TWI607528B - Semiconductor device and manufacturing method thereof - Google Patents

Semiconductor device and manufacturing method thereof Download PDF

Info

Publication number
TWI607528B
TWI607528B TW104118236A TW104118236A TWI607528B TW I607528 B TWI607528 B TW I607528B TW 104118236 A TW104118236 A TW 104118236A TW 104118236 A TW104118236 A TW 104118236A TW I607528 B TWI607528 B TW I607528B
Authority
TW
Taiwan
Prior art keywords
layer
dielectric layers
layers
gate
dielectric
Prior art date
Application number
TW104118236A
Other languages
Chinese (zh)
Other versions
TW201644002A (en
Inventor
賴二琨
蔣光浩
Original Assignee
旺宏電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旺宏電子股份有限公司 filed Critical 旺宏電子股份有限公司
Priority to TW104118236A priority Critical patent/TWI607528B/en
Publication of TW201644002A publication Critical patent/TW201644002A/en
Application granted granted Critical
Publication of TWI607528B publication Critical patent/TWI607528B/en

Links

Landscapes

  • Non-Volatile Memory (AREA)
  • Semiconductor Memories (AREA)

Description

半導體裝置及其製造方法 Semiconductor device and method of manufacturing same

本發明是有關於一種半導體裝置及其製造方法,且特別是有關於一種垂直通道半導體裝置及其製造方法。 The present invention relates to a semiconductor device and a method of fabricating the same, and more particularly to a vertical channel semiconductor device and a method of fabricating the same.

近年來,半導體裝置的結構不斷地演進,且裝置的儲存容量持續地增加。記憶體裝置用於儲存許多電子產品,例如是MP3檔案、數位影像、電腦文件等。隨著應用範圍不斷地增加,記憶體裝置之需求著重於小體積及大容量。為了滿足其要求,需要具有高元件密度及小體積之記憶體裝置及其製造方法。 In recent years, the structure of semiconductor devices has continually evolved, and the storage capacity of devices has continually increased. The memory device is used to store many electronic products, such as MP3 files, digital images, computer files, and the like. As the range of applications continues to increase, the demand for memory devices is focused on small size and large capacity. In order to meet the requirements, a memory device having a high component density and a small volume and a method of manufacturing the same are required.

因此,一種能夠達成大儲存容量、小體積、且具有良好效能及穩定性之垂直通道記憶體裝置,已成為研發的重要方向。 Therefore, a vertical channel memory device capable of achieving a large storage capacity, a small volume, and having good performance and stability has become an important direction for research and development.

本發明係有關於一種半導體裝置及其製造方法,其蝕刻部分電荷捕捉結構而形成一接墊層,以形成一厚且寬的接墊,來穩固地連接一位元線。 The present invention relates to a semiconductor device and a method of fabricating the same that etches a portion of a charge trapping structure to form a pad layer to form a thick and wide pad for securely connecting a bit line.

根據本發明之第一方面,提出一種半導體裝置之製 造方法。製造方法包括下列步驟。形成二堆疊結構於一基板之上。各個堆疊結構包括數個閘極層、數個閘極絕緣層及一頂部絕緣層。閘極層及閘極絕緣層交替地設置。頂部絕緣層設置於閘極層及閘極絕緣層上。形成一電荷捕捉結構及一通道層於各個堆疊結構之一側表面。電荷捕捉結構包括數個第一介電層及數個第二介電層。蝕刻部分之各個第一介電層,並蝕刻部分之各個第二介電層,以暴露部分之通道層。形成一接墊層於第一介電層及第二介電層上,以連接通道層。 According to a first aspect of the present invention, a semiconductor device system is proposed Method of making. The manufacturing method includes the following steps. Forming a two stacked structure on a substrate. Each of the stacked structures includes a plurality of gate layers, a plurality of gate insulating layers, and a top insulating layer. The gate layer and the gate insulating layer are alternately disposed. The top insulating layer is disposed on the gate layer and the gate insulating layer. A charge trapping structure and a channel layer are formed on one side surface of each of the stacked structures. The charge trapping structure includes a plurality of first dielectric layers and a plurality of second dielectric layers. Each of the first dielectric layers is etched and a portion of each of the second dielectric layers is etched to expose a portion of the channel layer. A pad layer is formed on the first dielectric layer and the second dielectric layer to connect the channel layer.

根據本發明之第二方面,提供一半導體裝置。半導體包括一基板、二堆疊結構、一電荷捕捉結構、一通道層及一接墊層。各個堆疊結構包括數個閘極層、數個閘極絕緣層及一頂部絕緣層。閘極層及閘極絕緣層交替地設置。頂部絕緣層設置於閘極層及閘極絕緣層上。電荷捕捉結構及通道層設置於各個堆疊結構之一側表面。電荷捕捉結構包括數個第一介電層及數個第二介電層。通道層之頂部高於各個第一介電層之頂部及各個第二介電層之頂部。接墊層設置於第一介電層及第二介電層上,以連接通道層。 According to a second aspect of the invention, a semiconductor device is provided. The semiconductor includes a substrate, a two-stack structure, a charge trapping structure, a channel layer, and a pad layer. Each of the stacked structures includes a plurality of gate layers, a plurality of gate insulating layers, and a top insulating layer. The gate layer and the gate insulating layer are alternately disposed. The top insulating layer is disposed on the gate layer and the gate insulating layer. The charge trapping structure and the channel layer are disposed on one side surface of each of the stacked structures. The charge trapping structure includes a plurality of first dielectric layers and a plurality of second dielectric layers. The top of the channel layer is higher than the top of each of the first dielectric layers and the top of each of the second dielectric layers. The pad layer is disposed on the first dielectric layer and the second dielectric layer to connect the channel layer.

