TWI606248B - Optical alignment device and alignment method - Google Patents
Optical alignment device and alignment method Download PDFInfo
- Publication number
- TWI606248B TWI606248B TW104141306A TW104141306A TWI606248B TW I606248 B TWI606248 B TW I606248B TW 104141306 A TW104141306 A TW 104141306A TW 104141306 A TW104141306 A TW 104141306A TW I606248 B TWI606248 B TW I606248B
- Authority
- TW
- Taiwan
- Prior art keywords
- optical
- light
- wafer
- optical element
- sensor
- Prior art date
Links
- 230000003287 optical effect Effects 0.000 title claims description 275
- 238000000034 method Methods 0.000 title claims description 26
- 235000012431 wafers Nutrition 0.000 claims description 114
- 239000000758 substrate Substances 0.000 claims description 26
- 238000006243 chemical reaction Methods 0.000 claims description 5
- 238000001514 detection method Methods 0.000 claims description 5
- 230000000007 visual effect Effects 0.000 description 8
- 239000011521 glass Substances 0.000 description 7
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- 238000012545 processing Methods 0.000 description 3
- 230000001186 cumulative effect Effects 0.000 description 2
- 238000005286 illumination Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000013011 mating Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
Landscapes
- Photovoltaic Devices (AREA)
Description
本發明係有關於一種光學對位裝置及其對位方法;特別是指一種光檢測模組接收光學模組輸出的光線,配合顯示器顯示出不同數值,以輔助人員操作調整光學模組,而獲得理想位置之技術。The invention relates to an optical alignment device and a aligning method thereof; in particular, a light detecting module receives light outputted by an optical module, and displays different values in conjunction with the display to assist a person to operate and adjust the optical module, thereby obtaining The technology of the ideal location.
應用光學透鏡(例如Fresnel lens)組合具有光電轉換功能的太陽電池模組或晶片,來收集入射光之集光模組,係已為習知技藝。習知的集光模組包括光學透鏡或一次光學元件(或稱聚光器或SILICONE ON GLASS,簡稱SOG)、光學蓋板、和底板等部分的組合型態。例如,US 7473000 B2「SHIELD FOR SOLAR RADIATION COLLECTOR」、及US 2009/0320923「PHOTOVOLTAIC CONCENTRATING APPARATUS」專利案等,係提供了典型的實施例。或應用發光晶片、發光二極體(Light Emitting Diode,或稱LED)形成光源或照明裝置,也已被廣泛使用在許多場合或環境。例如,US 2007/0284563 A1「LIGHT EMITTING DEVICE INCLUDING RGB LIGHT EMITTING DIODES AND PHOSPHOR 」,係提供了一個可行的實施例。It is a well-known technique to use an optical lens (for example, a Fresnel lens) to combine a solar cell module or a wafer having a photoelectric conversion function to collect a light collecting module of incident light. Conventional light collection modules include a combination of optical lenses or primary optical components (or concentrators or SILICONE ON GLASS, SOG for short), optical covers, and backplanes. For example, US 7473000 B2 "SHIELD FOR SOLAR RADIATION COLLECTOR", and US 2009/0320923 "PHOTOVOLTAIC CONCENTRATING APPARATUS" patents, etc., provide typical embodiments. Or using a light-emitting chip, a light emitting diode (LED) to form a light source or a lighting device, has also been widely used in many occasions or environments. For example, US 2007/0284563 A1 "LIGHT EMITTING DEVICE INCLUDING RGB LIGHT EMITTING DIODES AND PHOSPHOR" provides a possible embodiment.
舊法也揭示了將多個集光晶片固定在一玻璃基板上,形成陣列太陽能接收器,組合鋁製底板,配合框架設置在鋁製底板和光學蓋板(或SOG)之間,將上述組件固定組合,來獲得大量收集入射光的集光系統的型態。例如,US 2009/0126794 A1「Photovoltaic Concentrator Module With Multifunction Frame」、US 2009/0199890「Solar Cell Receiver For Concentrated Photovoltaic System For III-V Semiconductor Solar Cell」、及US 2009/0223555「High Efficiency Concentrating Photovoltaic Module Method And Apparatus」專利案等,係提供了可行的實施例。The old method also discloses that a plurality of light collecting wafers are fixed on a glass substrate to form an array solar receiver, a combined aluminum base plate, and a mating frame is disposed between the aluminum base plate and the optical cover (or SOG), and the above components are A fixed combination is used to obtain a large number of types of light collecting systems that collect incident light. For example, US 2009/0126794 A1 "Photovoltaic Concentrator Module With Multifunction Frame", US 2009/0199890 "Solar Cell Receiver For Concentrated Photovoltaic System For III-V Semiconductor Solar Cell", and US 2009/0223555 "High Efficiency Concentrating Photovoltaic Module Method And" The Apparatus and the like provide a possible embodiment.
