100產生一放大光束100,其係經引導沿著該光束路徑以在該標靶處所105處照射該標靶混合物114用以將該混合物114內該標靶材料轉換成於該EUV範圍中放射光線的電漿。根據該雷射系統115之該設計及特性確定的該放大光束110在一特別波長(亦係視為一光源波長)下作業。此外,該放大光束110在該標靶材料提供足夠回饋進入該雷射系統115以產生相干雷射光時或是假若該驅動雷射系統115包括適合的光學回饋以構成一雷射腔室則可為一雷射光束。 Thus, in summary, the light source 100 produces an amplified beam 100 that is directed along the beam path to illuminate the target mixture 114 at the target location 105 for converting the target material within the mixture 114 to The plasma of the emitted light in the EUV range. The amplified beam 110, which is determined according to the design and characteristics of the laser system 115, operates at a particular wavelength (also referred to as a source wavelength). Moreover, the amplified beam 110 may be provided when the target material provides sufficient feedback into the laser system 115 to produce coherent laser light or if the drive laser system 115 includes suitable optical feedback to form a laser chamber. A laser beam.

參考圖2A,顯示一示範性光學成像系統200的一俯視圖。該光學成像系統200包括一LPP EUV光源205提供EUV光線至一微影術工具210。該光源205可與圖1A及1B之該光源100相似及/或包括該光源100的一些或是所有的組件。 Referring to FIG. 2A, a top view of an exemplary optical imaging system 200 is shown. The optical imaging system 200 includes an LPP EUV source 205 that provides EUV light to a lithography tool 210. The light source 205 can be similar to and/or include some or all of the components of the light source 100 of FIGS. 1A and 1B.

如以下更為詳細地論述,為增加由該光源205產生的EUV光線之總量,該光源205包括一光束定位系統260,其於該光源205之作業期間維持一照射放大光束216於三個維度中相對於一標靶材料246的位置。該光束定位系統260接收並測量一在該照射放大光束216係自該標靶材料246之至少一部分反射時所產生的反射放大光束217之性 質。該等測量的性質係用以確定並監測於多重維度中該照射放大光束216之該位置。該光束定位系統260係相關於圖4更為詳細地論述。 As discussed in more detail below, to increase the total amount of EUV light generated by the light source 205, the light source 205 includes a beam positioning system 260 that maintains an illumination amplified beam 216 in three dimensions during operation of the source 205. The position relative to a target material 246. The beam localization system 260 receives and measures a property of the reflected amplified beam 217 produced when the illumination amplified beam 216 is reflected from at least a portion of the target material 246. quality. The nature of these measurements is used to determine and monitor the location of the illumination amplified beam 216 in multiple dimensions. The beam positioning system 260 is discussed in more detail with respect to FIG.

該光源205包括一產生該照射放大光束216的驅動雷射系統215,一操縱系統220,一真空室240,該光束定位系統260以及一控制器280。該操縱系統220接收該照射放大光束216並操縱及聚焦該照射放大光束朝向位於該真空室240中的一標靶處所242。該操縱系統220包括光學元件222及224。於圖2A中所示之該實例中,該光學元件222係為一部分反射性光學元件,接收該照射放大光束216並將該照射放大光束216反射朝向該光學元件224及該聚焦系統226。 The light source 205 includes a drive laser system 215 that produces the illumination amplified beam 216, a steering system 220, a vacuum chamber 240, the beam positioning system 260, and a controller 280. The steering system 220 receives the illumination amplified beam 216 and manipulates and focuses the illumination amplified beam toward a target location 242 located in the vacuum chamber 240. The steering system 220 includes optical elements 222 and 224. In the example shown in FIG. 2A, the optical element 222 is a portion of a reflective optical element that receives the illumination amplified beam 216 and reflects the illumination amplified beam 216 toward the optical element 224 and the focusing system 226.

該元件224可為光學及/或機械元件之集合,諸如一光束運輸系統,接收該照射放大光束216且操縱該照射放大光束216如所需地朝向該聚焦系統226。該元件224亦可包括一光束擴展系統擴展該照射放大光束216。一示範性光束擴展系統之說明係出現於2009年12月15日提出申請的美國專利第8,173,985號,標題為“用於極紫外線光源的光束運輸系統”中,於此係以全文引用方式併入本案以為參考資料。 The component 224 can be a collection of optical and/or mechanical components, such as a beam transport system, that receives the illumination amplified beam 216 and manipulates the illumination amplified beam 216 as desired toward the focusing system 226. The component 224 can also include a beam expansion system that extends the illumination amplification beam 216. An exemplary beam-expansion system is described in U.S. Patent No. 8,173,985, filed on Dec. 15, 2009, which is hereby incorporated by reference herein in This case is considered as reference material.

該聚焦系統226包括一聚焦光學元件接收該照射放大光束216並將該光束216聚焦至一焦點位置。該焦點位置係為該真空室240中一焦面244內的一處所或區域。該聚焦光學元件可為一折射性光學元件、一反射性光學元件或是包括折射性及反射性光學組件二者的光學元件之一集合。該聚焦系統226亦可包括附加的光學組件,諸如旋轉式 反射鏡,其能夠用以將該聚焦光學元件相對於一通過該聚焦光學元件的放大光束定位。 The focusing system 226 includes a focusing optic that receives the illuminated amplified beam 216 and focuses the beam 216 to a focus position. The focus position is a location or area within a focal plane 244 of the vacuum chamber 240. The focusing optical element can be a collection of refractive optical elements, a reflective optical element, or an optical element comprising both refractive and reflective optical components. The focusing system 226 can also include additional optical components, such as a rotary A mirror capable of positioning the focusing optic relative to an amplified beam passing through the focusing optic.

同時參考圖2B及2C,該真空室240在該標靶區域242處接收該標靶材料246。圖2B顯示該光源205的一側透視圖,以及圖2C顯示沿著線2C-2C所取的該光源205的一橫截面平面視圖。該標靶材料246可為一金屬微滴,其係包括自一標靶材料供給裝置247釋放的標靶材料流248中。該標靶材料流248係自該標靶材料供給裝置247釋放並沿著該“x”方向朝向該標靶處所242行進。該照射放大光束216撞擊該標靶材料246並可經反射以產生該反射放大光束217及/或由該標靶材料246吸收。該反射放大光束217於一與該照射放大光束216朝向該標靶材料246傳播的該方向相反之一“-z”方向傳播離開該標靶處所242。該反射放大光束217行進通過所有或是部分之該操縱系統220並進入該光束定位系統260。 2B and 2C, the vacuum chamber 240 receives the target material 246 at the target region 242. 2B shows a side perspective view of the light source 205, and FIG. 2C shows a cross-sectional plan view of the light source 205 taken along line 2C-2C. The target material 246 can be a metal droplet that is included in the target material stream 248 that is released from a target material supply device 247. The target material stream 248 is released from the target material supply device 247 and travels toward the target location 242 along the "x" direction. The illumination amplified beam 216 strikes the target material 246 and can be reflected to produce and/or be absorbed by the reflected amplified beam 217. The reflected amplified beam 217 propagates away from the target location 242 in a "-z" direction opposite the direction in which the illumination amplified beam 216 propagates toward the target material 246. The reflected amplified beam 217 travels through all or part of the steering system 220 and into the beam positioning system 260.

如以上所論及,在該標靶材料246轉換成電漿時產生EUV光線。當該標靶材料246係位在該放大光束216之該光束焦散的最理想位置時,該標靶材料246係更可能轉換成電漿。位於該光束焦散的該最理想位置係為產生最大EUV光線所處之位置。該最理想位置可為位於沿著該放大光束之該傳播方向的二點處。例如,於該光束焦散內可具有二最理想處所,一處所位於一最小點位置之上游(位於“-z”方向)以及另一處所位於該最小點位置之下游(位於“z”方向)。於另一實例中,該光束焦散內的該光學處所可位在 該最小點位置,讓該焦點位置與該標靶材料246相一致。 As discussed above, EUV light is generated as the target material 246 is converted to plasma. When the target material 246 is anchored at the most desirable position of the beam of the amplified beam 216, the target material 246 is more likely to be converted to plasma. The most desirable location for the focal length of the beam is the location at which the maximum EUV light is produced. The most desirable position may be at two points along the direction of propagation of the magnified beam. For example, there may be two most desirable locations within the focal length of the beam, one location upstream of a minimum point location (in the "-z" direction) and the other location downstream of the minimum point location (in the "z" direction). . In another example, the optical location within the focal length of the beam can be at The minimum point position is such that the focus position coincides with the target material 246.

因此,控制該照射放大光束216之該位置以維持相對於該標靶材料246的一不變的焦點位置而同時該光源205係在作業中,能夠藉由保持該標靶材料246位在最理想位置而增加產生EUV光線。易言之,主動地將該照射放大光束216相對於該標靶材料246的對準作業能夠改良該光源205之性能。 Thus, controlling the position of the illumination amplified beam 216 to maintain a constant focus position relative to the target material 246 while the source 205 is in operation, can be optimal by maintaining the target material 246 Increase in position produces EUV light. In other words, actively aligning the illumination amplification beam 216 with respect to the target material 246 can improve the performance of the source 205.

再次參考圖2A,該光束定位系統260測量指示該照射放大光束216、該焦點位置及/或該焦面244之該位置之資訊,以及提供該資訊經由一界面262至該控制器280。該界面262可為任何的有線或是無線通訊機構,容許該控制器280與該光束定位系統260之間數據之交換。該控制器280包括一電子處理器282及一電子儲存裝置284。該控制器280使用指示該照射放大光束216之該位置的資訊以產生經由一界面263提供至致動系統227及/或228的信號。 Referring again to FIG. 2A, the beam positioning system 260 measures information indicative of the position of the illumination amplified beam 216, the focus position, and/or the focal plane 244, and provides the information to the controller 280 via an interface 262. The interface 262 can be any wired or wireless communication mechanism that allows for the exchange of data between the controller 280 and the beam positioning system 260. The controller 280 includes an electronic processor 282 and an electronic storage device 284. The controller 280 uses information indicative of the location of the illumination amplified beam 216 to generate signals that are provided to the actuation system 227 and/or 228 via an interface 263.

該電子儲存裝置284可為揮發性記憶體,諸如隨機存取記憶體(RAM)。於一些實作中,該電子儲存裝置284可包括非揮發性及揮發性部分或組件二者。該電子處理器282可為一或更多適於執行電腦程式的處理器,諸如一般性或是特殊用途的微處理器,以及任何的任一類型之數位電腦的一或更多的處理器。一般地,一處理器自一唯讀記憶體或一隨機存取記憶體或是二者接收指令及數據。 The electronic storage device 284 can be a volatile memory such as a random access memory (RAM). In some implementations, the electronic storage device 284 can include both non-volatile and volatile portions or components. The electronic processor 282 can be one or more processors suitable for executing a computer program, such as a general or special purpose microprocessor, and one or more processors of any type of digital computer. Generally, a processor receives instructions and data from a read-only memory or a random access memory or both.

該電子處理器282可為任何型式之電子處理器並且可為一個以上的電子處理器。該電子儲存裝置284儲存指 令,可能作為電腦程式,當執行時,致使該電子處理器282與該光束定位系統260中的其他組件及/或該控制器280連通。 The electronic processor 282 can be any type of electronic processor and can be more than one electronic processor. The electronic storage device 284 stores the finger Thus, as a computer program, when executed, the electronic processor 282 is caused to communicate with other components in the beam positioning system 260 and/or the controller 280.

該致動系統227包括與該聚焦系統226之一或更多個元件耦合的一或更多個致動器。該致動系統227中的該等致動器接收源自於該控制器280的信號並且,感應後,致使該聚焦系統226中的一或更多個元件移動及/或改變位置。由於對該聚焦系統226中的一或更多個光學元件的改變,所以該焦面244之處所在該“z”方向移動。例如,由該光束定位系統260所採取的該等測量可指示該焦面244未與該標靶處所242相一致。於此實例中,該致動系統227可包括一致動器其係機械方式地耦合至一安裝座,該安裝座固持一將該照射放大光束216聚焦至該焦面244的透鏡。為在該“z”方向上移動該焦面244,該致動器在該“z”方向上移動該透鏡。該致動系統227亦能夠藉由調整旋轉式反射鏡及其他能夠包括在該聚焦系統226中的光學元件而在該“x”或“y”方向上移動該焦點位置。 The actuation system 227 includes one or more actuators coupled to one or more components of the focusing system 226. The actuators in the actuation system 227 receive signals originating from the controller 280 and, upon induction, cause one or more components in the focusing system 226 to move and/or change position. Due to the change in one or more optical elements in the focusing system 226, the focal plane 244 is moved in the "z" direction. For example, the measurements taken by the beam positioning system 260 may indicate that the focal plane 244 is not coincident with the target location 242. In this example, the actuation system 227 can include an actuator that is mechanically coupled to a mount that holds a lens that focuses the illumination amplified beam 216 to the focal plane 244. To move the focal plane 244 in the "z" direction, the actuator moves the lens in the "z" direction. The actuation system 227 can also move the focus position in the "x" or "y" direction by adjusting the rotary mirror and other optical components that can be included in the focusing system 226.

該致動系統228包括一或更多個與該元件224之一或更多個元件耦合的致動器。例如,該致動系統228可包括一致動器其係以機械方式與一固持一摺疊式反射鏡(未顯示)的安裝座耦合。該致動器可移動該摺疊式反射鏡以在一與該“z”傳播方向橫向的“x”或“y”方向上操縱該照射放大光束216。 The actuation system 228 includes one or more actuators coupled to one or more of the elements 224. For example, the actuation system 228 can include an actuator that is mechanically coupled to a mount that holds a folding mirror (not shown). The actuator can move the folding mirror to manipulate the illumination amplification beam 216 in an "x" or "y" direction transverse to the "z" propagation direction.

藉由根據該照射放大光束216之該確定位置移動及/或將該等元件224及226重新定位,該照射放大光束216 之該處所係維持相對於該標靶材料246之該處所以增加由該光源205產生的EUV光線之總量。 The illumination amplifies the beam 216 by shifting the determined position of the illumination beam 216 according to the illumination and/or repositioning the elements 224 and 226. This is maintained therewith relative to the target material 246, thus increasing the total amount of EUV light produced by the source 205.