為了對本發明之上述及其他方面有更佳的瞭解,下文特舉較佳實施例,並配合所附圖式,作詳細說明如下: In order to better understand the above and other aspects of the present invention, the preferred embodiments are described below, and in conjunction with the drawings, the detailed description is as follows:

100、200、300、400‧‧‧半導體裝置 100, 200, 300, 400‧‧‧ semiconductor devices

110、310‧‧‧基板 110, 310‧‧‧ substrate

120‧‧‧底部絕緣層 120‧‧‧Bottom insulation

120a‧‧‧上表面 120a‧‧‧ upper surface

130、230、330、430‧‧‧堆疊結構 130, 230, 330, 430‧‧‧ stacked structure

130a‧‧‧溝槽 130a‧‧‧ trench

130b、330b‧‧‧側表面 130b, 330b‧‧‧ side surface

131、331‧‧‧閘極層 131, 331‧‧ ‧ gate layer

132、332‧‧‧閘極絕緣層 132, 332‧‧ ‧ gate insulation

133、333、433‧‧‧頂部絕緣層 133, 333, 433‧‧‧ top insulation

134、234‧‧‧導電遮罩層 134, 234‧‧‧ conductive mask layer

135、335‧‧‧絕緣遮罩層 135, 335‧‧ ‧ insulating mask layer

140、340‧‧‧電荷捕捉結構 140, 340‧‧‧ Charge trapping structure

141、341‧‧‧第一介電層 141, 341‧‧‧ first dielectric layer

142、342‧‧‧第二介電層 142, 342‧‧‧ second dielectric layer

150、350‧‧‧通道層 150, 350‧‧‧ channel layer

160、260、360、460‧‧‧接墊層 160, 260, 360, 460‧‧‧

170、370‧‧‧間隔絕緣層 170, 370‧‧‧ spaced insulation

370G‧‧‧空氣間隙 370G‧‧‧Air gap

380‧‧‧底部導電層 380‧‧‧ bottom conductive layer

390‧‧‧連接層 390‧‧‧Connection layer

D‧‧‧汲極 D‧‧‧汲

G‧‧‧閘極 G‧‧‧ gate

T1、T2、T3、T4、T5、T6‧‧‧厚度 T1, T2, T3, T4, T5, T6‧‧‧ thickness

S‧‧‧源極 S‧‧‧ source

W1、W2‧‧‧寬度 W1, W2‧‧‧ width

第1圖繪示一半導體裝置。 Figure 1 illustrates a semiconductor device.

第2A~2F圖繪示一實施例之半導體裝置之製造方法的流程圖。 2A-2F are flow charts showing a method of manufacturing a semiconductor device according to an embodiment.

第3A~3F圖繪示另一實施例之半導體裝置之製造方法的流程圖。 3A to 3F are flowcharts showing a method of manufacturing a semiconductor device according to another embodiment.

第4圖繪示另一半導體裝置。 Figure 4 illustrates another semiconductor device.

第5A~5F圖繪示一實施例之半導體裝置之製造方法的流程圖。 5A-5F are flow charts showing a method of fabricating a semiconductor device according to an embodiment.

第6A~6F圖繪示另一實施例之半導體裝置之製造方法的流程圖。 6A-6F are flow charts showing a method of fabricating a semiconductor device according to another embodiment.

以下係提出各種實施例進行詳細說明,其利用蝕刻部分電荷捕捉結構(charge trapping structure),並設置一接墊層(landing pad layer),以形成一厚且寬的接墊(landing pad),來穩固地連接至一位元線(bit line)。然而,實施例僅用以作為範例說明,並不會限縮本發明欲保護之範圍。此外,實施例中之圖式係省略不必要之元件,以清楚顯示本發明之技術特點。 The following is a detailed description of various embodiments, which utilize an etched portion of a charge trapping structure and a landing pad layer to form a thick and wide landing pad. Connect firmly to a bit line. However, the examples are for illustrative purposes only and are not intended to limit the scope of the invention. In addition, the drawings in the embodiments omit unnecessary elements to clearly show the technical features of the present invention.

請參照第1圖,其繪示一半導體裝置100之示意圖。舉例來說,半導體裝置100可以是一三維垂直通道NAND裝置(three-dimensional vertical channel NAND device)。半導體裝置100包括一基板(substrate)110、一底部絕緣層(bottom insulating layer)120、至少二層堆疊結構(stacked structures)130、一電荷捕捉結構140、一通道層(channel layer)150、一接墊層160及一間隔絕緣層(spaced insulating layer)170。在此實施例中,電 荷捕捉結構140及通道層150係為U形。 Please refer to FIG. 1 , which illustrates a schematic diagram of a semiconductor device 100 . For example, the semiconductor device 100 can be a three-dimensional vertical channel NAND device. The semiconductor device 100 includes a substrate 110, a bottom insulating layer 120, at least two stacked structures 130, a charge trapping structure 140, a channel layer 150, and a connection. The pad layer 160 and a spaced insulating layer 170. In this embodiment, electricity The charge trapping structure 140 and the channel layer 150 are U-shaped.

各個堆疊結構130包括數個閘極層(gate layer)131、數個閘極絕緣層(gate insulating layer)132、一頂部絕緣層(top insulating layer)133及一導電遮罩層(conductive mask layer)134。電荷捕捉結構140包括數個第一介電層(first dielectric layer)141及數個第二介電層142(second dielectric layer)。各個閘極層131連接至一閘極(gate)G。接墊層160連接至一源極(source)S或一汲極(drain)D。 Each of the stacked structures 130 includes a plurality of gate layers 131, a plurality of gate insulating layers 132, a top insulating layer 133, and a conductive mask layer. 134. The charge trapping structure 140 includes a plurality of first dielectric layers 141 and a plurality of second dielectric layers 142. Each gate layer 131 is connected to a gate G. The pad layer 160 is connected to a source S or a drain D.

接墊層160連接至一位元線。如第1圖所示,由於導電遮罩層134及接墊層160之組合的厚度T1大於通道層150的厚度T2,介於位元線與接墊層160間之接觸電阻便可降低。此外,進行位元線與接墊層160的連接製程也變得更容易。此外,通道層150及接墊層160之連接係位於通道層150之側壁,而不是在通道層150之頂部。如此一來,可以增加製程窗口(process window)並降低電阻。再者,在此結構中不會發生角落邊緣效應(corner edge effect),其理由是第一介電層141皆不位於任何的角落邊緣,故不會因電場效應而容易被程式化或抹除。 The pad layer 160 is connected to a one-dimensional line. As shown in FIG. 1, since the thickness T1 of the combination of the conductive mask layer 134 and the pad layer 160 is larger than the thickness T2 of the channel layer 150, the contact resistance between the bit line and the pad layer 160 can be lowered. In addition, the connection process between the bit line and the pad layer 160 is also made easier. In addition, the connection of the channel layer 150 and the pad layer 160 is located on the sidewall of the channel layer 150 rather than at the top of the channel layer 150. In this way, you can increase the process window and reduce the resistance. Moreover, the corner edge effect does not occur in this structure, because the first dielectric layer 141 is not located at any corner edge, so it is not easily stylized or erased by the electric field effect. .