就像那些熟習此技藝的人所知悉,上述使用鋁製底板、框架等組合型態的集光系統,都具有加工的累積誤差;所述的累積誤差通常會大於光學的容忍誤差,而大大的影響或降低了集光系統的轉換效能和發電效率的穩定性。As those skilled in the art are aware, the above-mentioned concentrating systems using a combination of aluminum base plates and frames have cumulative errors in processing; the cumulative error is usually greater than the optical tolerance error, and is greatly It affects or reduces the stability of the conversion efficiency and power generation efficiency of the light collecting system.
為了降低上述的組裝誤差,習知技藝是經由人員反覆操作調整玻璃基板在鋁製底板、框架內的位置,使晶片位在正確位置或設定位置,而盡可能的對準光學透鏡(或稱一次光學元件),期望達到精確的組裝平行度。In order to reduce the above assembly error, the prior art is to manually adjust the position of the glass substrate in the aluminum base plate and the frame, and position the wafer in the correct position or set position, and align the optical lens as much as possible (or once). Optical components), it is desirable to achieve accurate assembly parallelism.
一個有關這類反覆操作調整作業的課題是,習知技藝也應用二次光學或LED輸出光線,通過光學透鏡,檢視光線是否聚焦於晶片的中心區域,避免光線的入射或光路落在晶片(或電池模組)的非中心區域,降低集光效能的情形。One subject related to this type of repetitive operation adjustment is that the conventional technique also applies secondary optics or LED output light through an optical lens to see if the light is focused on the center of the wafer, avoiding the incidence of light or the optical path falling on the wafer (or The non-central area of the battery module reduces the efficiency of the light collection.
不過就像那些熟習此技藝的人所知悉,當人員從發光系統或集光系統外部觀察光線入射到晶片的位置時,發光系統或集光系統的組裝高度會造成人員觀測位在底部位置的晶片時,產生視覺誤差。所述的高度視覺誤差會影響人員判斷晶片位置的正確度,而這情形並不是我們所期望的。However, as those skilled in the art know, when a person observes the position of light incident on the wafer from outside the illumination system or the light collection system, the assembly height of the illumination system or the light collection system causes the person to observe the wafer at the bottom position. When, a visual error occurs. The high degree of visual error can affect the accuracy of the person's judgment of the wafer position, which is not what we would expect.
代表性的來說,這些參考資料顯示了有關光源、光學組件或發光/集光系統在組裝配合和應用方面的技藝;它們也反映出這些光學組件或集光系統在某些組裝應用的情形中,所存在的一些問題,例如發光/集光模組或系統的加工和組裝誤差、人員觀測的高度視覺誤差,增加了人員反覆操作調整晶片和玻璃基板位置的頻率等情形。因此,考量提供一種可以輔助人員組裝發光/集光系統的晶片對位裝置和對位作業方法,來改善上述習知技藝存在的問題;並且,所述晶片對位裝置和對位作業方法可顯示科學數據或數值,以指引人員獲得晶片的正確位置或計劃位置。而這些課題在上述的參考資料中均未被教示或具體揭露。Representatively, these references show the art of assembly, application, and application of light sources, optical components, or illuminating/light concentrating systems; they also reflect the fact that these optical components or concentrating systems are used in certain assembly applications. Some problems, such as processing and assembly errors of the illuminating/collecting module or system, and high visual errors observed by personnel, increase the frequency at which personnel repeatedly operate to adjust the position of the wafer and the glass substrate. Therefore, it is considered to provide a wafer aligning device and a aligning method capable of assisting a person in assembling a illuminating/collecting system to improve the problems of the above-mentioned prior art; and the wafer aligning device and the aligning method can be displayed Scientific data or numerical values to guide personnel in obtaining the correct location or planned location of the wafer. None of these topics have been taught or specifically disclosed in the above references.
爰是,本發明之主要目的即在於提供一種光學對位裝置及其對位方法,提供利於操作、改善人員視覺誤差而影響晶片正確位置等作用。包括光檢測模組和第一光學元件的組合;光檢測模組具有感應器和連接感應器的顯示器,使感應器中心和第一光學元件中心對應設置在同一參考軸上。以及,提供一光學模組,具有可選擇性輸出光線的晶片和設置在光線輸出路徑上的第二光學元件。該第一光學元件將晶片輸出的光線聚焦、導向於光檢測模組之感應器;依據光線聚焦於感應器的位置,使顯示器顯示不同數值,提供指引人員調整獲得晶片正確位置或理想位置之作業。Therefore, the main object of the present invention is to provide an optical alignment device and a alignment method thereof, which provide functions for facilitating operation, improving visual errors of personnel, and affecting the correct position of the wafer. The invention comprises a combination of a light detecting module and a first optical component; the light detecting module has a sensor and a display connected to the sensor, so that the center of the sensor and the center of the first optical component are correspondingly disposed on the same reference axis. And, an optical module is provided having a wafer for selectively outputting light and a second optical element disposed on the light output path. The first optical component focuses and directs the light outputted by the wafer to the sensor of the light detecting module; according to the position where the light is focused on the sensor, the display displays different values, and provides guidance for the person to adjust the correct position or ideal position of the wafer. .