參考圖3A-3C,顯示一成像系統的另一實例。圖3A顯示一示範性成像系統300的一俯視圖。圖3B顯示該成像系統300的一側透視圖,以及圖3C顯示沿著線3C-3C所取該成像系統300的一橫截面平面視圖。該成像系統300係與該成像系統200相似。 Referring to Figures 3A-3C, another example of an imaging system is shown. FIG. 3A shows a top view of an exemplary imaging system 300. FIG. 3B shows a side perspective view of the imaging system 300, and FIG. 3C shows a cross-sectional plan view of the imaging system 300 taken along line 3C-3C. The imaging system 300 is similar to the imaging system 200.

該成像系統300包括一光源305以及該EUV微影術工具210。該光源305包括一操縱系統320接收源自於該驅動雷射系統215的照射放大光束216。該操縱系統320係與該操縱系統220相似,不同之處在於該該操縱系統320未包括該光學元件222以引導放大光束217至該光束定位系統260。取而代之地,該反射的放大光束217係自該驅動雷射系統之一窗口335反射並位在一光學元件340上。該光學元件340引導該反射的放大光束217至該光束定位系統260。該光學元件340,例如,可為一平面鏡或是一曲面鏡。該窗口335可為一位在功率放大器上的窗口其係為該驅動雷射系統215的一部分。例如,該反射的放大光束217可自該放大器183之該窗口194反射(圖1B)。 The imaging system 300 includes a light source 305 and the EUV lithography tool 210. The light source 305 includes a steering system 320 that receives an illumination amplified beam 216 originating from the driven laser system 215. The steering system 320 is similar to the steering system 220 except that the steering system 320 does not include the optical component 222 to direct the amplified beam 217 to the beam positioning system 260. Instead, the reflected amplified beam 217 is reflected from a window 335 of the driven laser system and is positioned on an optical element 340. The optical element 340 directs the reflected amplified beam 217 to the beam positioning system 260. The optical component 340 can be, for example, a plane mirror or a curved mirror. The window 335 can be a window on the power amplifier that is part of the drive laser system 215. For example, the reflected amplified beam 217 can be reflected from the window 194 of the amplifier 183 (Fig. 1B).

參考圖4,顯示該光束定位系統260的一實例之一方塊圖。該光束定位系統260接收該反射的放大光束217,將該反射的放大光束217分離進入多重通道,並測量位在每一通道中該反射的放大光束217之特性。該反射的放大光束217之該等特性係用以確定在多個維度中該照射放大光束 216相對於該標靶材料246的處所。該第一、第二及第三通道415-417可為自由空間中光線傳播所沿著的路徑。於一些實作中,該等通道415-417亦可包括引導並且至少部分地包含於該等通道中傳播的該光線的組件,諸如光纖及其他波導。 Referring to Figure 4, a block diagram of one example of the beam positioning system 260 is shown. The beam localization system 260 receives the reflected amplified beam 217, separates the reflected amplified beam 217 into multiple channels, and measures the characteristics of the reflected amplified beam 217 located in each channel. The characteristics of the reflected amplified beam 217 are used to determine the amplified beam in multiple dimensions 216 is relative to the location of the target material 246. The first, second, and third channels 415-417 can be paths along which light travels in free space. In some implementations, the channels 415-417 can also include components that direct and at least partially include the light propagating in the channels, such as optical fibers and other waveguides.

該光束定位系統260包括摺疊式反射鏡405以及部分反射性光學元件410a及410b。該等部分反射性光學元件410a及410b,例如,可為分束鏡或是部分反射鏡。該等摺疊式反射鏡405操縱該反射的放大光束217通過該光束定位系統260。該部分反射性光學元件410a接收該反射的放大光束217,將一部分之該光束217反射進入該第一通道415。 該部分反射性光學元件410b接收該光束217之該傳送部分並反射一部分之該光線進入該第二通道416。該部分反射性光學元件410b傳送剩餘之該反射的放大光束217進入該第三通道417。 The beam positioning system 260 includes a folding mirror 405 and partially reflective optical elements 410a and 410b. The partially reflective optical elements 410a and 410b can be, for example, a beam splitter or a partial mirror. The folding mirrors 405 manipulate the reflected amplified beam 217 through the beam positioning system 260. The partially reflective optical element 410a receives the reflected amplified beam 217 and reflects a portion of the beam 217 into the first channel 415. The partially reflective optical element 410b receives the transmitted portion of the beam 217 and reflects a portion of the light entering the second channel 416. The partially reflective optical element 410b transmits the remaining amplified amplified light beam 217 into the third channel 417.

因此,該反射的放大光束217之一部分在該第一通道415、第二通道416及第三通道417中行進。於該第一通道415中行進的該反射的放大光束217之該部分係為該光束411,於該第二通道416中行進的該部分係為該光束412,以及於該第三通道417中行進的該部分係為該光束413。 Thus, a portion of the reflected amplified beam 217 travels in the first channel 415, the second channel 416, and the third channel 417. The portion of the reflected amplified beam 217 traveling in the first channel 415 is the beam 411, the portion traveling in the second channel 416 is the beam 412, and traveling in the third channel 417 This portion of the beam is the beam 413.

該光束定位系統260亦包括一感應器420及一感應器421。該感應器420係經定位以感測該光束411,以及該感應器421係經定位以感測該光束412及該光束413。源自於該感應器420的數據可用以產生一包括該光束411之再現 426的影像424。源自於該感應器421的數據可用以產生一包括該光束412之再現428及該光束413之再現430的影像425。可藉由分析該等再現426、428及430之形狀及/或該等再現426、428及430之位置,確定在多個維度中該焦面244(圖2A及2B)及/或焦點位置相對於該標靶材料246的該處所。 The beam positioning system 260 also includes an inductor 420 and an inductor 421. The sensor 420 is positioned to sense the beam 411, and the sensor 421 is positioned to sense the beam 412 and the beam 413. Data derived from the sensor 420 can be used to generate a representation including the beam 411 Image 424 of 426. Data derived from the sensor 421 can be used to generate an image 425 comprising a reproduction 428 of the beam 412 and a reproduction 430 of the beam 413. The focal plane 244 (Figs. 2A and 2B) and/or the focus position may be determined in a plurality of dimensions by analyzing the shape of the representations 426, 428, and 430 and/or the locations of the representations 426, 428, and 430. This location of the target material 246.

該等感應器420及421在不同的採集率下取得數據並因此提供與在不同的時標上出現之物理效應有關的資訊。於該顯示的實例中,該感應器420具有一較該感應器421為高的數據採集率。該感應器420可具有一與該驅動雷射215之重複率相似或是相同的採集率。於一些實作中,該感應器420具有一至少約50kHz的採集率或是約63kHz的一數據採集率。該高採集率容許該感應器420收集能夠用以監測高頻率系統干擾與發生,諸如該光束傳輸系統224中反射鏡振動或是該標靶材料流114之該軌跡中的振動的數據,能夠致使該照射放大光束216之該處所在與該照射放大光束216之該傳播方向橫向的方向上快速地變化。與該照射放大光束216之該傳播方向橫向的該等維度包括於圖2A及2B中所示該“x”及“y”方向。該照射放大光束216之該處所中在該橫向方向上的該等變化致使該反射放大光束217之該處所中相對應的變化,並且該等變化可由該感應器420加以測量。 The sensors 420 and 421 acquire data at different acquisition rates and thus provide information relating to physical effects occurring on different time scales. In the example shown, the sensor 420 has a higher data acquisition rate than the sensor 421. The sensor 420 can have an acquisition rate similar to or the same as the repetition rate of the drive laser 215. In some implementations, the inductor 420 has an acquisition rate of at least about 50 kHz or a data acquisition rate of about 63 kHz. The high acquisition rate allows the sensor 420 to collect data that can be used to monitor high frequency system interference and occurrence, such as mirror vibrations in the beam delivery system 224 or vibrations in the trajectory of the target material stream 114, which can result in The location of the illumination amplified beam 216 rapidly changes in a direction transverse to the direction of propagation of the illumination amplified beam 216. The dimensions transverse to the direction of propagation of the illumination amplified beam 216 are included in the "x" and "y" directions shown in Figures 2A and 2B. The change in the lateral direction of the illumination amplified beam 216 in the lateral direction causes a corresponding change in the location of the reflected amplified beam 217, and the changes can be measured by the inductor 420.

該感應器421具有一較該感應器420為低的數據採集率並可提供較該感應器420相對更多的資訊。該感應器 421可具有一,例如,約48Hz的數據採集率。該感應器421可為對包括於該反射放大光束217中的該等波長靈敏的任一感應器。例如,該感應器421可為一由美國猶他州,North Logan之Ophir-Spiricon,LLC公司販售的PYROCAM攝影機。儘管圖4中所示該實例包括一單一感應器421產生一影像425,但於其他實作中,可針對該第二通道416及該第三通道417分別使用個別的感應器,該等個別感應器之每一者可產生具有於該各別通道中行進的該光線之再現的一個別影像。 The sensor 421 has a lower data acquisition rate than the sensor 420 and can provide relatively more information than the sensor 420. The sensor 421 can have a data acquisition rate of, for example, about 48 Hz. The sensor 421 can be any sensor that is sensitive to the wavelengths included in the reflected amplified beam 217. For example, the sensor 421 can be a PYROCAM camera sold by Ophir-Spiricon, LLC of North Logan, Utah, USA. Although the example shown in FIG. 4 includes a single sensor 421 to generate an image 425, in other implementations, individual sensors may be used for the second channel 416 and the third channel 417, respectively. Each of the devices can generate a different image of the reproduction of the light traveling in the respective channel.

該光束定位系統260亦於每一通道415、416及417中包括光學元件。該通道415包括一光學元件442,例如,其可包括一透鏡或是其他能夠將光束411聚焦在該感應器420上的元件。同時參考圖5A-5C,圖4之該實例中該感應器420係為一象限感應器其包括係以一方形陣列佈置的多重、個別的感測元件422a-422d。為測量位在該感應器420上該光束411之該位置,測量每一感測元件422a-422d處所感測到能量的總量。以下相關於圖16討論確定該感應器上該光束411之該位置作業的一實例。 The beam positioning system 260 also includes optical elements in each of the channels 415, 416, and 417. The channel 415 includes an optical element 442, which may include, for example, a lens or other component capable of focusing the beam 411 onto the inductor 420. Referring also to Figures 5A-5C, the sensor 420 of the example of Figure 4 is a quadrant sensor that includes multiple, individual sensing elements 422a-422d arranged in a square array. To measure the position of the beam 411 on the sensor 420, the total amount of energy sensed at each of the sensing elements 422a-422d is measured. An example of determining the location of the beam 411 on the sensor is discussed below with respect to FIG.

為確保準確地測量該反射放大光束217之位置,位在該感應器420處該光束411之直徑係大於該等感測元件422a-422d之任一者的直徑,但小於由該等感測元件422a-422d所界定該正方形陣列之該直徑。於此構態中,該光束411傾向於落在該感應器420之該等感測元件422a-422d之一個以上者上。為了在該感應器420上構成一 相對大直徑的光束,該光學元件432可經定位因此該光束411並未聚焦在該感應器420上。易言之,該光學元件432可在一散焦狀態下定位因此該感應器420探測該光束411,但該光束411並未聚焦在該感應器420上。於一些實作中,該光學元件432可包括一或更多的光學元件擴展該光線以在該感應器420上構成一相對較大的光點。 To ensure accurate measurement of the position of the reflected amplified beam 217, the diameter of the beam 411 at the sensor 420 is greater than the diameter of any of the sensing elements 422a-422d, but less than the sensing elements. The diameter of the square array is defined by 422a-422d. In this configuration, the beam 411 tends to land on more than one of the sensing elements 422a-422d of the inductor 420. In order to form a sensor on the sensor 420 With respect to a relatively large diameter beam, the optical element 432 can be positioned such that the beam 411 is not focused on the inductor 420. In other words, the optical element 432 can be positioned in a defocused state such that the sensor 420 detects the beam 411, but the beam 411 is not focused on the inductor 420. In some implementations, the optical component 432 can include one or more optical components to expand the light to form a relatively large spot of light on the inductor 420.

該光束定位系統260亦包括該定位在通道416中的光學元件434。該光學元件434係定位在該通道416中介於該部分反射性光學元件410b與該感應器421之間。該光學元件434接收並傳送自該光學元件410b反射的光線,因此可確定在該“z”方向上該焦面244之處所或焦點位置。該光學元件434可包括一散光光學元件,修正該波前之焦點並在該焦面244於該“z”方向上移動時改變該再現428的橢圓率。圖7中顯示該光學元件434包括一散光光學元件的一實作之一實例。 The beam positioning system 260 also includes the optical element 434 positioned in the channel 416. The optical element 434 is positioned in the channel 416 between the partially reflective optical element 410b and the inductor 421. The optical element 434 receives and transmits light reflected from the optical element 410b, and thus the position or focus position of the focal plane 244 in the "z" direction can be determined. The optical element 434 can include an astigmatic optical element that corrects the focus of the wavefront and changes the ellipticity of the reproduction 428 as the focal plane 244 moves in the "z" direction. An example of an implementation of the optical element 434 comprising an astigmatic optical element is shown in FIG.

於一些實作中,該光學元件410b包括一光學元件集合,其中並無光學元件係為散光的,針對該反射放大光束217提供不同長度的路徑以自該標靶材料246傳播至該感應器421。於該等實作中,測量該反射放大光束217之該光束直徑的尺寸,提供指示在該“z”方向上該焦面244之該處所以及該焦點焦散的形狀。於圖12及14中顯示未包括一散光光學元件的該光學元件436的一實作之一實例。 In some implementations, the optical component 410b includes a collection of optical components, wherein no optical components are astigmatic, and a path of different lengths is provided for the reflected amplified beam 217 to propagate from the target material 246 to the inductor 421. . In such an implementation, the size of the beam diameter of the reflected amplified beam 217 is measured to provide a location indicative of the focal plane 244 in the "z" direction and the focal length of the focus. An example of an implementation of the optical element 436 that does not include an astigmatic optical element is shown in FIGS. 12 and 14.