請參照第2A~2F圖,其繪示根據一實施例之半導體裝置100之製造方法的流程圖。本製造方法係為自我對準製程且無須額外的光罩程序。如第2A圖所示,提供基板110。接著,如第2A圖所示,形成底部絕緣層120於基板110上。舉例來說,底部絕緣層120之材料例如是氧化矽(silicon oxide)。 Please refer to FIGS. 2A-2F for a flow chart of a method of fabricating a semiconductor device 100 in accordance with an embodiment. The manufacturing process is self-aligned and does not require an additional masking process. As shown in FIG. 2A, a substrate 110 is provided. Next, as shown in FIG. 2A, a bottom insulating layer 120 is formed on the substrate 110. For example, the material of the bottom insulating layer 120 is, for example, silicon oxide.

然後,如第2A圖所示,交替地形成閘極層131及閘極絕緣層132於底部絕緣層120上,使得各個閘極層131能夠相互絕緣。各個閘極層131之材料例如是N+或P+摻雜多晶矽(N+ or P+ doping polysilicon),較佳地係為P+摻雜多晶矽。各個閘極絕緣層132之材料例如是氧化矽。 Then, as shown in FIG. 2A, the gate layer 131 and the gate insulating layer 132 are alternately formed on the bottom insulating layer 120 so that the respective gate layers 131 can be insulated from each other. The material of each of the gate layers 131 is, for example, N+ or P+ doped polysilicon, preferably P+ doped polysilicon. The material of each of the gate insulating layers 132 is, for example, yttrium oxide.

接著,如第2A圖所示,形成頂部絕緣層133於閘極層131及閘極絕緣層132上。頂部絕緣層133之材料例如是氮化矽(silicon nitride)。 Next, as shown in FIG. 2A, a top insulating layer 133 is formed on the gate layer 131 and the gate insulating layer 132. The material of the top insulating layer 133 is, for example, silicon nitride.

然後,如第2A圖所示,形成導電遮罩層134於頂部絕緣層133上,以避免頂部絕緣層133被蝕刻,並可用以連接接墊層160(繪示於第1圖)及通道層150(繪示於第1圖)。 Then, as shown in FIG. 2A, a conductive mask layer 134 is formed on the top insulating layer 133 to prevent the top insulating layer 133 from being etched, and can be used to connect the pad layer 160 (shown in FIG. 1) and the channel layer. 150 (shown in Figure 1).

接著,如第2A圖所示,形成絕緣遮罩層135於導電遮罩層134上。絕緣遮罩層135的材料例如是氮化矽。 Next, as shown in FIG. 2A, an insulating mask layer 135 is formed on the conductive mask layer 134. The material of the insulating mask layer 135 is, for example, tantalum nitride.

然後,如第2B圖所示,蝕刻絕緣遮罩層135、導電遮罩層134、頂部絕緣層133、閘極層131及閘極絕緣層132,以形成至少兩個堆疊結構130及介於相鄰之堆疊結構130的溝槽130a。於製造過程中,絕緣遮罩層135可以穩固堆疊結構130,以避免堆疊結構130崩塌。 Then, as shown in FIG. 2B, the insulating mask layer 135, the conductive mask layer 134, the top insulating layer 133, the gate layer 131, and the gate insulating layer 132 are etched to form at least two stacked structures 130 and interphase Adjacent to the trench 130a of the stacked structure 130. The insulating mask layer 135 can stabilize the stacked structure 130 during fabrication to avoid collapse of the stacked structure 130.

接著,如第2C圖所示,形成電荷捕捉結構140及通道層150於各個堆疊結構130之一側表面130b及底部絕緣層120之一上表面120a。電荷捕捉結構140及通道層150為U形。通道層150之材質可以是固有或未摻雜的多晶矽。電荷捕捉結構 140可以是O1N1O2N2O3N3O4結構(O1接近於通道層150,O4接近於堆疊結構130)。四個氧化矽層(O1、O2、O3、O4)具有不同的厚度且三個氮化矽層(N1、N2、N3)具有不同的厚度。或者,電荷捕捉結構140可以是O1N1O2N2O3結構(O1接近於通道層150,O3接近於堆疊結構130)。三的氧化矽層(O1、O2、O3)具有不同的厚度,兩個氮化矽層(N1、N2)具有不同的厚度。這些不同的厚度係基於O1N1O2穿隧(tunneling)、N2捕捉(trapping)、O3或O3N3O4阻障(blocking)的目的來設計。 Next, as shown in FIG. 2C, the charge trapping structure 140 and the channel layer 150 are formed on one of the side surfaces 130b of one of the stacked structures 130 and one of the upper surfaces 120a of the bottom insulating layer 120. The charge trapping structure 140 and the channel layer 150 are U-shaped. The material of the channel layer 150 may be an intrinsic or undoped polysilicon. Charge trapping structure 140 may be an O1N1O2N2O3N3O4 structure (O1 is close to channel layer 150, and O4 is close to stack structure 130). The four hafnium oxide layers (O1, O2, O3, O4) have different thicknesses and the three tantalum nitride layers (N1, N2, N3) have different thicknesses. Alternatively, the charge trapping structure 140 can be an O1N1O2N2O3 structure (O1 is close to the channel layer 150, and O3 is close to the stacked structure 130). The three yttrium oxide layers (O1, O2, O3) have different thicknesses, and the two tantalum nitride layers (N1, N2) have different thicknesses. These different thicknesses are designed for the purpose of O1N1O2 tunneling, N2 trapping, O3 or O3N3O4 blocking.

接著,如第2C圖所示,填充間隔絕緣層170於堆疊結構130之間的溝槽130a。間隔絕緣層170的材料例如是氧化矽。間隔絕緣層170可以不完全填滿溝槽130a,使得空氣間隙形成於間隔絕緣層170中。空氣也是很好的絕緣體。 Next, as shown in FIG. 2C, the spacer insulating layer 170 is filled in the trench 130a between the stacked structures 130. The material of the spacer insulating layer 170 is, for example, yttrium oxide. The spacer insulating layer 170 may not completely fill the trench 130a such that an air gap is formed in the spacer insulating layer 170. Air is also a good insulator.

