TWI604582B - Solder bump arrangements for large area analog circuitry - Google Patents

Solder bump arrangements for large area analog circuitry Download PDF

Info

Publication number
TWI604582B
TWI604582B TW103138664A TW103138664A TWI604582B TW I604582 B TWI604582 B TW I604582B TW 103138664 A TW103138664 A TW 103138664A TW 103138664 A TW103138664 A TW 103138664A TW I604582 B TWI604582 B TW I604582B
Authority
TW
Taiwan
Prior art keywords
solder bumps
die
integrated circuit
analog
offset
Prior art date
Application number
TW103138664A
Other languages
Chinese (zh)
Other versions
TW201618255A (en
Inventor
唐納恰 羅尼
拉 多雷 瑪利提斯 德
克理斯多夫M 高曼
Original Assignee
吉林克斯公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 吉林克斯公司 filed Critical 吉林克斯公司
Priority to TW103138664A priority Critical patent/TWI604582B/en
Publication of TW201618255A publication Critical patent/TW201618255A/en
Application granted granted Critical
Publication of TWI604582B publication Critical patent/TWI604582B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1517Multilayer substrate
    • H01L2924/15192Resurf arrangement of the internal vias
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA

Landscapes

  • Semiconductor Integrated Circuits (AREA)

Description

用於大面積類比電路系統的焊料凸塊配置 Solder bump configuration for large area analog circuitry

本揭示內容關於積體電路(IC),且更特定而言,是關於搭配積體電路的大面積類比電路系統而使用的焊料凸塊配置。 The present disclosure relates to integrated circuits (ICs) and, more particularly, to solder bump arrangements for use with large area analog circuitry of integrated circuits.

積體電路(IC)包括類比電路的部分經常被視為高度敏感。該積體電路的這些區域可能受到電、熱、和機械梯度的影響。設計高效能類比電路仰賴於有效地處理這些梯度,特別是針對積體電路中佔有大面積的類比電路。 Portions of integrated circuits (ICs) that include analog circuits are often considered highly sensitive. These areas of the integrated circuit may be affected by electrical, thermal, and mechanical gradients. The design of high-performance analog circuits relies on the efficient processing of these gradients, especially for analog circuits that occupy large areas in integrated circuits.

舉例來說,考慮在數位至類比轉換器(DAC)中所使用的電流源。該電流源可以佔據著積體電路的大面積。舉例來說,「電流導引(current steering)」類型的數位至類比轉換器典型上包括佔據大面積的電流源以及複數個電流導引開關,該電流導引開關會將電流路由至選擇的輸出,其係取決於所輸入或提供的數位代碼。通常,該電流源由單元電晶體的陣列製成。電流源的大小可以是平方毫米的數量級。高效能數位至類比轉換器必須抵消在該積體電路中發生的電,熱和機械梯度,否則數位至類比轉換器的線性度會劣化。 For example, consider a current source used in a digital to analog converter (DAC). This current source can occupy a large area of the integrated circuit. For example, a "current steering" type of digital to analog converter typically includes a current source that occupies a large area and a plurality of current steering switches that route current to a selected output. , depending on the digit code entered or provided. Typically, the current source is made up of an array of unit cells. The size of the current source can be on the order of square millimeters. The high performance digital to analog converter must cancel the electrical, thermal and mechanical gradients that occur in the integrated circuit, otherwise the linearity of the digital to analog converter will degrade.

導線接合封裝經常用於對具有大部分類比電路的積體電路 進行封裝。在導線接合封裝中,接合襯墊分佈該積體電路的周圍,從而避免放置在敏感的類比電路上方的接合襯墊。然而,隨著覆晶技術變得越來越普遍,將晶粒可靠地機械附接至另一個結構,像是封裝基板或中介層,需要焊料凸塊的最小密度。現代積體電路使用覆晶技術來實施,且避免在敏感的類比電路上使用焊料凸塊,以避免類比電路的效能劣化。然而,避免在此積體電路的大部分之上形成凸塊可能違反積體電路製造的最小密度設計規則,並且會對所得到的積體電路的結構完整性造成問題。 Wire bond packages are often used for integrated circuits with most analog circuits Package. In wire bond packages, bond pads are distributed around the integrated circuit to avoid bonding pads placed over sensitive analog circuits. However, as flip chip technology becomes more and more common, reliable mechanical attachment of the die to another structure, such as a package substrate or interposer, requires a minimum density of solder bumps. Modern integrated circuits are implemented using flip chip technology and avoid the use of solder bumps on sensitive analog circuits to avoid performance degradation of analog circuits. However, avoiding the formation of bumps over most of this integrated circuit may violate the minimum density design rules for integrated circuit fabrication and may cause problems with the structural integrity of the resulting integrated circuit.

在一個態樣中,積體電路(IC)包括積體電路中的晶粒的類比區域。該類比區域包括類比電路。該積體電路進一步包括實施在該晶粒的表面上的複數個焊料凸塊。該複數個焊料凸塊係在與該晶粒的類比區域垂直對準的面積中。 In one aspect, an integrated circuit (IC) includes an analog region of a die in an integrated circuit. The analog area includes an analog circuit. The integrated circuit further includes a plurality of solder bumps implemented on a surface of the die. The plurality of solder bumps are in an area that is vertically aligned with the analog region of the die.

在另一個態樣中,對一種用於製造積體電路的方法進行描述。該製造的方法包括:在該積體電路的晶粒內實施類比區域。該類比區域包括類比電路。該製造的方法包括:將複數個焊料凸塊定位於該晶粒的表面上。該複數個焊料凸塊在該晶粒的表面上的面積與該晶粒的類比區域垂直對準。 In another aspect, a method for fabricating an integrated circuit is described. The method of fabrication includes performing an analog region within a die of the integrated circuit. The analog area includes an analog circuit. The method of fabrication includes positioning a plurality of solder bumps on a surface of the die. The area of the plurality of solder bumps on the surface of the die is vertically aligned with the analog region of the die.

100‧‧‧積體電路 100‧‧‧ integrated circuit

105‧‧‧中介層 105‧‧‧Intermediary

110‧‧‧晶粒 110‧‧‧ grain

115‧‧‧晶粒 115‧‧‧ grain

120‧‧‧晶粒 120‧‧‧ grain

125‧‧‧封裝基板 125‧‧‧Package substrate

130‧‧‧類比區域 130‧‧‧ analogy area

205‧‧‧焊料凸塊 205‧‧‧ solder bumps

210‧‧‧導電層 210‧‧‧ Conductive layer

215‧‧‧導線 215‧‧‧ wire

220‧‧‧穿孔 220‧‧‧Perforation

225‧‧‧焊料凸塊 225‧‧‧ solder bumps

235‧‧‧通孔 235‧‧‧through hole

505‧‧‧p型基板部分 505‧‧‧p type substrate part

510‧‧‧n型區域或井 510‧‧‧n type area or well

515‧‧‧金屬層 515‧‧‧metal layer

520‧‧‧金屬層 520‧‧‧metal layer

530‧‧‧金屬層 530‧‧‧metal layer

535‧‧‧絕緣材料 535‧‧‧Insulation materials

540‧‧‧閘極 540‧‧‧ gate

545‧‧‧閘極 545‧‧‧ gate

550‧‧‧閘極 550‧‧‧ gate

555‧‧‧通孔 555‧‧‧through hole

1200‧‧‧積體電路 1200‧‧‧ integrated circuit

1205‧‧‧晶粒安裝結構 1205‧‧‧Grade mounting structure

1210‧‧‧晶粒 1210‧‧‧ grain

1215‧‧‧晶粒 1215‧‧‧ grain

1220‧‧‧晶粒 1220‧‧‧ grain

1225‧‧‧焊料凸塊 1225‧‧‧ solder bumps

1230‧‧‧類比區域 1230‧‧‧ analogy area

1300‧‧‧方法 1300‧‧‧ method

1305‧‧‧方塊 1305‧‧‧

1310‧‧‧方塊 1310‧‧‧ square

1315‧‧‧方塊 1315‧‧‧ square

圖1是方塊圖,其例示範例性的多晶粒積體電路(IC)的俯視圖。 1 is a block diagram showing a top view of an exemplary multi-die integrated circuit (IC).

圖2是圖1的積體電路的橫截面側視圖。 Figure 2 is a cross-sectional side view of the integrated circuit of Figure 1.

圖3-1、圖3-2、圖3-3、和圖3-4是方塊圖,其例示在圖1 和圖2中的積體電路的類比區域的佈局。 Figure 3-1, Figure 3-2, Figure 3-3, and Figure 3-4 are block diagrams, which are illustrated in Figure 1. And the layout of the analogous area of the integrated circuit in Fig. 2.

圖4是圖3的區域的一部分的仰視圖。 4 is a bottom plan view of a portion of the area of FIG. 3.

圖5是圖1和圖2中的積體電路的晶粒的一部分的橫截面側視圖。 Figure 5 is a cross-sectional side view of a portion of a die of the integrated circuit of Figures 1 and 2.

圖6是一個範例性的焊料凸塊配置。 Figure 6 is an exemplary solder bump configuration.

圖7是另一個範例性的焊料凸塊配置。 Figure 7 is another exemplary solder bump configuration.

圖8是另一個範例性焊料凸塊配置。 Figure 8 is another exemplary solder bump configuration.

圖9是另一個範例性的焊料凸塊配置。 Figure 9 is another exemplary solder bump configuration.

圖10是另一個範例性的焊料凸塊配置。 Figure 10 is another exemplary solder bump configuration.

圖11是另一個範例性的焊料凸塊配置。 Figure 11 is another exemplary solder bump configuration.

圖12是另一個積體電路的橫截面側視圖。 Figure 12 is a cross-sectional side view of another integrated circuit.

圖13是流程圖,其例示製造積體電路的範例性方法。 FIG. 13 is a flow chart illustrating an exemplary method of fabricating an integrated circuit.

雖然本揭示以新穎特徵的申請專利範圍限制做總結,但是相信本揭示中的各種特徵結合圖式的說明將更好地了解。本揭示中描述的製程、機器、製造和任何變化所提供的目的為例示。所說明的任何特定結構和功能細節並非解釋為限制用,而僅是做為申請專利範圍的基礎,並做為代表基礎,以教示熟知此項技術之人士以各種方式利用在實際上任何適當詳細結構中。進一步而言,在本揭示中所使用的用語和片語並非是限制性的,而是提供對所描述的特徵可以了解的說明。 While the present disclosure has been summarized by the scope of the appended claims, it is believed that The processes, machines, fabrications, and any variations provided in the present disclosure are provided for illustrative purposes. Any specific structural and functional details are not to be construed as limiting, but merely as a basis for the scope of the patent application, and as a representative basis, to teach the person skilled in the art to use it in various ways. In the structure. Further, the terms and phrases used in the present disclosure are not intended to be limiting, but the description of the described features are provided.

本揭示內容關於積體電路(IC),更特定而言,是關於用於在積體電路的大面積類比電路系統的焊料凸塊配置。典型來說,積體電路 的類比電路係對多種因素敏感,其包括但不限於,在積體電路內的電、熱、以及機械梯度。焊料凸塊廣泛應用於覆晶積體電路設計,以將晶粒結合在一起。進一步已知的是,焊料凸塊會對每一個焊料凸塊中以及附近的晶粒引發一種變化應力的形式的機械梯度。由該焊料凸塊所引發的應力可能不利地對在該晶粒內實施的裝置造成影響,並且因此對仰賴或利用這些裝置的任何電路的效能造成影響。 The present disclosure relates to integrated circuit (IC), and more particularly to solder bump configuration for large area analog circuitry in integrated circuits. Typically, integrated circuits The analog circuit is sensitive to a variety of factors including, but not limited to, electrical, thermal, and mechanical gradients within the integrated circuit. Solder bumps are widely used in flip chip circuit designs to bond crystal grains together. It is further known that solder bumps induce a mechanical gradient in the form of varying stresses for each of the solder bumps and adjacent grains. The stress induced by the solder bumps can adversely affect the devices implemented within the die and thus affect the performance of any circuitry that relies on or utilizes these devices.

因此,習知的設計技術避免在覆晶積體電路設計中,將焊料凸塊放置以與類比電路的大區域垂直對準。然而,被積體電路的類比電路所佔據的區域可能非常大,以致於避免將焊料凸塊放置以與該區域垂直對準係違反了規定最小焊料凸塊密度要求之設計規則。此設計規則的違反也可不利地影響該積體電路的效能以及結構完整性。舉例來說,若沒有恰當的焊料凸塊的密度的話,可能會造成積體電路中的一個或更多個晶粒成為弓形(bowing)。 Thus, conventional design techniques avoid placing solder bumps in vertical alignment with large areas of analog circuits in flip chip circuit designs. However, the area occupied by the analog circuit of the integrated circuit may be so large that avoiding placing the solder bumps perpendicular to the area violates the design rules for specifying minimum solder bump density requirements. Violations of this design rule can also adversely affect the performance and structural integrity of the integrated circuit. For example, without proper density of solder bumps, one or more of the grains in the integrated circuit may be bowed.

根據本揭示內容中描述之本發明的配置,其揭示了可以與包含類比電路的積體電路的區域垂直對準而實施的焊料凸塊配置。藉由利用本說明書中所揭示的焊料凸塊配置,覆晶積體電路製造技術可被使用,儘管積體電路有一個或更多個晶粒,且積體電路包括大面積的類比電路。因為焊料凸塊可以實施於晶粒的整個表面面積,而與類比電路的區域垂直對準,所以不會違反相關於焊料凸塊密度的設計規則。 In accordance with the configuration of the present invention described in this disclosure, a solder bump configuration that can be implemented in vertical alignment with a region of an integrated circuit including an analog circuit is disclosed. By using the solder bump configuration disclosed in this specification, a flip chip circuit fabrication technique can be used, although the integrated circuit has one or more dies, and the integrated circuit includes a large area analog circuit. Because the solder bumps can be implemented over the entire surface area of the die while being vertically aligned with the area of the analog circuit, the design rules associated with solder bump density are not violated.