根據本發明之光學對位裝置,包括多個晶片設置在一玻璃基板上;以及,一框架組合底板和多個光 學透鏡(或稱第二光學元件)構成的光學陣列模組。並且,使該晶片和基板被收容在框架裏面,而使每一個晶片對應每一個光學透鏡(或第二光學元件),共同形成一太陽能陣列接收模組。An optical alignment device according to the present invention comprises a plurality of wafers disposed on a glass substrate; and a frame assembly substrate and an optical array module comprising a plurality of optical lenses (or second optical elements). Moreover, the wafer and the substrate are housed in the frame such that each wafer corresponds to each optical lens (or second optical element) to form a solar array receiving module.
在所採的實施例中,該光學陣列模組上(對應)設置有多個光檢測模組和第一光學元件。當每一個晶片輸出的光線通過光學陣列模組、第一光學元件後,會聚焦於光檢測模組的感應器;並且,經顯示器顯示個別數值或數值總和,提供指引人員調整獲得光學陣列模組或晶片理想位置之作用,改善人員觀測產生視覺誤差之情形。In the embodiment, the optical array module is provided (correspondingly) with a plurality of light detecting modules and first optical elements. When the light outputted by each of the chips passes through the optical array module and the first optical component, the light is focused on the sensor of the light detecting module; and the display displays individual values or numerical sums, and provides guidance to adjust the optical array module. Or the role of the ideal position of the wafer to improve the situation in which human observations produce visual errors.
根據本發明之光學對位方法,包括:作業(A),提供光檢測模組、第一光學元件組合光學模組;光檢測模組具有感應器和連接感應器的顯示器,使感應器中心和第一光學元件中心對應設置在同一參考軸上。光學模組是一發光模組或太陽能集光模組,具有可選擇性輸出光線的晶片和第二光學元件;第二光學元件和第一光學元件設置在晶片輸出光線的路徑上。作業(B),使發光晶片或光電轉換功能的晶片輸出光線,通過第二光學元件和第一光學元件。該第一光學元件將晶片輸出的光線聚焦、導向光檢測模組之感應器;依據光線聚焦形成光點和光點落在感應器的位置,使顯示器顯示出不同數值。以及,作業(C),人員依據上述數值,操作調整晶片位置,來獲得晶片正確位置或理想位置。The optical alignment method according to the present invention comprises: an operation (A), providing a light detecting module, and a first optical component combining optical module; the light detecting module has a sensor and a display connected to the sensor, so that the sensor center and The centers of the first optical elements are correspondingly disposed on the same reference axis. The optical module is a light emitting module or a solar light collecting module having a wafer for selectively outputting light and a second optical component; the second optical component and the first optical component are disposed on a path of the output light of the wafer. In operation (B), the illuminating wafer or the photoelectric conversion function of the wafer outputs light through the second optical element and the first optical element. The first optical component focuses the light output from the wafer to the sensor of the light detecting module; the light spot and the light spot fall on the position of the sensor according to the light focusing, so that the display displays different values. And, in operation (C), the person adjusts the wafer position according to the above numerical values to obtain the correct position or ideal position of the wafer.
請參閱第1、2及3圖,本發明之光學對位裝置包括光檢測模組和第一光學元件的組合;概分別以參考編號30、10表示之。光檢測模組30可選擇檢測光線照度的光照度計、檢測光線流明值的積分球或其類似儀器。光檢測模組30配合支架45設置在第一光學元件10上方位置,包括一感應器31和連接感應器31的顯示器32。在所採的實施例中,第一光學元件10可選擇凸面光學透鏡或菲涅爾光學透鏡(Fresnel lens),使其凸面或透鏡齒紋11朝向感應器31的方向,並且使感應器31中心和第一光學元件10中心對應設置在同一參考軸X上。Referring to Figures 1, 2 and 3, the optical alignment device of the present invention comprises a combination of a light detecting module and a first optical component; respectively, designated by reference numerals 30, 10. The light detecting module 30 can select an illuminometer that detects illuminance of the illuminance, an integrating sphere that detects the illuminance of the light, or the like. The light detecting module 30 is disposed at a position above the first optical element 10 in cooperation with the bracket 45, and includes an inductor 31 and a display 32 connected to the inductor 31. In the embodiment taken, the first optical element 10 may select a convex optical lens or a Fresnel lens such that its convex or lens rib 11 faces the direction of the inductor 31 and center the inductor 31 It is disposed on the same reference axis X corresponding to the center of the first optical element 10.