再者,如第2D圖所示,蝕刻部份之各個第一介電層141,以暴露部分之各個第二介電層142。在此步驟中,係利用磷酸(H3PO4)來蝕刻氮化矽。由於磷酸對於多晶矽及氧化矽具有高度選擇性,導電遮罩層134、通道層150、第二介電層142及間隔絕緣層170不會在此步驟被蝕刻。於此步驟中,絕緣遮罩層135(繪示於第2C圖)也被移除,使得導電遮罩層134的表面被暴露出來。由於部分之各個第一介電層141被蝕刻,故第二介電層142之至少一的二側壁被部分地暴露。 Furthermore, as shown in FIG. 2D, portions of each of the first dielectric layers 141 are etched to expose portions of the respective second dielectric layers 142. In this step, cesium nitride is etched using phosphoric acid (H3PO4). Since phosphoric acid is highly selective for polysilicon and yttrium oxide, conductive mask layer 134, channel layer 150, second dielectric layer 142, and spacer insulating layer 170 are not etched at this step. In this step, the insulating mask layer 135 (shown in FIG. 2C) is also removed such that the surface of the conductive mask layer 134 is exposed. Since portions of each of the first dielectric layers 141 are etched, the two sidewalls of at least one of the second dielectric layers 142 are partially exposed.

由於第一介電層141的厚度不同,第一介電層141在蝕刻效應(etching loading effect)下會被蝕刻出不同的深度。 Due to the difference in thickness of the first dielectric layer 141, the first dielectric layer 141 is etched to different depths under an etching loading effect.

接著,如第2E圖所示,蝕刻部分之各個第二介電層142,以暴露部分之通道層150。在此步驟中,係利用稀釋氫氟酸溶液(DHF)來蝕刻氧化矽。因為稀釋氫氟酸溶液對於多晶矽及氮化矽具有高度選擇性,導電遮罩層134、通道層150、第一介電層141不會被蝕刻。 Next, as shown in FIG. 2E, portions of each of the second dielectric layers 142 are etched to expose portions of the via layer 150. In this step, the cerium oxide is etched using a dilute hydrofluoric acid solution (DHF). Since the dilute hydrofluoric acid solution is highly selective for polysilicon and tantalum nitride, the conductive mask layer 134, the channel layer 150, and the first dielectric layer 141 are not etched.

在此步驟中,由於部分之各個第二介電層142被蝕刻,故各個第一介電層141的二側壁被部分地暴露出來。再者,由於部分的間距絕緣層170也被蝕刻,故通道層150的二側壁也被部分地暴露出來,使得通道層150的頂端高於第一介電層141之頂端及第二介電層142之頂端。 In this step, since portions of the respective second dielectric layers 142 are etched, the two sidewalls of the respective first dielectric layers 141 are partially exposed. Moreover, since a portion of the pitch insulating layer 170 is also etched, the two sidewalls of the channel layer 150 are also partially exposed, such that the top end of the channel layer 150 is higher than the top end of the first dielectric layer 141 and the second dielectric layer. The top of 142.

由於第二介電層142的厚度不同,第二介電層142在蝕刻效應下會被蝕刻出不同的深度。在此步驟中,導電遮罩層134則可以避免頂部絕緣層133受到蝕刻。 Due to the different thicknesses of the second dielectric layer 142, the second dielectric layer 142 is etched to different depths under the etch effect. In this step, the conductive mask layer 134 can prevent the top insulating layer 133 from being etched.

接著,如第2F圖所示,形成接墊層160於導電遮罩層134、第一介電層141及第二介電層142上,以連接導電遮罩層134及通道層150。接墊層160的材料例如是N型摻雜多晶矽。 Next, as shown in FIG. 2F, a pad layer 160 is formed on the conductive mask layer 134, the first dielectric layer 141, and the second dielectric layer 142 to connect the conductive mask layer 134 and the channel layer 150. The material of the pad layer 160 is, for example, an N-type doped polysilicon.

在此步驟中,接墊層160及通道層150更被研磨,使得接墊層160、通道層150及間隔絕緣層170的頂部皆位於相同高度。導電遮罩層134及接墊層160之組合可做為一個接墊來連接位元線。導電遮罩層134及接墊層160之組合的厚度T1大於通道層150的厚度T2,使得介於位元線與接墊層160間之接觸電阻便可降低。此外,通道層150及接墊層160之連接係位於通 道層150之側壁,而不是在通道層150之頂部。如此一來,可以增加製程窗口(process window)並降低電阻。再者,進行位元線與接墊層160的連接製程也變得更容易。在此結構中不會發生角落邊緣效應(corner edge effect),其理由是第一介電層141皆不位於任何的角落邊緣,故不會因電場效應而容易被程式化或抹除。 In this step, the pad layer 160 and the channel layer 150 are further ground such that the tops of the pad layer 160, the channel layer 150, and the spacer insulating layer 170 are all at the same height. The combination of the conductive mask layer 134 and the pad layer 160 can be used as a pad to connect the bit lines. The thickness T1 of the combination of the conductive mask layer 134 and the pad layer 160 is greater than the thickness T2 of the channel layer 150, so that the contact resistance between the bit line and the pad layer 160 can be reduced. In addition, the connection between the channel layer 150 and the pad layer 160 is located The sidewall of the track layer 150, rather than the top of the channel layer 150. In this way, you can increase the process window and reduce the resistance. Furthermore, the connection process between the bit line and the pad layer 160 is also made easier. The corner edge effect does not occur in this structure because the first dielectric layer 141 is not located at any corner edge and is not easily stylized or erased by the electric field effect.

於上述製造方法中,絕緣遮罩層135用以在製程中穩固堆疊結構130,以避免堆疊結構130於製程中崩塌。於另一實施例中,半導體裝置之製造方法可以不使用絕緣遮罩層135。請參照第3A~3F圖,其繪示另一實施例之半導體裝置200之製造方法的流程圖。在此實施例中,導電遮罩層234的厚度增加,使得導電遮罩層234即可以用來穩固堆疊結構230。 In the above manufacturing method, the insulating mask layer 135 is used to stabilize the stacked structure 130 during the process to prevent the stacked structure 130 from collapsing in the process. In another embodiment, the method of fabricating the semiconductor device may not use the insulating mask layer 135. Please refer to FIGS. 3A-3F for a flowchart of a method of fabricating the semiconductor device 200 of another embodiment. In this embodiment, the thickness of the conductive mask layer 234 is increased such that the conductive mask layer 234 can be used to stabilize the stacked structure 230.

如第3F圖所示,接墊層260及導電遮罩層234用以做為一個接墊來連接位元線。導電遮罩層234及接墊層260之厚度T3係大於通道層150之厚度T2,使得介於位元線與接墊層260間之接觸電阻便可降低。再者,進行位元線與接墊層260的連接製程也變得更容易。 As shown in FIG. 3F, the pad layer 260 and the conductive mask layer 234 are used as a pad to connect the bit lines. The thickness T3 of the conductive mask layer 234 and the pad layer 260 is greater than the thickness T2 of the channel layer 150, so that the contact resistance between the bit line and the pad layer 260 can be reduced. Furthermore, the process of connecting the bit line to the pad layer 260 is also made easier.

請參照第4圖,其繪示一半導體裝置300之示意圖。舉例來說,半導體裝置300可以是一三維垂直通道NAND裝置(three-dimensional vertical channel NAND device)。半導體裝置300包括一基板(substrate)310、至少二層堆疊結構(stacked structures)330、一電荷捕捉結構340、一通道層(channel layer) 350、一絕緣遮罩層335、一接墊層360、一間隔絕緣層(spaced insulating layer)370、一底部導電層380及一連接層390。 Please refer to FIG. 4 , which illustrates a schematic diagram of a semiconductor device 300 . For example, the semiconductor device 300 can be a three-dimensional vertical channel NAND device. The semiconductor device 300 includes a substrate 310, at least two stacked structures 330, a charge trapping structure 340, and a channel layer. 350, an insulating mask layer 335, a pad layer 360, a spaced insulating layer 370, a bottom conductive layer 380, and a connecting layer 390.

各個堆疊結構330包括數個閘極層(gate layer)331、數個閘極絕緣層(gate insulating layer)332及一頂部絕緣層(top insulating layer)333。電荷捕捉裝置340包括數個第一介電層(first dielectric layer)341及數個第二介電層342(second dielectric layer)。各個閘極層331連接至閘極(gate)G。接墊層360連接至汲極(drain)D。底部導電層380連接至源極(source)。連接層390連接底部導電層380及通道層350。 Each of the stacked structures 330 includes a plurality of gate layers 331 , a plurality of gate insulating layers 332 , and a top insulating layer 333 . The charge trapping device 340 includes a plurality of first dielectric layers 341 and a plurality of second dielectric layers 342 (second dielectric layers). Each gate layer 331 is connected to a gate G. The pad layer 360 is connected to the drain D. The bottom conductive layer 380 is connected to a source. The connection layer 390 connects the bottom conductive layer 380 and the channel layer 350.

接墊層360連接至一位元線。如第4圖所示,由於接墊層360之厚度T4大於通道層350的厚度T5,介於位元線與接墊層360間之接觸電阻便可降低。再者,接墊層360更設置於間隔絕緣層370上。接墊層360的寬度W1相當的大,使得進行位元線與接墊層360的連接製程也變得更容易。此外,通道層350及接墊層360之連接係位於通道層350之側壁,而不是在通道層350之頂部。如此一來,可以增加製程窗口(process window)並降低電阻。再者,在此結構中不會發生角落邊緣效應(corner edge effect),其理由是第一介電層341皆不位於任何的角落邊緣,故不會因電場效應而容易被程式化或抹除。 The pad layer 360 is connected to a one-dimensional line. As shown in FIG. 4, since the thickness T4 of the pad layer 360 is greater than the thickness T5 of the channel layer 350, the contact resistance between the bit line and the pad layer 360 can be lowered. Furthermore, the pad layer 360 is further disposed on the spacer insulating layer 370. The width W1 of the pad layer 360 is relatively large, so that the connection process between the bit line and the pad layer 360 is also made easier. In addition, the connection of the channel layer 350 and the pad layer 360 is located on the sidewall of the channel layer 350 rather than at the top of the channel layer 350. In this way, you can increase the process window and reduce the resistance. Moreover, the corner edge effect does not occur in this structure, because the first dielectric layer 341 is not located at any corner edge, so it is not easily stylized or erased due to the electric field effect. .

請參照第5A~5F圖,其繪示根據一實施例之半導體裝置300之製造方法的流程圖。本製造方法係為自我對準製程且無須額外的光罩程序。如第5A圖所示,提供基板310。接著, 如第5A圖所示,形成底部導電層380於基板310上。 Referring to FIGS. 5A-5F, a flow chart of a method of fabricating a semiconductor device 300 in accordance with an embodiment is shown. The manufacturing process is self-aligned and does not require an additional masking process. As shown in FIG. 5A, a substrate 310 is provided. then, As shown in FIG. 5A, a bottom conductive layer 380 is formed on the substrate 310.

然後,如第5A圖所示,交替地形成閘極層331及閘極絕緣層332於底部導電層380上,使得各個閘極層331能夠相互絕緣。各個閘極層331之材料例如是N+或P+摻雜多晶矽(N+ or P+ doping polysilicon),較佳地係為P+摻雜多晶矽。各個閘極絕緣層332之材料例如是氧化矽。 Then, as shown in FIG. 5A, the gate layer 331 and the gate insulating layer 332 are alternately formed on the bottom conductive layer 380 so that the respective gate layers 331 can be insulated from each other. The material of each of the gate layers 331 is, for example, N+ or P+ doped polysilicon, preferably P+ doped polysilicon. The material of each of the gate insulating layers 332 is, for example, yttrium oxide.

接著,如第5A圖所示,形成頂部絕緣層333於閘極層331及閘極絕緣層332上。頂部絕緣層333之材料例如是氮化矽(silicon nitride)。 Next, as shown in FIG. 5A, a top insulating layer 333 is formed on the gate layer 331 and the gate insulating layer 332. The material of the top insulating layer 333 is, for example, silicon nitride.

接著,如第5A圖所示,形成絕緣遮罩層335於頂部絕緣層333上。絕緣遮罩層335的材料例如是氮化矽。 Next, as shown in FIG. 5A, an insulating mask layer 335 is formed on the top insulating layer 333. The material of the insulating mask layer 335 is, for example, tantalum nitride.

然後,如第5B圖所示,蝕刻絕緣遮罩層335、頂部絕緣層、閘極層331及閘極絕緣層332,以形成至少兩個堆疊結構330及介於相鄰之堆疊結構330的溝槽330a。於製造過程中,絕緣遮罩層335可以穩固堆疊結構330,以避免堆疊結構330崩塌。 Then, as shown in FIG. 5B, the insulating mask layer 335, the top insulating layer, the gate layer 331 and the gate insulating layer 332 are etched to form at least two stacked structures 330 and trenches adjacent to the stacked structures 330. Slot 330a. The insulating mask layer 335 can stabilize the stacked structure 330 during fabrication to avoid collapse of the stacked structure 330.

接著,如第5C圖所示,形成電荷捕捉結構340及通道層350於各個堆疊結構330之一側表面330b。連接層390形成於底部導電層380之頂表面,以連接底部導電層380及通道層350。通道層350之材質可以是固有或未摻雜的多晶矽。電荷捕捉結構340可以是O1N1O2N2O3N3O4結構(O1接近於通道層150,O4接近於堆疊結構330)。四個氧化矽層(O1、O2、O3、 O4)具有不同的厚度且三個氮化矽層(N1、N2、N3)具有不同的厚度。或者,電荷捕捉結構340可以是O1N1O2N2O3結構(O1接近於通道層350,O3接近於堆疊結構130)。三的氧化矽層(O1、O2、O3)具有不同的厚度,兩個氮化矽層(N1、N2)具有不同的厚度。這些不同的厚度係基於O1N1O2穿隧(tunneling)、N2捕捉(trapping)、O3或O3N3O4阻障(blocking)的目的來設計。 Next, as shown in FIG. 5C, the charge trapping structure 340 and the channel layer 350 are formed on one side surface 330b of each of the stacked structures 330. A connection layer 390 is formed on the top surface of the bottom conductive layer 380 to connect the bottom conductive layer 380 and the channel layer 350. The material of the channel layer 350 may be an intrinsic or undoped polysilicon. The charge trapping structure 340 can be an O1N1O2N2O3N3O4 structure (O1 is close to the channel layer 150, and O4 is close to the stacked structure 330). Four layers of yttria (O1, O2, O3, O4) has different thicknesses and three tantalum nitride layers (N1, N2, N3) have different thicknesses. Alternatively, the charge trapping structure 340 can be an O1N1O2N2O3 structure (O1 is close to the channel layer 350, and O3 is close to the stacked structure 130). The three yttrium oxide layers (O1, O2, O3) have different thicknesses, and the two tantalum nitride layers (N1, N2) have different thicknesses. These different thicknesses are designed for the purpose of O1N1O2 tunneling, N2 trapping, O3 or O3N3O4 blocking.

接著,如第5C圖所示,填充間隔絕緣層370於堆疊結構330之間的溝槽330a。間隔絕緣層370的材料例如是氧化矽。間隔絕緣層370可以不完全填滿溝槽330a,使得空氣間隙370G形成於間隔絕緣層370中。空氣也是很好的絕緣體。 Next, as shown in FIG. 5C, the spacer insulating layer 370 is filled in the trench 330a between the stacked structures 330. The material of the spacer insulating layer 370 is, for example, ruthenium oxide. The spacer insulating layer 370 may not completely fill the trench 330a such that the air gap 370G is formed in the spacer insulating layer 370. Air is also a good insulator.

再者,如第5D圖所示,蝕刻部份之各個第二介電層342,以暴露部分之各個第一介電層341。在此步驟中,係利用稀釋氫氟酸溶液(DHF)來蝕刻氧化矽。因為稀釋氫氟酸溶液對於多晶矽及氮化矽具有高度選擇性,絕緣遮罩層335、通道層350、第一介電層341不會被蝕刻。由於部分之各個第二介電層342被蝕刻,故第一介電層341之至少一的二側壁被部分地暴露。再者,由於部分之間隔絕緣層370亦被蝕刻,故通道層350之二側壁被部分地暴露。 Furthermore, as shown in FIG. 5D, portions of each of the second dielectric layers 342 are etched to expose portions of the respective first dielectric layers 341. In this step, the cerium oxide is etched using a dilute hydrofluoric acid solution (DHF). Since the diluted hydrofluoric acid solution is highly selective for polysilicon and tantalum nitride, the insulating mask layer 335, the channel layer 350, and the first dielectric layer 341 are not etched. Since portions of each of the second dielectric layers 342 are etched, the two sidewalls of at least one of the first dielectric layers 341 are partially exposed. Moreover, since a portion of the spacer insulating layer 370 is also etched, the sidewalls of the channel layer 350 are partially exposed.

由於第二介電層342的厚度不同,第二介電層342在蝕刻效應(etching loading effect)下會被蝕刻出不同的深度。 Due to the different thicknesses of the second dielectric layer 342, the second dielectric layer 342 is etched to different depths under the etching loading effect.

接著,如第5E圖所示,蝕刻部分之各個第一介電層341。在此步驟中,係利用磷酸(H3PO4)來蝕刻氮化矽。由 於磷酸對於多晶矽及氧化矽具有高度選擇性,通道層350、第二介電層342及間隔絕緣層370不會在此步驟被蝕刻。於此步驟中,絕緣遮罩層335也被凹進(recessed)。 Next, as shown in FIG. 5E, portions of the respective first dielectric layers 341 are etched. In this step, cesium nitride is etched using phosphoric acid (H3PO4). by Since phosphoric acid is highly selective for polycrystalline germanium and germanium oxide, the channel layer 350, the second dielectric layer 342, and the spacer insulating layer 370 are not etched at this step. In this step, the insulating mask layer 335 is also recessed.

在此步驟中,由於部分之各個第一介電層341被蝕刻,故各個第二介電層342的二側壁被部分地暴露出來。如此一來,通道層350的頂端高於第一介電層341之頂端及第二介電層342之頂端。 In this step, since portions of the respective first dielectric layers 341 are etched, the two sidewalls of the respective second dielectric layers 342 are partially exposed. As such, the top end of the channel layer 350 is higher than the top end of the first dielectric layer 341 and the top end of the second dielectric layer 342.

由於第一介電層341的厚度不同,第一介電層341在蝕刻效應下會被蝕刻出不同的深度。 Due to the different thicknesses of the first dielectric layer 341, the first dielectric layer 341 is etched to different depths under the etching effect.

接著,如第5F圖所示,形成接墊層360於第一介電層341、第二介電層342及間隔絕緣層370上,以連接通道層350。接墊層360的材料例如是N型摻雜多晶矽。 Next, as shown in FIG. 5F, a pad layer 360 is formed on the first dielectric layer 341, the second dielectric layer 342, and the spacer insulating layer 370 to connect the channel layer 350. The material of the pad layer 360 is, for example, an N-type doped polysilicon.

接墊層360可做為一個接墊來連接位元線。接墊層360之厚度T4大於通道層350的厚度T5,使得介於位元線與接墊層360間之接觸電阻便可降低。此外,通道層350及接墊層360之連接係位於通道層350之側壁,而不是在通道層350之頂部。如此一來,可以增加製程窗口(process window)並降低電阻。再者,接墊層360之寬度W1相當的大,使得進行位元線與接墊層360的連接製程也變得更容易。在此結構中不會發生角落邊緣效應(corner edge effect),其理由是第一介電層341皆不位於任何的角落邊緣,故不會因電場效應而容易被程式化或抹除。 The pad layer 360 can be used as a pad to connect the bit lines. The thickness T4 of the pad layer 360 is greater than the thickness T5 of the channel layer 350, so that the contact resistance between the bit line and the pad layer 360 can be lowered. In addition, the connection of the channel layer 350 and the pad layer 360 is located on the sidewall of the channel layer 350 rather than at the top of the channel layer 350. In this way, you can increase the process window and reduce the resistance. Moreover, the width W1 of the pad layer 360 is relatively large, so that the connection process for the bit line and the pad layer 360 is also made easier. The corner edge effect does not occur in this structure because the first dielectric layer 341 is not located at any corner edge and is not easily stylized or erased by the electric field effect.

於上述製造方法中,絕緣遮罩層335用以在製程中 穩固堆疊結構330,以避免堆疊結構330於製程中崩塌。於另一實施例中,半導體裝置之製造方法可以不使用絕緣遮罩層335。請參照第6A~6F圖,其繪示另一實施例之半導體裝置400之製造方法的流程圖。在此實施例中,頂部絕緣層433的厚度增加,使得頂部絕緣層433即可以用來穩固堆疊結構430。 In the above manufacturing method, the insulating mask layer 335 is used in the manufacturing process. The stacked structure 330 is stabilized to avoid collapse of the stacked structure 330 during the process. In another embodiment, the method of fabricating the semiconductor device may not use the insulating mask layer 335. Please refer to FIGS. 6A-6F for a flowchart of a method of fabricating the semiconductor device 400 of another embodiment. In this embodiment, the thickness of the top insulating layer 433 is increased such that the top insulating layer 433 can be used to stabilize the stacked structure 430.

如第6F圖所示,接墊層460用以做為一個接墊來連接位元線。接墊層460之厚度T6係大於通道層350之厚度T5,使得介於位元線與接墊層460間之接觸電阻便可降低。再者,接墊層460之寬度W2相當的大,使得進行位元線與接墊層460的連接製程也變得更容易。 As shown in FIG. 6F, the pad layer 460 is used as a pad to connect the bit lines. The thickness T6 of the pad layer 460 is greater than the thickness T5 of the channel layer 350 such that the contact resistance between the bit line and the pad layer 460 can be reduced. Moreover, the width W2 of the pad layer 460 is relatively large, so that the connection process for the bit line and the pad layer 460 is also made easier.

綜上所述,雖然本發明已以較佳實施例揭露如上,然其並非用以限定本發明。本發明所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾。因此,本發明之保護範圍當視後附之申請專利範圍所界定者為準。 In conclusion, the present invention has been disclosed in the above preferred embodiments, and is not intended to limit the present invention. A person skilled in the art can make various changes and modifications without departing from the spirit and scope of the invention. Therefore, the scope of the invention is defined by the scope of the appended claims.

100‧‧‧半導體裝置 100‧‧‧Semiconductor device

110‧‧‧基板 110‧‧‧Substrate

120‧‧‧底部絕緣層 120‧‧‧Bottom insulation

130‧‧‧堆疊結構 130‧‧‧Stack structure

131‧‧‧閘極層 131‧‧‧ gate layer

132‧‧‧閘極絕緣層 132‧‧‧ gate insulation

133‧‧‧頂部絕緣層 133‧‧‧Top insulation

134‧‧‧導電遮罩層 134‧‧‧conductive mask layer

140‧‧‧電荷捕捉結構 140‧‧‧Charge trapping structure

141‧‧‧第一介電層 141‧‧‧First dielectric layer

142‧‧‧第二介電層 142‧‧‧Second dielectric layer

150‧‧‧通道層 150‧‧‧channel layer

160‧‧‧接墊層 160‧‧‧Pushing layer

170‧‧‧間隔絕緣層 170‧‧‧ spaced insulation

D‧‧‧汲極 D‧‧‧汲

G‧‧‧閘極 G‧‧‧ gate

S‧‧‧源極 S‧‧‧ source

T1、T2‧‧‧厚度 T1, T2‧‧‧ thickness

Claims (9)

一種半導體裝置之製造方法,包括:形成二堆疊結構於一基板之上,其中各該堆疊結構包括複數個閘極層、複數個閘極絕緣層及一頂部絕緣層,該些閘極層及該些閘極絕緣層交替地設置,該頂部絕緣層設置於該些閘極層及該些閘極絕緣層上;形成一電荷捕捉結構及一通道層於各該堆疊結構之一側表面,其中各該電荷捕捉結構包括複數個第一介電層及複數個第二介電層;蝕刻部分之各該第一介電層,並蝕刻部分之各該第二介電層,以暴露部分之該通道層;及形成一接墊層(landing pad layer)於該些第一介電層及該些第二介電層上,以連接該通道層。 A method of fabricating a semiconductor device includes: forming a two-stack structure on a substrate, wherein each of the stacked structures includes a plurality of gate layers, a plurality of gate insulating layers, and a top insulating layer, the gate layers and the gate layer The gate insulating layers are alternately disposed, the top insulating layer is disposed on the gate layers and the gate insulating layers; forming a charge trapping structure and a channel layer on one side surface of each of the stacked structures, wherein each The charge trapping structure includes a plurality of first dielectric layers and a plurality of second dielectric layers; etching each of the first dielectric layers and etching portions of the second dielectric layers to expose portions of the channels And forming a landing pad layer on the first dielectric layer and the second dielectric layers to connect the channel layer. 如申請專利範圍第1項所述之半導體裝置之製造方法,其中在蝕刻部分之各該第一介電層之步驟中,各該第一介電層被蝕刻之深度不同,在蝕刻部分之各該第二介電層之步驟中,各該第二介電層被蝕刻之深度不同。 The method of fabricating a semiconductor device according to claim 1, wherein in the step of etching each of the first dielectric layers, each of the first dielectric layers is etched to a different depth, and each of the etched portions In the step of the second dielectric layer, each of the second dielectric layers is etched to a different depth. 如申請專利範圍第1項所述之半導體裝置之製造方法,其中在蝕刻部分之各該第一介電層之步驟中,該些第二介電層之至少一的二側壁被部分地暴露,在蝕刻部分之各該第二介電層之步 驟中,該些第一介電層之至少一的二側壁被部分地暴露。 The method of fabricating a semiconductor device according to claim 1, wherein in the step of etching each of the first dielectric layers, the two sidewalls of at least one of the second dielectric layers are partially exposed. Stepping on each of the second dielectric layers in the etched portion In the step, the two sidewalls of at least one of the first dielectric layers are partially exposed. 如申請專利範圍第1項所述之半導體裝置之製造方法,更包括:填充一間隔絕緣層於一溝槽中,該溝槽形成於該些堆疊結構之間;其中於蝕刻部分之各該第二介電層之步驟中,部分之該間隔絕緣層也被蝕刻,使得該通道層之頂端高於該些第一介電層之頂端及該些第二介電層之頂端。 The method for fabricating a semiconductor device according to claim 1, further comprising: filling a spacer insulating layer in a trench, the trench being formed between the stacked structures; wherein each of the etching portions In the step of the two dielectric layers, part of the spacer insulating layer is also etched such that the top end of the channel layer is higher than the top ends of the first dielectric layers and the top ends of the second dielectric layers. 如申請專利範圍第4項所述之半導體裝置之製造方法,其中在形成該接墊層之步驟中,該接墊層更形成於該間隔絕緣層上。 The method of fabricating a semiconductor device according to claim 4, wherein in the step of forming the pad layer, the pad layer is further formed on the spacer insulating layer. 如申請專利範圍第1項所述之半導體裝置之製造方法,其中在形成該些堆疊結構之步驟中,各該堆疊結構更包括一導電遮罩層,該導電遮罩層設置於該頂部絕緣層上;在形成該接墊層之步驟中,該接墊層更形成於該導電遮罩層上。 The manufacturing method of the semiconductor device of claim 1, wherein in the step of forming the stacked structures, each of the stacked structures further comprises a conductive mask layer, and the conductive mask layer is disposed on the top insulating layer The step of forming the pad layer is further formed on the conductive mask layer. 一種半導體裝置,包括: 一基板;二堆疊結構,各該堆疊結構包括:複數個閘極層及複數個閘極絕緣層,該些閘極層及該些閘極絕緣層交替地設置;及一頂部絕緣層,設置於該些閘極層及該些閘極絕緣層上;一電荷捕捉結構及一通道層,設置於各該堆疊結構之一側表面,其中各該電荷捕捉結構包括複數個第一介電層及複數個第二介電層,該通道層之頂部高於各該第一介電層之頂部及各該第二介電層之頂部;一接墊層,接觸於該些第一介電層及該些第二介電層上,以連接該通道層;以及一間隔絕緣層,設置於該些堆疊結構之間之一溝槽內,其中該接墊層更設置於該間隔絕緣層上。 A semiconductor device comprising: a stacking structure, each of the stacking structures includes: a plurality of gate layers and a plurality of gate insulating layers, the gate layers and the gate insulating layers are alternately disposed; and a top insulating layer is disposed on The gate layer and the gate insulating layer; a charge trapping structure and a channel layer disposed on one side surface of each of the stacked structures, wherein each of the charge trapping structures comprises a plurality of first dielectric layers and a plurality of a second dielectric layer, the top of the channel layer is higher than the top of each of the first dielectric layers and the top of each of the second dielectric layers; a pad layer contacting the first dielectric layers and the The second dielectric layer is connected to the channel layer; and a spacer insulating layer is disposed in one of the trenches between the stacked structures, wherein the pad layer is further disposed on the spacer insulating layer. 如申請專利範圍第7項所述之半導體裝置,其中該些第一介電層之頂部位於不同高度,該些第二介電層之頂部位於不同高度。 The semiconductor device of claim 7, wherein the tops of the first dielectric layers are at different heights, and the tops of the second dielectric layers are at different heights. 如申請專利範圍第7項所述之半導體裝置,其中該接墊層之厚度大於該通道層之厚度。 The semiconductor device of claim 7, wherein the thickness of the pad layer is greater than the thickness of the channel layer.
TW104118236A 2015-06-05 2015-06-05 Semiconductor device and manufacturing method thereof TWI607528B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW104118236A TWI607528B (en) 2015-06-05 2015-06-05 Semiconductor device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW104118236A TWI607528B (en) 2015-06-05 2015-06-05 Semiconductor device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
TW201644002A TW201644002A (en) 2016-12-16
TWI607528B true TWI607528B (en) 2017-12-01

Family

ID=58055997

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104118236A TWI607528B (en) 2015-06-05 2015-06-05 Semiconductor device and manufacturing method thereof

Country Status (1)

Country Link
TW (1) TWI607528B (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140141583A1 (en) * 2010-09-01 2014-05-22 Macronix International Co., Ltd. Memory architecture of 3d array with diode in memory string
TW201517242A (en) * 2013-10-29 2015-05-01 Macronix Int Co Ltd Three dimensional stacked semiconductor structure and method for manufacturing the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140141583A1 (en) * 2010-09-01 2014-05-22 Macronix International Co., Ltd. Memory architecture of 3d array with diode in memory string
TW201517242A (en) * 2013-10-29 2015-05-01 Macronix Int Co Ltd Three dimensional stacked semiconductor structure and method for manufacturing the same

Also Published As

Publication number Publication date
TW201644002A (en) 2016-12-16

Similar Documents

Publication Publication Date Title
US10269933B2 (en) Recessing STI to increase Fin height in Fin-first process
KR101368021B1 (en) Methods of forming an array of memory cells, methods of forming a plurality of field effect transistors, methods of forming source/drain regions and isolation trenches, and methods of forming a series of spaced trenches into a substrate
CN110211966B (en) 3D NAND memory device and manufacturing method thereof
JP5603688B2 (en) Method for forming floating gate of nonvolatile memory cell
US10559584B2 (en) Semiconductor device including a dielectric layer
US9437611B1 (en) Semiconductor device and manufacturing method thereof
US20140054674A1 (en) Nonvolatile memory device and method for fabricating the same
CN111106176B (en) Semiconductor device, method of manufacturing the same, and electronic apparatus including the same
TWI514577B (en) Semiconductor device and method for fabricating the same
TWI572019B (en) Vertical channel structure
US9576972B2 (en) Semiconductor device and manufacturing method thereof
TWI564996B (en) Semiconductor device and manufacturing method thereof
CN112838095B (en) Three-dimensional memory and manufacturing method thereof
TWI466177B (en) Semiconductor structure and manufacturing method of the same
TWI440138B (en) Memory and manufacturing method thereof
CN113130492A (en) Semiconductor structure and device
US20150287644A1 (en) Method of fabricating semiconductor device
TWI607528B (en) Semiconductor device and manufacturing method thereof
TWI569372B (en) Semiconductor device and manufacturing method thereof
US8138077B2 (en) Flash memory device and method of fabricating the same
US9337209B1 (en) Semiconductor device and method of fabricating the same
CN105990248A (en) Semiconductor device and manufacture method thereof
US20130264683A1 (en) Semiconductor structure and manufacturing method of the same
US9461062B1 (en) Semiconductor device and manufacturing method thereof
US11792990B2 (en) Methods of manufacturing vertical memory devices