該光束定位系統260亦包括該光學元件436其係定位在該光學元件410b與該感應器421之間。該光學元件 436接收並引導該光束413朝向該感應器421。由該感應器421感測的該光線係用以構成該再現430。連同測量該反射放大光束217在該感應器420上之該處所,該再現430之該處所提供該照射放大光束216在與該照射放大光束216之該傳播方向橫向的一維度中相對於該標靶材料246的該處所的一第二指示。 The beam positioning system 260 also includes the optical element 436 positioned between the optical element 410b and the inductor 421. The optical component The light beam 413 is received and directed toward the inductor 421. The light sensed by the sensor 421 is used to form the reproduction 430. In conjunction with measuring the location of the reflected amplified beam 217 on the inductor 420, the location of the reproduction 430 provides the illumination amplified beam 216 in a dimension transverse to the direction of propagation of the illumination amplified beam 216 relative to the target. A second indication of the location of material 246.

就其本身而論,該光束定位系統260提供該反射放大光束217之位置及/或形狀的多重測量。該系統260提供二測量,其中一測量源自於該感應器420具有一相對高的數據採集率以及另一測量源自於該感應器421具有一相對低的數據採集率,可用以將該照射放大光束216在係於該照射放大光束216之傳播方向橫向(“x”或“y”)的維度中相對於該標靶材料246定位。該系統260亦提供可用以將該焦面244或焦點位置在該照射放大光束216之傳播方向上相對於該標靶材料246定位的測量。 For its part, the beam localization system 260 provides multiple measurements of the position and/or shape of the reflected amplified beam 217. The system 260 provides two measurements, one of which results from the sensor 420 having a relatively high data acquisition rate and the other measurement resulting from the sensor 421 having a relatively low data acquisition rate that can be used to illuminate the illumination. The amplified beam 216 is positioned relative to the target material 246 in a dimension transverse to the direction of propagation of the illumination amplified beam 216 ("x" or "y"). The system 260 also provides measurements that can be used to position the focal plane 244 or focus position relative to the target material 246 in the direction of propagation of the illumination amplified beam 216.

該光束定位系統260亦可包括一可自該光束路徑移開的光譜濾波器442。該光譜濾波器傳送一些波長同時阻塞其他波長。於一些實作中,二不同脈衝的照射放大光束係經引導朝向該標靶材料246。該二照射放大光束係視為一主脈衝及一預脈衝。該主脈衝及該預脈衝係在時間上分開的,讓該預脈衝在該主脈衝之前經引導朝向該標靶材料246。該主脈衝及該預脈衝可具有不同的波長。例如,該預脈衝可具有一約1.06微米的波長以及該主脈衝可具有一約10.6微米的波長。在該照射放大光束216包括一預脈衝及一 主脈衝的例子中,該反射放大光束217可包括該主脈衝與該預脈衝之反射。 The beam positioning system 260 can also include a spectral filter 442 that can be removed from the beam path. The spectral filter transmits some wavelengths while blocking other wavelengths. In some implementations, the illumination beams of the two different pulses are directed toward the target material 246. The two-illuminated amplified beam is regarded as a main pulse and a pre-pulse. The main pulse and the pre-pulse are separated in time such that the pre-pulse is directed toward the target material 246 prior to the main pulse. The main pulse and the pre-pulse can have different wavelengths. For example, the pre-pulse can have a wavelength of about 1.06 microns and the main pulse can have a wavelength of about 10.6 microns. The illumination amplification beam 216 includes a pre-pulse and a In the example of a main pulse, the reflected amplified beam 217 can include the reflection of the main pulse and the pre-pulse.

當經安置以接收該反射放大光束217時,該光譜濾波器442將該預脈衝自該主脈衝分開,容許該光束定位系統260使用該預脈衝及該主脈衝之任一者或是二者以確定該照射放大光束216相對於該標靶處所242之一處所。於一些例子中,該預脈衝提供一較該主脈衝更緊密的焦點以及更為精確的結果。 When arranged to receive the reflected amplified beam 217, the spectral filter 442 separates the pre-pulse from the main pulse, allowing the beam positioning system 260 to use either or both of the pre-pulse and the main pulse The illumination amplified beam 216 is determined to be relative to one of the target locations 242. In some examples, the pre-pulse provides a closer focus and more accurate results than the main pulse.

參考圖5A-5C,顯示該感應器420上該光束411之實例。該光束411行進通過該通道415至該感應器420,於該處該光束411形成一斑點505。當該照射光束216係與該標靶材料246對準時,該光束411落於該感應器420之中心並且每一感測元件422a-422d感測到相等的能量總量。當該照射放大光束216在一橫向維度(如於圖2A-2C中所示“x”或“y”)中相對於該標靶材料246係為未對準時,該斑點505係為與該照射放大光束216之未對準相對應之距該感應器420之該中心的一段距離。 Referring to Figures 5A-5C, an example of the beam 411 on the inductor 420 is shown. The beam 411 travels through the channel 415 to the inductor 420 where it forms a spot 505. When the illumination beam 216 is aligned with the target material 246, the beam 411 falls in the center of the inductor 420 and each sensing element 422a-422d senses an equal amount of energy. When the illumination amplified beam 216 is misaligned relative to the target material 246 in a lateral dimension (eg, "x" or "y" as shown in Figures 2A-2C), the spot 505 is associated with the illumination The misalignment of the magnified beam 216 corresponds to a distance from the center of the inductor 420.

圖5A-5C顯示在三不同時間的該斑點505。於圖5A及5C中,該斑點505係為偏離中心的,指示該照射放大光束216在一橫向方向上相對於該標靶處所242係為未對準的。於圖5B中,該斑點505係位在該感應器420之該中心處,指示該照射放大光束216在一橫向方向上相對於該標靶處所係為對準的。如以上論及,該感應器420上該斑點505之該處所的變化指示於該照射放大光束216之該處所中高頻 率改變。 Figures 5A-5C show the spot 505 at three different times. In FIGS. 5A and 5C, the spot 505 is off-center, indicating that the illumination amplified beam 216 is misaligned relative to the target location 242 in a lateral direction. In FIG. 5B, the spot 505 is positioned at the center of the sensor 420, indicating that the illumination amplified beam 216 is aligned relative to the target in a lateral direction. As discussed above, the change in the location of the spot 505 on the sensor 420 is indicative of the high frequency in the location of the illumination amplified beam 216. The rate changes.

參考圖6,顯示在該等感測元件422a-422d上能量總量之差異隨著該標靶材料246與該焦點位置之間該段橫向距離之變化而改變的一實例。圖6顯示該感應器420當該標靶材料246在該垂直面(於圖2A中所示該“y”方向)上相對於該照射放大光束216移動時感應器420之反應。 Referring to Figure 6, an example of the difference in the total amount of energy on the sensing elements 422a-422d as a function of the lateral distance between the target material 246 and the focal position is shown. 6 shows the reaction of the inductor 420 as the target material 246 moves relative to the illumination magnifying beam 216 on the vertical plane (the "y" direction shown in FIG. 2A).

參考圖7,顯示另一示範性光束定位系統的一方塊圖。該光束定位系統700可搭配光源100、205或305使用而取代該系統260。該光束定位系統700包括散光光學元件以測量該焦點位置相對於該標靶材料246的該處所。 Referring to Figure 7, a block diagram of another exemplary beam positioning system is shown. The beam positioning system 700 can be used in conjunction with the light source 100, 205 or 305 instead of the system 260. The beam positioning system 700 includes an astigmatic optical element to measure the location of the focus position relative to the target material 246.

該光束定位系統700包括摺疊式反射鏡705以及部分反射性光學元件710a及710b。該等部分反射性光學元件710a及710b,例如,可為分束鏡或是部分反射鏡。該光束定位系統700接收該反射放大光束217並將該光束217劃分成三個個別通道715、716及717。該反射放大光束217衝擊該部分反射性光學元件710a以及一部分(光束711)係經反射進入該第一通道715。該第一通道715亦係視為快速橫向通道。一摺疊式反射鏡705將該光束711引導朝向該光學元件732,以及該光學元件732引導及/或將該光束711聚焦在一感應器720上。該光學元件732係與該光學元件432(圖4)相似,以及該感應器720係為一與該感應器420(圖4)相似的象限感應器720。 The beam positioning system 700 includes a folding mirror 705 and partially reflective optical elements 710a and 710b. The partially reflective optical elements 710a and 710b may be, for example, a beam splitter or a partial mirror. The beam positioning system 700 receives the reflected amplified beam 217 and divides the beam 217 into three individual channels 715, 716, and 717. The reflected amplified beam 217 impacts the partially reflective optical element 710a and a portion (beam 711) is reflected into the first channel 715. The first channel 715 is also considered a fast lateral channel. A folding mirror 705 directs the beam 711 toward the optical element 732, and the optical element 732 directs and/or focuses the beam 711 onto a sensor 720. The optical element 732 is similar to the optical element 432 (FIG. 4), and the sensor 720 is a quadrant sensor 720 similar to the inductor 420 (FIG. 4).

該部分反射性光學元件710b接收該反射性光學元件710a傳送的該返回光束217的該部分。該反射性光學元 件710b傳送的該部分之返回光束217進入該第三通道717作為光束713。該第三通道717係視為該“慢橫向通道”。該摺疊式反射鏡705引導該光束713通過該第三通道717至光學元件736,該光學元件聚焦及/或引導該光束713至該感應器721。藉由該感應器721收集的數據可用以產生一影像750,該影像包括一代表該光束712的斑點752以及代表該光束713的斑點754。 The partially reflective optical element 710b receives the portion of the return beam 217 transmitted by the reflective optical element 710a. Reflective optical element The portion of the return beam 217 transmitted by the member 710b enters the third channel 717 as the beam 713. This third channel 717 is considered to be the "slow lateral channel". The folding mirror 705 directs the beam 713 through the third channel 717 to an optical element 736 that focuses and/or directs the beam 713 to the inductor 721. The data collected by the sensor 721 can be used to generate an image 750 that includes a spot 752 representing the beam 712 and a spot 754 representing the beam 713.

該部分反射性光學元件710b反射一部分進入該通道716作為光束712。該通道716係視為該“慢z通道”。該部分反射性光學元件710b引導光束712至光學總成734,該光學總成聚焦並引導該光束712至一感應器721。該感應器721係與該感應器421(圖4)相似。該光束712進入並通過該光學總成734之該等組件,退出該光學總成734並由該感應器421感測。該光束712在該感應器421上形成一斑點。 The partially reflective optical element 710b reflects a portion of the channel 716 as a beam 712. This channel 716 is considered to be the "slow z channel". The partially reflective optical element 710b directs the beam 712 to the optical assembly 734, which focuses and directs the beam 712 to an inductor 721. The inductor 721 is similar to the inductor 421 (Fig. 4). The beam 712 enters and passes through the components of the optical assembly 734, exits the optical assembly 734 and is sensed by the inductor 421. The beam 712 forms a spot on the inductor 421.

該光學總成734包括一平坦反射元件740、一空間濾波器741、一散光光學元件746以及一透鏡748。該平坦反射元件740可為一平坦反射鏡。該散光光學元件746,例如,一圓柱狀透鏡或是反射鏡,圓柱狀透鏡與反射鏡的一集合或是一雙錐形反射鏡。 The optical assembly 734 includes a flat reflective element 740, a spatial filter 741, an astigmatic optical element 746, and a lens 748. The flat reflective element 740 can be a flat mirror. The astigmatic optical element 746 is, for example, a cylindrical lens or mirror, a collection of cylindrical lenses and mirrors, or a double-cone mirror.

該光束712進入該光學總成734並係自該平坦反射元件740反射進入該空間濾波器741。該空間濾波器741包括一透鏡742、一透鏡743及一孔口744。該孔口744界定一係安置位在該透鏡742之該焦點處的開口745,以及該孔口744在該光束712抵達該感應器721之前過濾該光束712。讓 該光束712通過該開口745有助於去除源自於該光束712的背景輻射及散射。搭配該球狀光學元件736使用的該平坦反射鏡705容許該焦點的位置在“x”及/或“y”方向上較包括圓柱狀或散光光學元件的一通道更為精確地經測量。 The beam 712 enters the optical assembly 734 and is reflected from the planar reflective element 740 into the spatial filter 741. The spatial filter 741 includes a lens 742, a lens 743, and an aperture 744. The aperture 744 defines a pair of openings 745 positioned at the focus of the lens 742, and the aperture 744 filters the beam 712 before the beam 712 reaches the inductor 721. Let The beam 712 passes through the opening 745 to help remove background radiation and scattering originating from the beam 712. The flat mirror 705 used with the spherical optical element 736 allows the position of the focus to be more accurately measured in the "x" and/or "y" direction than a channel comprising a cylindrical or astigmatic optical element.

該透鏡743將該光束712準直並引導該光束至該散光光學元件746。在通過該散光光學元件746後,該光束712通過該透鏡748並在該感應器721上形成一斑點。由於該光學總成734包括一散光元件,該斑點之橢圓率係隨著該照射放大光束216之該焦點位置在相對於該標靶材料246的傳播方向移動而改變。 The lens 743 collimates the beam 712 and directs the beam to the astigmatic optical element 746. After passing through the astigmatic optical element 746, the beam 712 passes through the lens 748 and forms a spot on the inductor 721. Since the optical assembly 734 includes a astigmatism element, the ellipticity of the spot changes as the focus position of the illumination amplified beam 216 moves in a direction of propagation relative to the target material 246.

參考圖8A-8C及9A-9B,顯示該焦面244及該標靶材料246之不同的相對配置的實例以及由該感應器721產生的示範性影像。圖8A-8C顯示在該“z”及“y”方向上由於,例如,該等光學組件中光學組件加熱及/或運行所產生焦點位置移動的一實例。圖9A-9C分別地顯示源自於藉由該感應器721所收集數據產生的示範性影像750A-750C。 Referring to Figures 8A-8C and 9A-9B, an example of a different relative configuration of the focal plane 244 and the target material 246 and an exemplary image produced by the inductor 721 are shown. Figures 8A-8C show an example of the movement of the focus position resulting from the heating and/or operation of the optical components in the optical components in the "z" and "y" directions. Figures 9A-9C respectively show exemplary images 750A-750C resulting from data collected by the sensor 721.

於該光束定位系統700中,該光束712行進通過該通道716並係由該感應器721所接收。該光束713行進通過該通道717並係由該感應器721所接收。該等通道716及717之該等光學組件係經對準以致源自於該通道716的光線落在該感應器721之左側上,以及源自於該通道717的光線落在該感應器721之右側上。因此,該等影像750A-750C之該左側顯示該光束712之一再現,以及該等影像750A-750C之該右側顯示該光束713之一再現。 In the beam positioning system 700, the beam 712 travels through the channel 716 and is received by the inductor 721. The beam 713 travels through the channel 717 and is received by the inductor 721. The optical components of the channels 716 and 717 are aligned such that light from the channel 716 falls on the left side of the sensor 721, and light from the channel 717 falls on the sensor 721. On the right side. Thus, the left side of the images 750A-750C shows that one of the beams 712 is reproduced, and the right side of the images 750A-750C shows that one of the beams 713 is reproduced.

圖9之該影像750A顯示當該感應器721監測與圖8A之相似的一情境時藉由該感應器721產生的一影像,其中該焦面244與該標靶材料246相一致。於此例子中,在該“z”或“y”方向上該標靶材料246與該焦點位置之間並無位移並且該照射放大光束216係與該標靶材料246對準。該影像750A指示該對準狀態因為該光束712(其通過該光學總成734及該散光光學元件746)之該再現752A係為圓形的。此外,該光束713之該再現754A係與該感應器721之該右側的中心相一致,指示該照射放大光束216與於圖8A中所示在該“y”方向上的該標靶材料246相一致。 The image 750A of FIG. 9 shows an image produced by the sensor 721 when the sensor 721 monitors a situation similar to that of FIG. 8A, wherein the focal plane 244 coincides with the target material 246. In this example, there is no displacement between the target material 246 and the focal position in the "z" or "y" direction and the illumination amplified beam 216 is aligned with the target material 246. The image 750A indicates the alignment state because the reproduction 752A of the beam 712 (which passes through the optical assembly 734 and the astigmatism optical element 746) is circular. In addition, the reproduction 754A of the light beam 713 coincides with the center of the right side of the inductor 721, indicating that the illumination amplified beam 216 is in phase with the target material 246 in the "y" direction shown in FIG. 8A. Consistent.

圖9B之該影像750B顯示當該感應器721監測與圖8C之一相似情境時由該感應器721產生的一影像。於此例子中,該標靶材料246係在該“z”及“-y”方向上自該焦點位置移置。該影像750B指示此與該感應器751上該再現752B的橢圓率及該再現754B之該處所未對準。特別地,該再現752B之該水平軸係較該垂直軸為寬,指示該焦點位置係於該“-z”方向上相對於該標靶材料246移置。該光束713之該再現754B與該再現754A比較已移至左側,指示該標靶材料246係於該“-y”方向上相對於該標靶材料246移置。 The image 750B of Figure 9B shows an image produced by the sensor 721 when the sensor 721 monitors a situation similar to one of Figure 8C. In this example, the target material 246 is displaced from the focus position in the "z" and "-y" directions. The image 750B indicates this and the ellipticity of the reproduction 752B on the sensor 751 and the location of the reproduction 754B is misaligned. In particular, the horizontal axis of the reproduction 752B is wider than the vertical axis, indicating that the focus position is displaced relative to the target material 246 in the "-z" direction. The reproduction 754B of the beam 713 has been shifted to the left as compared to the reproduction 754A, indicating that the target material 246 is displaced relative to the target material 246 in the "-y" direction.

圖9C之該影像750C顯示當該感應器監測與圖9C之一相似情境時由該感應器721產生的一影像。於此例子中,該標靶材料246係位在該焦點位置之後及下方。該影像750C指示此與該感應器751上該再現752C的橢圓率及該再現754C之該處所未對準。特別地,該光束712之該再現752C 之該垂直軸係較該水平軸為寬,指示該標靶材料246係於該“-z”方向上自該焦點位置移置。該再現754C指示該標靶材料246係於該“y”方向上相對於該標靶材料246移置。 The image 750C of Figure 9C shows an image produced by the sensor 721 when the sensor monitors a situation similar to one of Figure 9C. In this example, the target material 246 is tied behind and below the focal position. The image 750C indicates that the ellipticity of the reproduction 752C on the sensor 751 and the location of the reproduction 754C are misaligned. In particular, the reproduction of the light beam 712 is 752C The vertical axis is wider than the horizontal axis, indicating that the target material 246 is displaced from the focus position in the "-z" direction. The reproduction 754C indicates that the target material 246 is displaced relative to the target material 246 in the "y" direction.

圖10A顯示該光束712之該再現的橢圓率隨著該標靶材料246在該“z”方向上的位置而變化。當該照射放大光束216之該焦點位置與該標靶材料246相一致時該橢圓率係為0。該一情境係顯示於圖8A及9A中。當該焦點位置在抵達該標靶材料246之前形成時,該橢圓率係為負的(該水平軸係大於該垂直軸),如於圖8B及9B中所示。當該焦點位置在該標靶材料246之後形成時,該橢圓率係為正的(該水平軸係小於該垂直軸),如於圖8C及9C中所示。 FIG. 10A shows that the ellipticity of the reproduction of the beam 712 varies with the position of the target material 246 in the "z" direction. The ellipticity is zero when the focal position of the illumination amplified beam 216 coincides with the target material 246. This context is shown in Figures 8A and 9A. When the focus position is formed prior to reaching the target material 246, the ellipticity is negative (the horizontal axis is greater than the vertical axis), as shown in Figures 8B and 9B. When the focus position is formed after the target material 246, the ellipticity is positive (the horizontal axis is less than the vertical axis), as shown in Figures 8C and 9C.

圖10B顯示該光束713之該再現的形心位置隨著該標靶材料246在該“y”方向上的位置而變化的一實例。當該形心係位在該感應器721之右側的中心的左邊時,該形心可理解具有一負值且該標靶材料246係位設在相對於該焦點位置的該“-y”方向上(圖8B)。當該形心係位在該感應器721之右側的中心的右邊時,該標靶材料246係位設在相對於該焦點位置的該“y”方向上(圖8C)。 FIG. 10B shows an example of the position of the center of the reproduction of the beam 713 as the position of the target material 246 in the "y" direction. When the centroid is located to the left of the center of the right side of the inductor 721, the centroid is understood to have a negative value and the target material 246 is positioned in the "-y" direction relative to the focus position. Upper (Figure 8B). When the centroid is located to the right of the center of the right side of the inductor 721, the target material 246 is positioned in the "y" direction relative to the focus position (Fig. 8C).

圖11係為另一示範性光束定位系統1100的一方塊圖。該光束定位系統1100可搭配該光源205或305使用取代該光束定位系統260或是光束定位系統700。該光束定位系統1100包括該反射放大光束217行進通過的三通道,以及該光束定位系統1100提供用以將該照射放大光束216於多重維度中相對於該標靶材料246位設的數據。該光束定位系 統1100包括一或更多個散光光學元件位在一通道中,該通道係用以在與該照射放大光束216之傳播方向平行的一方向上(於圖2B中所示該“z”方向)位設該照射放大光束216。 11 is a block diagram of another exemplary beam positioning system 1100. The beam positioning system 1100 can be used in conjunction with the light source 205 or 305 to replace the beam positioning system 260 or the beam positioning system 700. The beam positioning system 1100 includes three channels through which the reflected amplified beam 217 travels, and the beam positioning system 1100 provides data for positioning the illumination amplified beam 216 in multiple dimensions relative to the target material 246. Beam locating system The system 1100 includes one or more astigmatic optical elements in a channel for being in a direction parallel to the direction of propagation of the illumination amplified beam 216 (in the "z" direction shown in Figure 2B) The illumination amplification beam 216 is provided.

該光束定位系統1100亦包括一光譜濾波器1142。該光譜濾波器1142係與相關於圖4所論及之該光譜濾波器442相似。該光束定位系統1100接收該反射放大光束217。該反射放大光束217衝擊一部分反射光學元件1110a,以及一部分之該反射放大光束217係經反射進入一通道1115。反射進入該通道1115的該部分之反射放大光束217係為該光束1111。該光束1111通過光學元件1132至該感應器1120。該光學元件1132可與該光學元件432(圖4)相似以及該感應器1120可為相關於圖4論及的該象限探測器420。 The beam positioning system 1100 also includes a spectral filter 1142. The spectral filter 1142 is similar to the spectral filter 442 discussed with respect to FIG. The beam positioning system 1100 receives the reflected amplified beam 217. The reflected amplified beam 217 impacts a portion of the reflective optical element 1110a, and a portion of the reflected amplified beam 217 is reflected into a channel 1115. The reflected amplified beam 217 reflected into the portion of the channel 1115 is the beam 1111. The beam 1111 passes through the optical element 1132 to the inductor 1120. The optical element 1132 can be similar to the optical element 432 (FIG. 4) and the sensor 1120 can be the quadrant detector 420 discussed with respect to FIG.

藉由該部分反射光學元件1110a傳送的該部分之反射放大光束217係由一部分反射光學元件1110b劃分成光束1112及1113。該光束1112於該通道1116中行進,以及該光束1113於該通道1117中行進。該通道1116包括光學元件1134,以及該光束1112通過該光學元件1134至一感應器1121。該光學元件1134可與該光學元件434相似。 The portion of the reflected amplified beam 217 transmitted by the partially reflective optical element 1110a is divided into beams 1112 and 1113 by a portion of the reflective optical element 1110b. The beam 1112 travels in the channel 1116 and the beam 1113 travels in the channel 1117. The channel 1116 includes an optical component 1134, and the beam 1112 passes through the optical component 1134 to an inductor 1121. The optical element 1134 can be similar to the optical element 434.

該通道1117包括偏光鏡1140,該光譜濾波器1142,其係與一濾波器控制器1144耦合,一平坦反射性元件1146,一透鏡1148以及一散光光學元件1150。該偏光鏡1140及該光譜濾波器1142可自該通道1117移開。當該該偏光鏡1140及該光譜濾波器1142不在該通道1117時,該光束1113未通過該等元件。該光譜濾波器1142可為一傳送位於 一第一波長頻帶中的光線以及阻塞位於第二波長頻帶中的光線的一光譜濾波器。該第一波長頻帶可包括該預脈衝之波長,以及第二波長頻帶可包括該主脈衝之波長。於此實例中,該光譜濾波器1142傳送該預脈衝以及阻塞該主脈衝。該光譜濾波器1142可包括複數個光譜濾波器,其中之一阻塞預脈衝以及傳送該主脈衝,以及另一個光譜濾波器阻塞該主脈衝以及傳送該預脈衝。該濾波器控制器1144係用以將該光譜濾波器1142自該通道1117取出並用以將該光譜濾波器1142安置於該通道1117中。在該光譜濾波器1142包括一個以上的濾波器的實作中,該濾波器控制器1144容許選擇一個以上的濾波器中其中之一個安置位於該通道1117中。 The channel 1117 includes a polarizer 1140 coupled to a filter controller 1144, a flat reflective element 1146, a lens 1148, and an astigmatism optical element 1150. The polarizer 1140 and the spectral filter 1142 can be removed from the channel 1117. When the polarizer 1140 and the spectral filter 1142 are not in the channel 1117, the beam 1113 does not pass through the elements. The spectral filter 1142 can be located for a transmission A light beam in a first wavelength band and a spectral filter blocking light rays in a second wavelength band. The first wavelength band can include the wavelength of the pre-pulse, and the second wavelength band can include the wavelength of the main pulse. In this example, the spectral filter 1142 transmits the pre-pulse and blocks the main pulse. The spectral filter 1142 can include a plurality of spectral filters, one of which blocks the pre-pulse and transmits the main pulse, and another spectral filter blocks the main pulse and transmits the pre-pulse. The filter controller 1144 is configured to take the spectral filter 1142 out of the channel 1117 and to place the spectral filter 1142 in the channel 1117. In implementations where the spectral filter 1142 includes more than one filter, the filter controller 1144 allows one of more than one filter to be placed in the channel 1117.

該光束1113退出該散光光學元件1150並由一感應器1152所感測。該感應器1152及該感應器1121具有較該感應器1120為低的一數據採集率。該感應器1152及該感應器1121可為由美國猶他州,North Logan之Ophir-Spiricon,LLC公司販售的PYROCAM攝影機。於一些實作中,該等光束1112及1113可經引導至一相似處所因此僅需一感應器(該感應器1152或該感應器1121)。 The beam 1113 exits the astigmatism optical element 1150 and is sensed by an inductor 1152. The sensor 1152 and the sensor 1121 have a lower data acquisition rate than the sensor 1120. The sensor 1152 and the sensor 1121 may be PYROCAM cameras sold by Ophir-Spiricon, LLC of North Logan, Utah, USA. In some implementations, the beams 1112 and 1113 can be directed to a similar location so that only one sensor (the sensor 1152 or the sensor 1121) is required.

參考圖12,顯示供一光束定位系統所用的另一示範性光學總成1200。該光學總成1200可於該光束定位系統260中使用作為光學元件434,於該光束定位系統700中,取代該光學總成734,或是於該光束定位系統1100中位於通道1117中。 Referring to Figure 12, another exemplary optical assembly 1200 for use with a beam positioning system is shown. The optical assembly 1200 can be used in the beam positioning system 260 as an optical component 434 in which the optical assembly 734 is replaced or located in the channel 1117 in the beam positioning system 1100.

該光學總成1200提供可用以確定在該照射放大光束216之傳播方向上該焦點位置相對於該標靶材料246的位置的資訊。該光學總成1200未包括散光光學元件。取而代之地,該光學總成1200利用複數非散光光學元件以產生一系列之光學路徑,每一路徑具有一不同的長度,介於該標靶材料246與一感應器1221之間。於每一路徑中行進的該部分之返回光束217係經成像在該感應器1221上。由於該等路徑具有不同的長度,依循一特別路徑的一光束之該影像係為該照射放大光束216在沿著該傳播方向的一特定處所的一橫截面之一影像。藉由分析依循不同路徑的一系列之光束影像,可確定該焦點位置相對於該標靶材料246的處所並且如有需要可加以調整。 The optical assembly 1200 provides information that can be used to determine the position of the focus position relative to the target material 246 in the direction of propagation of the illumination amplified beam 216. The optical assembly 1200 does not include an astigmatic optical element. Instead, the optical assembly 1200 utilizes a plurality of non-astigmatic optical elements to create a series of optical paths, each path having a different length between the target material 246 and an inductor 1221. The portion of the return beam 217 traveling in each path is imaged on the sensor 1221. Since the paths have different lengths, the image of a beam that follows a particular path is an image of a cross-section of the illumination amplified beam 216 at a particular location along the direction of propagation. By analyzing a series of beam images that follow different paths, the location of the focus relative to the target material 246 can be determined and adjusted as needed.

該光學總成1200包括一透鏡1202以及部分反射性光學元件1205a及1205b。該光學總成1200接收源自於該光源1204(可與該光源205或305相似)的該返回光束217。針對圖示,圖12顯示在不同時間發生的該返回光束217之二例子。一返回光束217a係為當該照射放大光束216係聚焦在該標靶處所242時產生的一反射放大光束。於圖12中所示該返回光束係為該光束217b。當該照射放大光束216在抵達該標靶材料246之前到達一焦點時產生該返回光束217b。同時參考圖13A及13B,具有該照射放大光束216聚焦在該標靶材料上的一光源之一側視圖係圖示於圖13A中。具有在抵達該標靶材料246之前聚焦的該照射放大光束216的一光源之一側視圖係圖示於圖13B中。 The optical assembly 1200 includes a lens 1202 and partially reflective optical elements 1205a and 1205b. The optical assembly 1200 receives the return beam 217 originating from the light source 1204 (which may be similar to the light source 205 or 305). For purposes of illustration, Figure 12 shows two examples of the return beam 217 occurring at different times. A return beam 217a is a reflected amplified beam that is produced when the illumination amplified beam 216 is focused on the target location 242. The return beam shown in Figure 12 is the beam 217b. The return beam 217b is generated when the illumination amplified beam 216 reaches a focus before reaching the target material 246. Referring also to Figures 13A and 13B, a side view of a light source having the illumination amplified beam 216 focused on the target material is shown in Figure 13A. A side view of a light source having the illumination amplified beam 216 focused prior to reaching the target material 246 is shown in Figure 13B.

該光束217a行進通過該透鏡1202並係藉由該部分反射性光學元件1205a傳送及反射。該光束217a之該傳送部分在該感應器1221上形成一斑點1210。該光束217a之該反射部分係顯示作為光束1218a。該光束1218a係藉由該反射性光學元件1205b反射及傳送。藉由該光學元件1205b反射的該部分之該光束217a在該感應器1221上形成一斑點1211。該光束217a行進通過該透鏡1202並係藉由該部分反射性光學元件1205a傳送及反射。該光束217b之該傳送部分在該感應器1221上形成一斑點1212。該光束217b之該反射部分(光束1218b)係藉由該反射性光學元件1205b反射及傳送。係藉由該反射性光學元件1205b反射的該部分之光束217b在該感應器1221上形成一斑點1212。 The beam 217a travels through the lens 1202 and is transmitted and reflected by the partially reflective optical element 1205a. The transmitting portion of the light beam 217a forms a spot 1210 on the inductor 1221. The reflected portion of the beam 217a is shown as a beam 1218a. The beam 1218a is reflected and transmitted by the reflective optical element 1205b. The portion of the light beam 217a reflected by the optical element 1205b forms a spot 1211 on the inductor 1221. The beam 217a travels through the lens 1202 and is transmitted and reflected by the partially reflective optical element 1205a. The transmitting portion of the light beam 217b forms a spot 1212 on the inductor 1221. The reflected portion (beam 1218b) of the beam 217b is reflected and transmitted by the reflective optical element 1205b. A portion of the beam 217b reflected by the reflective optical element 1205b forms a spot 1212 on the inductor 1221.

如於該影像1250中所示,該透鏡1202將該光束217a帶至位於該感應器1221處的一焦點。因此,該斑點1210具有一較小的直徑。該光束1218a依循一較長的路徑至該感應器1221並在抵達該感應器1221之前,到達位於一點1225處的一焦點。該光束1218a在該點1225之後開始發散以及該斑點1211具有一較該斑點1210為大的直徑。 As shown in the image 1250, the lens 1202 brings the beam 217a to a focus at the sensor 1221. Therefore, the spot 1210 has a smaller diameter. The beam 1218a follows a longer path to the sensor 1221 and reaches a focus at point 1225 before reaching the sensor 1221. The beam 1218a begins to diverge after the point 1225 and the spot 1211 has a larger diameter than the spot 1210.

該透鏡1202在該光束217b抵達該感應器1221之前將該光束217b聚焦至一點1226。該光束217b在抵達該感應器1221之前開始發散。因此,該光束217b在該感應器上形成的該斑點1221與假若該光束217b係聚焦在該感應器1221處時比較具有一較大的直徑。該光束1218b所依循至該感應器1221的該路徑係為較長的以及該焦點1226出現在更 遠離該感應器1221處。就其本身而論,藉由該光束1218b形成的該斑點1213具有一較該斑點1212為大的直徑。 The lens 1202 focuses the beam 217b to a point 1226 before the beam 217b reaches the sensor 1221. The beam 217b begins to diverge before reaching the sensor 1221. Thus, the spot 1221 formed by the beam 217b on the inductor has a larger diameter than if the beam 217b were focused at the sensor 1221. The path followed by the beam 1218b to the sensor 1221 is longer and the focus 1226 appears more Keep away from the sensor 1221. For its part, the spot 1213 formed by the beam 1218b has a larger diameter than the spot 1212.

藉由比較該等斑點1212與1213之該直徑,確定的是該光束217b係為收斂的,並且該照射放大光束216之該焦面244及焦點位置出現在標靶材料246之前(於該“-z”方向上)。該焦面244可經調整以沿著該傳播方向朝向該標靶材料246移動或是該標靶材料246可移向該焦面244之該處所。 By comparing the diameters of the spots 1212 and 1213, it is determined that the beam 217b is convergent, and the focal plane 244 and the focal position of the illumination magnifying beam 216 appear before the target material 246 (in the "- z" direction). The focal plane 244 can be adjusted to move toward the target material 246 along the direction of propagation or the target material 246 can be moved toward the location of the focal plane 244.

同時參考圖13C,一實例中該放大光束216在(於該“+z”方向上)該標靶材料246之後具有一焦點位置,該反射放大光束217發散,以及該斑點1213具有一較該斑點1212為大的直徑。因此,該放大光束216之該焦點位置可經調整以移動更為接近該標靶材料246之該期望的處所。易言之,該放大光束216之該焦點位置可藉由在該“-z”方向上移動該焦點位置而移向該標靶處所247。 Referring to FIG. 13C, in an example, the amplified beam 216 has a focus position after the target material 246 (in the "+z" direction), the reflected amplified beam 217 is diverged, and the spot 1213 has a spot. 1212 is a large diameter. Thus, the focus position of the magnified beam 216 can be adjusted to move closer to the desired location of the target material 246. In other words, the focus position of the magnified beam 216 can be moved toward the target location 247 by moving the focus position in the "-z" direction.

參考圖14,顯示另一光學總成1400的一實例。該光學總成1400係與該光學總成1200相似,不同之處在於該光學總成1400包括五個部分反射性光學元件1405a-1405e。 該光學總成1400可於一光束定位系統中使用替代該光學總成1200。 Referring to Figure 14, an example of another optical assembly 1400 is shown. The optical assembly 1400 is similar to the optical assembly 1200 except that the optical assembly 1400 includes five partially reflective optical elements 1405a-1405e. The optical assembly 1400 can be used in a beam positioning system in place of the optical assembly 1200.

該等部分反射性光學元件1405a-1405e分別提供一不同長度的路徑由該標靶材料246至該感應器1221並在該感應器1221上產生對應的斑點1410-1414。於圖14中所示該實例中,一透鏡1402將一準直返回光束217聚焦,在該照射放大光束216之該焦點位置與該標靶材料246相一致時產 生,至位在一該感應器1221上的一斑點1412。因此,該斑點1410,與該斑點1412相較係為該返回光束217之一不同橫截面的測量,具有一較大的直徑。於此實例中,該斑點1412具有該等斑點1410-1414之最小的直徑。 The partially reflective optical elements 1405a-1405e respectively provide a path of a different length from the target material 246 to the inductor 1221 and produce corresponding spots 1410-1414 on the sensor 1221. In the example shown in FIG. 14, a lens 1402 focuses a collimated return beam 217, which is produced when the focus position of the illumination magnifying beam 216 coincides with the target material 246. Raw, a spot 1412 on the sensor 1221. Thus, the spot 1410, as compared to the spot 1412, is a measure of a different cross-section of the return beam 217 having a larger diameter. In this example, the spot 1412 has the smallest diameter of the spots 1410-1414.

藉由比較該等斑點1410-1414之直徑,可確定該放大光束216之該焦點位置相對於該標靶材料246(或標靶處所242)的處所。例如,假若該最小直徑斑點係為斑點1410,則該照射放大光束216之該焦點可經調整,例如,以沿著該傳播方向移向該標靶材料246或是該標靶材料246可移向該焦面244及該焦點位置的該處所。假若該最小直徑斑點係為斑點1414,則該照射放大光束216之該焦點可經調整以移離該標靶材料246。 By comparing the diameters of the spots 1410-1414, the location of the focus position of the magnified beam 216 relative to the target material 246 (or target location 242) can be determined. For example, if the smallest diameter spot is a spot 1410, the focus of the illumination amplified beam 216 can be adjusted, for example, to move toward the target material 246 along the direction of propagation or the target material 246 can be moved toward The focal plane 244 and the location of the focal position. If the smallest diameter spot is a spot 1414, the focus of the illumination amplified beam 216 can be adjusted to move away from the target material 246.

儘管圖12之該實例顯示二個部分反射性光學元件1205a及1205b,以及圖14之該實例顯示五個部分反射性光學元件1405a-1405e,但是可使用其他數目之反射性光學元件。 Although the example of Figure 12 shows two partially reflective optical elements 1205a and 1205b, and the example of Figure 14 shows five partially reflective optical elements 1405a-1405e, other numbers of reflective optical elements can be used.

圖14B顯示用於使用諸如該總成1200或1400的一非散光光學元件調整該放大光束216之一焦點位置的一示範性流程1400B。該流程1400B可基於單獨利用該總成1200或1400或是利用該總成1200或1400作為該等光束定位系統260、700或是1100之任一者的一部分所收集之數據執行。該流程1400B可藉由該光束定位系統之一或更多個感應器中的該控制器280及/或一電子處理器執行。於以下的論述中,該流程1400係相關於該光束定位系統260、該總成 1400及該感應器1221論述。 FIG. 14B shows an exemplary flow 1400B for adjusting a focus position of the amplified beam 216 using a non-dispersive optical element such as the assembly 1200 or 1400. The process 1400B can be performed based on data collected using the assembly 1200 or 1400 alone or using the assembly 1200 or 1400 as part of any of the beam positioning systems 260, 700, or 1100. The process 1400B can be performed by the controller 280 and/or an electronic processor in one or more of the sensors of the beam positioning system. In the following discussion, the process 1400 is related to the beam positioning system 260, the assembly. 1400 and the sensor 1221 are discussed.

該返回光束217係與至少一光學元件相互作用以形成複數之光束,每一光束依循一不同長度之路徑至該感應器1221以及每一光束各別地在該感應器1221上形成一斑點1410-1414(1450)。該返回光束217與至少一光學元件相互作用可包括讓該返回光束217通過該透鏡1402以聚焦該返回光束217。於其他的實作中,該返回光束217與至少一光學元件相互作用可包括將該返回光束217自將該返回光束217聚焦的諸如一曲面鏡的一反射元件反射。 The return beam 217 interacts with at least one optical element to form a plurality of beams, each beam following a different length path to the inductor 1221 and each beam individually forming a spot 1410 on the inductor 1221. 1414 (1450). The returning beam 217 interacting with the at least one optical element can include passing the return beam 217 through the lens 1402 to focus the return beam 217. In other implementations, the returning beam 217 interacting with the at least one optical element can include reflecting the returning beam 217 from a reflective element such as a curved mirror that focuses the returning beam 217.

該返回光束217係與至少一光學元件相互作用包括讓該返回光束217通過至少一部分反射性元件以形成複數之光束。每一光束依循一不同長度之路徑由該標靶材料246及/或透鏡1202至該感應器1221並在該感應器1221之一不同部分上形成一斑點(如圖12中所示)。例如,如於圖14中所示,可使用五個反射元件以將該返回光束217劃分成五光束,每一光束依循一不同長度之路徑至該感應器1221。 可使用更多或是較少的反射元件。該等反射元件,例如,可為分束鏡,部分反射鏡,或是任何其他將光束分割成二或更多的沿著不同路徑傳播之光束的光學元件。 The returning beam 217 interacting with the at least one optical element includes passing the returning beam 217 through at least a portion of the reflective element to form a plurality of beams. Each beam follows a different length path from the target material 246 and/or lens 1202 to the sensor 1221 and forms a spot on a different portion of the sensor 1221 (as shown in FIG. 12). For example, as shown in FIG. 14, five reflective elements can be used to divide the return beam 217 into five beams, each beam following a different length path to the inductor 1221. More or fewer reflective elements can be used. The reflective elements can be, for example, beam splitters, partial mirrors, or any other optical element that splits the beam into two or more beams propagating along different paths.

複數光束中之每一光束在該感應器1221上形成一斑點。該斑點之直徑由於針對複數光束中之每一光束該透鏡1402與該感應器1221之間的不同長度路徑而變化。由於變化至該感應器1221的路徑長度,所以該感應器1221上的該等斑點1410-1414可理解為在沿著該傳播方向的不同 平面處所取該光束之該橫截面的樣本。比較該等斑點1410-1414之相對尺寸提供在該照射放大光束216之傳播方向上該照射放大光束216相對於該標靶材料246的該焦點之處所的一指示。 Each of the plurality of beams forms a spot on the inductor 1221. The diameter of the spot varies due to different length paths between the lens 1402 and the sensor 1221 for each of the plurality of beams. Due to the change in path length to the sensor 1221, the spots 1410-1414 on the sensor 1221 can be understood as being different along the direction of propagation. A sample of the cross section of the beam taken at the plane. Comparing the relative dimensions of the spots 1410-1414 provides an indication of the focus of the illumination amplified beam 216 relative to the target material 246 in the direction of propagation of the illumination amplified beam 216.