在可行的實施例中,感應器31的高度和位置考量,是設置在光線通過第一光學元件10後聚焦的位置。以及,依據光線聚焦形成的光點落在感應器31的不同位置,顯示器32會顯示不同數據或數值;此部分在下文中還會予以敘述。In a possible embodiment, the height and positional considerations of the inductor 31 are set at a position where the light is focused after passing through the first optical element 10. And, the spot formed by the focus of the light falls on different positions of the sensor 31, and the display 32 displays different data or values; this portion will be described later.
圖中也顯示了該光檢測模組30、第一光學元件10可設置或組合在一光學模組100上。光學模組100可選擇具有光電轉換功能的晶片,來構成收集入射光之集光模組或太陽能接收模組,或選擇發光晶片、發光二極體(Light Emitting Diode,或稱LED)形成光源/照明裝置或發光模組。The light detecting module 30 and the first optical component 10 can also be disposed or combined on an optical module 100. The optical module 100 can select a wafer with photoelectric conversion function to form a light collecting module or a solar receiving module for collecting incident light, or select a light emitting chip, a light emitting diode (LED) to form a light source/ Lighting device or lighting module.
在所採的實施例中,光學模組100選擇集光模組為說明實施例,包括框架40、底板41組合晶片50 和第二光學元件20。晶片50可黏合或固定在基板55上;使晶片50及/或基板55配置在底板41上,第二光學元件20配合框架40而設置在晶片50的上方的位置。晶片50可選擇性的電性連接,而產生輸出光線的作用;以及,第二光學元件20和第一光學元件10對應設置在晶片50輸出光線的路徑上,使第二光學元件20位在第一光學元件10下方位置。所述基板55選擇玻璃材料製成一平面板片結構的型態。In the embodiment taken, the optical module 100 selects the light collecting module as an illustrative embodiment, including the frame 40, the bottom plate 41, and the second optical element 20. The wafer 50 can be bonded or fixed to the substrate 55; the wafer 50 and/or the substrate 55 are disposed on the substrate 41, and the second optical element 20 is disposed at a position above the wafer 50 in cooperation with the frame 40. The wafer 50 is selectively electrically connected to generate an output light; and the second optical element 20 and the first optical element 10 are disposed correspondingly on the path of the output light of the wafer 50, so that the second optical element 20 is in the A position below the optical element 10. The substrate 55 is selected from a glass material to form a planar sheet structure.
第1、2及3圖也描繪了第二光學元件20選擇凸面光學透鏡或菲涅爾光學透鏡(Fresnel lens),並且使其凸面或透鏡齒紋21朝向相反於第一次光學元件10的凸面或透鏡齒紋11的方向,或使第二光學元件20的凸面或透鏡齒紋21朝向晶片50的方向。第一光學元件10可設置在距離第二光學元件20一設定高度的位置,或使第一光學元件10直接對應固定在第二光學元件20上。以及,第二光學元件20的透鏡齒紋21的範圍或面積大於第一次光學元件10的透鏡齒紋11的範圍或面積。Figures 1, 2 and 3 also depict the second optical element 20 selecting a convex optical lens or a Fresnel lens with its convex or lens tang 21 facing the convex surface opposite the first optical element 10. Or the direction of the lens rib 11 or the direction in which the convex or lens rib 21 of the second optical element 20 faces the wafer 50. The first optical element 10 can be disposed at a set height from the second optical element 20, or the first optical element 10 can be directly fixed to the second optical element 20. And, the range or area of the lens ridges 21 of the second optical element 20 is larger than the range or area of the lens ribs 11 of the first optical element 10.
請參閱第3圖,為了確定晶片50位在光學模組100(或集光模組)內的理想位置或正確位置,使晶片50電性連接而可輸出光線51。該光線51通過第二光學元件20時,會形成平行光束(或有發散角度的光束)進入第一光學元件10;經第一次光學元件10使光線51聚焦、導向感應器31,並且經顯示器31顯示出數值。實質上,依據光線51聚焦形成的光點落在感應器31的不同位置,顯示器32會顯示不同數據或數值,提供人員觀測判斷晶片50理想的最佳位置或正確位置。Referring to FIG. 3, in order to determine the ideal position or the correct position of the wafer 50 in the optical module 100 (or the light collection module), the wafer 50 is electrically connected to output the light 51. When the light ray 51 passes through the second optical element 20, a parallel light beam (or a light beam having a divergent angle) is formed into the first optical element 10; the light ray 51 is focused by the first optical element 10, directed to the inductor 31, and passed through the display. 31 shows the value. In essence, the spot formed by focusing according to the light 51 falls at different positions of the sensor 31, and the display 32 displays different data or values, providing a person to observe the ideal optimal position or correct position of the wafer 50.