在一些情況下,將焊料凸塊配置實施以與晶粒內的類比區域垂直對準不會降低類比區域內的類比電路的效能。在其他情況下,將焊料凸塊配置實施以與晶粒內的類比區域垂直對準改進了類比區域內的類比電 路的效能。焊料凸塊配置的更多具體態樣將在下面參考隨附的圖式進行說明。 In some cases, implementing the solder bump configuration to be vertically aligned with the analog region within the die does not degrade the performance of the analog circuit within the analog region. In other cases, the solder bump configuration is implemented to be vertically aligned with the analog region within the die to improve the analog power in the analog region The effectiveness of the road. More specific aspects of the solder bump configuration will be described below with reference to the accompanying drawings.

為了簡單並清楚地例示,在圖中所顯示的元件不一定按比例繪製。舉例來說,為了清楚的目的,一些元件的尺寸相對於其它元件可能會被誇大。進一步而言,應適當考慮的是,在各圖中會重複元件符號以指示對應的,類似的或相似的特徵。 The elements shown in the figures are not necessarily drawn to scale. For example, the dimensions of some of the elements may be exaggerated relative to the other elements for the purpose of clarity. Further, it should be appropriately considered that the component symbols are repeated in the various figures to indicate corresponding, similar or similar features.

圖1是方塊圖,其例示範例性的多晶粒積體電路(IC)100的俯視圖。多晶粒積體電路是一種在單一封裝內包括兩個或更多晶粒的積體電路。積體電路100是一種藉由堆疊多個晶粒而形成的「堆疊式晶粒積體電路」之一個例子。如圖所示,積體電路100包括中介層105、晶粒110、晶粒115、晶粒120、和封裝基板125。晶粒110、晶粒115、和晶粒120中的每一者具有底部表面,且該底部表面附接於中介層105的上表面。在一個態樣中,晶粒110、晶粒115、和晶粒120係使用覆晶技術而附接於中介層105。中介層105的底部表面係附接至封裝基板125的頂部表面。 1 is a block diagram showing a top view of an exemplary multi-die integrated circuit (IC) 100. A multi-die integrated circuit is an integrated circuit that includes two or more dies in a single package. The integrated circuit 100 is an example of a "stacked chip integrated circuit" formed by stacking a plurality of crystal grains. As shown, the integrated circuit 100 includes an interposer 105, a die 110, a die 115, a die 120, and a package substrate 125. Each of the die 110, the die 115, and the die 120 has a bottom surface that is attached to the upper surface of the interposer 105. In one aspect, the die 110, the die 115, and the die 120 are attached to the interposer 105 using flip chip technology. The bottom surface of the interposer 105 is attached to the top surface of the package substrate 125.

中介層105是一種具有平坦表面的晶粒,而晶粒110、晶粒115、和晶粒120被水平堆疊於該平坦表面上。如圖所示,晶粒110、晶粒115、和晶粒120分別並排地位於中介層105的平坦表面上。雖然在圖1中介層105被顯示成包括3個晶粒,但是應當了解的是,顯示積體電路100僅是因為例示的目的。多晶粒積體電路可以包括小於3個附接到中介層的晶粒或是超過3個附接到中介層的晶粒。 The interposer 105 is a crystal grain having a flat surface on which the crystal grains 110, the crystal grains 115, and the crystal grains 120 are horizontally stacked. As shown, the die 110, the die 115, and the die 120 are located side by side on the flat surface of the interposer 105, respectively. Although the interposer 105 is shown as including three dies in FIG. 1, it should be understood that the integrated circuit 100 is shown for illustrative purposes only. The multi-die integrated circuit may include less than three dies attached to the interposer or more than three dies attached to the interposer.

中介層105是一種晶粒安裝結構,舉例像是一種提供給晶粒110、晶粒115、和晶粒120的每一者共同安裝表面和電耦合點的類型的晶 粒安裝結構。中介層105的製造可以包括一個或更多個製程步驟,其允許沉積一個或更多個導電層以進行圖案化而形成導線。這些導電層可以用鋁、金、銅、鎳、各種矽化物,及/或類似物來形成。中介層105可以使用一個或更多個額外的製程步驟來製造,其允許沉積一個或更多個電介質或絕緣層,舉例來說,像是二氧化矽。 The interposer 105 is a die attach structure, such as a type of crystal that provides a common mounting surface and electrical coupling point for each of the die 110, the die 115, and the die 120. Granular mounting structure. Fabrication of the interposer 105 can include one or more processing steps that allow one or more conductive layers to be deposited for patterning to form a wire. These conductive layers may be formed of aluminum, gold, copper, nickel, various tellurides, and/or the like. The interposer 105 can be fabricated using one or more additional processing steps that allow deposition of one or more dielectric or insulating layers, such as, for example, hafnium oxide.

中介層105也可包含穿孔(via),以及通孔(through via,TV)。通孔可以是矽通孔(through silicon via,TSV),玻璃通孔(through glass via,TGV),或是其他穿孔結構,取決於用以實施中介層105及其基板的特定材料。當中介層105被實施為被動晶粒,中介層105可以僅具有各種類型的焊料凸塊、穿孔、導線、通孔、和凸塊下金屬化層(under bump metallization,UBM)。當以主動晶粒實施時,中介層105可包括額外處理層,用以形成相關於電氣裝置,像是包括PN接面的電晶體、二極體等的一個或更多個主動裝置。 The interposer 105 can also include vias, as well as through vias (TVs). The vias may be through silicon vias (TSVs), through glass vias (TGVs), or other perforated structures depending on the particular material used to implement the interposer 105 and its substrate. When the interposer 105 is implemented as a passive die, the interposer 105 may have only various types of solder bumps, vias, wires, vias, and under bump metallization (UBM). When implemented in active die, the interposer 105 can include additional processing layers to form one or more active devices associated with electrical devices, such as transistors, diodes, etc., including PN junctions.

晶粒110、晶粒115、和晶粒120的每一者可以被實施為包括一個或更多個主動裝置的被動型晶粒或主動型晶粒。舉例來說,一個或更多個晶粒110、晶粒115、和晶粒120可以是記憶體晶粒、配置以執行程式碼的處理器(中央處理單元)晶粒、具有可程式化電路的晶粒、專用積體電路晶粒、混合信號晶粒,或類似物。在一個態樣中,晶粒110、晶粒115、和晶粒120的每一者可以是相同的或一致的。在另一個態樣中,晶粒110可以被實施為一類型的晶粒,而晶粒115被實施為另一個不同類型的晶粒,並且晶粒120被實施為又是另一個不同類型的晶粒。舉例來說,積體電路100可包括處理器晶粒、可程式化積體電路,以及耦合到中介層105的記憶 體晶粒。在另一個例子中,積體電路100可以用兩個記憶體和一個附接到中介層105的處理器來形成。本說明書所提供的實施例僅是用於例示的目的,而非旨在限制。 Each of the die 110, the die 115, and the die 120 may be implemented as a passive die or active die including one or more active devices. For example, one or more of the die 110, the die 115, and the die 120 may be a memory die, a processor (central processing unit) die configured to execute a code, or have a programmable circuit Grain, dedicated integrated circuit dies, mixed signal dies, or the like. In one aspect, each of die 110, die 115, and die 120 can be the same or uniform. In another aspect, the die 110 can be implemented as one type of die, while the die 115 is implemented as another different type of die, and the die 120 is implemented as another different type of crystal grain. For example, the integrated circuit 100 can include a processor die, a programmable integrated circuit, and a memory coupled to the interposer 105. Body grain. In another example, integrated circuit 100 can be formed with two memories and a processor attached to interposer 105. The examples provided in the specification are for illustrative purposes only and are not intended to be limiting.

本說明書所使用的「可程式化晶粒」是指一個包括可程式化電路的晶粒,並因此可被編程以實施特定的邏輯功能。可程式化晶粒的一個特定例子為現場可程式化閘陣列(FPGA)晶粒。FPGA晶粒通常包括在可程式化區塊陣列。這些可程式化區塊可包括,舉例來說,輸入/輸出方塊(IOB),可組態邏輯方塊(CLB),專用隨機存取記憶體(BRAM),乘法器,數位信號處理方塊(DSP),處理器,時脈管理器,延遲鎖定迴路(DLL),等等。 As used herein, "programmable die" refers to a die that includes a programmable circuit and is therefore programmable to implement a particular logic function. A specific example of a programmable die is a field programmable gate array (FPGA) die. FPGA dies are typically included in a programmable block array. These programmable blocks may include, for example, input/output blocks (IOBs), configurable logic blocks (CLBs), dedicated random access memory (BRAM), multipliers, digital signal processing blocks (DSPs). , processor, clock manager, delay locked loop (DLL), and more.

每一個可程式化區塊通常包括可程式化互連電路和可程式化邏輯電路兩者。可程式化互連電路典型包括大量的具有變化的長度之互連線,該互連線係藉由可程式化互連點(「PIP」)來加以互連。該可程式化邏輯電路利用例如像是包含函數產生器、暫存器、算術邏輯等等之可程式化元件來實施使用者設計的邏輯。 Each of the programmable blocks typically includes both a programmable interconnect circuit and a programmable logic circuit. Programmable interconnect circuits typically include a large number of interconnects of varying length interconnected by Programmable Interconnect Points ("PIP"). The programmable logic circuit implements user-designed logic using, for example, programmable elements such as function generators, registers, arithmetic logic, and the like.

該可程式化互連電路以及可程式化邏輯電路通常是藉由載入組態設定資料的串流到內部的組態設定記憶體單元中來加以程式化,該組態設定記憶單元係界定該可程式化元件是如何加以組態設定。該組態設定資料可以從記憶體(例如,從外部的PROM)加以讀取、或是藉由一外部的裝置加以寫入到該FPGA中。個別的記憶體單元之集體的狀態係接著決定該FPGA的功能。 The programmable interconnect circuit and the programmable logic circuit are usually programmed by loading a stream of configuration configuration data into an internal configuration setting memory unit, the configuration setting memory unit defining the How the programmable components are configured. The configuration settings can be read from the memory (eg, from an external PROM) or written to the FPGA by an external device. The collective state of the individual memory cells then determines the functionality of the FPGA.

另一個特定例子的可程式化晶粒是複雜可程式化的邏輯裝 置或是CPLD。CPLD包含兩個或更多連接在一起的「功能方塊」,並且藉由互連開關矩陣而連接至輸入/輸出(I/O)資源。該CPLD的每一個功能方塊包含一種類似於用在可程式化邏輯陣列(PLA)以及可程式化陣列邏輯(PAL)裝置之兩階層的AND/OR結構。在CPLD中,組態設定資料通常是儲存在晶片上的非揮發性記憶體中。在某些CPLD中,組態設定資料係被儲存在晶片上的非揮發性記憶體中,接著被下載到揮發性記憶體以作為最初的組態設定(程式化)序列的部分。 Another specific example of a programmable die is a complex and programmable logic package. Set or CPLD. A CPLD contains two or more "function blocks" that are connected together and connected to input/output (I/O) resources by interconnecting switch matrices. Each functional block of the CPLD includes an AND/OR structure similar to that used in both a programmable logic array (PLA) and a programmable array logic (PAL) device. In CPLDs, configuration settings are typically stored in non-volatile memory on the wafer. In some CPLDs, the configuration settings data is stored in non-volatile memory on the wafer and then downloaded to volatile memory as part of the initial configuration (stylized) sequence.

對於所有的這些可程式化晶粒而言,該晶粒的功能針對其目的而受到提供至該晶粒的資料位元的控制。該資料位元可被儲存在揮發性記憶體中(例如,如同在FPGA以及某些CPLD中的靜態記憶單元)、在非揮發性記憶體中(例如,如同在某些CPLD中的快閃記憶體)、或是在任何其它類型的記憶單元中。 For all of these programmable dies, the function of the die is controlled by the data bits provided to the die for its purpose. The data bits can be stored in volatile memory (eg, as static memory cells in FPGAs and certain CPLDs), in non-volatile memory (eg, as in flash memory in some CPLDs) Body, or in any other type of memory unit.

其它範例性的可程式化晶粒可以用其它方式加以實施,例如,利用熔線或是反熔線(antifuse)技術。「可程式化晶粒」一詞包含但不限於這些類型的晶粒,並且進一步涵蓋只有部分可程式化的晶粒。例如,可程式化晶粒包含硬式編碼的(hard-coded)電晶體邏輯以及可程式化地互連該硬式編碼的電晶體邏輯之可程式化開關結構的一組合。應了解的是,可程式化晶粒可包括可程式化電路的一個或更多個部分,以及其它不可程式化電路(像是類比電路)或其它固定電路中(像是硬導線(hardwired)處理器或類似物)的一個或更多個部分。 Other exemplary stylized dies may be implemented in other ways, such as by fuse or antifuse techniques. The term "programmable dies" includes, but is not limited to, these types of dies, and further covers only partially programmable dies. For example, the programmable dies include a combination of hard-coded transistor logic and a programmable switch structure that can be programmatically interconnected to the hard-coded transistor logic. It should be appreciated that the programmable die may include one or more portions of the programmable circuit, as well as other non-programmable circuits (such as analog circuits) or other fixed circuits (such as hardwired processing). One or more parts of a device or the like.

如圖所示,晶粒110包括類比區域130。類比區域130包括類比電路。類比電路可以實施於類比區域130內,而類比電路的例子可以 包括但不限於切換式電容濾波器,切換式電容類比至數位轉換器(ADC),電流源,例如,用於數位至類比轉換器(DAC),或類似物。在任何情況下,類比區域130適用於說明的目的而顯示。本領域技術人士將會了解的是,類比區域130是實行在晶粒110內,且從圖1中所示的俯視圖中,在積體電路100的實際示意圖並不會看見類比區域130。 As shown, the die 110 includes an analog region 130. The analog region 130 includes an analog circuit. The analog circuit can be implemented in the analog region 130, and the analog circuit example can These include, but are not limited to, switched capacitor filters, switched capacitor analog to digital converters (ADCs), current sources, for example, for digital to analog converters (DACs), or the like. In any event, analog region 130 is shown for illustrative purposes. Those skilled in the art will appreciate that the analog region 130 is implemented within the die 110 and that the analog region 130 is not visible in the actual schematic of the integrated circuit 100 from the top view shown in FIG.

圖2是圖1的積體電路100的橫截面側視圖。更具體地而言,圖2例示了圖1沿切割線2-2所取得的積體電路100。晶粒110、晶粒115、和晶粒120的每一者係經由焊料凸塊205電性耦合和機械耦合至中介層105的第一平坦表面。在一個例子中,焊料凸塊205實行為微凸塊。 2 is a cross-sectional side view of the integrated circuit 100 of FIG. 1. More specifically, FIG. 2 illustrates the integrated circuit 100 taken along the cutting line 2-2 of FIG. Each of the die 110 , the die 115 , and the die 120 are electrically coupled and mechanically coupled to the first planar surface of the interposer 105 via solder bumps 205 . In one example, the solder bumps 205 are implemented as microbumps.

如圖所示,一個或更多個焊料凸塊205實施為與晶粒110的類比區域130垂直對準。當焊料凸塊位於晶粒110的表面(其在類比區域130的直接下方,例如,底部表面)上的面積內時,焊料凸塊205會與類比區域130垂直對準。晶粒110的底部表面上的面積與類比區域130垂直對準,且該面積為類比區域130的外部周圍投射在晶粒110的底部表面上的投影。因此,位於該面積內由類比區域130的經投射周圍來定義的任何焊料凸塊205被稱為是與類比區域130垂直對準。 As shown, one or more solder bumps 205 are implemented to be vertically aligned with the analog region 130 of the die 110. When the solder bumps are within the area on the surface of the die 110 that is directly below the analog region 130, such as the bottom surface, the solder bumps 205 will be vertically aligned with the analog region 130. The area on the bottom surface of the die 110 is vertically aligned with the analog region 130, and this area is a projection of the outer periphery of the analog region 130 projected onto the bottom surface of the die 110. Thus, any solder bumps 205 located within the area defined by the projected perimeter of the analog region 130 are said to be vertically aligned with the analog region 130.

中介層105包括一個或更多個導電層210。導電層210以虛線例示於中介層105內。導電層210是使用如先前所述的各種金屬層的任一者來實施。導電層210經過處理以形成圖案化金屬層,而實施中介層105的導線215。實施於中介層105內的導線會耦合至少2個不同晶粒,例如,晶粒110和晶粒115,晶粒115和晶粒120,或是晶粒110和晶粒120,而此導線被稱為晶粒間導線(inter-die wire)。 Interposer 105 includes one or more conductive layers 210. The conductive layer 210 is illustrated in the interposer 105 as a dashed line. Conductive layer 210 is implemented using any of a variety of metal layers as previously described. The conductive layer 210 is processed to form a patterned metal layer, while the wires 215 of the interposer 105 are implemented. The wires implemented in the interposer 105 are coupled to at least two different dies, such as die 110 and die 115, die 115 and die 120, or die 110 and die 120, and the wire is said to be It is an inter-die wire.

為了例示的目的,圖2例示了被認作是晶粒間導線的幾個導線215。導線215讓晶粒110、晶粒115、及/或晶粒120之間的晶粒間信號(inter-die signal)通過。舉例來說,每一個導線215會耦合晶粒110、晶粒115、及/或晶粒120的不同晶粒之間下方的兩個不同的焊料凸塊205,從而允許晶粒110、晶粒115、及/或晶粒120之間的晶粒間信號得以交換。導線215可以是資料導線或電源供應導線,例如,接地(Vss)及/或不同或更高的電壓電勢(Vcc)。一個或更多個焊料凸塊205,包含與類比區域130垂直對準的焊料凸塊,可以耦合到信號導線及/或電源供應導線。進一步而言,一個或更多個焊料凸塊,包含與類比區域130垂直對準的焊料凸塊,可以是電性浮動的,並僅提供晶粒和晶粒安裝結構之間的機械連接。 For purposes of illustration, Figure 2 illustrates several conductors 215 that are considered to be inter-die conductors. Wire 215 passes an inter-die signal between die 110, die 115, and/or die 120. For example, each of the wires 215 may couple two different solder bumps 205 below the die 110, the die 115, and/or between different dies of the die 120, thereby allowing the die 110, die 115 The intergranular signals between, and/or between the dies 120 are exchanged. The wire 215 can be a data wire or a power supply wire, such as ground (Vss) and/or a different or higher voltage potential (Vcc). One or more solder bumps 205, including solder bumps that are vertically aligned with the analog region 130, may be coupled to signal wires and/or power supply wires. Further, one or more solder bumps, including solder bumps that are vertically aligned with the analog region 130, may be electrically floating and provide only a mechanical connection between the die and the die mounting structure.

導電層210中的不同者可使用穿孔220耦合到一起。一般而言,穿孔220為導電材料的部份,例如金屬,用以於創建一個垂直的傳電路徑。關於這一方面,接觸焊料凸塊205的導線215的垂直部分會被實施為穿孔220。在中介層105內使用多個導電層來實施互連允許了更大數量的信號被路由以及信號的更複雜路由在中介層105內來實施。 Different ones of the conductive layers 210 can be coupled together using the perforations 220. In general, the vias 220 are portions of a conductive material, such as metal, used to create a vertical power transfer path. In this regard, the vertical portion of the wire 215 that contacts the solder bump 205 will be implemented as a via 220. The use of multiple conductive layers within the interposer 105 to implement the interconnect allows a greater number of signals to be routed and more complex routing of signals to be implemented within the interposer 105.

焊料凸塊225可用於將中介層105的底部平坦表面機械耦合及/或電耦合至以封裝基板125。封裝基板125是另一類型的晶粒安裝結構。在一個態樣中,焊料凸塊225可被實施為控制塌陷晶片連接(C4)球體(controlled collapse chip connection balls)。封裝基底125包括導電路徑(未顯示),該導電路徑將不同的焊料凸塊225耦合至封裝基板125下方的一個或更多個節點。據此,一個或更多個焊料凸塊225透過封裝基板125的電路或導線,將中介層105內的電路耦合至積體電路100外部的節點。 Solder bumps 225 can be used to mechanically couple and/or electrically couple the bottom planar surface of interposer 105 to package substrate 125. The package substrate 125 is another type of die mounting structure. In one aspect, solder bumps 225 can be implemented to control controlled collapse chip connection balls. The package substrate 125 includes a conductive path (not shown) that couples different solder bumps 225 to one or more nodes below the package substrate 125. Accordingly, one or more solder bumps 225 pass through circuitry or wires of the package substrate 125 to couple the circuitry within the interposer 105 to a node external to the integrated circuit 100.

通孔235是用於形成電性連接的通孔,其垂直延伸穿過中介層105的相當大部分,如果不是全部的話。通孔235,如同導線和穿孔一樣,可以由各種不同的導電材料中之任一者形成,包括但不限於,銅、鋁、金、鎳、各種矽化物、及/或類似物。一個或更多個通孔235可耦合到信號導線、Vss、及/或Vcc。如圖所示,每一個通孔235從中介層105的底部表面向上延伸到中介層105的導電層210。通孔235進一步可通過一個或更多個導電層210與一個或更多個穿孔220之組合而耦合到焊料凸塊205。 The vias 235 are vias for forming electrical connections that extend vertically through a substantial portion, if not all, of the interposer 105. Vias 235, like wires and vias, can be formed from any of a variety of different electrically conductive materials including, but not limited to, copper, aluminum, gold, nickel, various tellurides, and/or the like. One or more vias 235 can be coupled to the signal conductors, Vss, and/or Vcc. As shown, each via 235 extends upwardly from the bottom surface of the interposer 105 to the conductive layer 210 of the interposer 105. Via 235 may be further coupled to solder bumps 205 by a combination of one or more conductive layers 210 and one or more vias 220.

圖3-1、圖3-2、圖3-3、和圖3-4是方塊圖,其例示了圖1和圖2中的積體電路100的一部分的替代性佈局。更具體來說,圖3-1、圖3-2、圖3-3、和圖3-4例示了另一個佈局,一同稱為QN佈局,用於為晶粒110的類比區域130。為了例示的目的,類比區域130完全以類比電路形成。如前所述,類比區域130可包括切換式電容濾波器、切換式電容器類比至數位轉換器、數位至類比轉換器、電流源,上述電路中的一個或更多個或所有之組合,其一部分等。在一個態樣中,圖3-1、圖3-2、圖3-3、及/或圖3-4中所描繪的各個方塊可代表電路元件,舉例來說,像是電容陣列中的電容器電路元件、電阻陣列中的電阻器電路元件、電流源陣列中的單位電流源,或類似物。關於這一方面,類比區域130可代表晶粒中110的大部分的陣列電路元件或是類比電路的區域。 3-1, 3-2, 3-3, and 3-4 are block diagrams illustrating an alternative layout of a portion of the integrated circuit 100 of Figs. 1 and 2. More specifically, FIG. 3-1, FIG. 3-2, FIG. 3-3, 3-4, and illustrates a further arrangement, together referred to as Q N layout for analog region 130 of die 110. For purposes of illustration, the analog region 130 is formed entirely of analog circuits. As previously mentioned, the analog region 130 can include a switched capacitor filter, a switched capacitor analog to digital converter, a digital to analog converter, a current source, one or more or all combinations of the above, a portion of which Wait. In one aspect, the various blocks depicted in Figures 3-1, 3-2, 3-3, and/or 3-4 may represent circuit components, such as, for example, capacitors in a capacitor array. Circuit elements, resistor circuit elements in a resistor array, unit current sources in a current source array, or the like. In this regard, the analog region 130 can represent a majority of the array circuit elements of the die 110 or regions of analog circuits.

為了討論的目的而不是限制,考慮以下圖3-1、圖3-2、圖3-3、和圖3-4所描繪的類比區域130的情況,其從複數個較小的電流源實施一個電流源。舉例來說,類比區域130的電流源可以被實施為數位至類比轉換器的一部分。舉例來說,類比區域130的電流源可以被實施為溫度 計電流源,其中從各個單元的電流貢獻會相加並且予以路由到適當的開關。 For purposes of discussion and not limitation, consider the case of analog region 130 depicted in Figures 3-1, 3-2, 3-3, and 3-4 below, which implements one from a plurality of smaller current sources. Battery. For example, the current source of analog region 130 can be implemented as part of a digital to analog converter. For example, the current source of the analog region 130 can be implemented as a temperature A current source is calculated in which the current contributions from the various units are summed and routed to the appropriate switches.

圖3-1例示了四個象限(Q2)佈局的例子。在Q2佈局中,電流源的切換序列可以使用幾種不同的技術來隨機化。在一個態樣中,個別的電流源係以共同質心配置實施,但這些開關係控制不同的單元,且這些開關係隨機的或是被組構用以進行隨機操作。在另一個態樣中,單元的位置是隨機的,但這些開關會被排序或以預定的順序切換。在任一情況下,隨機化有助於降低數位至類比轉換器的轉移函數的整體非線性(INL)。 Figure 3-1 illustrates an example of four quadrant (Q 2 ) layouts. In the Q 2 layout, the switching sequence of current sources can be randomized using several different techniques. In one aspect, individual current sources are implemented in a common centroid configuration, but these open relationships control different cells, and these open relationships are either random or organized for random operation. In another aspect, the location of the cells is random, but the switches are ordered or switched in a predetermined order. In either case, randomization helps to reduce the overall nonlinearity (INL) of the transfer function of the digital to analog converter.

圖3-1顯示一個例子,其中類比區域130使用共同質心方法來實施。為了例示的目的,將x-y坐標系統與類比區域130重疊。如圖所示,每一個象限包括方塊A、方塊B、方塊C、和方塊D。此外,方塊A、方塊B、方塊C、和方塊D各者皆包括以1至16標記的16個單元。雖然僅針對方塊A例示單元,但應注意的是,方塊A、方塊B、方塊C、和方塊D各者皆具有16個單元。 Figure 3-1 shows an example in which the analog region 130 is implemented using a common centroid method. For purposes of illustration, the x-y coordinate system is overlapped with the analog region 130. As shown, each quadrant includes block A, block B, block C, and block D. Further, each of the block A, the block B, the block C, and the block D includes 16 units marked with 1 to 16. Although the unit is illustrated only for block A, it should be noted that each of block A, block B, block C, and block D has 16 units.

在共同質心配置中,所顯示的類比電路是對稱於x軸和y軸兩者。x軸上方的方塊A、方塊B、方塊C、和方塊D被鏡像x軸下方。同樣地,y軸的左側的方塊A、方塊B、方塊C、和方塊D被鏡像到y軸的右側。每一個方塊內的單元都進行同樣的動作。 In a common centroid configuration, the analog circuit shown is symmetric to both the x-axis and the y-axis. Block A, block B, block C, and block D above the x-axis are mirrored below the x-axis. Similarly, block A, block B, block C, and block D on the left side of the y-axis are mirrored to the right of the y-axis. The same action is performed on the cells in each block.

給定的電流源可以包括來自類比區域130的不同的方塊中的多個單元。舉例來說,給定的電流源可能包括來自區域130的每一個象限的單元A1。以對稱方式相對於x軸和y軸兩者來對該電流源進行分割。其他電流源可以類似的方式實施,也就是,對稱x軸和y軸,雖然可能需要不同數目的單元。在如圖3所示的共同質心配置的案例中,控制電流源 的開關將被隨機化的,而不是按照電流源的位置。 A given current source may include multiple cells from different blocks of analog region 130. For example, a given current source may include cells A1 from each quadrant of region 130. The current source is split in a symmetrical manner with respect to both the x-axis and the y-axis. Other current sources can be implemented in a similar manner, that is, symmetric x-axis and y-axis, although different numbers of cells may be required. Control the current source in the case of the common centroid configuration as shown in Figure 3. The switch will be randomized instead of following the current source's position.

提供圖3-1的目的是用於例示。因此,參考圖3-1所述的例子並非旨在作為限制。可使用其他佈局來實施類比區域130內的類比電路,其也從本揭示內容所描述的焊料凸塊配置獲得益處。此佈局可能會或可能不會使用共同質心方法。進一步的例子被描繪在圖3-2、圖3-3、和圖3-4中。 The purpose of providing Figure 3-1 is for illustration. Therefore, the examples described with reference to FIG. 3-1 are not intended to be limiting. Other layouts can be used to implement analog circuits within the analog region 130, which also benefits from the solder bump configuration described in this disclosure. This layout may or may not use a common centroid method. Further examples are depicted in Figures 3-2, 3-3, and 3-4.

x軸和y軸沒有圖示在每一個圖3-2、圖3-3、和圖3-4當中。然而,為了參考的目的,每一個結構的中心或原點會顯示。圖3-2是方塊圖,其例示在範例性Q1旋轉走動佈局,其可以用於實施類比區域130內的類比電路。如圖所示,圖3-2所示的佈局包括方塊1、方塊2、方塊3、和方塊4。 The x-axis and the y-axis are not shown in each of Figures 3-2, 3-3, and 3-4. However, for the purpose of reference, the center or origin of each structure will be displayed. 3-2 is a block diagram illustrating an exemplary Q 1 rotational walkout layout that may be used to implement analog circuits within the analog region 130. As shown, the layout shown in Figure 3-2 includes block 1, block 2, block 3, and block 4.

圖3-3是方塊圖,其例示在範例性Q2旋轉走動佈局,其可以用於實施類比區域130內的類比電路。圖3-3例示了增加層數的細節,其中最上層顯示為包含方塊A、方塊B、方塊C、和方塊D。方塊A、方塊B、方塊C、和方塊D的每一者被分解成進一步的細節,且其每一者包括方塊1、方塊2、方塊3、和方塊4,或者單元1、單元2、單元3、和單元4。 3-3 is a block diagram illustrating an exemplary Q 2 rotational walkout layout that can be used to implement an analog circuit within the analog region 130. Figure 3-3 illustrates the details of increasing the number of layers, with the uppermost layer shown as containing block A, block B, block C, and block D. Each of block A, block B, block C, and block D is broken down into further details, and each of which includes block 1, block 2, block 3, and block 4, or unit 1, unit 2, unit 3. And unit 4.

圖3-4是方塊圖,其例示在範例性Q3旋轉走動佈局,其可以用於實施類比區域130內的類比電路。圖3-4例示了增加層數的細節,其中最上層顯示為包含方塊I、方塊II、方塊III和方塊IV。方塊I、方塊II、方塊III和方塊IV的每一者被分解以顯示進一步的細節,且其每一者包括方塊A、方塊B、方塊C、和方塊D。方塊A、方塊B、方塊C、和方塊D的每一者被進一步分解以例示額外的細節,且其每一者包括方塊1、方塊2、方塊3、和方塊4,或者單元1、單元2、單元3、和單元4。所提供的這些 實施例是為了說明和廣度,並且因此不旨在限制本揭示內容所描述的發明配置的範疇。 Figure 3-4 is a block diagram, which illustrates the exemplary layout move rotation Q 3, which may be used to implement the analog circuits within the analog region 130. Figures 3-4 illustrate the details of increasing the number of layers, with the uppermost layer shown as containing block I, block II, block III, and block IV. Each of Block I, Block II, Block III, and Block IV is exploded to show further details, and each of which includes Block A, Block B, Block C, and Block D. Each of block A, block B, block C, and block D is further broken down to illustrate additional details, and each of which includes block 1, block 2, block 3, and block 4, or unit 1, unit 2 , unit 3, and unit 4. The examples are provided for illustration and breadth and are therefore not intended to limit the scope of the inventive arrangements described herein.

圖4是圖3的區域130的部分的仰視圖。更具體而言,圖4例示多指狀件之電晶體結構,其中標記為「G」的方塊表示閘極,源級係以交叉影線來遮蔽,並且汲級以垂直影線遮蔽。金屬跡線也被例示。焊料凸塊205的放置方式係相對於類比區域內的類比電路130而例示著。焊料凸塊205可以被實施為微凸塊,其係使用半透明的方式顯示以說明焊料凸塊205如何被實際實施在晶粒110的底部表面上,其中類比區域130實施於該晶粒110中。圖4例示了焊料凸塊205與類比區域130垂直對準。 4 is a bottom plan view of a portion of region 130 of FIG. 3. More specifically, FIG. 4 illustrates the transistor structure of the multi-finger, in which the square labeled "G" represents the gate, the source level is obscured by cross hatching, and the pupil level is shaded by vertical hatching. Metal traces are also exemplified. The manner in which the solder bumps 205 are placed is illustrated relative to the analog circuit 130 in the analog region. The solder bumps 205 can be implemented as microbumps that are shown in a translucent manner to illustrate how the solder bumps 205 are actually implemented on the bottom surface of the die 110, with the analog region 130 being implemented in the die 110 . FIG. 4 illustrates the solder bumps 205 being vertically aligned with the analog region 130.

圖5是晶粒110內的部分區域130的橫截面側視圖。圖5是簡化圖,其例示晶粒110的類比電路上的焊料凸塊205的相對位置。在如圖5所示的例子,類比電路是電流源的一部分。焊料凸塊205可以被實施形成於晶粒110的表面上(例如,底部表面)的微凸塊。圖5所呈現的視圖已被反轉,為的是清楚和說明的目的,因此如圖2中所示形成於晶粒110的底部表面上的焊料凸塊205係顯示在圖5的頂部。 FIG. 5 is a cross-sectional side view of a partial region 130 within the die 110. FIG. 5 is a simplified diagram illustrating the relative positions of solder bumps 205 on the analog circuit of die 110. In the example shown in Figure 5, the analog circuit is part of the current source. The solder bumps 205 may be implemented as microbumps formed on the surface of the die 110 (eg, the bottom surface). The view presented in FIG. 5 has been reversed for purposes of clarity and illustration, so that solder bumps 205 formed on the bottom surface of die 110 as shown in FIG. 2 are shown at the top of FIG.

如圖所示,所例示的晶粒110的部分包括p型基板部分505,其具有各種n型區域或井510。在金屬層515、閘極520、和閘極530之間的區域可以是絕緣材料535,像是二氧化矽。閘極540、閘極545、和閘極550可以使用多晶矽實施。一個或更多個穿孔555可將耦合部分的電晶體至金屬層515、金屬層520、及/或金屬層530。應注意的是,圖5是簡化圖。因此,圖5中所例示的晶粒110的部分可以包括一個或更多個未例示的其它層,例如:焊料凸塊下的UBM層、絕緣材料535上方的其它層、或類似物 205。 As shown, portions of the illustrated die 110 include a p-type substrate portion 505 having various n-type regions or wells 510. The region between metal layer 515, gate 520, and gate 530 may be an insulating material 535, such as hafnium oxide. Gate 540, gate 545, and gate 550 can be implemented using polysilicon. One or more vias 555 can couple the portions of the transistor to metal layer 515, metal layer 520, and/or metal layer 530. It should be noted that FIG. 5 is a simplified diagram. Thus, portions of the die 110 illustrated in FIG. 5 may include one or more other layers not illustrated, such as: a UBM layer under the solder bumps, other layers over the insulating material 535, or the like. 205.

雖然圖5呈現了使用n型電晶體的例子,但是應當了解的是,也可以使用或包括p型電晶體在類比區域130當中。此外,參考圖5所描述的積體電路製造技術和材料的特定類型是用於示例的目的,而不旨在作為限制。 Although FIG. 5 presents an example of using an n-type transistor, it should be understood that a p-type transistor can also be used or included in the analog region 130. Moreover, the specific types of integrated circuit fabrication techniques and materials described with reference to FIG. 5 are for illustrative purposes and are not intended to be limiting.

圖6是搭配積體電路使用的範例性焊料凸塊配置。舉例來說,圖6的焊料凸塊配置可以搭配圖1和圖2的積體電路使用。更具體來說,圖6例示了與類比區域130垂直對準的晶粒110的表面的一部分的底部視圖。為了例示的目的,x-y坐標係顯示於圖上,以例示焊料凸塊205的分配或配置。圖6所示的焊料凸塊205陣列包含複數個行(column)(例如,行1、行2、行3、和行4),以及複數個列(row)(例如,列1、列2、和列3)。如圖所示,行的焊料凸塊205與列的焊料凸塊205係垂直的。 Figure 6 is an exemplary solder bump configuration for use with an integrated circuit. For example, the solder bump configuration of FIG. 6 can be used in conjunction with the integrated circuit of FIGS. 1 and 2. More specifically, FIG. 6 illustrates a bottom view of a portion of the surface of the die 110 that is vertically aligned with the analog region 130. For purposes of illustration, an x-y coordinate system is shown on the graph to illustrate the distribution or configuration of solder bumps 205. The array of solder bumps 205 shown in FIG. 6 includes a plurality of columns (eg, row 1, row 2, row 3, and row 4), and a plurality of columns (eg, column 1, column 2, And column 3). As shown, the row of solder bumps 205 are perpendicular to the column of solder bumps 205.

水平間隔是指同一列的焊料凸塊205的連續,或相鄰者之間的距離。水平間隔亦稱為「x-間距」。舉例來說,3個列中的相鄰的焊料凸塊205包括位於坐標(1,3)和(2,3)的焊料凸塊。在一例子中,相鄰的焊料凸塊205之間的水平間隔可以依據所使用的特定積體電路製造製程的設計規則來指定。水平間隔可以是允許的最小距離、允許的最大距離、或者最小距離和最大距離之間允許的某些距離,其係依照指定焊料凸塊205的密度之設計規則。 The horizontal spacing refers to the continuity of the solder bumps 205 of the same column, or the distance between adjacent ones. The horizontal interval is also called "x-pitch". For example, adjacent solder bumps 205 of the three columns include solder bumps at coordinates (1, 3) and (2, 3). In one example, the horizontal spacing between adjacent solder bumps 205 can be specified in accordance with the design rules of the particular integrated circuit fabrication process used. The horizontal spacing may be the minimum distance allowed, the maximum distance allowed, or some distance allowed between the minimum distance and the maximum distance, in accordance with the design rules for specifying the density of the solder bumps 205.

垂直間隔是指位於同一行中連續、或相鄰的焊料凸塊205之間的距離。垂直間隔也被稱為是「y-間距」。舉例來說,相鄰的焊料凸塊包括在行1的位於坐標(1,2)和(1,3)的焊料凸塊。在一個例子中,在 相鄰的焊料凸塊205之間的垂直間隔可以依據所使用的特定積體電路製造製程的設計規則來指定。垂直間隔可以是允許的最小距離、允許的最大距離、或者最小距離和最大距離之間允許的某些距離,其係依照指定焊料凸塊205的密度之設計規則。 Vertical spacing refers to the distance between successive, or adjacent, solder bumps 205 in the same row. Vertical spacing is also referred to as "y-spacing." For example, adjacent solder bumps include solder bumps at row 1 at coordinates (1, 2) and (1, 3). In one example, in The vertical spacing between adjacent solder bumps 205 can be specified in accordance with the design rules of the particular integrated circuit fabrication process used. The vertical spacing may be the minimum distance allowed, the maximum distance allowed, or some distance allowed between the minimum distance and the maximum distance, in accordance with the design rules for specifying the density of the solder bumps 205.

在一個態樣中,與類比區域130垂直對準的一個或更多個、或是所有的焊料凸塊205可以耦合到電源供應信號。電源供應信號可以是Vss。在另一個例子中,電源供應信號可以是Vcc。在另一個例子中,與類比區域130垂直對準的一個或更多個、或所有的焊料凸塊205可被耦合到晶粒110及/或中介層105內的資料信號。在另一個態樣中,與類比區域130垂直對準的一個或更多個、或所有的焊料凸塊205可以是機械的焊料凸塊。作為機械焊料凸塊,焊料凸塊不會在晶粒及/或晶粒安裝結構之間形成電性連接,例如,開路、浮動節點、或者完全不與積體電路的任何其它電路連接。因此,機械焊料凸塊只用於在晶粒和晶粒安裝結構之間形成機械連接,為的是結構的完整性。 In one aspect, one or more, or all, of the solder bumps 205 that are vertically aligned with the analog region 130 can be coupled to a power supply signal. The power supply signal can be Vss. In another example, the power supply signal can be Vcc. In another example, one or more, or all, of the solder bumps 205 that are vertically aligned with the analog region 130 can be coupled to the data signals within the die 110 and/or the interposer 105. In another aspect, one or more, or all, of the solder bumps 205 that are vertically aligned with the analog region 130 can be mechanical solder bumps. As mechanical solder bumps, the solder bumps do not form an electrical connection between the die and/or die mounting structure, such as an open circuit, a floating node, or no connection to any other circuitry of the integrated circuit at all. Therefore, the mechanical solder bumps are only used to form a mechanical bond between the die and the die mounting structure for structural integrity.

圖6例示一種焊料凸塊配置,其中焊料凸塊被放置在列中,而列垂直於行。因此,x間距和y間距保持固定。進一步而言,在該列中或該行中没有偏移。然而,可實施其它的焊料凸塊配置,其中可使用一個或更多個偏移。施加於焊料凸塊的y坐標的偏移稱為「offset_Y」。 Figure 6 illustrates a solder bump configuration in which solder bumps are placed in columns and columns are perpendicular to rows. Therefore, the x pitch and the y pitch remain fixed. Further, there is no offset in the column or in the row. However, other solder bump configurations can be implemented in which one or more offsets can be used. The offset of the y coordinate applied to the solder bump is referred to as "offset_Y".

在一些情況下,無論是對於x坐標及/或y坐標,可在複數個不同的焊料凸塊施加一致的偏移。舉例來說,可以在行中的所有的焊料凸塊,在列中的所有的焊料凸塊,或者在行和列二者中的所有的焊料凸塊施加一致的偏移。在此案例下,在同一行或在同一列中的相鄰焊料凸塊之 間的x間距和y間距係保持固定。在其他情況下,無論是對於焊料凸塊的x坐標及/或y坐標,可依照每一個焊料凸塊而施加偏移到複數個不同的焊料凸塊。舉例來說,從一個焊料凸塊到另一個焊料凸塊之該偏移可以有所變化,並且進一步可以非直線的方式來變化。隨著案例的不同,對於所施加到的偏移的列及/或行中的相鄰的每對焊接凸塊來說,x間距及/或y間距可以是不同的。因此,x間距及/或y間距不會保持固定。施加到焊料凸塊配置的偏移係參照圖7至圖11作進一步詳細的說明。 In some cases, a uniform offset can be applied across a plurality of different solder bumps, both for the x-coordinate and/or the y-coordinate. For example, a uniform offset can be applied across all solder bumps in a row, all solder bumps in a column, or all solder bumps in both rows and columns. In this case, adjacent solder bumps in the same row or in the same column The x-spacing and y-spacing are kept constant. In other cases, regardless of the x-coordinate and/or y-coordinate of the solder bump, an offset to a plurality of different solder bumps may be applied in accordance with each solder bump. For example, the offset from one solder bump to another solder bump can vary and can be further varied in a non-linear manner. Depending on the case, the x-pitch and/or y-pitch may be different for each of the adjacent pairs of solder bumps in the applied offset column and/or row. Therefore, the x-pitch and/or y-pitch does not remain fixed. The offset applied to the solder bump configuration is described in further detail with reference to Figures 7-11.

圖7是搭配積體電路而使用的另一個範例性焊料凸塊配置。圖7的焊料凸塊配置可以搭配圖1和圖2的積體電路使用。圖7例示了與類比區域130垂直對準的晶粒110的一部分的底部視圖。為了例示的目的,x-y坐標係顯示於圖上,以例示焊料凸塊205的分配或配置。可以使用圖7所示的焊料凸塊205的配置以作為參考圖6所描述的替代例。 Figure 7 is another exemplary solder bump configuration used in conjunction with an integrated circuit. The solder bump configuration of FIG. 7 can be used in conjunction with the integrated circuit of FIGS. 1 and 2. FIG. 7 illustrates a bottom view of a portion of a die 110 that is vertically aligned with the analog region 130. For purposes of illustration, an x-y coordinate system is shown on the graph to illustrate the distribution or configuration of solder bumps 205. The configuration of the solder bumps 205 shown in FIG. 7 can be used as an alternative to that described with reference to FIG.

如圖所示,每一列從最上方沿x軸以一個稱為「offset_X」的預定量進行偏移。offset_X小於焊料凸塊之間的水平間隔。在對每一列施加偏移之後,水平間隔和垂直間隔可以保持固定。舉例來說,列3的焊料凸塊在坐標(1,3)開始。列3的下一個焊料凸塊的坐標為(2,3)。列2的焊料凸塊在坐標(1+offset_X,2)開始。列2的下一個焊料凸塊坐標為(2+offset_X,2)。列1的焊料凸塊在坐標(1+(2 * offset_X),1)開始。列1的下一個焊料凸塊坐標是(2+(2 * offset_X),1)。 As shown, each column is offset from the top along the x-axis by a predetermined amount called "offset_X". The offset_X is smaller than the horizontal interval between the solder bumps. After applying an offset to each column, the horizontal and vertical intervals can remain fixed. For example, the solder bumps of column 3 begin at coordinates (1, 3). The coordinates of the next solder bump of column 3 are (2, 3). The solder bumps of column 2 start at coordinates (1+offset_X, 2). The next solder bump coordinate of column 2 is (2+offset_X, 2). The solder bump of column 1 begins at coordinates (1+(2 * offset_X), 1). The next solder bump coordinate of column 1 is (2+(2 * offset_X), 1).

x間距和y間距可以依據所使用的特定積體電路技術的設計規則來設定。在一個態樣中,x間距及/或y間距可以設定為允許的最小間隔,允許的最大間隔,或在其之間的某些間隔。應注意的是,offset_X小於 水平間隔或x間距。進一步而言,圖7所示的焊料凸塊205的陣列包括複數個列(例如,列1、列2、和列3)和複數個行。行係以線段1-1、線段2-1、線段3-1、和線段4-1表示。如圖所示,雖然焊料凸塊205仍是以行來配置,但是由於每一個個別列存在偏移的關係,該行不會垂直於該列。在圖7的例子,offset_X係加入至受影響的焊料凸塊的x坐標。在另一個例子中,offset_X可以被減去。 The x-pitch and y-pitch can be set according to the design rules of the particular integrated circuit technology used. In one aspect, the x-pitch and/or y-pitch can be set to the minimum allowed interval, the maximum allowed interval, or some interval between them. It should be noted that offset_X is less than Horizontal interval or x spacing. Further, the array of solder bumps 205 shown in FIG. 7 includes a plurality of columns (eg, column 1, column 2, and column 3) and a plurality of rows. The line is represented by line segment 1-1, line segment 2-1, line segment 3-1, and line segment 4-1. As shown, although the solder bumps 205 are still arranged in rows, the rows are not perpendicular to the columns due to the offset relationship of each individual column. In the example of Figure 7, offset_X is added to the x-coordinate of the affected solder bump. In another example, offset_X can be subtracted.

在一個態樣中,offset_X可以用實施在類比區域130中的電流源的電晶體的指狀件來作衡量。因此,offset_X可以是單一指狀件,兩個指狀件,或類似物。指狀件可以定義為,至少在尺寸方面,電晶體的閘極多晶矽面積。因此,指狀件係定義對應於閘極多晶矽的面積的寬度(W)和長度(L)。在一個例子中,offset_X可以被設定為一個大於W的值。當offset_X大於一個以上的指狀件之時,應瞭解的是,依據所使用的特定積體電路技術的設計規則,以offset_X標示的距離包括在水平方向上相鄰的電晶體之間的任何必要的面積或間隔。 In one aspect, offset_X can be measured by the fingers of the transistor that implements the current source in analog region 130. Thus, offset_X can be a single finger, two fingers, or the like. The finger can be defined as the gate polysilicon area of the transistor, at least in terms of size. Thus, the fingers define the width (W) and length (L) of the area corresponding to the gate polysilicon. In one example, offset_X can be set to a value greater than W. When offset_X is greater than one or more fingers, it should be understood that the distance indicated by offset_X includes any necessary between adjacent transistors in the horizontal direction, depending on the design rules of the particular integrated circuit technology used. Area or interval.

在一個態樣中,與類比區域130垂直對準的一個或更多個、或是所有的焊料凸塊205可以耦合到電源供應信號。電源供應信號可以是Vss。在另一個例子中,電源供應信號可以是Vcc。在另一個例子中,與類比區域130垂直對準的一個或更多個、或所有的焊料凸塊205可被耦合到晶粒110及/或中介層105內的資料信號。在另一個態樣中,與類比區域130垂直對準的一個或更多個、或所有的焊料凸塊205可以是機械的焊料凸塊。 In one aspect, one or more, or all, of the solder bumps 205 that are vertically aligned with the analog region 130 can be coupled to a power supply signal. The power supply signal can be Vss. In another example, the power supply signal can be Vcc. In another example, one or more, or all, of the solder bumps 205 that are vertically aligned with the analog region 130 can be coupled to the data signals within the die 110 and/or the interposer 105. In another aspect, one or more, or all, of the solder bumps 205 that are vertically aligned with the analog region 130 can be mechanical solder bumps.

圖8是搭配積體電路而使用的另一個範例性焊料凸塊配置。圖8的焊料凸塊配置可以搭配圖1和圖2的積體電路使用。圖8例示了 與類比區域130垂直對準的晶粒110的一部分的底部視圖。再一次說明,為了例示的目的,x-y坐標係顯示於圖上,以例示焊料凸塊205的分配或配置。可以使用圖8所示的焊料凸塊205的配置以作為參考圖6和圖7所描述的替代例。 Figure 8 is another exemplary solder bump configuration for use with an integrated circuit. The solder bump configuration of FIG. 8 can be used in conjunction with the integrated circuit of FIGS. 1 and 2. Figure 8 illustrates A bottom view of a portion of the die 110 that is vertically aligned with the analog region 130. Again, for purposes of illustration, the x-y coordinate system is shown on the graph to illustrate the distribution or configuration of the solder bumps 205. The configuration of the solder bumps 205 shown in FIG. 8 can be used as an alternative to that described with reference to FIGS. 6 and 7.

圖7例示了列被偏移的例子,而圖8則是例示了行被偏移的例子。如圖所示,每一行從最左方沿y軸以一個稱為「offset_Y」的預定量進行偏移。offset_Y小於焊料凸塊之間的垂直間隔。在對每一行施加偏移之後,水平間隔和垂直間隔可以保持固定。舉例來說,行1的焊料凸塊在坐標(1,3)開始。行1的其他焊料凸塊的坐標為(1,2)和(1,1)。行2的焊料凸塊在坐標(2,3-offset_Y)開始。行2的其他焊料凸塊的坐標為(2,2-offset_Y)和(2,1-offset_Y)。行3的焊料凸塊在坐標(3,3-(2 * offset_Y))開始。行3的下一個焊料凸塊坐標是(3,2-(2 * offset_Y))。 Fig. 7 illustrates an example in which columns are shifted, and Fig. 8 illustrates an example in which rows are shifted. As shown, each row is offset from the leftmost side along the y-axis by a predetermined amount called "offset_Y". The offset_Y is smaller than the vertical interval between the solder bumps. The horizontal and vertical intervals can remain fixed after an offset is applied to each row. For example, the solder bump of row 1 begins at coordinates (1, 3). The coordinates of the other solder bumps of row 1 are (1, 2) and (1, 1). The solder bumps of row 2 begin at coordinates (2, 3-offset_Y). The coordinates of the other solder bumps of row 2 are (2, 2-offset_Y) and (2, 1-offset_Y). The solder bumps of row 3 begin at coordinates (3, 3-(2 * offset_Y)). The next solder bump coordinate of row 3 is (3,2-(2 *offset_Y)).

x間距和y間距可以依據所使用的特定積體電路技術的設計規則來設定。在一個態樣中,x間距及/或y間距可以設定為允許的最小間隔,允許的最大間隔,或在其之間的某些間隔。此外,圖8所示的焊料凸塊205的陣列包括複數個行(例如,行1,行2,行3,和行4)和複數個列。列係以線段1-1,線段2-1,和線段3-1表示。如圖所示,雖然焊料凸塊205仍是以行來配置,但是由於每一個個別列存在偏移的關係,該行不會垂直於該列。在圖8的例子,offset_Y係自受影響的焊料凸塊的y坐標予以相減。在另一個例子中,offset_X可以被加入。 The x-pitch and y-pitch can be set according to the design rules of the particular integrated circuit technology used. In one aspect, the x-pitch and/or y-pitch can be set to the minimum allowed interval, the maximum allowed interval, or some interval between them. Furthermore, the array of solder bumps 205 shown in FIG. 8 includes a plurality of rows (eg, row 1, row 2, row 3, and row 4) and a plurality of columns. The column is represented by line segment 1-1, line segment 2-1, and line segment 3-1. As shown, although the solder bumps 205 are still arranged in rows, the rows are not perpendicular to the columns due to the offset relationship of each individual column. In the example of Figure 8, offset_Y is subtracted from the y-coordinate of the affected solder bump. In another example, offset_X can be added.

offset_Y,如同offset_X一樣,可以用實施在類比區域130中的電流源的電晶體的指狀件來作衡量。偏移可以是單一指狀件,兩個指 狀件,或類似物。在一個例子中,offset_Y可以被設定為一個大於相關於指狀件之L的值。然而,應注意的是,offset_Y仍小於垂直間隔或y間距。當offset_Y大於一個以上的指狀件之時,應瞭解的是,依據所使用的特定積體電路技術的設計規則,以offset_Y標示的距離包括在垂直方向上相鄰的電晶體之間的任何必要的面積或間隔。 The offset_Y, like offset_X, can be measured by the fingers of the transistor that implements the current source in the analog region 130. The offset can be a single finger, two fingers Shape, or the like. In one example, offset_Y can be set to a value greater than L associated with the finger. However, it should be noted that offset_Y is still smaller than the vertical interval or the y-space. When offset_Y is greater than one or more fingers, it should be understood that depending on the design rules of the particular integrated circuit technology used, the distance indicated by offset_Y includes any necessary between adjacent transistors in the vertical direction. Area or interval.

在一個態樣中,與類比區域130垂直對準的一個或更多個、或是所有的焊料凸塊205可以耦合到電源供應信號。電源供應信號可以是Vss。在另一個例子中,電源供應信號可以是Vcc。在另一個例子中,與類比區域130垂直對準的一個或更多個、或所有的焊料凸塊205可被耦合到晶粒110及/或中介層105內的資料信號。在另一個態樣中,與類比區域130垂直對準的一個或更多個、或所有的焊料凸塊205可以是機械的焊料凸塊。 In one aspect, one or more, or all, of the solder bumps 205 that are vertically aligned with the analog region 130 can be coupled to a power supply signal. The power supply signal can be Vss. In another example, the power supply signal can be Vcc. In another example, one or more, or all, of the solder bumps 205 that are vertically aligned with the analog region 130 can be coupled to the data signals within the die 110 and/or the interposer 105. In another aspect, one or more, or all, of the solder bumps 205 that are vertically aligned with the analog region 130 can be mechanical solder bumps.

圖9是搭配積體電路而使用的另一個範例性焊料凸塊配置。圖9的焊料凸塊配置可以搭配圖1和圖2的積體電路使用。圖9例示了與類比區域130垂直對準的晶粒110的一部分的底部視圖。再一次說明,為了例示的目的,x-y坐標係顯示於圖上,以例示焊料凸塊205的分配或配置。可以使用圖9所示的焊料凸塊205的配置以作為參考圖6至圖8所描述的替代例。 Figure 9 is another exemplary solder bump configuration used in conjunction with an integrated circuit. The solder bump configuration of FIG. 9 can be used in conjunction with the integrated circuit of FIGS. 1 and 2. FIG. 9 illustrates a bottom view of a portion of a die 110 that is vertically aligned with the analog region 130. Again, for purposes of illustration, the x-y coordinate system is shown on the graph to illustrate the distribution or configuration of the solder bumps 205. The configuration of the solder bumps 205 shown in FIG. 9 can be used as an alternative to that described with reference to FIGS. 6 to 8.

圖9例示了列和行兩者皆被偏移的例子。如圖所示,每一列從最上方沿x軸以offset_X進行偏移。此外,每一行從最左方沿y軸以offset_Y進行偏移。應注意的是,offset_X可小於同一列中的相鄰的焊料凸塊之間的水平間隔,而offset_Y可小於同一行中的相鄰的焊料凸塊之間的垂直間隔。 FIG. 9 illustrates an example in which both columns and rows are shifted. As shown, each column is offset from the top along the x-axis by offset_X. In addition, each row is offset from the leftmost side along the y-axis by offset_Y. It should be noted that offset_X may be less than the horizontal spacing between adjacent solder bumps in the same column, while offset_Y may be less than the vertical spacing between adjacent solder bumps in the same row.

在對每一列施加偏移之後,水平間隔可以保持固定。同樣 地,在對每一行施加偏移之後,垂直間隔可以保持固定。舉例來說,行1包括在坐標(1,3)、(1+offset_X,2)、和(1+(2 * offset_X),1)處的焊料凸塊。行2包括在坐標(2,3-offset_Y),(2+offset_X,2-offset_Y),和(2+(2 * offset_X),1-offset_Y)處的焊料凸塊。 The horizontal interval can remain fixed after an offset is applied to each column. same Ground, the vertical spacing can remain fixed after an offset is applied to each row. For example, row 1 includes solder bumps at coordinates (1, 3), (1+offset_X, 2), and (1+(2 * offset_X), 1). Row 2 includes solder bumps at coordinates (2, 3-offset_Y), (2+offset_X, 2-offset_Y), and (2+(2*offset_X), 1-offset_Y).

應注意的是,在x間距和y間距可以依據所使用的特定積體電路技術的設計規則來設定。在一個態樣中,x間距及/或y間距可以設定為允許的最小間隔,允許的最大間隔,或在其之間的某些間隔。 It should be noted that the x-pitch and y-pitch can be set according to the design rules of the particular integrated circuit technology used. In one aspect, the x-pitch and/or y-pitch can be set to the minimum allowed interval, the maximum allowed interval, or some interval between them.

offset_X和offset_Y兩者皆可以用實施在類比區域130中的電流源的電晶體的指狀件來作衡量。因此,偏移可以是單一指狀件,兩個指狀件,或類似物。在一個例子中,offset_X可以被設定為等於offset_Y。在一個例子中,offset_X可以被設定為不等於offset_Y。在該案例中,offset_X可以被設定為大於或小於offset_Y。此外,雖然圖9所示的焊料凸塊205陣列包括複數個行和複數個列,但是列和行彼此不垂直。 Both offset_X and offset_Y can be measured by the fingers of the transistor that implements the current source in analog region 130. Thus, the offset can be a single finger, two fingers, or the like. In one example, offset_X can be set equal to offset_Y. In one example, offset_X can be set to not equal to offset_Y. In this case, offset_X can be set to be greater or smaller than offset_Y. Further, although the array of solder bumps 205 shown in FIG. 9 includes a plurality of rows and a plurality of columns, the columns and rows are not perpendicular to each other.

在一個態樣中,與類比區域130垂直對準的一個或更多個、或是所有的焊料凸塊205可以耦合到電源供應信號。電源供應信號可以是Vss。在另一個例子中,電源供應信號可以是Vcc。在另一個例子中,與類比區域130垂直對準的一個或更多個、或所有的焊料凸塊205可被耦合到晶粒110及/或中介層105內的資料信號。在另一個態樣中,與類比區域130垂直對準的一個或更多個、或所有的焊料凸塊205可以是機械的焊料凸塊。應注意的是,不論是offset_X或是offset_Y的偏移可以被添加至給定坐標,或自該給定坐標減去。偏移的施加不受限於本說明書中所提供的實施例。 In one aspect, one or more, or all, of the solder bumps 205 that are vertically aligned with the analog region 130 can be coupled to a power supply signal. The power supply signal can be Vss. In another example, the power supply signal can be Vcc. In another example, one or more, or all, of the solder bumps 205 that are vertically aligned with the analog region 130 can be coupled to the data signals within the die 110 and/or the interposer 105. In another aspect, one or more, or all, of the solder bumps 205 that are vertically aligned with the analog region 130 can be mechanical solder bumps. It should be noted that the offset of either offset_X or offset_Y can be added to or subtracted from the given coordinates. The application of the offset is not limited to the embodiments provided in this specification.

在圖6至圖9例示的例子利用的是焊料凸塊之間針對x間距 和Y間距兩者之固定間隔。如所討論的一樣,藉用改變施加在每一個焊料凸塊上的偏移,其中x間距及/或y間距不會保持固定之焊料凸塊配置可以實施。所施加的偏移的變化可以是非線性的。 The examples illustrated in Figures 6 through 9 utilize solder bumps for x spacing A fixed interval between the Y and Y spacing. As discussed, the offset applied to each of the solder bumps can be varied, with a solder bump configuration in which the x-pitch and/or y-pitch does not remain fixed. The change in the applied offset can be non-linear.

圖10是搭配積體電路而使用的另一個範例性焊料凸塊配置。圖10的焊料凸塊配置可以搭配圖1和圖2的積體電路使用。圖10例示了與類比區域130垂直對準的晶粒110的一部分的底部視圖。再一次說明,為了例示的目的,x-y坐標係顯示於圖上,以例示焊料凸塊205的分配或配置。可以使用圖10所示的焊料凸塊205的配置以作為參考圖6至圖9所描述的替代例。 Figure 10 is another exemplary solder bump configuration for use with an integrated circuit. The solder bump configuration of FIG. 10 can be used in conjunction with the integrated circuit of FIGS. 1 and 2. FIG. 10 illustrates a bottom view of a portion of a die 110 that is vertically aligned with the analog region 130. Again, for purposes of illustration, the x-y coordinate system is shown on the graph to illustrate the distribution or configuration of the solder bumps 205. The configuration of the solder bumps 205 shown in FIG. 10 can be used as an alternative to that described with reference to FIGS. 6 through 9.

圖10例示了在同一列中,從一個焊料凸塊到下一個焊料凸塊的offset_X會變化的例子。此外,offset_X會以非線性的方式變化。如圖所示,列2的焊料凸塊具有固定的x間距。列2的焊料凸塊的坐標為(1,2),(2,2),(3,2)和(4,2)。然而,在列1中,x間距不會保持固定。列1的第一焊料凸塊具有offset_X的偏移。列1的第二焊料凸塊具有2*offset_X的偏移。列1的第三焊料凸塊具有4*offset_X的偏移,諸如此類。列1的焊料凸塊的坐標分別為(1+offset_X,1),(2+(2 * offset_X),1),(3+(4 * offset_X),1),和(4+(8 * offset_X),1)。應注意的是,儘管在本例中偏移是用加的,偏移也可使用減的。 Fig. 10 illustrates an example in which the offset_X of one solder bump to the next solder bump changes in the same column. In addition, offset_X changes in a non-linear manner. As shown, the solder bumps of column 2 have a fixed x pitch. The coordinates of the solder bumps of column 2 are (1, 2), (2, 2), (3, 2) and (4, 2). However, in column 1, the x spacing does not remain fixed. The first solder bump of column 1 has an offset of offset_X. The second solder bump of column 1 has an offset of 2*offset_X. The third solder bump of column 1 has an offset of 4*offset_X, and the like. The coordinates of the solder bumps of column 1 are (1+offset_X,1), (2+(2 * offset_X),1), (3+(4 * offset_X),1), and (4+(8 * offset_X) ),1). It should be noted that although the offset is added in this example, the offset can also be subtracted.

在一個態樣中,與類比區域130垂直對準的一個或更多個、或是所有的焊料凸塊205可以耦合到電源供應信號。電源供應信號可以是Vss。在另一個例子中,電源供應信號可以是Vcc。在另一個例子中,與類比區域130垂直對準的一個或更多個、或所有的焊料凸塊205可被耦合到晶 粒110及/或中介層105內的資料信號。在另一個態樣中,與類比區域130垂直對準的一個或更多個、或所有的焊料凸塊205可以是機械的焊料凸塊。 In one aspect, one or more, or all, of the solder bumps 205 that are vertically aligned with the analog region 130 can be coupled to a power supply signal. The power supply signal can be Vss. In another example, the power supply signal can be Vcc. In another example, one or more, or all, of the solder bumps 205 that are vertically aligned with the analog region 130 can be coupled to the crystal The data signal in the particle 110 and/or the interposer 105. In another aspect, one or more, or all, of the solder bumps 205 that are vertically aligned with the analog region 130 can be mechanical solder bumps.

圖11是用於搭配積體電路使用的另一個範例性焊料凸塊配置。圖11的焊料凸塊配置可以搭配圖1和圖2的積體電路使用。圖11例示了與類比區域130垂直對準的晶粒110的底視圖的一部分。再次說明,為了例示的目的,會重疊x-y坐標,以例示焊料凸塊205的分配或配置。圖11所例示的焊料凸塊205的配置可以做為相關於圖6至圖10所描述的焊料凸塊205的替代例。 Figure 11 is another exemplary solder bump configuration for use with an integrated circuit. The solder bump configuration of FIG. 11 can be used in conjunction with the integrated circuit of FIGS. 1 and 2. FIG. 11 illustrates a portion of a bottom view of a die 110 that is vertically aligned with the analog region 130. Again, for purposes of illustration, the x-y coordinates are superimposed to illustrate the distribution or configuration of the solder bumps 205. The configuration of the solder bumps 205 illustrated in FIG. 11 can be used as an alternative to the solder bumps 205 described with respect to FIGS. 6-10.

圖11例示了在同一行中,從一個焊料凸塊到下一個焊料凸塊的offset_Y會變化的例子。此外,offset_Y會以非線性的方式變化。如圖所示,行1的焊料凸塊具有固定的y間距。列1的焊料凸塊的坐標為(1,4),(1,3),(1,2)和(1,1)。然而,在行2中,y間距不會保持固定。行2的第一焊料凸塊具有offset_Y的偏移。行2的第二焊料凸塊具有2*offset_Y的偏移。行2的第三焊料凸塊具有4*offset_Y的偏移,諸如此類。行2的焊料凸塊的坐標分別為(2,4-offset_Y),(2,3-(2 * offset_Y)),以及(2,2-(4 * offset_Y))。儘管在圖11的例子中偏移是用減的,偏移也可使用加的。 Fig. 11 illustrates an example in which the offset_Y of one solder bump to the next solder bump changes in the same row. In addition, offset_Y will change in a non-linear manner. As shown, the solder bumps of row 1 have a fixed y-pitch. The coordinates of the solder bumps of column 1 are (1, 4), (1, 3), (1, 2) and (1, 1). However, in line 2, the y-pitch does not remain fixed. The first solder bump of row 2 has an offset of offset_Y. The second solder bump of row 2 has an offset of 2*offset_Y. The third solder bump of row 2 has an offset of 4*offset_Y, and the like. The coordinates of the solder bumps of row 2 are (2, 4-offset_Y), (2, 3-(2 * offset_Y)), and (2, 2-(4 * offset_Y)), respectively. Although the offset is subtracted in the example of Figure 11, the offset can also be used.

在一個態樣中,與類比區域130垂直對準的一個或更多個、或是所有的焊料凸塊205可以耦合到電源供應信號。電源供應信號可以是Vss。在另一個例子中,電源供應信號可以是Vcc。在另一個例子中,與類比區域130垂直對準的一個或更多個、或所有的焊料凸塊205可被耦合到晶粒110及/或中介層105內的資料信號。在另一個態樣中,與類比區域130 垂直對準的一個或更多個、或所有的焊料凸塊205可以是機械的焊料凸塊。 In one aspect, one or more, or all, of the solder bumps 205 that are vertically aligned with the analog region 130 can be coupled to a power supply signal. The power supply signal can be Vss. In another example, the power supply signal can be Vcc. In another example, one or more, or all, of the solder bumps 205 that are vertically aligned with the analog region 130 can be coupled to the data signals within the die 110 and/or the interposer 105. In another aspect, the analogy region 130 One or more, or all, of the solder bumps 205 that are vertically aligned may be mechanical solder bumps.

參考數位至類比轉換器的案例,將相關於圖6所描述的焊料凸塊配置應用於類比電路上,而其相較於焊料凸塊未與類比電路垂直對準的數位至類比轉換器的情況可以提供改良的整體非線性。舉例來說,如相關於圖6之說明,形成焊料凸塊而與數位至類比轉換器中的類比電路垂直對準以在16位元的規模而言,可以提供從4 LSB至16 LSB的改良。數位至類比轉換器的電流源可以用相關於圖3以及其說明來實施,例如,使用共同質心配置,圖3-2、圖3-3、圖3-4、或其他配置。將如圖7至圖12所示的偏移應用於焊料凸塊配置,並使用此焊料凸塊配置在類比電路或其部分上,如此將提供比相關於圖6所描述數位至類比轉換器中更大的改良的整體非線性。 Referring to the digital to analog converter case, the solder bump configuration described in relation to Figure 6 is applied to an analog circuit as compared to a digital to analog converter in which the solder bumps are not vertically aligned with the analog circuit. Improved overall nonlinearity can be provided. For example, as explained in relation to Figure 6, solder bumps are formed to be vertically aligned with analog circuits in a digital to analog converter to provide improvements from 4 LSB to 16 LSB on a 16-bit scale. . The current source of the digital to analog converter can be implemented with respect to Figure 3 and its description, for example, using a common centroid configuration, Figure 3-2, Figure 3-3, Figure 3-4, or other configuration. Applying the offsets as shown in Figures 7 through 12 to the solder bump configuration and using this solder bump on the analog circuit or portion thereof, will provide a digital to analog converter as described in relation to Figure 6 Greater improved overall nonlinearity.

圖12是積體電路1200的橫截面側視圖。如圖所示,積體電路1200包括安裝在晶粒安裝結構1205上的複數個晶粒1210、1215、1220。在這個例子中,晶粒安裝結構1205是一個封裝基板。晶粒1210、晶粒1215、和晶粒1220透過複數個焊料凸塊1225而附接到晶粒安裝結構1205。舉例來說,焊料凸塊1225可以是C4的凸塊。在這個例子中,晶粒1210包括了類比區域1230,該類比區域1230實質上如關於類比區域130所描述般。一個或更多個焊料凸塊1225可以與類比區域1230垂直對準。與類比區域1230垂直對準的焊料凸塊1225中,皆可使用在本說明書所描述的任何各式各樣的焊料凸塊配置,例如,相關於圖6至圖11。圖12例示了本揭示所描述的技術可以應用於安裝在封裝基板上的晶粒之案例,其中沒有中介層使用。 FIG. 12 is a cross-sectional side view of the integrated circuit 1200. As shown, integrated circuit 1200 includes a plurality of dies 1210, 1215, 1220 mounted on die mounting structure 1205. In this example, the die attach structure 1205 is a package substrate. The die 1210, the die 1215, and the die 1220 are attached to the die attach structure 1205 through a plurality of solder bumps 1225. For example, solder bumps 1225 can be bumps of C4. In this example, die 1210 includes an analog region 1230 that is substantially as described with respect to analog region 130. One or more solder bumps 1225 can be vertically aligned with the analog region 1230. Any of a variety of solder bump configurations described in this specification can be used in solder bumps 1225 that are vertically aligned with analog regions 1230, for example, with respect to Figures 6-11. Figure 12 illustrates an example in which the techniques described in this disclosure can be applied to dies mounted on a package substrate where no interposer is used.

本揭示所描述的發明配置可以改善了當一個或更多個晶粒 包含大部分的類比電路時,利用使用覆晶技術所形成的多晶粒積體電路之效能。焊料凸塊配置可以形成於晶粒的整個表面上,並與該晶粒內所實行的類比電路垂直對準。所描述的各式各樣焊料凸塊配置促進數位至類比轉換器的案例中,以降低INL的觀點來說,係改善了類比電路的效能。 The inventive configuration described in the present disclosure can be improved when one or more dies When using most of the analog circuits, the performance of the multi-die integrated circuit formed by flip chip technology is utilized. A solder bump configuration can be formed over the entire surface of the die and vertically aligned with the analog circuitry implemented within the die. The described variety of solder bump configurations facilitates digital to analog converters, improving the performance of analog circuits from the standpoint of reducing INL.

在一個態樣中,本揭示中所例示的焊料凸塊配置係尋求錯開的列、行,列和行,及/或個別的焊料凸塊,所以類比電路中的裝置所引起的應力分散於各個元件,已使對各個元件相等地施加應力。舉例來說,可以選擇焊料凸塊的水平間隔(例如,x-間距)使得指狀件每一行中的總應力會平均得到同一值。可以選擇焊料凸塊的垂直間隔(例如,y-間距)使得焊料凸塊的位置會平移而將相同的平均應力施加至每一列上。在列到列、及/或行到行中所應用的偏移係用於避免誤差積累效應。 In one aspect, the solder bump configurations illustrated in the present disclosure seek for staggered columns, rows, columns and rows, and/or individual solder bumps, so that the stresses caused by the devices in the analog circuit are dispersed throughout The components have been equally stressed with respect to the individual components. For example, the horizontal spacing (eg, x-spacing) of the solder bumps can be selected such that the total stress in each row of the fingers will average to the same value. The vertical spacing (e.g., y-pitch) of the solder bumps can be selected such that the position of the solder bumps translates to apply the same average stress to each column. The offsets applied in column to column, and/or row to row are used to avoid error accumulation effects.

在一個例子中,焊料凸塊密度,無論是偏移列及/或行,可被設定為大約14%。然而,提供這個值只是為了例示的目的。焊料凸塊密度高於14%,焊料凸塊密度低於14%,皆可能會導致類比電路的改良操作。 In one example, the solder bump density, whether offset column and/or row, can be set to approximately 14%. However, this value is provided for illustrative purposes only. Solder bump density higher than 14% and solder bump density below 14% may result in improved operation of the analog circuit.

圖13是流程圖,其例示製造積體電路的範例性方法1300。在製造積體電路上,可使用本揭示中所描述的各種焊料凸塊配置之任一者。為了例示的目的,而不是限制,圖13僅例示簡化的製造製程。 FIG. 13 is a flow chart illustrating an exemplary method 1300 of fabricating an integrated circuit. Any of the various solder bump configurations described in this disclosure can be used in fabricating integrated circuits. For purposes of illustration, and not limitation, FIG. 13 merely illustrates a simplified manufacturing process.

方法1300可以在方塊1305開始,其中建立了晶粒。可以使用本領域所熟知的標準積體電路製造技術以將晶粒建立為多層半導體結構。將類比區域實施於該晶粒內以作為創作晶粒的部分。該類比區域包括類比電路。可以實施各種類型的類比電路,或在本揭示中所描述的部分的之任一者。雖然該晶粒包括類比區域,但是應了解的是,該晶粒可包括其 它類型的電路,例如數位電路。 Method 1300 can begin at block 1305 where a die is created. Standard integrated circuit fabrication techniques well known in the art can be used to build the dies into a multilayer semiconductor structure. An analog region is implemented within the die as part of the creation of the die. The analog area includes an analog circuit. Various types of analog circuits, or any of the portions described in this disclosure, can be implemented. Although the die includes an analogous region, it should be understood that the die may include It is a type of circuit, such as a digital circuit.

在方塊1310中,會實行焊料凸塊的形成。焊料凸塊定位,或實施在晶粒的表面上。在一個態樣中,焊料凸塊定位在晶粒的表面上的面積,其係與位於晶粒中的類比區域垂直對準。與類比區域垂直對準的焊料凸塊可以用符合本揭示中所描述的焊料凸塊配置的任一者來實施。此外,應當了解的是,在與類比區域垂直對準的面積內所使用的焊料凸塊可以在該晶粒的表面上與類比區域垂直對準的面積之外部所實施的焊料凸塊配置或焊料凸塊圖案有所不同。 In block 1310, the formation of solder bumps is performed. The solder bumps are positioned or implemented on the surface of the die. In one aspect, the area of the solder bump positioned on the surface of the die is perpendicular to the analog region located in the die. Solder bumps that are vertically aligned with the analog regions can be implemented with any of the solder bump configurations described in this disclosure. In addition, it should be understood that the solder bumps used in the area vertically aligned with the analog regions may be solder bump configurations or solder implemented on the surface of the die surface that is vertically aligned with the analog regions. The bump pattern is different.

在方塊1315中,晶粒可以附接到晶粒安裝結構。在一個例子中,晶粒安裝結構是封裝基板。在另一個態樣中,晶粒安裝結構是中介層。在任何案例中,晶粒安裝結構的第一表面可使用複數個焊料凸塊而附接於晶粒的第一表面。 At a block 1315, the die can be attached to the die attach structure. In one example, the die attach structure is a package substrate. In another aspect, the die attach structure is an interposer. In any case, the first surface of the die attach structure can be attached to the first surface of the die using a plurality of solder bumps.

焊料凸塊連接係被配置或實施,以作為方塊1310之形成焊料凸塊及/或方塊1315的附接過程的一部分。在一個態樣中,在與類比區域垂直對準的面積中的一個或更多個、或是所有的焊料凸塊可以維持為機械的焊料凸塊。在另一個態樣中,在與類比區域垂直對準的面積中的一個或更多個、或是所有的焊料凸塊被耦合到電源供應電壓。在另一個態樣中,在與類比區域垂直對準的面積中的一個或更多個、或是所有的焊料凸塊可耦合到資料信號。 The solder bump connections are configured or implemented as part of the attachment process of the formation of solder bumps and/or blocks 1315 of block 1310. In one aspect, one or more of the areas that are vertically aligned with the analog regions, or all of the solder bumps, can be maintained as mechanical solder bumps. In another aspect, one or more of the areas vertically aligned with the analog region, or all of the solder bumps are coupled to a power supply voltage. In another aspect, one or more of the areas that are vertically aligned with the analog region, or all of the solder bumps can be coupled to the data signal.

應了解的是,也可以實施上述連接的各種組合。舉例來說,在面積中所描述的一個或更多個焊料凸塊可以是機械的焊料凸塊,而在面積中所描述的一個或更多其他的焊料凸塊被耦合到電源供應電壓。在面積 中所描述的一個或更多個焊料凸塊可以是機械的焊料凸塊,而在面積中所描述的一個或更多其他的焊料凸塊被耦合到資料信號。在面積中所描述的一個或更多個焊料凸塊可以耦合到電源供應電壓,而在面積中所描述的一個或更多其他的焊料凸塊被耦合到資料信號。又在另一個例子中,在面積中所描述的一個或更多個焊料凸塊可以是機械的焊料凸塊,而在面積中所描述的一個或更多其他的焊料凸塊可以耦合到資料信號,而在面積中所描述的一個或更多其他的焊料凸塊可耦合到電源供應電壓。 It will be appreciated that various combinations of the above connections can also be implemented. For example, one or more of the solder bumps described in the area may be mechanical solder bumps, while one or more other solder bumps described in the area are coupled to a power supply voltage. In area One or more of the solder bumps described herein may be mechanical solder bumps, while one or more other solder bumps described in the area are coupled to the data signal. One or more solder bumps described in the area may be coupled to a power supply voltage, while one or more other solder bumps described in the area are coupled to the data signal. In yet another example, one or more of the solder bumps described in the area may be mechanical solder bumps, and one or more other solder bumps described in the area may be coupled to the data signal. One or more other solder bumps described in the area may be coupled to the power supply voltage.

取決於晶粒安裝結構的實施,本說明書中揭示的發明配置可以應用到單一晶粒積體電路結構或多晶粒積體電路結構,在單一晶粒積體電路結構中,晶粒可附接到封裝基板晶粒附接到封裝基板。在多晶粒積體電路結構的案例中,兩個或更多個晶粒可附接到封裝基板。在一個替代性的多晶粒積體電路結構中,兩個或更多個晶粒可附接到中介層,而該中介層接著附接到封裝基板。一個或更多個或所有的這種多晶粒積體電路結構可包括具有如本揭示中所描述的焊料凸塊配置的類比區域。 Depending on the implementation of the die attach structure, the inventive arrangements disclosed in this specification can be applied to a single die integrated circuit structure or a multi-die integrated circuit structure in which the die can be attached The package substrate is attached to the package substrate. In the case of a multi-die integrated circuit structure, two or more dies may be attached to the package substrate. In an alternative multi-die integrated circuit structure, two or more dies may be attached to the interposer, which is then attached to the package substrate. One or more or all of such multi-die integrated circuit structures may include analog regions having solder bump configurations as described in this disclosure.

為了例示的目的,為了對本說明書中所揭示的各種發明概念提供透徹的了解而闡述特定術語名稱。然而,本說明書所使用的用語是為了例示所描述的特徵,並且目的不旨在限制。 For the purposes of illustration, specific terminology names are set forth in order to provide a thorough understanding of the various inventive concepts disclosed herein. However, the terms used in the specification are for the purpose of illustrating the features described, and are not intended to be limiting.

本說明書中所使用的用語「一」及「一個」係定義為一個或更多個,並非一個。本說明書中所使用的用語「複數個」定義為二個或更多個,並非二個。本說明書中所使用的用語「另一個」係定義為至少第二個或更多個。本說明書中所使用的用語「耦合」定義為連接,不管是沒有任何中介元件之直接方式,或是具有一個或更多個中介元件之間接方式, 除非有特別指出。二元件也可透過通訊通道、路徑、網路或系統而以機械、電性或通訊鏈結的方式而進行耦合。 The terms "a" and "an" are used in the specification to mean one or more and not one. The term "plurality" as used in this specification is defined as two or more, not two. The term "another" as used in this specification is defined as at least a second or more. The term "coupled" as used in this specification is defined as a connection, whether it is a direct way without any intervening elements, or having one or more intervening elements interlinked, Unless otherwise stated. The two components can also be coupled in a mechanical, electrical or communication link via a communication channel, path, network or system.

本說明書中所使用的用語「及/或」是指並包括一個或更多個相關所列項目的任何及所有可能組合。應進一步了解的是,用語「包括」及/或「包含」,在本說明書中使用時,是特別說明所陳述的特徵、整數、步驟、操作、元件及/或構件的存在,但不排除存一個或更多個其它特徵、整數、步驟、操作、元件、構件,及/或其組合的存在或附加。也應該了解的是,雖然用語第一、第二…等在本說明書中可以用於描述各種元件,這些元件不應受到這些用語的限制,因為這些用語僅是用來區分元件與另一個元件。 The term "and/or" used in the specification means and includes any and all possible combinations of one or more of the associated listed items. It is to be understood that the phrase "comprises" or "comprises" and "includes", when used in this specification, is specifically intended to mean the existence of the recited features, integers, steps, operations, components and/or components. The presence or addition of one or more other features, integers, steps, operations, elements, components, and/or combinations thereof. It should also be understood that although the terms first, second, etc. may be used in the specification to describe various elements, these elements are not limited by these terms, as these terms are used only to distinguish one element from another.

在本說明書中,使用相同參考字眼以指稱終端、信號線路、導線及它們的對應信號。據此,在本說明書內的該些用語「信號」、「導線」、「連接」、「終端」及「接腳」可隨時交互使用。舉例來說,電源供應信號係攜載電源供應電壓或電源供應電壓電勢。「電源供應信號」用語可以和「電源供應電壓」或「電源供應電壓電勢」用語交互使用。應了解的是,該些用語「信號」、「導線」或類似物可代表一個或更多個信號,例如,透過單一導線傳送單一位元或透過多個並行導線傳送多個並行位元。進一步,每一個導線或信號可代表如該案例所有的信號或導線所連接的二個或更多個元件間的雙向通訊。 In this specification, the same reference words are used to refer to terminals, signal lines, wires, and their corresponding signals. Accordingly, the terms "signal", "wire", "connection", "terminal" and "pin" in this specification can be used interchangeably at any time. For example, the power supply signal carries a power supply voltage or a power supply voltage potential. The term "power supply signal" can be used interchangeably with the terms "power supply voltage" or "power supply voltage potential". It should be understood that the terms "signal", "wire" or the like may represent one or more signals, for example, transmitting a single bit through a single wire or transmitting multiple parallel bits through a plurality of parallel wires. Further, each wire or signal may represent two-way communication between two or more elements to which all of the signals or wires are connected as in this case.

該些圖形中的流程圖和方塊圖例示了本說明書內所描述一或更多特徵的可實行的製程、機械、製造及/或系統之架構、功能及操作。在一些替代性實施方式中,方塊圖中所註記的功能可能與圖中所註記的順 序不同發生。舉例來說,圖中所示的兩個連續方塊可能會同時執行,其係取決於所牽涉的功能性。 The flowcharts and block diagrams in the figures illustrate the architecture, functionality, and operation of the exemplified process, machine, manufacture, and/or system of one or more features described in this specification. In some alternative implementations, the functions noted in the block diagrams may be similar to those noted in the figures. The order occurs differently. For example, two consecutive blocks shown in the figures may be executed simultaneously, depending on the functionality involved.

在申請專利範圍中的所有構件、步驟加上功能性元件之對應的結構、材料、動作以及所有等效物旨在包括用於執行特定請求的功能結合其他請求的元件之任何結構、材料或動作。 The structure, materials, acts, and all equivalents of all components, steps, and functional elements in the scope of the claims are intended to include any structure, material, or .

本說明書內所揭示的特徵可以其它形式具體實施而不偏離其精神或主要屬性。據此,應參照下列申請專利範圍做為指示該一或更多實施例範圍,而非前面的說明書。 The features disclosed in the present specification may be embodied in other forms without departing from the spirit or essential attributes. Accordingly, the scope of the following claims should be construed as the

130‧‧‧類比區域 130‧‧‧ analogy area

205‧‧‧焊料凸塊 205‧‧‧ solder bumps

Claims (19)

一種積體電路,其包括:所述積體電路的晶粒的類比區域,所述類比區域包括類比電路;以及實施於所述晶粒的表面上的複數個焊料凸塊,所述複數個焊料凸塊係在與所述晶粒的所述類比區域垂直對準的區域中;其中所述複數個焊料凸塊包括:具有固定間隔的第一行焊料凸塊;以及第二行焊料凸塊,其中所述第二行焊料凸塊中的相鄰焊料凸塊之間的垂直間隔隨著所述第二行焊料凸塊中連續的焊料凸塊對之間的垂直偏移增加而非線性地變化。 An integrated circuit comprising: an analog region of a die of the integrated circuit, the analog region comprising an analog circuit; and a plurality of solder bumps implemented on a surface of the die, the plurality of solder a bump is in a region vertically aligned with the analog region of the die; wherein the plurality of solder bumps comprise: a first row of solder bumps having a fixed spacing; and a second row of solder bumps, Wherein the vertical spacing between adjacent solder bumps in the second row of solder bumps varies non-linearly as the vertical offset between successive pairs of solder bumps in the second row of solder bumps increases . 如申請專利範圍第1項所述的積體電路,其中所述類比電路包括複數個電流源。 The integrated circuit of claim 1, wherein the analog circuit comprises a plurality of current sources. 如申請專利範圍第2項所述的積體電路,其中所述複數個電流源係以共同質心佈局配置。 The integrated circuit of claim 2, wherein the plurality of current sources are arranged in a common centroid layout. 如申請專利範圍第1項所述的積體電路,其中所述類比電路的至少一部分包括以QN佈局配置的複數個電路元件。 The integrated circuit of claim 1, wherein at least a portion of the analog circuit comprises a plurality of circuit elements arranged in a Q N layout. 如申請專利範圍第1項所述的積體電路,其中所述複數個焊料凸塊包括:第一列焊料凸塊;以及第二列焊料凸塊;其中所述第二列焊料凸塊係在和所述第二列焊料凸塊平行的方向上偏離所述第一列焊料凸塊。 The integrated circuit of claim 1, wherein the plurality of solder bumps comprise: a first column of solder bumps; and a second column of solder bumps; wherein the second column of solder bumps is The first column of solder bumps are offset from a direction parallel to the second column of solder bumps. 如申請專利範圍第5項所述的積體電路,其中在所述第二列焊料凸塊中相鄰焊料凸塊之間的水平間隔係固定的。 The integrated circuit of claim 5, wherein a horizontal interval between adjacent solder bumps in the second column of solder bumps is fixed. 如申請專利範圍第5項所述的積體電路,其中在所述第二列焊料凸塊中相鄰焊料凸塊之間的水平間隔係變動的。 The integrated circuit of claim 5, wherein the horizontal spacing between adjacent solder bumps in the second column of solder bumps varies. 如申請專利範圍第1項所述的積體電路,其係進一步包括:晶粒安裝結構,其具有第一表面;其中所述晶粒的第一表面係使用複數個焊料凸塊而附接至所述晶粒安裝結構的所述第一表面。 The integrated circuit of claim 1, further comprising: a die attach structure having a first surface; wherein the first surface of the die is attached to the plurality of solder bumps to The first surface of the die attach structure. 如申請專利範圍第8項所述的積體電路,其中所述晶粒安裝結構是中介層。 The integrated circuit of claim 8, wherein the die attach structure is an interposer. 如申請專利範圍第8項所述的積體電路,其中所述晶粒安裝結構是封裝基板。 The integrated circuit of claim 8, wherein the die mounting structure is a package substrate. 如申請專利範圍第1項所述的積體電路,其中所述複數個焊料凸塊中的至少一者係耦合至電源供應電壓。 The integrated circuit of claim 1, wherein at least one of the plurality of solder bumps is coupled to a power supply voltage. 如申請專利範圍第1項所述的積體電路,其中所述複數個焊料凸塊中的至少一者係耦合至資料信號。 The integrated circuit of claim 1, wherein at least one of the plurality of solder bumps is coupled to a data signal. 如申請專利範圍第1項所述的積體電路,其中所述複數個焊料凸塊中的至少一者係機械的焊料凸塊。 The integrated circuit of claim 1, wherein at least one of the plurality of solder bumps is a mechanical solder bump. 如申請專利範圍第1項所述的積體電路,其中所述類比電路包括複數個電阻器、複數個電容器或複數個電感器中的至少一者。 The integrated circuit of claim 1, wherein the analog circuit comprises at least one of a plurality of resistors, a plurality of capacitors, or a plurality of inductors. 一種積體電路,其包括:所述積體電路的晶粒的類比區域,所述類比區域包括類比電路;以及 實施於所述晶粒的表面上的複數個焊料凸塊,所述複數個焊料凸塊係在與所述晶粒的所述類比區域垂直對準的區域中;其中所述複數個焊料凸塊包括:具有固定間隔的第一列焊料凸塊;以及第二列焊料凸塊,其中所述第二列焊料凸塊中相鄰焊料凸塊之間的水平間隔隨著所述第二列焊料凸塊中連續的焊料凸塊對之間的水平偏移增加而非線性地變化。 An integrated circuit comprising: an analog region of a die of the integrated circuit, the analog region comprising an analog circuit; Implementing a plurality of solder bumps on a surface of the die, the plurality of solder bumps being in a region vertically aligned with the analog region of the die; wherein the plurality of solder bumps The method includes: a first column of solder bumps having a fixed interval; and a second column of solder bumps, wherein a horizontal interval between adjacent solder bumps of the second column of solder bumps follows the second column of solder bumps The horizontal offset between successive pairs of solder bumps in the block increases non-linearly. 如申請專利範圍第15項所述的積體電路,其中所述類比電路包括複數個電流源。 The integrated circuit of claim 15, wherein the analog circuit comprises a plurality of current sources. 如申請專利範圍第15項所述的積體電路,其中所述複數個焊料凸塊包括:第一行焊料凸塊;以及第二行焊料凸塊;其中所述第二行焊料凸塊係在和所述第二行焊料凸塊平行的方向上偏離所述第一行焊料凸塊。 The integrated circuit of claim 15, wherein the plurality of solder bumps comprise: a first row of solder bumps; and a second row of solder bumps; wherein the second row of solder bumps are The first row of solder bumps are offset from a direction parallel to the second row of solder bumps. 如申請專利範圍第17項所述的積體電路,其中所述第二行焊料凸塊中相鄰焊料凸塊之間的垂直間隔係固定的。 The integrated circuit of claim 17, wherein the vertical spacing between adjacent solder bumps in the second row of solder bumps is fixed. 如申請專利範圍第17項所述的積體電路,其中在所述第二行焊料凸塊中相鄰焊料凸塊之間的垂直間隔係變動的。 The integrated circuit of claim 17, wherein the vertical spacing between adjacent solder bumps in the second row of solder bumps varies.
TW103138664A 2014-11-06 2014-11-06 Solder bump arrangements for large area analog circuitry TWI604582B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW103138664A TWI604582B (en) 2014-11-06 2014-11-06 Solder bump arrangements for large area analog circuitry

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW103138664A TWI604582B (en) 2014-11-06 2014-11-06 Solder bump arrangements for large area analog circuitry

Publications (2)

Publication Number Publication Date
TW201618255A TW201618255A (en) 2016-05-16
TWI604582B true TWI604582B (en) 2017-11-01

Family

ID=56509065

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103138664A TWI604582B (en) 2014-11-06 2014-11-06 Solder bump arrangements for large area analog circuitry

Country Status (1)

Country Link
TW (1) TWI604582B (en)

Also Published As

Publication number Publication date
TW201618255A (en) 2016-05-16

Similar Documents

Publication Publication Date Title
JP5749854B2 (en) Interposer with inductor
US9343418B2 (en) Solder bump arrangements for large area analog circuitry
US9224697B1 (en) Multi-die integrated circuits implemented using spacer dies
US9337138B1 (en) Capacitors within an interposer coupled to supply and ground planes of a substrate
US8704364B2 (en) Reducing stress in multi-die integrated circuit structures
US8476735B2 (en) Programmable semiconductor interposer for electronic package and method of forming
TWI749034B (en) Heterogeneous ball pattern package
US8384185B2 (en) Semiconductor device and a method of manufacturing the same
JP5474127B2 (en) Semiconductor device
KR20130025431A (en) Electro-static discharge protection for die of a multi-chip module
WO2020066797A1 (en) Semiconductor integrated circuit device and semiconductor package structure
TW201824470A (en) Package structure
KR101366401B1 (en) Structure and method for bump to landing trace ratio
JP4025044B2 (en) Semiconductor integrated circuit device
US20120228763A1 (en) Semiconductor device and manufacturing method thereof
TWI627746B (en) Removal of electrostatic charges from interposer for die attachment
US10756019B1 (en) Systems providing interposer structures
TWI604582B (en) Solder bump arrangements for large area analog circuitry
US8269346B2 (en) Semiconductor device and method of designing a wiring of a semiconductor device
US20100164052A1 (en) High power integrated circuit device
TWI645525B (en) Interconnect structure
US10332885B1 (en) Systems and methods for providing capacitor structures in an integrated circuit
JP2009260147A (en) Semiconductor integrated circuit device
US20160027758A1 (en) Semiconductor device
KR20240043991A (en) Power distribution network and semiconductor device