確定複數之斑點1410-1414中每一斑點之尺寸(1460)。該尺寸,例如,可為該斑點或是該斑點之一區域的一直徑。該等確定的尺寸係經比較(1470)。根據該比較確定該放大光束216之該焦點位置的一處所(1480)。例如,該感應器1221、該等反射元件1405a-1405e以及該透鏡1402可彼此相對地佈置以致假若該放大光束216之該焦點位置與該標靶材料246部分重疊致使當該返回光束通過該透鏡1402係經準直,則該返回光束217係於該斑點1412處聚焦。於此實例中,假若該斑點1411係經測量為小於該斑點1412,則該放大光束216之該焦點位置並未與該標靶材料246部分重疊。例如,該返回光束217可經收斂以取代準直,其可指示該放大光束216之該焦點位置在該“+z”方向上應移向該標靶處所242。其他實作可具有以一不同構態佈置的該光源1204之該等光學組件。例如,於其他實作中,一收斂的返回光束217可指示該放大光束216應相對於該標靶處所242於該“-z”方向上移動。 The size of each spot in the complex spots 1410-1414 is determined (1460). The size, for example, can be the spot or a diameter of a region of the spot. The determined dimensions are compared (1470). A location of the focus position of the magnified beam 216 is determined based on the comparison (1480). For example, the sensor 1221, the reflective elements 1405a-1405e, and the lens 1402 can be disposed opposite each other such that if the focus position of the amplified beam 216 partially overlaps the target material 246, such that the return beam passes through the lens 1402. Upon collimation, the return beam 217 is focused at the spot 1412. In this example, if the spot 1411 is measured to be smaller than the spot 1412, the focus position of the magnified beam 216 does not partially overlap the target material 246. For example, the return beam 217 can be converged to replace collimation, which can indicate that the focus position of the magnified beam 216 should be moved toward the target location 242 in the "+z" direction. Other implementations may have such optical components of the light source 1204 arranged in a different configuration. For example, in other implementations, a converged return beam 217 can indicate that the amplified beam 216 should move relative to the target location 242 in the "-z" direction.

為於該“z”方向(該光束216之該傳播方向)上定位該照射放大光束216之該焦點位置,於該等致動系統228及227中的一或更多個致動器移動該光束傳送系統224及/或聚焦系統226中(圖2A)反射鏡、透鏡及/或安裝座,以操縱該 照射放大光束216朝向該標靶材料246。於該流程1400B係完全地或是部分地藉由或利用該控制器280執行的實作中,該焦點位置之該處所可提供給該控制器280或是由該控制器280計算,以及該控制器280可產生供該傳送系統224及/或聚焦系統226內該等組件所用之一總量相對應的一信號,用以移動或調整該放大光束216之該焦點的處所。 To position the focus position of the illumination amplified beam 216 in the "z" direction (the direction of propagation of the beam 216), one or more actuators in the actuation systems 228 and 227 move the beam a mirror, lens and/or mount in the transport system 224 and/or the focusing system 226 (Fig. 2A) to manipulate the The illumination amplification beam 216 is directed toward the target material 246. Where the process 1400B is performed, in whole or in part, by or with the controller 280, the location of the focus location may be provided to or calculated by the controller 280, and the control The 280 can generate a signal corresponding to the total amount used by the components in the delivery system 224 and/or the focusing system 226 to move or adjust the location of the focus of the amplified beam 216.

參考圖15A-15C,顯示由一感應器產生之示範性影像,成像包括該光學總成1200的一光束定位系統之二通道。該光束定位系統可為該等光束定位系統260、700或1100之任一者,讓該光學總成1200分別地於通道316、716或1116中使用。影像1505A-1505C顯示當該照射放大光束216之該焦點位置相對於該標靶材料246移動時在三個不同時間下該感應器的一影像。該等影像1505A-1505C之該左側顯示斑點1210及1211。同時參考圖12,斑點1210係為當該返回光束217在抵達該感應器1221之前通過該透鏡1202時產生的該斑點。斑點1211係為該返回光束217在抵達該感應器1221之前通過該透鏡1202並係反射離開該等部分反射性光學元件1205a及1205b時產生的該斑點。 Referring to Figures 15A-15C, an exemplary image produced by an inductor is shown that includes two channels of a beam positioning system of the optical assembly 1200. The beam positioning system can be any of the beam positioning systems 260, 700 or 1100, allowing the optical assembly 1200 to be used in channels 316, 716 or 1116, respectively. Image 1505A-1505C displays an image of the sensor at three different times as the focus position of the illumination amplified beam 216 moves relative to the target material 246. The left side of the images 1505A-1505C displays spots 1210 and 1211. Referring also to Figure 12, the spot 1210 is the spot that is produced when the return beam 217 passes the lens 1202 before it reaches the sensor 1221. Spot 1211 is the spot produced by the return beam 217 as it passes through the lens 1202 and is reflected off the partially reflective optical elements 1205a and 1205b before reaching the sensor 1221.

於該影像1505A中,該斑點1210A具有一較該斑點1211A為大的直徑,指示該照射放大光束216之該焦點位置於抵達該標靶材料246之前出現。於該影像1505B中,該斑點1210B具有一較該斑點1211B為小的直徑,指示該照射放大光束216之該焦點位置於抵達該標靶材料246之後出現。因此,根據該影像1505A完成的對該焦點位置的一調整 係位在正確的方向上,但該焦點位置並未與該標靶材料246部分重疊。於該影像1505C中,該斑點1210C係為點狀,指示該透鏡1202將該光束217聚焦在該感應器1221上,並且,因此,該照射放大光束216係聚焦在該標靶材料上。 In the image 1505A, the spot 1210A has a larger diameter than the spot 1211A, indicating that the focus position of the illumination amplified beam 216 occurs prior to reaching the target material 246. In the image 1505B, the spot 1210B has a smaller diameter than the spot 1211B, indicating that the focus position of the illuminated magnified beam 216 occurs after reaching the target material 246. Therefore, an adjustment of the focus position is completed according to the image 1505A. The position is in the correct direction, but the focus position does not partially overlap the target material 246. In the image 1505C, the spot 1210C is punctiform, indicating that the lens 1202 focuses the beam 217 on the sensor 1221, and, therefore, the illumination amplified beam 216 is focused on the target material.

該等影像1505A-1505C之該右側顯示一斑點1520A-1520C,係為行進通過該通道317、717或1116的該返回光束217之一部分的一影像。與該等影像905A-905C(圖9A-9C)之右側相似,該等斑點1520A-1520C顯示在與該照射放大光束216之該傳播方向橫向的一方向上該照射放大光束216相對於該標靶材料246的移動。影像1505A顯示該照射放大光束216係位在該垂直平面(於圖2A中該“y”方向)中該標靶材料246上方,以及影像1505B顯示該照射放大光束216係位在該垂直平面(於圖2B中該“-y”方向)中該標靶材料246下方。於該影像1505C中所表示的該時間,該照射放大光束216在該垂直平面中與該標靶材料246部分重疊。 The right side of the images 1505A-1505C displays a spot 1520A-1520C as an image of a portion of the return beam 217 that travels through the channel 317, 717 or 1116. Similar to the right side of the images 905A-905C (Figs. 9A-9C), the spots 1520A-1520C are displayed in a direction transverse to the direction of propagation of the illumination amplified beam 216. The illumination amplified beam 216 is relative to the target material. 246 moves. Image 1505A shows that the illumination amplified beam 216 is positioned above the target material 246 in the vertical plane (in the "y" direction in FIG. 2A), and image 1505B shows that the illumination amplified beam 216 is in the vertical plane (in Below the target material 246 in the "-y" direction in Figure 2B. At this time, as indicated in image 1505C, the illumination amplified beam 216 partially overlaps the target material 246 in the vertical plane.

參考圖16,顯示用於相對於一標靶材料將一照射放大光束對準的一示範流程1600。該流程1600可基於利用該等光束定位系統260、700或是1100之任一者所收集之數據執行。該流程1600可藉由該光束定位系統之一或更多個感應器中的該控制器280及/或一電子處理器執行。於以下的論述中,該流程1600係相關於該光束定位系統260論述。 Referring to Figure 16, an exemplary flow 1600 for aligning an illumination amplified beam with respect to a target material is shown. The process 1600 can be performed based on data collected using any of the beam positioning systems 260, 700, or 1100. The process 1600 can be performed by the controller 280 and/or an electronic processor in one or more of the sensors of the beam positioning system. In the discussion that follows, the process 1600 is discussed in relation to the beam positioning system 260.

存取反射放大光束之第一、第二及第三測量(1610)。該反射放大光束係為反射離開標靶材料的一光束。例如,該反射放大光束可為該返回光束217。由一第一感應 器所獲得該第一測量,以及由一第二感應器獲得該第二及第三測量。例如,該第一測量可由該象限探測器420獲得,以及該第二及第三測量可由該感應器421獲得。該第一感應器具有一較該第二感應器為高的數據採集率。如以上所論及,使用不同的數據採集率的感應器容許該流程1600考量由複數物理效應,一些物理效應係較其他者在較短的時間訊框出現,產生的於該照射放大光束216之對準作業上的變化。可由一單一感應器,諸如該感應器421,獲得該第二及第三測量,或是該第二及第三測量可由二不同的感應器獲得。由相同的感應器獲得該第二及第三測量可產生相對地為小型且組件較少的一光束定位系統。於一些實作中,該第二及第三測量係由二不同的感應器獲得,該二感應器可為相同的。 The first, second, and third measurements of the amplified amplified beam are accessed (1610). The reflected amplified beam is a beam that reflects off the target material. For example, the reflected amplified beam can be the return beam 217. By a first induction The first measurement is obtained by the device, and the second and third measurements are obtained by a second sensor. For example, the first measurement can be obtained by the quadrant detector 420, and the second and third measurements can be obtained by the sensor 421. The first sensor has a higher data acquisition rate than the second sensor. As discussed above, sensors using different data acquisition rates allow the process 1600 to consider multiple physical effects, some of which occur in shorter time frames than others, resulting in a pair of the amplified light beams 216. Changes in quasi-work. The second and third measurements may be obtained by a single inductor, such as the sensor 421, or the second and third measurements may be obtained by two different sensors. Obtaining the second and third measurements from the same sensor can result in a beam positioning system that is relatively small and has fewer components. In some implementations, the second and third measurements are obtained by two different sensors, which may be the same.

根據該第一測量,確定該照射放大光束216相對於該標靶材料的一第一處所(1620)。該第一處所係位在與該照射放大光束216之該傳播方向橫向的一方向。例如該方向可為於圖2B中所顯示的該“x”方向或該“y”方向。因此,該第一處所可為在該“x”或“y”方向上相對於該標靶材料的一處所。該第一處所可表示為一數值其代表介於該照射放大光束216與該標靶材料246之間的該段距離。於一些實作中,該段距離可為該照射放大光束216之該焦面244該標靶材料246之間的該段距離。該段距離可為介於該照射放大光束216與該標靶處所242(預期用以接收該標靶材料的一處所)之間的該段距離。該段距離可介於該照射放大光束216 之該焦點位置與該標靶處所242或該標靶材料之間。 Based on the first measurement, a first location (1620) of the illumination amplified beam 216 relative to the target material is determined. The first location is in a direction transverse to the direction of propagation of the illumination amplified beam 216. For example, the direction can be the "x" direction or the "y" direction shown in Figure 2B. Thus, the first location can be a location relative to the target material in the "x" or "y" direction. The first location can be represented as a value representing the distance between the illumination amplification beam 216 and the target material 246. In some implementations, the length of the segment may be the distance between the target material 246 of the focal plane 244 of the illumination amplification beam 216. The length of the segment may be the distance between the illumination amplification beam 216 and the target location 242 (a location intended to receive the target material). The length of the segment may be between the illumination amplification beam 216 The focal position is between the target location 242 or the target material.

在該第一感應器係為該象限探測器的實作中,可由該感應器420上該斑點411之該處所確定該第一處所。例如,假若該斑點411係位在該感應器420之該左側上,則該標靶材料246係於該“y”方向上自該焦點位置移置。為確定位在該感應器420上該斑點505之該位置,測量並比較由每一感測元件422a-422d感測的該能量。 In the implementation of the first sensor as the quadrant detector, the first location can be determined by the location of the spot 411 on the sensor 420. For example, if the spot 411 is tied to the left side of the sensor 420, the target material 246 is displaced from the focus position in the "y" direction. To determine the location of the spot 505 on the sensor 420, the energy sensed by each of the sensing elements 422a-422d is measured and compared.

當每一感測元件422a-422d自該光束411接收相同總量的能量時,該斑點505係位在該感應器420之中心以及該照射放大光束216係在該橫向方向上與該標靶材料246對準。為確定該斑點505自該感應器420之該中心偏移,位在每一感測元件422a-422d處該能量係為不同的。該斑點505自該中心的垂直偏移可藉由自位在該感應器420之該頂部部分上源自於該等感測元件422a及422b的能量總和中扣除位在該感應器420之該底部部分上源自於該等感測元件422c及422d的能量總和而確定。一負值指示該斑點505之該中心係位於該感應器420之該中心的下方,而一正值指示該斑點505之該中心係位於該感應器420之該中心的上方。該斑點505之該水平偏移係藉由自位在該感應器420之該右側上該能量總和中扣除位在該感應器420之該左側上的能量總和而確定。一負值指示該斑點505之該中心係位於該感應器420之該中心的右邊,而一正值指示該斑點505之該中心係位於該感應器420之該中心的左邊。 When each sensing element 422a-422d receives the same amount of energy from the beam 411, the spot 505 is centered at the center of the inductor 420 and the illumination amplified beam 216 is in the lateral direction with the target material. 246 alignment. To determine that the spot 505 is offset from the center of the sensor 420, the energy is different at each of the sensing elements 422a-422d. The vertical offset of the spot 505 from the center can be deducted from the sum of the energy originating from the sensing elements 422a and 422b on the top portion of the sensor 420 at the bottom of the sensor 420. Partially determined from the sum of the energies of the sensing elements 422c and 422d. A negative value indicates that the center of the spot 505 is below the center of the sensor 420, and a positive value indicates that the center of the spot 505 is above the center of the sensor 420. The horizontal offset of the spot 505 is determined by subtracting the sum of the energy on the left side of the sensor 420 from the sum of the energies on the right side of the sensor 420. A negative value indicates that the center of the spot 505 is to the right of the center of the sensor 420, and a positive value indicates that the center of the spot 505 is located to the left of the center of the sensor 420.

根據該偏移總量,該控制器280確定一相對應的 總量以於該致動系統227及/或該致動系統228中移動一或更多個致動器,用以調整該照射放大光束216與該標把材料246對準。 Based on the total amount of offset, the controller 280 determines a corresponding one. The total amount is used to move one or more actuators in the actuation system 227 and/or the actuation system 228 for adjusting the illumination amplification beam 216 to align with the indicator material 246.

該等感測元件422a-422d之間的信號差異可由源自於該感應器420的一單一數據框確定。於一些實作中,在確定介於該微滴與該照射放大光束216之間該段橫向距離之前,將源自於該感應器420的複數數據框加以平均。例如,在確定該信號差異之前可將源自於該感應器420的16或250個數據框加以平均。再者,該信號差異可由在所有的感測元件422a-422d上的總信號相除。 The difference in signal between the sensing elements 422a-422d can be determined by a single data frame derived from the inductor 420. In some implementations, the complex data frames originating from the inductor 420 are averaged prior to determining the lateral distance between the droplet and the illumination amplified beam 216. For example, 16 or 250 data frames originating from the sensor 420 may be averaged prior to determining the signal difference. Again, this signal difference can be divided by the total signal across all of the sensing elements 422a-422d.

根據該第二測量,確定該照射放大光束216相對於該標靶材料的一第二處所(1630)。該第二處所亦係位在與該照射放大光束216之該傳播方向橫向的一方向上(圖2A之該“x”或該“y”方向)。該第二處所可為位在與該第一處所垂直的一方向上。例如,假若該第一處所係為在該“x”方向上介於標靶材料246與該照射放大光束216之間的一段距離,該第二處所可為在該“y”方向上介於標靶材料246與該照射放大光束216之間的一段距離。 Based on the second measurement, the illumination amplification beam 216 is determined relative to a second location of the target material (1630). The second location is also in a direction that is transverse to the direction of propagation of the illumination amplified beam 216 (the "x" or "y" direction of Figure 2A). The second location may be in a direction that is perpendicular to the first location. For example, if the first location is a distance between the target material 246 and the illumination amplification beam 216 in the "x" direction, the second location may be in the "y" direction. A distance between the target material 246 and the illumination amplified beam 216.

由利用一感應器,諸如該感應器421,取得的數據確定該第二處所,該感應器與該第一感應器相較具有一較低的數據採集率。因此,甚至在該第二處所及該第一處所係為沿著該相同方向的實作中,該第二及第一處所提供不同的資訊。例如,利用源自於該第一感應器之數據追蹤該照射放大光束216於一特別方向上隨時間變化的處所,顯 示在該照射放大光束216之該位置中高頻率變化,同時利用源自於該第二感應器之數據追蹤該照射放大光束216的該位置於該方向上隨時間變化的改變,顯示在該前向光束中低頻率變化。 The second location is determined by data obtained using an inductor, such as the inductor 421, which has a lower data acquisition rate than the first sensor. Thus, the second and first locations provide different information even in the implementation of the second location and the first location along the same direction. For example, using the data derived from the first sensor to track the location of the illumination amplified beam 216 that changes with time in a particular direction. Displaying a high frequency change in the position of the illumination amplified beam 216, while tracking the change of the position of the illumination amplified beam 216 in the direction with time by using data derived from the second inductor, displayed in the forward direction Low frequency changes in the beam.

根據該第三測量,確定該放大光束之該焦點位置相對於該標靶材料的一處所(1640)。確定該照射放大光束216之該焦點位置的該處所係位在與該前向光束之該傳播方向平行的一方向上(於圖2A中該“z”方向)。藉由測量由通過一散光光學元件(圖7及11)之光線形成的一斑點之橢圓率,或是藉由使用一系列之非散光光學元件以產生分別顯示該照射放大光束216之一不同橫截面的斑點(圖12及14)可確定該焦點位置相對於該標靶材料246的該處所。 Based on the third measurement, the focus position of the amplified beam is determined relative to a location of the target material (1640). The location of the focus position of the illumination amplified beam 216 is determined to be in a direction parallel to the direction of propagation of the forward beam (in the "z" direction in Figure 2A). By measuring the ellipticity of a spot formed by the light passing through an astigmatic optical element (Figs. 7 and 11), or by using a series of non-astigmatic optical elements to produce a different horizontal display of the illumination amplified beam 216, respectively. The spots of the cross-section (Figs. 12 and 14) can determine the location of the focus relative to the target material 246.

該照射放大光束係根據該第一處所、該第二處所或是該焦面之該處所的一或更多者相對於該標靶材料重新定位以將該照射放大光束相對於該標靶材料對準(1650)。為在該“x”或“y”方向上將該照射放大光束216對準,該致動系統228及227中一或更多個致動器移動該光束傳送系統224及/或聚焦系統226(圖2A)內反射鏡、透鏡及/或安裝座,以操縱該照射放大光束216朝向該標靶材料246。於使用一脈衝式前向光束的實作中,藉由延遲或推進於該“x”方向上該脈衝一段與介於該脈衝及該標靶材料之間該段距離相對應的時間,該照射放大光束216可交替地或是附加地於該“x”方向上對準。為將該光束216之該焦面244或焦點位置沿著該“z”方向對準,該致動系統227中的一或更多致動器移動 該聚焦系統227中的一透鏡,導致該焦面244及焦點位置的重新定位。 The illuminating beam is repositioned relative to the target material based on the first location, the second location, or one or more of the focal planes to polarize the illuminating beam relative to the target material pair Standard (1650). To align the illumination amplification beam 216 in the "x" or "y" direction, one or more actuators of the actuation systems 228 and 227 move the beam delivery system 224 and/or the focusing system 226 ( 2A) an internal mirror, lens and/or mount to manipulate the illumination amplification beam 216 toward the target material 246. In the implementation of a pulsed forward beam, the illumination is delayed or advanced in the "x" direction by a period of time corresponding to the distance between the pulse and the target material. The amplified beam 216 can be aligned alternately or additionally in the "x" direction. To align the focal plane 244 or focus position of the beam 216 along the "z" direction, one or more actuators in the actuation system 227 move A lens in the focusing system 227 causes repositioning of the focal plane 244 and the focus position.

其他的實作係涵蓋於以下申請專利範圍之範疇內。 Other implementations are within the scope of the following patent application.

217‧‧‧反射放大光束 217‧‧‧Reflected amplified beam

260‧‧‧光束定位系統 260‧‧‧beam positioning system

405‧‧‧摺疊式反射鏡 405‧‧‧Folding mirror

410a,410b‧‧‧部分反射性光學元件 410a, 410b‧‧‧Partial reflective optical components

411,412,413‧‧‧光束 411,412,413‧‧‧beam

415-417‧‧‧通道 415-417‧‧‧ channel

420,421‧‧‧感應器 420,421‧‧‧ sensor

422a-422d‧‧‧感測元件 422a-422d‧‧‧Sensor components

424,425‧‧‧影像 424,425‧‧ images

426,428,430‧‧‧再現 426,428,430‧‧‧Reproduction

432,434,436‧‧‧光學元件 432,434,436‧‧‧Optical components

442‧‧‧光學元件/光譜濾波器 442‧‧‧Optical components/spectral filters

Claims (25)

一種用於極紫外線光源的系統,該系統包含:一或更多個光學元件經定位用以接收一反射放大光束,並用以引導該反射放大光束進入第一、第二及第三通道,該反射放大光束包含與一標靶材料相互作用的一照射放大光束的至少一部分之反射;一感測源自於該第一通道之光線的第一感應器;一感測源自於該第二通道及該第三通道之光線的第二感應器,該第二感應器具有一較該第一感應器為低的採集率(acquisition rate);以及一與一電腦可讀取儲存媒體耦合的電子處理器,該電腦可讀取儲存媒體儲存指令,當執行時,致使該電子處理器:自該第一感應器及該第二感應器接收數據,以及根據該接收的數據,確定該照射放大光束相對於該標靶材料於一個以上的維度中的一處所(location)。 A system for an extreme ultraviolet light source, the system comprising: one or more optical components positioned to receive a reflected amplified beam and configured to direct the reflected amplified light beam into the first, second, and third channels, the reflection The amplified beam includes a reflection of at least a portion of an illumination amplified beam that interacts with a target material; a first sensor that senses light from the first channel; a sense is derived from the second channel and a second sensor of the light of the third channel, the second sensor having a lower acquisition rate than the first sensor; and an electronic processor coupled to a computer readable storage medium, The computer readable storage medium storage instructions, when executed, causing the electronic processor to: receive data from the first sensor and the second sensor, and, based on the received data, determine the illumination amplified beam relative to the The target material is in one of more than one dimension. 如請求項1之系統,其中該電腦可讀取儲存媒體進一步儲存指令,當執行時,致使該電子處理器確定對基於該經確定的處所的該照射放大光束的調整。 The system of claim 1, wherein the computer readable storage medium further stores instructions that, when executed, cause the electronic processor to determine an adjustment to the illuminated amplified beam based on the determined location. 如請求項2之系統,其中該經確定的調整可包含距離,於一個以上的維度中,以移動該照射放大光束。 A system of claim 2, wherein the determined adjustments comprise a distance, in more than one dimension, to move the illumination to amplify the beam. 如請求項1之系統,其中致使該電子處理器確定該照射放大光束之一處所的該等指令包含,當執行時,致使該 電子處理器:確定於與該照射放大光束之傳播的一方向平行之一方向上,該照射放大光束相對於該標靶材料的一焦點位置之一處所,以及確定於與該照射放大光束之傳播的方向垂直之一第一橫方向上,該照射放大光束相對於該標靶材料的該焦點位置之一處所的指令。 The system of claim 1, wherein the instructions causing the electronic processor to determine the location of the illumination amplification beam include, when executed, causing the An electronic processor: determining, in a direction parallel to a direction of propagation of the illumination amplified beam, a location of the illumination amplified beam relative to a focus position of the target material, and determining a propagation of the amplified beam with the illumination One of the directions perpendicular to the first lateral direction, the illumination amplifies the direction of the beam relative to one of the focal positions of the target material. 如請求項4之系統,其中該等指令進一步包含,當執行時,致使該電子處理器確定於與該第一橫方向垂直並且與該照射放大光束之傳播的方向垂直之一第二橫方向上,該照射放大光束之該預期焦點位置之一處所的指令。 The system of claim 4, wherein the instructions further comprise, when executed, causing the electronic processor to determine one of the second transverse directions that is perpendicular to the first lateral direction and perpendicular to the direction of propagation of the illumination amplified beam The illumination illuminates the command at one of the intended focus positions of the amplified beam. 如請求項1之系統,其進一步包含一散光光學元件,定位在該第三通道中,修改該反射放大光束之波前。 The system of claim 1, further comprising an astigmatism optical element positioned in the third channel to modify a wavefront of the reflected amplified beam. 如請求項1之系統,其進一步包含多重部分反射非散光光學元件,分別定位在該第三通道中的一不同處所並分別地接收至少部分之該反射放大光束,該多重部分反射光學元件之每一者形成一光束其依循介於該標靶材料與該第二感應器之間的一不同長度之一路徑。 The system of claim 1 further comprising a plurality of partially reflective non-astigmatic optical elements respectively positioned at a different one of the third channels and respectively receiving at least a portion of the reflected amplified beam, each of the multiple partially reflective optical elements One forms a beam that follows one of a different length between the target material and the second inductor. 如請求項1之系統,其中該第一、第二及第三通道係為三個分開的路徑,分別由引導一部分之反射放大光束的一或更多個折射或反射光學元件所界定。 The system of claim 1, wherein the first, second, and third channels are three separate paths defined by one or more refractive or reflective optical elements that direct a portion of the reflected amplified beam. 如請求項1之系統,其中該反射放大光束包含一預脈衝光束及一驅動光束的一反射,該驅動光束係為一放大光 束一經相互作用將該標靶材料轉換成電漿,以及該預脈衝及驅動光束包含不同的波長,並且該系統進一步包含一或更多個光譜濾波器其僅對該預脈衝光束及該驅動光束的其中之一者為可穿透的。 The system of claim 1, wherein the reflected amplified beam comprises a pre-pulse beam and a reflection of a driving beam, the driving beam being an amplified light The beam converts the target material into a plasma upon interaction, and the pre-pulse and drive beam comprise different wavelengths, and the system further includes one or more spectral filters that only the pre-pulse beam and the drive beam One of them is permeable. 如請求項1之系統,其中該第一感應器在一高的採集率下感測源自於該第一通道的光線指向;該第二感應器包含一二維成像感應器感測源自於該第二通道及該第三通道之光線並測量該光線之強度分佈;以及當執行時,致使該電子處理器,根據該接收的數據,確定該照射放大光束之一處所的該等指令能夠致使致使該電子處理器確定該照射放大光束於一個以上的維度中相對於該標靶材料的一焦點位置。 The system of claim 1, wherein the first sensor senses a light ray originating from the first channel at a high acquisition rate; the second sensor comprises a two-dimensional imaging sensor sensing derived from Light rays of the second channel and the third channel and measuring an intensity distribution of the light; and, when executed, causing the electronic processor to determine, based on the received data, the instructions of the one of the illumination amplified beams to cause The electronic processor is caused to determine a focus position of the illumination amplified beam in one or more dimensions relative to the target material. 一種將自一極紫外光系統產生之一照射放大光束相對於一標靶材料對準的方法,該方法包含:存取一反射放大光束之第一、第二及第三測量,由一第一感應器取得該第一測量,由採集率較該第一感應器為低的一第二感應器取得第二及第三測量,而該反射放大光束係為源自於一標靶材料的該照射放大光束之一反射;根據該第一測量,確定於與該照射放大光束之傳播的方向垂直之一方向上,該照射放大光束相對於該標靶材料的一第一處所;根據該第二測量,確定於與該照射放大光束之傳播的方向垂直之一方向上,該照射放大光束相對於該標靶 材料的一第二處所;根據該第三測量,確定於與該照射放大光束之傳播的方向平行之一方向上,該照射放大光束相對於該標靶材料的一焦點位置之一處所;以及根據該第一處所、該第二處所或是該焦點位置之處所其中之一或更多者將該照射放大光束相對於該標靶材料重新定位以將該照射放大光束相對於該標靶材料對準。 A method of aligning an illumination amplified beam from an extreme ultraviolet light system with respect to a target material, the method comprising: accessing a first, second, and third measurements of a reflected amplified beam, by a first The sensor obtains the first measurement, and the second and third measurements are obtained by a second sensor having a lower acquisition rate than the first sensor, and the reflected amplified beam is derived from the target material. Reflecting at one of the amplified beams; determining, according to the first measurement, a first direction of the illumination amplified beam relative to the target material in a direction perpendicular to a direction of propagation of the illumination amplified beam; according to the second measurement, Determining the illumination amplification beam relative to the target in a direction perpendicular to a direction in which the illumination amplification beam propagates a second location of material; determining, according to the third measurement, a location of the illumination amplification beam relative to a focus position of the target material in a direction parallel to a direction of propagation of the illumination amplification beam; and One or more of the first location, the second location, or the focus location repositions the illumination amplified beam relative to the target material to align the illumination amplified beam with respect to the target material. 如請求項11之方法,其進一步包含根據該焦點位置之該確定的處所而確定對於該放大光束之該焦點位置的調整,以及其中將該照射放大光束重新定位作業包含根據對於該焦點位置之該處所的確定調整而移動該照射放大光束之該焦點位置。 The method of claim 11, further comprising determining an adjustment to the focus position of the magnified beam based on the determined location of the focus position, and wherein the illuminating the beam repositioning operation comprises including the focus position The determined adjustment of the location moves the focus position of the illumination amplified beam. 如請求項11之方法,其進一步包含根據一或更多的該確定第一處所或是該確定第二處所而確定對於該放大光束的調整。 The method of claim 11, further comprising determining an adjustment to the amplified beam based on the one or more of the determining the first location or the determining the second location. 如請求項13之方法,其中:該放大光束能夠為一脈衝光,該確定的第一處所包含該放大光束焦點於與該標靶材料行進的一方向平行之一方向上相對於該標靶材料的一處所,以及對於與該放大光束對準之該確定的調整包含介於該放大光束與該標靶材料之間於與該標靶材料行進的方向平行之該方向上的一段距離,以及 將該照射放大光束脈衝重新定位作業包含於該放大光束中產生與介於該放大光束與該標靶材料之間該段距離相配合的一延遲,以致一接續的脈衝光與一標靶材料相交。 The method of claim 13, wherein: the amplified beam can be a pulsed light, the determined first location comprising the amplified beam focus in a direction parallel to a direction in which the target material travels relative to the target material a location, and the determined adjustment for alignment with the magnified beam comprises a distance between the magnified beam and the target material in a direction parallel to a direction in which the target material travels, and The illuminating beam pulse repositioning operation is included in the amplified beam to produce a delay that matches the distance between the amplified beam and the target material such that a subsequent pulsed light intersects a target material . 如請求項13之方法,其中:該確定的第二處所包含該放大光束在與該標靶材料行進方向垂直以及與該放大光束傳播的一方向垂直的一方向上之一處所,以及對於該放大光束之對準的該確定調整包含介於該放大光束與該標靶材料處所之間的一段距離,以及將該照射放大光束重新定位作業包含:根據該確定的調整產生一輸出,該輸出係足以致使一操縱該放大光束的光學總成之重新定位;以及對該光學總成提供輸出。 The method of claim 13, wherein: the determined second location includes a location of the amplified beam in a direction that is perpendicular to a direction of travel of the target material and perpendicular to a direction in which the amplified beam propagates, and for the amplified beam The determining adjustment of the alignment includes a distance between the magnified beam and the target material, and repositioning the illumination magnifying beam includes: generating an output based on the determined adjustment, the output being sufficient to cause Repositioning the optical assembly that manipulates the amplified beam; and providing an output to the optical assembly. 如請求項11之方法,其進一步包含根據該焦點位置之該確定的處所而確定對該放大光束之該焦點位置的該處所的一調整。 The method of claim 11, further comprising determining an adjustment of the location of the focus position of the magnified beam based on the determined location of the focus position. 如請求項12之方法,其中該照射放大光束重新定位作業包含:根據對該焦點位置之該處所的確定調整產生一輸出,該輸出係足以致使將該放大光束聚焦的一光學元件之重新定位;以及對包含該光學元件的一光學總成提供輸出。 The method of claim 12, wherein the illuminating the beam repositioning operation comprises: generating an output based on the determined adjustment of the location of the focus position, the output being sufficient to cause repositioning of an optical component that focuses the amplified beam; And providing an output to an optical assembly including the optical component. 如請求項11之方法,其中該第三測量包含該反射放大光 束之一影像,以及確定該放大光束之該焦點位置的一處所之作業包含分析該影像以確定該反射放大光束之一形狀。 The method of claim 11, wherein the third measurement comprises the reflected amplified light An image of the beam, and an operation of determining a location of the focus of the magnified beam, includes analyzing the image to determine a shape of the reflected amplified beam. 如請求項18之方法,其中分析用以確定該反射放大光束之一形狀的該影像包含確定該反射放大光束之橢圓率的作業。 The method of claim 18, wherein analyzing the image to determine the shape of one of the reflected amplified beams comprises an operation of determining an ellipticity of the reflected amplified beam. 如請求項11之方法,其中:該第三測量包含在複數處所所取樣之該反射放大光束的影像,以及確定該放大光束之該焦點位置的一處所的作業包含比較在複數處所中二或更多個處所該反射放大光束之寬度。 The method of claim 11, wherein: the third measurement comprises an image of the reflected amplified beam sampled at the plurality of locations, and an operation of determining a location of the focus position of the amplified beam comprises comparing two or more of the plurality of locations The plurality of spaces reflect the width of the amplified beam. 一種極紫外光系統,其包含:一產生照射放大光束的來源;一操縱系統,其於一真空室中操縱該照射放大光束朝向一標靶材料並聚焦;一光束定位系統,其包含:一或更多個光學元件,該等光學元件經定位以接收一自該標靶材料反射的反射放大光束,並用以引導該反射放大光束進入第一、第二及第三通道;一第一感應器,其感測源自於該第一通道之光線;一第二感應器,包含一二維成像感應器,感測源自於該第二通道及該第三通道之光線,該第二感應器具有一較該第一感應器為低的採集率;以及 一與一電腦可讀取儲存媒體耦合的電子處理器,該電腦可讀取儲存媒體儲存指令,當執行時,致使該電子處理器:自該第一感應器及該第二感應器接收數據,以及根據該接收的數據,確定該照射放大光束相對於該標靶材料於一個以上的維度中的一處所。 An extreme ultraviolet light system comprising: a source for generating an illumination amplified beam; a manipulation system that manipulates the illumination amplification beam toward a target material and focuses in a vacuum chamber; a beam positioning system comprising: a plurality of optical elements positioned to receive a reflected amplified beam reflected from the target material and configured to direct the reflected amplified beam into the first, second, and third channels; a first inductor, Sensing the light from the first channel; a second sensor comprising a two-dimensional imaging sensor for sensing light originating from the second channel and the third channel, the second sensor having a a lower acquisition rate than the first sensor; An electronic processor coupled to a computer readable storage medium, the computer readable storage medium storage instructions, when executed, causing the electronic processor to: receive data from the first sensor and the second sensor, And determining, based on the received data, a location of the illuminated amplified beam in one or more dimensions relative to the target material. 如請求項21之系統,其中該電腦可讀取儲存媒體進一步儲存指令,當執行時,致使該電子處理器確定根據該確定處所對該照射放大光束的該處所的一調整。 The system of claim 21, wherein the computer readable storage medium further stores instructions that, when executed, cause the electronic processor to determine an adjustment of the location of the amplified light beam for the illumination based on the determined location. 如請求項22之系統,其中該確定的調整包含於一個以上的維度中的一調整。 The system of claim 22, wherein the determined adjustment comprises an adjustment in one or more dimensions. 如請求項23之系統,其中致使該電子處理器確定該照射放大光束相對於該標靶材料的一處所的該等指令包含,當執行時,致使該電子處理器:確定於與該照射放大光束之傳播的一方向平行之一方向上,該照射放大光束相對於該標靶材料的一焦點之一處所,以及確定於一第一及第二橫方向上,每一者係與該照射放大光束之傳播的方向垂直,該照射放大光束焦點相對於該標靶材料的一處所的指令。 The system of claim 23, wherein the electronic processor causing the electronic processor to determine the illumination of the amplified beam relative to a location of the target material comprises, when executed, causing the electronic processor to: determine the amplified beam with the illumination One of the directions in which the one direction of the propagation is parallel, the illumination amplifying beam is at a position relative to a focus of the target material, and is determined in a first and second lateral directions, each of which is coupled to the illumination amplification beam The direction of propagation is vertical, the illumination amplifying the focus of the beam relative to a location of the target material. 如請求項21之系統,其中該等指令進一步包含,當執行時,致使該電子處理器:確定根據該放大光束之該確定處所對該放大光束 的一調整,以及對該操縱系統提供該產生的輸出。 The system of claim 21, wherein the instructions further comprise, when executed, causing the electronic processor to: determine the amplified beam according to the determined location of the amplified beam An adjustment of the output and the resulting output to the steering system.
TW103109580A 2013-03-15 2014-03-14 System for an extreme ultraviolet light source, method of aligning an irradiating amplified light beam generated from an extreme ultraviolet light system relative to a target material, and extreme ultraviolet light system TWI612851B (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US201361787228P 2013-03-15 2013-03-15
US61/787,228 2013-03-15
US14/035,847 US8872144B1 (en) 2013-09-24 2013-09-24 System and method for laser beam focus control for extreme ultraviolet laser produced plasma source
US14/035,847 2013-09-24
US14/184,777 2014-02-20
US14/184,777 US9000405B2 (en) 2013-03-15 2014-02-20 Beam position control for an extreme ultraviolet light source

Publications (2)

Publication Number Publication Date
TW201444418A TW201444418A (en) 2014-11-16
TWI612851B true TWI612851B (en) 2018-01-21

Family

ID=51580614

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103109580A TWI612851B (en) 2013-03-15 2014-03-14 System for an extreme ultraviolet light source, method of aligning an irradiating amplified light beam generated from an extreme ultraviolet light system relative to a target material, and extreme ultraviolet light system

Country Status (4)

Country Link
JP (1) JP6374481B2 (en)
KR (1) KR102214861B1 (en)
TW (1) TWI612851B (en)
WO (1) WO2014149435A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9820368B2 (en) 2015-08-12 2017-11-14 Asml Netherlands B.V. Target expansion rate control in an extreme ultraviolet light source
TWI788998B (en) * 2015-08-12 2023-01-01 荷蘭商Asml荷蘭公司 Target expansion rate control in an extreme ultraviolet light source
US10663866B2 (en) * 2016-09-20 2020-05-26 Asml Netherlands B.V. Wavelength-based optical filtering
US10935720B2 (en) * 2019-04-29 2021-03-02 Ii-Vi Delaware, Inc. Laser beam product parameter adjustments
KR20210152703A (en) 2020-06-09 2021-12-16 삼성전자주식회사 Semiconductor manufacturing apparatus and operating method thereof
WO2022023201A1 (en) * 2020-07-30 2022-02-03 Asml Netherlands B.V. Euv light source target metrology

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110141865A1 (en) * 2009-12-15 2011-06-16 Cymer Inc. Metrology for Extreme Ultraviolet Light Source
US20120019826A1 (en) * 2010-07-22 2012-01-26 Cymer, Inc. Alignment of light source focus
US8173985B2 (en) * 2009-12-15 2012-05-08 Cymer, Inc. Beam transport system for extreme ultraviolet light source
US20130020511A1 (en) * 2010-10-08 2013-01-24 Gigaphoton Inc Mirror, mirror device, laser apparatus, and extreme ultraviolet light generation apparatus

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3256984B2 (en) * 1991-06-13 2002-02-18 ソニー・プレシジョン・テクノロジー株式会社 Displacement detector
US7598509B2 (en) * 2004-11-01 2009-10-06 Cymer, Inc. Laser produced plasma EUV light source
US7087914B2 (en) * 2004-03-17 2006-08-08 Cymer, Inc High repetition rate laser produced plasma EUV light source
JP5368261B2 (en) * 2008-11-06 2013-12-18 ギガフォトン株式会社 Extreme ultraviolet light source device, control method of extreme ultraviolet light source device
US8283643B2 (en) * 2008-11-24 2012-10-09 Cymer, Inc. Systems and methods for drive laser beam delivery in an EUV light source

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110141865A1 (en) * 2009-12-15 2011-06-16 Cymer Inc. Metrology for Extreme Ultraviolet Light Source
US8173985B2 (en) * 2009-12-15 2012-05-08 Cymer, Inc. Beam transport system for extreme ultraviolet light source
US20120019826A1 (en) * 2010-07-22 2012-01-26 Cymer, Inc. Alignment of light source focus
US20130020511A1 (en) * 2010-10-08 2013-01-24 Gigaphoton Inc Mirror, mirror device, laser apparatus, and extreme ultraviolet light generation apparatus

Also Published As

Publication number Publication date
JP6374481B2 (en) 2018-08-15
KR102214861B1 (en) 2021-02-10
WO2014149435A1 (en) 2014-09-25
JP2016512383A (en) 2016-04-25
TW201444418A (en) 2014-11-16
KR20150130440A (en) 2015-11-23

Similar Documents

Publication Publication Date Title
US9167679B2 (en) Beam position control for an extreme ultraviolet light source
TWI612851B (en) System for an extreme ultraviolet light source, method of aligning an irradiating amplified light beam generated from an extreme ultraviolet light system relative to a target material, and extreme ultraviolet light system
TWI536869B (en) Method and apparatus of adjusting a position and metrology system
TWI448210B (en) Metrology for extreme ultraviolet light source
JP7046417B2 (en) Determination of target movement characteristics in extreme ultraviolet light sources
CN110431391B (en) Measurement system for extreme ultraviolet light source
TWI788814B (en) Extreme ultraviolet (euv) optical source, apparatus for an euv light source and optical isolation method
KR101969609B1 (en) Alignment system and extreme ultraviolet light generation system
JP6646576B2 (en) Radiation source
TWI611427B (en) Method and system for adjusting a position of an amplified light beam
US11920977B2 (en) Metrology system and method for measuring an excitation laser beam in an EUV plasma source
US20180284618A1 (en) Extreme ultraviolet light generating apparatus
TW202032278A (en) Monitoring light emissions
CN113767336B (en) Measuring device and method using mechanical filter
TWI853016B (en) Metrology apparatus and method using mechanical filter
US20230101779A1 (en) Euv light generation apparatus, electronic device manufacturing method, and inspection method
TW202202945A (en) Alignment of extreme ultraviolet light source