在實務操作中,當光線51聚焦到達感應器31的光點落在感應器31的中心區域時,其數值(例如,456 lux)會高於或大於光點落在感應器31其他區域的數值(例如,310~435 lux)。因此,人員可經由調整晶片50或基板55的位置,配合顯示器32顯示的數值,觀測和判斷光點是否落在感應器31的中心區域,而獲得晶片50的理想位置或正確位置。所述晶片50的理想位置或正確位置,可使晶片50達到收集太陽光的最大效率。In practice, when the spot of light 51 that reaches the sensor 31 falls to the center of the sensor 31, its value (for example, 456 lux) may be higher or larger than the value of the spot falling on other areas of the sensor 31. (for example, 310~435 lux). Therefore, the person can adjust the position of the wafer 50 or the substrate 55, match the value displayed by the display 32, observe and judge whether the light spot falls on the central area of the inductor 31, and obtain the ideal position or the correct position of the wafer 50. The desired or correct position of the wafer 50 allows the wafer 50 to achieve maximum efficiency in collecting sunlight.
也就是說,光檢測模組30和第一光學元件10配合第二光學元件20、晶片50的結構型態,提供了科學的數據或數值,讓人員調整晶片50位置的機制,可完全解決習知技藝使人員產生高度視覺誤差的情形。That is to say, the light detecting module 30 and the first optical component 10 cooperate with the structural form of the second optical component 20 and the wafer 50, and provide scientific data or numerical values, so that the mechanism for adjusting the position of the wafer 50 can be completely solved. Knowing the skill creates a situation where the person has a high degree of visual error.
第3圖也顯示了第二光學元件20的中心和晶片50(中心)的位置位在該參考軸X上的情形。Figure 3 also shows the situation where the center of the second optical element 20 and the position of the wafer 50 (center) are located on the reference axis X.
請參考第4圖,基於第二光學元件20的透鏡齒紋21(或凸面)的範圍或面積大於第一次光學元件10的透鏡齒紋11(或凸面)的範圍或面積,因此即使光檢測模組30和第一光學元件10的參考軸X偏離或沒有對齊第二光學元件20和晶片50的位置,第二光學元件20仍可將晶片50輸出的光線51導向第一光學元件10;並且,經第一次光學元件10使光線51聚焦、導向感應器31,配合顯示器31顯示出數值。Referring to FIG. 4, the range or area of the lens ridge 21 (or convex surface) based on the second optical element 20 is larger than the range or area of the lens rib 11 (or convex surface) of the first optical element 10, and thus even light detection The module 30 and the reference axis X of the first optical element 10 are offset or not aligned with the position of the second optical element 20 and the wafer 50, and the second optical element 20 can still direct the light 51 output from the wafer 50 to the first optical element 10; The light 51 is focused by the first optical element 10, directed to the sensor 31, and displayed in conjunction with the display 31.
上述實施例揭示了光檢測模組30和第一光學元件10組合光學模組100,光學模組100或第二光學元件20的位置和參考軸X沒有對齊時,仍可達到讓人員依據顯示器32顯示的數值,觀測和判斷光點是否落在感應器31的中心區域,來調整晶片50的位置。這有助於光檢測模組30、第一光學元件10和光學模組100的組合變得更容易,而降低人員為了對齊組合光檢測模組30、第一光學元件10和光學模組100的困難度,也相對提高了該光學對位裝置應用的便利性。The above embodiment discloses that the optical module 100 and the first optical component 10 are combined with the optical module 100. When the position of the optical module 100 or the second optical component 20 is not aligned with the reference axis X, the user can still reach the display according to the display 32. The displayed value is observed and judged whether or not the spot falls on the central area of the sensor 31 to adjust the position of the wafer 50. This facilitates the combination of the light detecting module 30, the first optical component 10, and the optical module 100, and reduces the number of people in order to align the combined light detecting module 30, the first optical component 10, and the optical module 100. The difficulty also increases the convenience of the application of the optical alignment device.
請參考第5、6圖,在一個修正的實施例中,多個晶片50分別對應設置在多個基板55上,使多個晶片50、多個基板55共同配置在一副板56上;以及,框架40組合底板41和多個光 學透鏡(或稱第二光學元件20)。並且,使該晶片50、基板55和副板56被收容在框架40和底板41裏面,而使每一個晶片50對應每一個光學透鏡(或第二光學元件20),共同形成一太陽能陣列接收模組500。Referring to FIGS. 5 and 6, in a modified embodiment, a plurality of wafers 50 are respectively disposed on a plurality of substrates 55 such that a plurality of wafers 50 and a plurality of substrates 55 are disposed together on a sub-board 56; The frame 40 combines the bottom plate 41 and a plurality of optical lenses (or second optical elements 20). Moreover, the wafer 50, the substrate 55 and the sub-board 56 are housed in the frame 40 and the bottom plate 41, so that each wafer 50 corresponds to each optical lens (or second optical element 20) to form a solar array receiving mode. Group 500.
在所採的實施例中,該太陽能陣列接收模組500的上方位置對應設有多個光檢測模組30和第一光學元件10。例如,使光檢測模組30和第一光學元件10分別設置在太陽能陣列接收模組500的四個角落或三角位置上,或設置在太陽能陣列接收模組500表面水平軸、垂直軸的位置上,或使每一個光檢測模組30和第一光學元件10對應設置在每一個第二光學元件20上方位置的型態。In the embodiment, the plurality of light detecting modules 30 and the first optical component 10 are correspondingly disposed above the solar array receiving module 500. For example, the light detecting module 30 and the first optical component 10 are respectively disposed at four corners or triangular positions of the solar array receiving module 500, or at the positions of the horizontal axis and the vertical axis of the surface of the solar array receiving module 500. Or a pattern in which each of the light detecting modules 30 and the first optical element 10 is disposed at a position above each of the second optical elements 20.
在可行的實施例中,光檢測模組30的感應器31可連接電腦60。當每一個晶片50輸出的光線通過太陽能陣列接收模組500的第二光學元件20後,第一光學元件10會將光線51聚焦於光檢測模組30的感應器31;並且,經電腦60顯示器顯示個別數值或數值總和,提供指引人員調整基板55或副板56在太陽能陣列接收模組500內的位置,而獲得晶片50理想位置或正確位置之作用,以及達到精確的組裝平行度的效果,改善人員觀測產生視覺誤差等情形。In a possible embodiment, the sensor 31 of the light detecting module 30 can be connected to the computer 60. After the light output from each of the wafers 50 passes through the second optical component 20 of the solar array receiving module 500, the first optical component 10 focuses the light 51 on the sensor 31 of the light detecting module 30; and, via the computer 60 display Displaying individual values or summation of values, providing guidance to the person to adjust the position of the substrate 55 or the sub-board 56 within the solar array receiving module 500 to obtain the desired position or correct position of the wafer 50, and to achieve accurate assembly parallelism, Improve the situation in which human observations produce visual errors.
請參閱第7圖,本發明還包括一光學對位方法;所述光學對位方法包括:作業(A),提供光檢測模組30、第一光學元件10組合光學模組100(或太陽能陣列接收模組500);光檢測模組30具有感應器31和連接感應器31的顯示器32(或電腦60),並且感應器31中心和第一光學元件10中心對應設置在同一參考軸X上。光學模組100具有可選擇性輸出光線51的晶片50和第二光學元件20;第二光學元件20和第一光學元件10設置在晶片50輸出光線51的路徑上。Referring to FIG. 7, the present invention further includes an optical alignment method; the optical alignment method includes: an operation (A), providing a light detecting module 30, and combining the optical module 100 of the first optical component 10 (or a solar array) The receiving module 500); the light detecting module 30 has a sensor 31 and a display 32 (or a computer 60) connected to the sensor 31, and the center of the sensor 31 and the center of the first optical element 10 are correspondingly disposed on the same reference axis X. The optical module 100 has a wafer 50 and a second optical element 20 that selectively output light rays 51; the second optical element 20 and the first optical element 10 are disposed on a path of the wafer 50 outputting light 51.
作業(B),使晶片50(電性連接)輸出光線51,通過第二光學元件20和第一光學元件10。該第一光學元件10將晶片50輸出的光線51聚焦、導向光檢測模組30之感應器31;依據光線51聚焦形成光點和光點落在感應器31的位置,使顯示器32(或電腦60)顯示出不同數值。以及,作業(C),人員依據上述顯示器32(或電腦60)顯示的數值,操作調整晶片50位置,來獲得晶片50正確位置或理想位置。In operation (B), the wafer 50 (electrically connected) outputs light 51 through the second optical element 20 and the first optical element 10. The first optical component 10 focuses the light 51 output from the wafer 50 to the sensor 31 of the light detecting module 30; the light beam 51 is focused according to the light 51 and the light spot falls on the position of the sensor 31, so that the display 32 (or the computer 60) ) shows different values. And, in operation (C), the person adjusts the position of the wafer 50 according to the value displayed by the display 32 (or the computer 60) to obtain the correct position or ideal position of the wafer 50.
代表性的來說,這光學對位裝置及其對位方法在具備有操作調整簡便的條件下,相較於舊法而言,係包括了下列的優點和考量: 1. 該光學對位裝置或其相關結合組件在使用和結構設計、組織關係等,已被重行設計考量。例如,在光學模組100的晶片50、第二光學元件20上方對應設置第一光學元件10和光檢測模組30;光檢測模組30包括感應器31、連接感應器31的顯示器32或電腦60,感應器31和第一光學元件10位在同一中心參考軸X上,配合作業(A)、(B)、(C)等流程,使晶片50輸出的光線51通過第二光學元件20、第一光學元件10,聚焦導向光檢測模組30的感應器31,經顯示器32或電腦60顯示不同數值等部分,明顯有別於舊法;並且,改變了它的使用型態和應用範圍。 2. 特別是,當人員調整晶片50或基板55位置,可直接從光檢測模組30獲得數值,觀測判斷出晶片50的理想位置或正確位置,使晶片50獲得最大集光效率之機制,不僅改善了習知技藝存在的加工和組裝誤差的情形,也使習知人員觀測產生的高度視覺誤差,增加人員反覆操作調整晶片和玻璃基板位置的頻率等情形,獲得明顯的改善。Typically, the optical alignment device and its alignment method have the following advantages and considerations in comparison with the old method under the condition of easy operation and adjustment: 1. The optical alignment device Or its associated components in use and structural design, organizational relationships, etc., have been redesigned. For example, the first optical component 10 and the light detecting module 30 are correspondingly disposed on the wafer 50 and the second optical component 20 of the optical module 100. The light detecting module 30 includes a sensor 31, a display 32 connected to the sensor 31, or a computer 60. The inductor 31 and the first optical component 10 are located on the same central reference axis X, and the light rays 51 outputted from the wafer 50 are passed through the second optical component 20 in accordance with the processes (A), (B), and (C). An optical component 10, which focuses on the sensor 31 of the light detecting module 30, displays different values and the like via the display 32 or the computer 60, which is distinct from the old method; and, changes its use type and application range. 2. In particular, when the person adjusts the position of the wafer 50 or the substrate 55, the value can be directly obtained from the light detecting module 30, and the ideal position or the correct position of the wafer 50 can be observed and observed, so that the wafer 50 can obtain the maximum light collecting efficiency mechanism. The processing and assembly errors existing in the prior art are improved, and the high visual errors caused by the observation by the conventional personnel are increased, and the frequency of the position of the wafer and the glass substrate is increased by the personnel repeatedly, and the improvement is obtained.
故,本發明係提供了一有效的光學對位裝置及其對位方法,其結構特徵不同於習知者,且具有舊法中無法比擬之優點,係展現了相當大的進步,誠已充份符合發明專利之要件。Therefore, the present invention provides an effective optical alignment device and its alignment method, the structural features of which are different from those of the prior art, and have the advantages unmatched in the old method, which shows considerable progress, and has been fully charged. The parts meet the requirements of the invention patent.
惟,以上所述者,僅為本發明之可行實施例而已,並非用來限定本發明實施之範圍,即凡依本發明申請專利範圍所作之均等變化與修飾,皆為本發明專利範圍所涵蓋。However, the above is only a possible embodiment of the present invention, and is not intended to limit the scope of the present invention, that is, the equivalent variations and modifications made by the scope of the present invention are covered by the scope of the present invention. .
10‧‧‧第一光學元件10‧‧‧First optical component
11、21‧‧‧透鏡齒紋11, 21‧‧‧ lens lens
20‧‧‧第二光學元件20‧‧‧Second optical component
30‧‧‧光檢測模組30‧‧‧Light detection module
31‧‧‧感應器31‧‧‧ sensor
32‧‧‧顯示器32‧‧‧ display
40‧‧‧框架40‧‧‧Frame
41‧‧‧底板41‧‧‧floor
45‧‧‧支架45‧‧‧ bracket
50‧‧‧晶片50‧‧‧ wafer
51‧‧‧光線51‧‧‧Light
55‧‧‧基板55‧‧‧Substrate
56‧‧‧副板56‧‧‧Sub board
60‧‧‧電腦60‧‧‧ computer
100‧‧‧光學模組100‧‧‧Optical module
500‧‧‧太陽能陣列接收模組500‧‧‧Solar array receiving module
第1圖係本發明之結構示意圖。Figure 1 is a schematic view of the structure of the present invention.
第2圖係第1圖之結構分解示意圖。Figure 2 is a schematic exploded view of the structure of Figure 1.
第3圖係第1圖之平面結構示意圖;圖中也顯示了晶片輸出光線通過第二光學元件、第一光學元件,聚焦於光檢測模組的感應器等部份之情形。Fig. 3 is a plan view showing the planar structure of Fig. 1; the figure also shows the case where the output light of the wafer passes through the second optical element, the first optical element, and the portion of the sensor of the photodetection module.
第4圖係本發明之一可行實施例之平面結構示意圖;顯示了光檢測模組偏離第二光學元件和晶片的情形。Figure 4 is a schematic plan view of a possible embodiment of the present invention; showing the situation in which the photodetection module is offset from the second optical component and the wafer.
第5圖係本發明之修正實施例的結構示意圖;描繪了太陽能陣列接收模組和光檢測模組等部分之結構情形。Figure 5 is a schematic view showing the structure of a modified embodiment of the present invention; the structure of a portion such as a solar array receiving module and a light detecting module is depicted.
第6圖係本發明之修正實施例之平面結構示意圖;顯示了光檢測模組的感應器連接電腦之結構情形。Figure 6 is a plan view showing the structure of the modified embodiment of the present invention; showing the structure of the sensor connected to the computer of the photodetection module.
第7圖係本發明之光學對位方法的作業流程圖。Figure 7 is a flow chart showing the operation of the optical alignment method of the present invention.
10‧‧‧第一光學元件 10‧‧‧First optical component
11、21‧‧‧透鏡齒紋 11, 21‧‧‧ lens lens
20‧‧‧第二光學元件 20‧‧‧Second optical component
30‧‧‧光檢測模組 30‧‧‧Light detection module
31‧‧‧感應器 31‧‧‧ sensor
32‧‧‧顯示器 32‧‧‧ display
40‧‧‧框架 40‧‧‧Frame
41‧‧‧底板 41‧‧‧floor
45‧‧‧支架 45‧‧‧ bracket
50‧‧‧晶片 50‧‧‧ wafer
55‧‧‧基板 55‧‧‧Substrate
Claims (19)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW104141306A TWI606248B (en) | 2015-12-09 | 2015-12-09 | Optical alignment device and alignment method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW104141306A TWI606248B (en) | 2015-12-09 | 2015-12-09 | Optical alignment device and alignment method |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201721169A TW201721169A (en) | 2017-06-16 |
TWI606248B true TWI606248B (en) | 2017-11-21 |
Family
ID=59687299
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW104141306A TWI606248B (en) | 2015-12-09 | 2015-12-09 | Optical alignment device and alignment method |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI606248B (en) |
-
2015
- 2015-12-09 TW TW104141306A patent/TWI606248B/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
TW201721169A (en) | 2017-06-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI644508B (en) | Manufacturing method of concentrating solar power generation unit, manufacturing apparatus used therefor, manufacturing method of concentrating solar power generation module, and manufacturing apparatus therefor | |
JP4732015B2 (en) | Concentrating solar power generation unit and concentrating solar power generation device | |
WO2006132265A1 (en) | Condensing photovoltaic power generation unit and condensing photovoltaic power generation system, and condensing lens, condensing lens structure, and production method of condensing lens structure | |
KR101685178B1 (en) | a Solar cell module with improved power generation efficiency | |
US20100319773A1 (en) | Optics for Concentrated Photovoltaic Cell | |
US8669508B2 (en) | Sun-tracking system | |
WO2015101196A1 (en) | Focusing leveling device | |
TW201946374A (en) | Inspection system for concentrating photovoltaic apparatus and inspection method for light receiving part | |
TW201541856A (en) | Concentrator photovoltaic unit, concentrator photovoltaic module, concentrator photovoltaic panel, and concentrator photovoltaic apparatus | |
JP2006343435A (en) | Condenser lens, condenser lens structure, condensed type photovoltaic system, and method of manufacturing condenser lens structure | |
US11290055B2 (en) | Optical light-transmission element for a solar energy assembly comprising a harvesting portion and an alignment control portion, and method for alignment of such | |
JP2000091612A (en) | Condensing and tracking power generator | |
CN110108309B (en) | High-sensitivity photoelectric sensing device | |
JPWO2012160994A1 (en) | Concentrating solar cell and manufacturing method thereof | |
Menard et al. | Optics development for micro-cell based CPV modules | |
US20150085277A1 (en) | Module integrated solar position sensing device for concentration photovoltaic devices | |
TWI606248B (en) | Optical alignment device and alignment method | |
KR101530979B1 (en) | Sensor Unit for Tracking Sunlight | |
KR20130085132A (en) | Fresnel lens - light pipe combined lens system for solar power generation | |
US20090255566A1 (en) | Solar cell modules | |
JP2015186421A (en) | Concentrating photovoltaic power generation module | |
CN110672201B (en) | Photoelectric sensing detection device based on curved surface light condensation | |
CN109073275B (en) | Sun tracking device | |
WO2015107559A1 (en) | Solar pointing system | |
KR20120000592U (en) | Cover of panel for focusing of solar cell |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |