TWI610885B - Manufacturing method of porous carbon material - Google Patents

Manufacturing method of porous carbon material Download PDF

Info

Publication number
TWI610885B
TWI610885B TW105102550A TW105102550A TWI610885B TW I610885 B TWI610885 B TW I610885B TW 105102550 A TW105102550 A TW 105102550A TW 105102550 A TW105102550 A TW 105102550A TW I610885 B TWI610885 B TW I610885B
Authority
TW
Taiwan
Prior art keywords
porous carbon
carbon material
producing
intermediate product
solution
Prior art date
Application number
TW105102550A
Other languages
Chinese (zh)
Other versions
TW201726545A (en
Inventor
喬安娜 潘
Original Assignee
凝膠科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 凝膠科技股份有限公司 filed Critical 凝膠科技股份有限公司
Priority to TW105102550A priority Critical patent/TWI610885B/en
Publication of TW201726545A publication Critical patent/TW201726545A/en
Application granted granted Critical
Publication of TWI610885B publication Critical patent/TWI610885B/en

Links

Abstract

一種多孔性碳材的製作方法,包含:配製一有機物模板前驅物溶液,有機物模板前驅物溶液含有一界面活性劑、一碳源材料及一溶劑;配製一奈米陶瓷溶液,奈米陶瓷溶液含有一矽烷化合物或一矽酸鹽類及至少一金屬化合物;將有機物模板前驅物溶液倒入奈米陶瓷溶液中,以析出一中間產物,中間產物包含界面活性劑、碳源材料與一氧化物模板;對中間產物進行一加熱製程,以使中間產物碳化;以及移除碳化後的中間產物中的氧化物模板,以形成一多孔性碳材。 A method for preparing a porous carbon material, comprising: preparing an organic template precursor solution, the organic template precursor solution containing a surfactant, a carbon source material and a solvent; preparing a nano ceramic solution, the nano ceramic solution containing a monooxane compound or a monosilicate salt and at least one metal compound; the organic template precursor solution is poured into the nano ceramic solution to precipitate an intermediate product comprising a surfactant, a carbon source material and an oxide template The intermediate product is subjected to a heating process to carbonize the intermediate product; and the oxide template in the carbonized intermediate product is removed to form a porous carbon material.

Description

多孔性碳材的製作方法 Porous carbon material manufacturing method

本發明係關於一種多孔性碳材,特別關於一種多孔性碳材的製作方法。 The present invention relates to a porous carbon material, and more particularly to a method for producing a porous carbon material.

超級電容器(supercapacitor),又稱為電化學電容器(electrochemical capacitor),是一種介於傳統電容器與電池之間的新興儲能元件。由於超級電容器具有輕質量、可小型化、高功率密度、循環使用壽命長(>200,000次)、充放電速度快以及工作溫度範圍寬等眾多優點,在車輛運輸、能源供應、行動通訊、國防軍事、醫療器材和消費性電子產品等領域皆有相當大的市場潛力。 A supercapacitor, also known as an electrochemical capacitor, is an emerging energy storage component between a conventional capacitor and a battery. Because of its light weight, miniaturization, high power density, long cycle life (>200,000 times), fast charge and discharge speed, and wide operating temperature range, supercapacitors are used in vehicle transportation, energy supply, mobile communications, and defense military. There is considerable market potential in the fields of medical equipment and consumer electronics.

超級電容器的結構是兩端電極浸置於電解液中,中間夾隔離層。當電極間施加電壓時,電極表面的電荷將吸引周圍電解質溶液中的異性離子,使這些離子附著於電極表面形成雙電荷層而構成雙電層電容。由於兩電荷層的距離非常小(一般在0.5nm以下),加上採用特殊電極結構,從而產生極大的電容量。 The structure of the supercapacitor is that the electrodes at both ends are immersed in the electrolyte, and the separator is sandwiched between the layers. When a voltage is applied between the electrodes, the charge on the surface of the electrode will attract the opposite ions in the surrounding electrolyte solution, and these ions will adhere to the surface of the electrode to form an electric double layer to form an electric double layer capacitor. Since the distance between the two charge layers is very small (generally below 0.5 nm), a special electrode structure is used, resulting in a large capacitance.

電極材料是影響超級電容器容量的決定因素之一,理想的電極材料要求結晶度高、導電性好、比表面積大和微孔集中在一定的範圍內(大於2奈米)。目前的電極材料主要有過渡金屬氧化物系列和活性碳系列,雖然利用過渡金屬氧化物作為電極能提高超級電容器的容量,但因成本太高而難以在商業上大量使用。 Electrode material is one of the decisive factors affecting the capacity of supercapacitors. Ideal electrode materials require high crystallinity, good electrical conductivity, large specific surface area and micropores concentrated in a certain range (greater than 2 nm). The current electrode materials mainly include a transition metal oxide series and an activated carbon series. Although the use of a transition metal oxide as an electrode can increase the capacity of a supercapacitor, it is difficult to be commercially used in large quantities because of the high cost.

Knox,J.H.,Kaur,B.,Millward,G.R.,(1986)Structure and performance of porous graphitic carbon in liquid chromatography.J.Chromatogr.352,3-25提出利用氧化矽凝膠(silica gel)作為固體模板,將 高分子聚合物的前驅物(單體或寡聚物)與其充分混合,再進行聚合反應,形成一連續網狀結構環繞在氧化矽粒子(silica particle)上,之後再將高分子聚合物碳化,並移除氧化矽凝膠而形成多孔性碳材。 Knox, JH, Kaur, B., Millward, GR, (1986) Structure and performance of porous graphitic carbon in liquid chromatography. J. Chromatogr. 352, 3-25 proposes the use of silica gel as a solid template, will The precursor (monomer or oligomer) of the high molecular polymer is sufficiently mixed with the polymerization reaction to form a continuous network structure surrounding the silica particle, and then the high molecular polymer is carbonized. The cerium oxide gel is removed to form a porous carbon material.

目前商用超級電容器其碳電極材料的比表面積較小(500-1000m2/g)、能量密度偏低(<5Wh/kg)及電容量約在5-35F/g附近,若能製造出大表面積與良好孔洞性質的碳電極材料將可有效提升超級電容器之整體效能。但如中華民國第I274453號專利,此種碳電極材料製造技術的缺點在於需要較長的製造時間(大約3-7天)及較高的能量(2000℃的處理溫度)。另外,在中孔洞碳材的製備上,皆是使用氧化矽孔洞材料為二次模版,碳化後必須利用氫氟酸將氧化矽移除,才能得到中孔洞碳材。然而,使用氫氟酸的危險度極高,且廢棄氫氟酸需經特殊處理後才能回收,進而衍生出的成本亦較高。 At present, the commercial supercapacitor has a carbon electrode material with a small specific surface area (500-1000 m2/g), a low energy density (<5 Wh/kg), and a capacitance of about 5-35 F/g, if a large surface area can be produced. Carbon electrode materials with good pore properties will effectively improve the overall performance of supercapacitors. However, as for the Republic of China No. I274453, such a carbon electrode material manufacturing technique has disadvantages in that it requires a long manufacturing time (about 3-7 days) and a high energy (treatment temperature of 2000 °C). In addition, in the preparation of the medium-hole carbon material, the yttrium oxide hole material is used as the secondary stencil, and after the carbonization, the cerium oxide must be removed by hydrofluoric acid to obtain the medium-hole carbon material. However, the risk of using hydrofluoric acid is extremely high, and the waste hydrofluoric acid needs to be specially treated before it can be recovered, and the cost derived therefrom is also high.

職是之故,本發明之發明人乃細心研究,提出一種多孔性碳材的製作方法,其主要使用具有矽烷化合物及金屬化合物或矽酸鹽類及金屬化合物之奈米陶瓷溶液做為模板前驅物。與習知製程相比,可縮短製作時間及降低所耗費的能量。 For the sake of the job, the inventors of the present invention have carefully studied and proposed a method for producing a porous carbon material, which mainly uses a nano ceramic solution having a decane compound and a metal compound or a silicate and a metal compound as a template precursor. Things. Compared with the conventional process, the production time can be shortened and the energy consumed can be reduced.

有鑑於上述課題,本發明之目的為提供一種可縮短製作時間及降低所耗費的能量之多孔性碳材的製作方法。 In view of the above problems, an object of the present invention is to provide a method for producing a porous carbon material which can shorten the production time and reduce the energy consumed.

為達上述目的,依據本發明之一種多孔性碳材的製作方法,包含配製一有機物模板前驅物溶液,有機物模板前驅物溶液含有一界面活性劑、一碳源材料及一溶劑;配製一奈米陶瓷溶液,奈米陶瓷溶液含有一矽烷化合物或一矽酸鹽類及至少一金屬化合物;將有機物模板前驅物溶液倒入奈米陶瓷溶液中,以析出一中間產物,中間產物包含界面活性劑、碳源材料與一氧化物模板;對中間產物進行一加熱製程,以使中間產物碳化;以及移除碳化後的中間產物中的氧化物模板,以形成一多孔性碳材。 In order to achieve the above object, a method for preparing a porous carbon material according to the present invention comprises preparing an organic template precursor solution, the organic template precursor solution containing a surfactant, a carbon source material and a solvent; The ceramic solution, the nano ceramic solution contains a monodecane compound or a monosilicate and at least one metal compound; the organic template precursor solution is poured into the nano ceramic solution to precipitate an intermediate product, the intermediate product comprising a surfactant, a carbon source material and a mono-oxide template; a heating process for the intermediate product to carbonize the intermediate product; and an oxide template in the carbonized intermediate product to form a porous carbon material.

在一實施例中,溶劑包含水、醇類或前述之組合。 In an embodiment, the solvent comprises water, an alcohol, or a combination of the foregoing.

在一實施例中,金屬化合物包含(OR)xM-O-M(OR)x、 (R)y(OR)x-yM-O-M(OR)x-y(R)y、M(OR)x或M(OR)x-y(R)y,其中x為1~5之正整數,y為1~5之正整數,且x>y,M是金屬,R包含烷基、烯基、芳基、鹵烷基或氫。 In one embodiment, the metal compound comprises (OR) x MOM(OR) x , (R) y (OR) xy MOM(OR) xy (R) y , M(OR) x or M(OR) xy (R y , wherein x is a positive integer from 1 to 5, y is a positive integer from 1 to 5, and x > y, M is a metal, and R comprises an alkyl group, an alkenyl group, an aryl group, a haloalkyl group or a hydrogen.

在一實施例中,M包含鋁、鐵、鈦、鋯、鉿、銠、銫、鉑、銦、錫、金、鍺、銅或鉭。 In one embodiment, M comprises aluminum, iron, titanium, zirconium, hafnium, tantalum, niobium, platinum, indium, tin, gold, lanthanum, copper or cerium.

在一實施例中,奈米陶瓷溶液更包含一有機酸或一無機酸,藉由有機酸或無機酸之催化與水進行縮合反應。 In one embodiment, the nano ceramic solution further comprises an organic acid or an inorganic acid, and the condensation reaction with water is catalyzed by an organic acid or a mineral acid.

在一實施例中,界面活性劑的材質包含明膠、環氧乙烷環氧丙烷三嵌段共聚物、聚乙二醇、十二磺酸鈉、聚乙烯醇化合物或前述之組合。 In one embodiment, the material of the surfactant comprises gelatin, ethylene oxide propylene oxide triblock copolymer, polyethylene glycol, sodium dodecyl sulfate, polyvinyl alcohol compounds, or a combination thereof.

在一實施例中,碳源材料的材質係包含熱固性樹脂、熱塑性樹脂、其他低分子量的碳氫化合物或前述之組合。 In one embodiment, the material of the carbon source material comprises a thermosetting resin, a thermoplastic resin, other low molecular weight hydrocarbons, or a combination thereof.

在一實施例中,碳源材料的材質係包含酚醛樹脂、經交聯及非交聯聚丙烯腈共聚物、磺化的交聯聚苯乙烯共聚物、經改質的交聯聚苯乙烯共聚物、交聯的蔗糖、聚糠醇、聚氯乙烯、木質素、工業澱粉、纖維素或前述之組合。 In one embodiment, the material of the carbon source material comprises a phenolic resin, a crosslinked and non-crosslinked polyacrylonitrile copolymer, a sulfonated crosslinked polystyrene copolymer, and a modified crosslinked polystyrene copolymer. , crosslinked sucrose, polydecyl alcohol, polyvinyl chloride, lignin, industrial starch, cellulose or a combination of the foregoing.

在一實施例中,加熱製程的製程溫度約為750℃至850℃,加熱時間約為1小時至3小時。 In one embodiment, the heating process has a process temperature of from about 750 ° C to about 850 ° C and a heating time of from about 1 hour to about 3 hours.

在一實施例中,移除氧化物模板的步驟包含:以一強酸溶液或一強鹼溶液、一強酸/強鹼混合液或一微量氫氟酸/氫氧化鈉混合液移除氧化物模板。 In one embodiment, the step of removing the oxide template comprises removing the oxide template with a strong acid solution or a strong base solution, a strong acid/strong base mixture or a trace amount of hydrofluoric acid/sodium hydroxide mixture.

在一實施例中,多孔性碳材的比表面積約為1200~2500m2/g。 In one embodiment, the porous carbon material has a specific surface area of about 1200 to 2500 m 2 /g.

承上所述,本發明之多孔性碳材的製作方法,主要是使用具有矽烷化合物及金屬化合物或矽酸鹽類及金屬化合物之奈米陶瓷溶液做為模板前驅物,以製作多孔性碳材。與習知技術相比,本發明的製作方法成本低廉、製程時間短且所需耗費的能量較低,是以有利於大量製造。另外,在模板移除的步驟中,可減少、甚至避免氫氟酸的使用。再者,利用本發明製作之多孔性碳材具有微孔洞、中孔洞與大孔洞,可有效提升碳電極之 表面積。又,利用本發明製作之多孔性碳材藉由中孔洞與大孔洞作為電解質之電荷傳輸管道,可達到提升電荷儲存量與快速傳輸電解質之電荷的功能。 As described above, the method for producing the porous carbon material of the present invention mainly uses a nano ceramic solution having a decane compound and a metal compound or a cerium salt compound and a metal compound as a template precursor to produce a porous carbon material. . Compared with the prior art, the manufacturing method of the present invention is low in cost, short in process time, and low in energy required, which is advantageous for mass production. In addition, in the step of template removal, the use of hydrofluoric acid can be reduced or even avoided. Furthermore, the porous carbon material produced by the invention has micropores, mesopores and large pores, which can effectively improve the carbon electrode. Surface area. Moreover, the porous carbon material produced by the present invention can achieve the function of increasing the charge storage amount and rapidly transferring the charge of the electrolyte by using the medium hole and the large hole as the charge transfer conduit of the electrolyte.

S01、S02、S03、S04、S05‧‧‧步驟 S01, S02, S03, S04, S05‧‧ steps

圖1為本發明較佳實施例之一種多孔性碳材的製作方法流程圖。 BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a flow chart showing a method of fabricating a porous carbon material in accordance with a preferred embodiment of the present invention.

圖2為本發明較佳實施例之一種多孔性碳材的成品照片。 Figure 2 is a photograph of a finished product of a porous carbon material in accordance with a preferred embodiment of the present invention.

以下將參照相關圖式,說明依本發明較佳實施例之一種多孔性碳材的製作方法,其中相同的元件將以相同的參照符號加以說明。 DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a method for producing a porous carbon material according to a preferred embodiment of the present invention will be described with reference to the accompanying drawings, wherein the same elements will be described with the same reference numerals.

如圖1所示,本發明較佳實施例之一種多孔性碳材的製作方法,包含:配製一有機物模板前驅物溶液,有機物模板前驅物溶液含有一界面活性劑、一碳源材料及一溶劑(步驟S01);配製一奈米陶瓷溶液,奈米陶瓷溶液含有一矽烷化合物或一矽酸鹽類及至少一金屬化合物(步驟S02);將有機物模板前驅物溶液倒入奈米陶瓷溶液中,以析出一中間產物,中間產物包含界面活性劑、碳源材料與一氧化物模板(步驟S03);對中間產物進行一加熱製程,以使中間產物碳化(步驟S04);以及移除碳化後的中間產物中的氧化物模板,以形成一多孔性碳材(步驟S05)。 As shown in FIG. 1 , a method for fabricating a porous carbon material according to a preferred embodiment of the present invention comprises: preparing an organic template precursor solution, the organic template precursor solution containing a surfactant, a carbon source material and a solvent; (Step S01); preparing a nano ceramic solution, the nano ceramic solution containing a decane compound or a bismuth salt and at least one metal compound (step S02); pouring the organic template precursor solution into the nano ceramic solution, To precipitate an intermediate product, the intermediate product comprises a surfactant, a carbon source material and a mono-oxide template (step S03); a heating process is performed on the intermediate product to carbonize the intermediate product (step S04); and the carbonized The oxide template in the intermediate product forms a porous carbon material (step S05).

在步驟S01中,係配製有機物模板前驅物溶液。其中,有機物模板前驅物溶液含有界面活性劑、碳源材料及溶劑。詳細而言,係先將界面活性劑置於溶劑中,並攪拌約數分鐘,以幫助界面活性劑溶於溶劑中,此時,溶有界面活性劑的溶劑呈現澄清液的狀態。之後再將碳源材料溶於已溶有界面活性劑的溶劑中,以形成有機物模板前驅物溶液。舉例而言,可以是將0.5至10重量百分比的碳源材料加入溶有1至5重量百分比的界面活性劑的溶劑中。此時,可將溶劑置於恆溫槽中,以使碳源材料與溶劑平衡並達到一設定溫度(例如30℃、40℃、50℃等),並在設定溫度下攪拌約數小時(例如4小時),以形成有機物模板前驅物溶液。其中,此有機物模板前驅物溶液係含有高分子微胞。 In step S01, an organic template precursor solution is prepared. The organic template precursor solution contains a surfactant, a carbon source material, and a solvent. In detail, the surfactant is first placed in a solvent and stirred for about several minutes to help dissolve the surfactant in the solvent, at which time the solvent in which the surfactant is dissolved exhibits a clear liquid state. The carbon source material is then dissolved in a solvent in which the surfactant is dissolved to form an organic template precursor solution. For example, 0.5 to 10 weight percent of the carbon source material may be added to the solvent in which 1 to 5 weight percent of the surfactant is dissolved. At this time, the solvent may be placed in a constant temperature bath to balance the carbon source material with the solvent and reach a set temperature (for example, 30 ° C, 40 ° C, 50 ° C, etc.), and stirred at the set temperature for about several hours (for example, 4 hours). ) to form an organic template precursor solution. Wherein, the organic template precursor solution contains polymer micelles.

在此,溶劑可以是水、醇類、水與醇類的組合或是其他適合的溶劑材料。其中,醇類例如是乙醇或異丙醇。舉例而言,溶劑可包含水與乙醇,且水與乙醇的體積比為1:2。另外,水與乙醇的體積比亦可為1:1、5:1或10:1。 Here, the solvent may be water, an alcohol, a combination of water and an alcohol, or other suitable solvent materials. Among them, the alcohol is, for example, ethanol or isopropanol. For example, the solvent may comprise water and ethanol, and the volume ratio of water to ethanol is 1:2. In addition, the volume ratio of water to ethanol may also be 1:1, 5:1 or 10:1.

界面活性劑的材質例如為明膠(Gelatin)、環氧乙烷環氧丙烷三嵌段共聚物(Pluronic F127,EO106PO70EO106)、聚乙二醇(PEG10000)、十二磺酸鈉、聚乙烯醇化合物(Pluronic F127)或前述之組合或是其他適合的界面活性劑材料。 The material of the surfactant is, for example, gelatin (Gelatin), ethylene oxide propylene oxide triblock copolymer (Pluronic F127, EO 106 PO 70 EO 106 ), polyethylene glycol (PEG 10000), sodium dodecyl sulfate, Polyvinyl alcohol compound (Pluronic F127) or a combination of the foregoing or other suitable surfactant materials.

碳源材料的材質例如為熱固性樹脂、熱塑性樹脂或是其他低分子量的碳氫化合物(如蔗糖或焦油)。詳細而言,碳源材料的材質可以是酚醛樹脂、經交聯及非交聯聚丙烯腈共聚物、磺化的交聯聚苯乙烯共聚物、經改質的交聯聚苯乙烯共聚物、交聯的蔗糖、聚糠醇、聚氯乙烯、木質素、工業澱粉、纖維素或前述組合物或是其他適合的碳原材料。其中,酚醛樹脂係可以是苯酚-甲醛縮合共聚物、間苯二酚-甲醛縮合共聚物或前述之組合。 The material of the carbon source material is, for example, a thermosetting resin, a thermoplastic resin or other low molecular weight hydrocarbons such as sucrose or tar. In detail, the material of the carbon source material may be a phenol resin, a crosslinked and non-crosslinked polyacrylonitrile copolymer, a sulfonated crosslinked polystyrene copolymer, a modified crosslinked polystyrene copolymer, Crosslinked sucrose, polydecyl alcohol, polyvinyl chloride, lignin, industrial starch, cellulose or the foregoing compositions or other suitable carbon raw materials. The phenol resin may be a phenol-formaldehyde condensation copolymer, a resorcinol-formaldehyde condensation copolymer or a combination thereof.

在步驟S02中,係配製奈米陶瓷溶液,其中,奈米陶瓷溶液含有矽烷化合物或矽酸鹽類及至少一金屬化合物。 In step S02, a nano ceramic solution is prepared, wherein the nano ceramic solution contains a decane compound or a cerium salt and at least one metal compound.

在此,矽烷化合物係可為乙烯三甲氧基矽烷(vinyltrimethoxysilane)、四乙氧基矽烷(tetraethoxysilane)、甲基三甲氧基矽烷(methyltrimethoxysilane)、γ-甲丙烯氧基丙基-三甲氧基矽烷(γ-methacryloxypropyl-trimethoxysilane)、γ-氯丙基三甲基氧基矽烷(γ-chloropropyl-trimethoxysilane)、二甲基二乙氧基矽烷(dimethyldieth-oxysilane)、苯基三乙氧基矽烷(phenyltriethoxysilane)、癸基三甲氧基矽烷(decyltrimethoxysilane)、異丁基三甲氧基矽烷(isobutyltrimeth-oxysilane)、三級-丁基二甲基氯矽烷(tert-butyldimethylchlorosilane)、乙烯基三氯矽烷(vinyltrichlorosilane)、γ-氫硫基丙基-三甲氧基矽烷(γ-mercaptopropyl-trimethoxysilane)、3-氨丙基三甲氧基矽烷(3-aminopropyltrimethoxysilane)、二苯基二氯矽烷(diphenyldichlorosilane)、六甲基二矽烷(hexamethyldisilane)、乙烯基三 矽烷(vinyltrisilane)以及1,1,2,2-四辛基-1-三乙氧基矽烷(1,1,2,2-tetrahydroctyl-1-trienthoxysilane)之一。另外,矽酸鹽類係可為甲基矽酸鹽(methylsilicate)、乙基矽酸鹽(ethylsilicate)或異丙基矽酸鹽(isopropylsilicate)等。 Here, the decane compound may be vinyltrimethoxysilane, tetraethoxysilane, methyltrimethoxysilane, γ -methylpropoxypropyl-trimethoxydecane ( γ -methacryloxypropyl-trimethoxysilane), γ - chloropropyl group trimethyl Silane -chloropropyl-trimethoxysilane), dimethyl diethoxy silane-(dimethyldieth-oxysilane), phenyl triethoxysilane Silane (phenyltriethoxysilane) , decyltrimethoxysilane, isobutyltrimeth-oxysilane, tert-butyldimethylchlorosilane, vinyltrichlorosilane, γ - γ- mercaptopropyl-trimethoxysilane, 3-aminopropyltrimethoxysilane, diphenyldichlorosilane, hexamethyldioxane (dimethyldichlorosilane) Hexamethyldisilane), vinyltrisilane, and 1,1,2,2-tetraoctyl-1-triethoxydecane (1,1,2,2-tetrahydroctyl-1-tr One of ienthoxysilane). Further, the silicate type may be methyl silicate, ethyl silicate or isopropyl silicate.

另外,金屬化合物可以包含(OR)xM-O-M(OR)x、(R)y(OR)x-yM-O-M(OR)x-y(R)y、M(OR)x、M(OR)x-y(R)y或前述之組合,其中x為1~5之正整數,y為1~5之正整數,且x>y。在此,M係可為鋁(Al)、鐵(Fe)、鈦(Ti)、鋯(Zr)、鉿(Hf)、銠(Rh)、銫(Cs)、鉑(Pt)、銦(In)、錫(Sn)、金(Au)、鍺(Ge)、銅(Cu)或鉭(Ta)。R可以是烷基(Alkyl)、烯基(Alkenyl)、芳基(Aryl)、鹵烷基(Alkylhalide)或氫(Hydrogen)。其中,當M為鈦時,金屬化合物係可為丙氧化鈦(titanium(IV)propoxide)、異丙氧化鈦(titanium(IV)isopropoxide)、丁氧化鈦(titanium(IV)butoxide)、二級-丁氧化鈦(titanium(IV)sec-butoxide)以及三級-丁氧化鈦(titanium(IV)tert-butoxide)之一。舉例而言,奈米陶瓷溶液可含有兩種金屬化合物,例如M(OR)x與M(OR)x-y(R)y,其中M(OR)x中的M與M(OR)x-y(R)y中的M並不相同。 In addition, the metal compound may contain (OR) x MOM(OR) x , (R) y (OR) xy MOM(OR) xy (R) y , M(OR) x , M(OR) xy (R) y or The combination of the above, wherein x is a positive integer from 1 to 5, y is a positive integer from 1 to 5, and x>y. Here, the M system may be aluminum (Al), iron (Fe), titanium (Ti), zirconium (Zr), hafnium (Hf), rhenium (Rh), bismuth (Cs), platinum (Pt), indium (In ), tin (Sn), gold (Au), germanium (Ge), copper (Cu) or tantalum (Ta). R may be an alkyl group (Alkyl), an alkenyl group, an aryl group (Aryl), a haloalkyl group (Alkylhalide) or a hydrogen (Hydrogen). Wherein, when M is titanium, the metal compound may be titanium oxide (titanium (IV) propoxide), titanium isopropoxide (titanium (IV) isopropoxide), titanium oxide (titanium (IV) butoxide), secondary - Titanium (IV) sec-butoxide and one of titanium (IV) tert-butoxide. For example, the solution may contain two ceramic nano-metal compound, for example, M (OR) x with M (OR) xy (R) y, where M (OR) x M and in M (OR) xy (R) The M in y is not the same.

再者,奈米陶瓷溶液更包含一有機酸或一無機酸,藉由有機酸或無機酸之催化與水進行縮合反應。其中,有機酸係可以是酸類、醇酸類、二酸類、膦酸類或前述之組合,而無機酸係可以是含有三價鉻之無機酸、磷酸、硝酸、硼酸、鹽酸或前述之組合。 Furthermore, the nano ceramic solution further comprises an organic acid or an inorganic acid, and the condensation reaction with water is catalyzed by an organic acid or a mineral acid. The organic acid may be an acid, an alkyd, a diacid, a phosphonic acid or a combination thereof, and the inorganic acid may be an inorganic acid containing trivalent chromium, phosphoric acid, nitric acid, boric acid, hydrochloric acid or a combination thereof.

上述提及之酸類可以是烷酸、烯酸、芳酸、鹵烷酸、甲酸、炔酸或前述之組合,並可以通式R-(COOH)所表示。其中,R可以是烷基(alkyl)、烯基(alkenyl)、芳基(aryl)、鹵烷基(alkylhalide)、氫(hydrogen)或炔基(alkynyl)。 The above-mentioned acids may be an alkanoic acid, an alkenoic acid, an aromatic acid, a haloalkanic acid, a formic acid, an acetylene acid or a combination thereof as described above, and may be represented by the formula R-(COOH). Wherein R may be alkyl, alkenyl, aryl, alkylhalide, hydrogen or alkynyl.

上述提及之醇酸類可以是烷醇酸、烯醇酸、芳醇酸、炔醇酸或前述之組合,並可以通式(HO)-R-(COOH)表示。其中,R可以是烷基、烯基、芳基或炔基。 The above-mentioned alkyds may be alkanol acids, enolic acids, aromatic alkyds, alkynes or combinations thereof, and may be represented by the formula (HO)-R-(COOH). Wherein R may be an alkyl group, an alkenyl group, an aryl group or an alkynyl group.

上述提及之二酸類可以是烷二酸、烯二酸、芳二酸、炔二酸或前述之組合,並可以通式(HOOC)-R-(COOH)表示。其中,R係選自烷基、 烯基、芳基或炔基。 The above-mentioned diacids may be alkanoic acid, alkanoic acid, aryl diacid, alkyne diacid or a combination thereof as described above, and may be represented by the formula (HOOC)-R-(COOH). Wherein R is selected from the group consisting of alkyl groups, Alkenyl, aryl or alkynyl.

上述提及之膦酸類係可以是烷氧膦酸、烯氧膦酸、鹵烷氧膦酸、炔氧膦酸或膦酸,並可以通式(R1O)(R2O)-(POOH)表示。其中,R1、R2可以是烷基、烯基、鹵烷基、炔基或氫。 The phosphonic acid mentioned above may be an alkoxyphosphonic acid, an alkoxyphosphonic acid, a haloalkoxyphosphonic acid, an alkynylphosphonic acid or a phosphonic acid, and may have the formula (R 1 O)(R 2 O)-(POOH ) said. Wherein R 1 and R 2 may be an alkyl group, an alkenyl group, a haloalkyl group, an alkynyl group or a hydrogen.

在步驟S03中,係將有機物模板前驅物溶液倒入奈米陶瓷溶液中,以析出中間產物。其中,此中間產物包含界面活性劑、碳源材料與氧化物模板。詳細而言,步驟S03是快速地將有機物模板前驅物溶液倒入奈米陶瓷溶液中,此時,有機物模板前驅物溶液與奈米陶瓷溶液的混合溶液會立刻析出一白色中間產物,此步驟係利用氧化物縮合反應固定有機物模板前驅物溶液的形狀而形成白色中間產物。接著,對白色中間產物進行水洗、過濾與烘乾處理,即可得到含有界面活性劑、碳源材料與氧化物模板的中間產物。 In step S03, the organic template precursor solution is poured into a nano ceramic solution to precipitate an intermediate product. Wherein, the intermediate product comprises a surfactant, a carbon source material and an oxide template. In detail, step S03 is to rapidly pour the organic template precursor solution into the nano ceramic solution. At this time, the mixed solution of the organic template precursor solution and the nano ceramic solution immediately precipitates a white intermediate product. The shape of the organic template precursor solution is fixed by an oxide condensation reaction to form a white intermediate product. Next, the white intermediate product is washed with water, filtered, and dried to obtain an intermediate product containing a surfactant, a carbon source material, and an oxide template.

在步驟S04中,係對中間產物進行加熱製程,以使中間產物碳化。詳細而言,可以將中間產物置於石英管中,並放入高溫爐,在氮氣的環境中於一碳化溫度下對中間產物加熱數小時以進行碳化。舉例而言,加熱製程係約在750℃至850℃下,對中間產物加熱約1小時至3小時。 In step S04, the intermediate product is subjected to a heating process to carbonize the intermediate product. In detail, the intermediate product may be placed in a quartz tube and placed in a high temperature furnace, and the intermediate product may be heated for several hours at a carbonization temperature in a nitrogen atmosphere for carbonization. For example, the heating process is performed at about 750 ° C to 850 ° C and the intermediate product is heated for about 1 hour to 3 hours.

在步驟S05中,係移除碳化後中間產物中的氧化物模板,以形成多孔性碳材。詳細而言,可以將碳化後的中間產物置於一強酸溶液、一強鹼溶液、一強酸/強鹼混合液或一微量氫氟酸/氫氧化鈉混合液中。其中,強酸/強鹼混合液可以是硝酸/氫氧化鈉混合液,硝酸/氫氧化鈉之重量比係介於1:1至1:20之間。另外,氫氟酸與氫氧化鈉之重量比係介於1:5至1:50之間。舉例而言,可藉由氫氟酸/氫氧化鈉混合液(氫氟酸/氫氧化鈉=1/20)移除氧化物模板,其中,氫氟酸溶液的濃度係為4.8wt%,且氧化物模板與氫氟酸/氫氧化鈉混合液的重量比為1:50。 In step S05, the oxide template in the carbonized intermediate product is removed to form a porous carbon material. In detail, the carbonized intermediate product may be placed in a strong acid solution, a strong alkali solution, a strong acid/strong alkali mixture or a trace amount of hydrofluoric acid/sodium hydroxide mixture. Wherein, the strong acid/strong alkali mixture may be a nitric acid/sodium hydroxide mixture, and the weight ratio of the nitric acid/sodium hydroxide is between 1:1 and 1:20. In addition, the weight ratio of hydrofluoric acid to sodium hydroxide is between 1:5 and 1:50. For example, the oxide template can be removed by a hydrofluoric acid/sodium hydroxide mixture (hydrofluoric acid/sodium hydroxide = 1/20), wherein the concentration of the hydrofluoric acid solution is 4.8 wt%, and The weight ratio of the oxide template to the hydrofluoric acid/sodium hydroxide mixture is 1:50.

以本實施例製作之多孔性碳材係可具有多個大孔洞、多個中孔洞與多個微孔洞,其中各大孔洞的孔徑約大於50奈米,各中孔洞的孔徑約為2奈米~50奈米之間,各微孔洞的孔徑約小於2奈米。多孔性碳材的比表面積約為700~3000m2/g,其較佳之比表面積約為1200~2500m2/g。以多孔性碳材的比表面積為基準,大孔洞的比表面積的分布比例可為10~ 35%,中孔洞的比表面積的分布比例可為25~40%,微孔洞的比表面積的分布比例可為30~60%。 The porous carbon material produced by the embodiment may have a plurality of large holes, a plurality of medium holes and a plurality of micro holes, wherein each of the large holes has a pore diameter of more than about 50 nm, and the pore size of each of the holes is about 2 nm. Between m ~ 50 nm, the pore size of each micro hole is less than 2 nm. The porous carbon material has a specific surface area of about 700 to 3,000 m 2 /g, and preferably has a specific surface area of about 1200 to 2,500 m 2 /g. Based on the specific surface area of the porous carbon material, the distribution ratio of the specific surface area of the large pores may be 10 to 35%, and the distribution ratio of the specific surface area of the medium pores may be 25 to 40%, and the distribution ratio of the specific surface area of the micropores may be Can be 30~60%.

一般而言,當多孔性碳材應用於超級電容器的碳電極上時,多孔性碳材的孔洞大小會影響超級電容器的電荷儲存量之比電容。詳細而言,微孔洞的數量增加可有效提升碳電極之比表面積,進而有效提升比電容,而中孔洞與大孔洞可有助於電解質之電荷的即時傳輸。 In general, when a porous carbon material is applied to a carbon electrode of a supercapacitor, the pore size of the porous carbon material affects the specific capacitance of the supercapacitor charge storage amount. In detail, the increase in the number of micropores can effectively increase the specific surface area of the carbon electrode, thereby effectively increasing the specific capacitance, while the mesopores and large holes can contribute to the instantaneous transfer of the charge of the electrolyte.

第一實驗例First experimental example

首先,將2克的環氧乙烷環氧丙烷三嵌段共聚物(界面活性劑)溶於以水與乙醇所構成的溶劑(水與乙醇的比值為0.5,總重為50克)中,並攪拌數分鐘。此時,溶有環氧乙烷環氧丙烷三嵌段共聚物的溶劑呈現澄清液的狀態。 First, 2 g of an ethylene oxide propylene oxide triblock copolymer (surfactant) is dissolved in a solvent composed of water and ethanol (water to ethanol ratio of 0.5, total weight is 50 g). Stir for a few minutes. At this time, the solvent in which the ethylene oxide propylene oxide triblock copolymer was dissolved exhibited a state of a clear liquid.

接著,將0.5~4克的酚醛樹脂(碳源材料)溶於溶有環氧乙烷環氧丙烷三嵌段共聚物的溶劑中,以形成有機物模板前驅物溶液。詳細而言,可將溶劑置於恆溫槽中,以使酚醛樹脂與溶有環氧乙烷環氧丙烷三嵌段共聚物的溶劑平衡並達到設定溫度(30℃),並在設定溫度下攪拌4小時,形成有機物模板前驅物溶液。 Next, 0.5 to 4 g of a phenol resin (carbon source material) is dissolved in a solvent in which an ethylene oxide propylene oxide triblock copolymer is dissolved to form an organic template precursor solution. In detail, the solvent can be placed in a thermostat to balance the phenolic resin with the solvent in which the ethylene oxide propylene oxide triblock copolymer is dissolved and reach a set temperature (30 ° C), and stirred at a set temperature. After 4 hours, an organic template precursor solution was formed.

此外,取10克的矽酸乙脂濃縮物(Silbondcondense),加入14.4克的異丙醇攪拌10分鐘,再加入4克的第二丁氧基鋁(C12H27O3Al)混合攪拌10分鐘,之後加入10克的三甲氧基乙烯基矽(C5H12O3Si)混合攪拌10分鐘,又加入9.7克的乙二醇丁醚(ethylene glycol monobutylether,BCS)及0.1克的硝酸混合攪拌10分鐘後,加入15克的水,混合攪拌2小時使得溶液進一步縮合,以形成奈米陶瓷溶液。 In addition, 10 g of sulphate concentrate (Silbondcondense) was added, 14.4 g of isopropyl alcohol was added and stirred for 10 minutes, and then 4 g of second butoxide aluminum (C 12 H 27 O 3 Al) was added and mixed and stirred. After 10 minutes, 10 g of trimethoxyvinyl hydrazine (C 5 H 12 O 3 Si) was added and stirred for 10 minutes, and 9.7 g of ethylene glycol monobutylether (BCS) and 0.1 g of nitric acid were added. After stirring for 10 minutes, 15 g of water was added, and the mixture was stirred for 2 hours to further condense the solution to form a nano ceramic solution.

之後,快速地將有機物模板前驅物溶液倒入奈米陶瓷溶液中,此時,有機物模板前驅物溶液與奈米陶瓷溶液的混合溶液會立刻析出白色中間產物。之後,對白色中間產物進行水洗、過濾與烘乾處理,即可得到含有界面活性劑、碳源材料與氧化物模板的中間產物。 Thereafter, the organic template precursor solution is quickly poured into the nano ceramic solution, at which time, the mixed solution of the organic template precursor solution and the nano ceramic solution immediately precipitates the white intermediate product. Thereafter, the white intermediate product is washed with water, filtered, and dried to obtain an intermediate product containing a surfactant, a carbon source material, and an oxide template.

然後,將中間產物置於石英管中,並放入高溫爐,在氮氣的環境中於碳化溫度(800℃)下,對中間產物加熱2小時以進行碳化。 Then, the intermediate product was placed in a quartz tube and placed in a high temperature furnace, and the intermediate product was heated at a carbonization temperature (800 ° C) for 2 hours to carbonize.

之後,將碳化後的中間產物置於氫氟酸/氫氧化鈉混合液(氫 氟酸/氫氧化鈉=1/20)中,以移除氧化物模板,即可得到多孔性碳材(如圖2所示)。其中,氫氟酸溶液的濃度係為4.8wt%,且氧化物模板與氫氟酸/氫氧化鈉混合液的重量比為1:50。 Thereafter, the carbonized intermediate product is placed in a hydrofluoric acid/sodium hydroxide mixture (hydrogen In the fluoric acid/sodium hydroxide = 1/20), the porous carbon material is obtained by removing the oxide template (as shown in Fig. 2). Wherein, the concentration of the hydrofluoric acid solution is 4.8 wt%, and the weight ratio of the oxide template to the hydrofluoric acid/sodium hydroxide mixture is 1:50.

第二實驗例Second experimental example

第二實施例的操作步驟如同第一實驗例,但其中將奈米陶瓷溶液調整如下:將30克的矽氧烷化合物(C10H23O5Si,Silane-γ glycidoxypropyltrimeth-oxysilane)與0.1克的硝酸混合攪拌10分鐘後,加入10克的水混合攪拌1小時後,再加入10克的第二丁氧基鋁混合攪拌4小時,可得澄清奈米陶瓷溶液。 The operation procedure of the second embodiment is the same as the first experimental example, but wherein the nano ceramic solution is adjusted as follows: 30 g of a cesium alkane compound (C 10 H 23 O 5 Si, Silane-γ glycidoxypropyl trimeth-oxysilane) and 0.1 g After the nitric acid was mixed and stirred for 10 minutes, 10 g of water was added and stirred for 1 hour, and then 10 g of the second butoxide aluminum was further added and stirred for 4 hours to obtain a clear nano ceramic solution.

第三實驗例Third experimental example

第三實施例的操作步驟如同第一實施例,但其中將奈米陶瓷溶液調整如下: 將10克的四-乙氧烷基鈦(C8H20O4Ti,teraethoxyltitanium),加入2克的乙酸乙酯(Acetoacetate,AcAc)混合攪拌3小時後,加入30克的矽氧烷化合物攪拌1小時後,再加入10克的水混合攪拌12小時,可得澄清奈米陶瓷溶液。 The operation procedure of the third embodiment is the same as the first embodiment, but wherein the nano ceramic solution is adjusted as follows: 10 g of tetrakis-ethoxylated titanium (C 8 H 20 O 4 Ti, teraethoxyltitanium) is added to 2 g. After stirring for 3 hours with ethyl acetate (Acetoacetate, AcAc), 30 g of a decane compound was added and stirred for 1 hour, and then 10 g of water was further added and stirred for 12 hours to obtain a clear nano ceramic solution.

於本發明中,係利用高分子混摻(polymer blends)的特性將界面活性劑與碳源材料進行混摻,以形成含有高分子微胞的有機物模板前驅物溶液。之後,再藉由氧化物縮合反應固定有機物模板前驅物溶液的形狀而形成介尺度材料,並在氮氣環境下對此介尺度材料進行碳化。接著,以強酸、強鹼、強酸/強鹼混合液或微量氫氟酸/氫氧化鈉混合液移除氧化物而得到多孔性碳材。另外,可依需求改變多孔性碳材的製程條件,以製作出具有規則排列的結構與高表面積的多孔性碳材,且製作成本低廉而有利於大量製造。 In the present invention, the surfactant and the carbon source material are blended by the characteristics of polymer blends to form an organic template precursor solution containing the polymer micelles. Thereafter, the mesoscale material is formed by immobilizing the shape of the organic template precursor solution by an oxide condensation reaction, and the mesoscale material is carbonized under a nitrogen atmosphere. Next, the oxide is removed by a strong acid, a strong base, a strong acid/strong alkali mixture or a trace amount of hydrofluoric acid/sodium hydroxide mixture to obtain a porous carbon material. In addition, the process conditions of the porous carbon material can be changed as needed to produce a porous carbon material having a regularly arranged structure and a high surface area, and the production cost is low, which is advantageous for mass production.

綜上所述,相較於習知製作碳電極材料所需耗費較長的製造時間(大約3-7天)與較高的能量(2000℃處理溫度),本發明的製作方式可有效縮短多孔性碳材的製作時間(例如縮短至1天以內),並可降低所需耗費的能量(750℃~850℃處理溫度)。另外,在模板移除的步驟中,可減 少、甚至避免氫氟酸的使用。再者,利用本發明製作之多孔性碳材具有微孔洞、中孔洞與大孔洞,可有效提升碳電極之表面積。又,利用本發明製作之多孔性碳材藉由中孔洞與大孔洞作為電解質之電荷傳輸管道,可達到提升電荷儲存量與快速傳輸電解質之電荷的功能。 In summary, the manufacturing method of the present invention can effectively shorten the porosity compared to the conventional manufacturing time (about 3-7 days) and higher energy (2000 ° C processing temperature) required for fabricating the carbon electrode material. The production time of carbon materials (for example, shortened to less than 1 day), and can reduce the energy required (750 ° C ~ 850 ° C processing temperature). In addition, in the step of template removal, it can be reduced Use less or even avoid the use of hydrofluoric acid. Furthermore, the porous carbon material produced by the present invention has micropores, mesopores and large pores, which can effectively increase the surface area of the carbon electrode. Moreover, the porous carbon material produced by the present invention can achieve the function of increasing the charge storage amount and rapidly transferring the charge of the electrolyte by using the medium hole and the large hole as the charge transfer conduit of the electrolyte.

以上所述僅為舉例性,而非為限制性者。任何未脫離本發明之精神與範疇,而對其進行之等效修改或變更,均應包含於後附之申請專利範圍中。 The above is intended to be illustrative only and not limiting. Any equivalent modifications or alterations to the spirit and scope of the invention are intended to be included in the scope of the appended claims.

S01、S02、S03、S04、S05‧‧‧步驟 S01, S02, S03, S04, S05‧‧ steps

Claims (10)

一種多孔性碳材的製作方法,包含:配製一有機物模板前驅物溶液,該有機物模板前驅物溶液含有一界面活性劑、一碳源材料及一溶劑,其中該碳源材料的材質係包含熱固性樹脂、熱塑性樹脂、其他低分子量的碳氫化合物或前述之組合;配製一奈米陶瓷溶液,該奈米陶瓷溶液含有一矽烷化合物或一矽酸鹽類及至少一金屬化合物;將該有機物模板前驅物溶液倒入該奈米陶瓷溶液中,以析出一中間產物,該中間產物包含該界面活性劑、該碳源材料與一氧化物模板;對該中間產物進行一加熱製程,以使該中間產物碳化;以及移除碳化後的該中間產物中的該氧化物模板,以形成一多孔性碳材。 A method for preparing a porous carbon material, comprising: preparing an organic template precursor solution, wherein the organic template precursor solution comprises a surfactant, a carbon source material and a solvent, wherein the material of the carbon source material comprises a thermosetting resin a thermoplastic resin, other low molecular weight hydrocarbons or a combination thereof; preparing a nano ceramic solution containing a decane compound or a bismuth salt and at least one metal compound; the organic template precursor And pouring a solution into the nano ceramic solution to precipitate an intermediate product comprising the surfactant, the carbon source material and an oxide template; and heating the intermediate product to carbonize the intermediate product And removing the oxide template in the carbonized intermediate product to form a porous carbon material. 如申請專利範圍第1項所述之多孔性碳材的製作方法,其中該溶劑包含水、醇類或前述之組合。 The method for producing a porous carbon material according to claim 1, wherein the solvent comprises water, an alcohol or a combination thereof. 如申請專利範圍第1項所述之多孔性碳材的製作方法,其中該金屬化合物包含(OR)xM-O-M(OR)x、(R)y(OR)x-yM-O-M(OR)x-y(R)y、M(OR)x或M(OR)x-y(R)y,其中x為1~5之正整數,y為1~5之正整數,且x>y,M是金屬,R包含烷基、烯基、芳基、鹵烷基或氫。 The method for producing a porous carbon material according to claim 1, wherein the metal compound comprises (OR) x MOM(OR) x , (R) y (OR) xy MOM(OR) xy (R) y , M(OR) x or M(OR) xy (R) y , where x is a positive integer from 1 to 5, y is a positive integer from 1 to 5, and x>y, M is a metal, and R comprises an alkyl group, Alkenyl, aryl, haloalkyl or hydrogen. 如申請專利範圍第3項所述之多孔性碳材的製作方法,其中M包含鋁、鐵、鈦、鋯、鉿、銠、銫、鉑、銦、錫、金、鍺、銅或鉭。 The method for producing a porous carbon material according to claim 3, wherein M comprises aluminum, iron, titanium, zirconium, hafnium, tantalum, niobium, platinum, indium, tin, gold, antimony, copper or bismuth. 如申請專利範圍第1項所述之多孔性碳材的製作方法,其中該奈米陶瓷溶液更包含一有機酸或一無機酸,藉由該有機酸或該無機酸之催化與水進行縮合反應。 The method for producing a porous carbon material according to claim 1, wherein the nano ceramic solution further comprises an organic acid or an inorganic acid, and the organic acid or the inorganic acid is catalyzed by condensation with water. . 如申請專利範圍第1項所述之多孔性碳材的製作方法,其中該界面活性劑的材質包含明膠、環氧乙烷環氧丙烷三嵌段共聚物、聚乙二醇、十二磺酸鈉、聚乙烯醇化合物或前述之組合。 The method for producing a porous carbon material according to claim 1, wherein the material of the surfactant comprises gelatin, ethylene oxide propylene oxide triblock copolymer, polyethylene glycol, dodecyl sulfate Sodium, polyvinyl alcohol compound or a combination of the foregoing. 如申請專利範圍第1項所述之多孔性碳材的製作方法,其中該碳源材料的材質係包含酚醛樹脂、經交聯及非交聯聚丙烯腈共聚物、磺化的交聯聚苯乙烯共聚物、經改質的交聯聚苯乙烯共聚物、交聯的蔗糖、聚糠醇、 聚氯乙烯、木質素、工業澱粉、纖維素或前述之組合。 The method for producing a porous carbon material according to claim 1, wherein the carbon source material comprises a phenol resin, a crosslinked and non-crosslinked polyacrylonitrile copolymer, and a sulfonated crosslinked polyphenylene. Ethylene copolymer, modified crosslinked polystyrene copolymer, crosslinked sucrose, polydecyl alcohol, Polyvinyl chloride, lignin, industrial starch, cellulose or a combination of the foregoing. 如申請專利範圍第1項所述之多孔性碳材的製作方法,其中該加熱製程的製程溫度約為750℃至850℃,加熱時間約為1小時至3小時。 The method for producing a porous carbon material according to claim 1, wherein the heating process has a process temperature of about 750 ° C to 850 ° C and a heating time of about 1 hour to 3 hours. 如申請專利範圍第1項所述之多孔性碳材的製作方法,其中移除該氧化物模板的步驟包含:以一強酸溶液或一強鹼溶液、一強酸/強鹼混合液或一微量氫氟酸/氫氧化鈉混合液移除該氧化物模板。 The method for producing a porous carbon material according to claim 1, wherein the step of removing the oxide template comprises: using a strong acid solution or a strong alkali solution, a strong acid/strong alkali mixture or a trace amount of hydrogen The oxyfluoride/sodium hydroxide mixture removes the oxide template. 如申請專利範圍第1項所述之多孔性碳材的製作方法,其中該多孔性碳材的比表面積約為1200~2500m2/g。 The method for producing a porous carbon material according to claim 1, wherein the porous carbon material has a specific surface area of about 1200 to 2500 m 2 /g.
TW105102550A 2016-01-27 2016-01-27 Manufacturing method of porous carbon material TWI610885B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW105102550A TWI610885B (en) 2016-01-27 2016-01-27 Manufacturing method of porous carbon material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW105102550A TWI610885B (en) 2016-01-27 2016-01-27 Manufacturing method of porous carbon material

Publications (2)

Publication Number Publication Date
TW201726545A TW201726545A (en) 2017-08-01
TWI610885B true TWI610885B (en) 2018-01-11

Family

ID=60186579

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105102550A TWI610885B (en) 2016-01-27 2016-01-27 Manufacturing method of porous carbon material

Country Status (1)

Country Link
TW (1) TWI610885B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113717008B (en) * 2021-08-13 2022-10-14 四川鸿康科技股份有限公司 Monoammonium phosphate anti-caking agent and application thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140120339A1 (en) * 2012-10-31 2014-05-01 Cabot Corporation Porous carbon monoliths templated by pickering emulsions

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140120339A1 (en) * 2012-10-31 2014-05-01 Cabot Corporation Porous carbon monoliths templated by pickering emulsions

Also Published As

Publication number Publication date
TW201726545A (en) 2017-08-01

Similar Documents

Publication Publication Date Title
Huang et al. Extraordinary areal and volumetric performance of flexible solid‐state micro‐supercapacitors based on highly conductive freestanding Ti3C2Tx Films
WO2006126721A1 (en) Electric double layer capacitor
CN113583427B (en) Metal organic framework in-situ modified graphene/polymer composite material and preparation method and application thereof
JP2012193100A (en) Porous carbon material, and manufacturing method thereof
TWI427030B (en) Porous carbon material and manufacturing method thereof
JP2014036113A (en) Capacitor
EP2321867A1 (en) Electrolyte
CN109880292A (en) The preparation method of polymer matrix high-dielectric composite material based on core-shell structure three-dimensional framework
TWI610885B (en) Manufacturing method of porous carbon material
KR101393493B1 (en) Globular carbon particle, and preparing method of the same
CN108028136A (en) Nanofiber electrode and ultracapacitor
CN106519516A (en) Dielectric composite material based on paraffin-coated barium titanate nanoparticles and preparation method thereof
Hasegawa et al. Porous polymer‐derived ceramics: Flexible morphological and compositional controls through sol–gel chemistry
WO2013166928A1 (en) Solid electrolytic capacitor carbon rubber layer and method for manufacturing same
CN111268669A (en) Preparation method of graphene/silver nanowire composite aerogel
KR100376811B1 (en) Electric double-layer capacitors using nanoporous carbon materials prepared with inorganic templates
US9916938B2 (en) Porous carbon electrodes for energy storage applications
CN105845460B (en) A kind of ultra-thin ultracapacitor and preparation method thereof based on microtomy
KR101563261B1 (en) Electrochemical method of graphene oxide deposition, graphene oxide deposited substrate made by the same, and electric device including the same
KR20160039749A (en) Catalyst composite including intermetallic nano particle and method for preparing the same
CN109575595A (en) A kind of preparation method of polyetherimide/barium titanate/graphene dielectric composite material
JP5322236B2 (en) Proton conducting membrane and method for producing proton conducting membrane
CN114940759B (en) Fluorine-containing polyimide film, preparation method thereof and supercapacitor
KR20130093740A (en) Carbon material for supercapacitor electrode and method for manufactoring the same
KR101477023B1 (en) Method for manufacturing carbon aerogel-polymer composite sheet and carbon aerogel-polymer composite sheet manufactured thereby

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees