TWI602598B - Treadmill with dual physiological signals and automatically controlling method thereof - Google Patents

Treadmill with dual physiological signals and automatically controlling method thereof Download PDF

Info

Publication number
TWI602598B
TWI602598B TW105135071A TW105135071A TWI602598B TW I602598 B TWI602598 B TW I602598B TW 105135071 A TW105135071 A TW 105135071A TW 105135071 A TW105135071 A TW 105135071A TW I602598 B TWI602598 B TW I602598B
Authority
TW
Taiwan
Prior art keywords
parameter
running belt
blood oxygen
parameters
inclination
Prior art date
Application number
TW105135071A
Other languages
Chinese (zh)
Other versions
TW201815440A (en
Inventor
任才俊
胡晉嘉
李聖文
Original Assignee
崑山科技大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 崑山科技大學 filed Critical 崑山科技大學
Priority to TW105135071A priority Critical patent/TWI602598B/en
Application granted granted Critical
Publication of TWI602598B publication Critical patent/TWI602598B/en
Publication of TW201815440A publication Critical patent/TW201815440A/en

Links

Description

具有雙生理自動控制之跑步機以及雙生理跑步機之自動控制方法Treadmill with dual physiological automatic control and automatic control method for double physiological treadmill

本發明係關於一種跑步機以及其自動控制方法,尤指具有雙生理自動控制之跑步機以及雙生理跑步機之自動控制方法。The invention relates to a treadmill and an automatic control method thereof, in particular to a treadmill with dual physiological automatic control and an automatic control method for a double physiological treadmill.

隨著國民生活水準提升,人們意識到健康的重要性,各式的健身器因應而生,健身器會利用阻力元件來對使用者施力向反向施力成為阻抗,而形成使用者健身施力之負荷,進而使肌肉得到訓練,例如:划船機、舉重機、踏步機、飛輪車…等,大多利用彈性恢復力、重力、或其他機構運作阻力來成為健身施力之阻抗。With the improvement of the standard of living of the people, people realize the importance of health, and various types of exercise machines are born. The exercise device uses the resistance element to apply force to the user to reverse the force to become the impedance, and form the user's fitness The load of force, in turn, allows the muscles to be trained, such as: rowing machines, weightlifting machines, steppers, flywheels, etc., mostly using elastic restoring force, gravity, or other mechanical operating resistance to become the impedance of fitness exertion.

跑步機的運動模式最接近人類的自然運動模式,仍為當前最普及之健身器,同樣也為對跑步健身者產生阻抗,跑步機是以控制跑帶轉速與跑帶傾斜度的方式,來調整跑步者的運動負荷量。The treadmill's sport mode is closest to human's natural sport mode, and it is still the most popular exercise machine. It also creates resistance to runners. The treadmill adjusts the speed of the running belt and the inclination of the running belt. The amount of exercise load on the runner.

跑步時生理變化最大的就是心跳與血氧濃度,如果要做到有計畫的健身,其實需對跑步健身者控制其心跳頻率與血氧濃度,才能夠以最佳的方式強化人體的生理機能。The most physiological changes during running are the heartbeat and blood oxygen concentration. If you want to have a fitness program, you need to control the heartbeat frequency and blood oxygen concentration of the runner to improve the physiological function of the human body in the best way. .

傳統的方式,多僅能針對單一的生理參數來調整跑步機對人體產生的負荷,或者,也只能於跑步時監控多種生理參數,讓跑步者能夠目視了解自己的生理狀態,如心跳頻率或血氧濃度,然後自行改變跑步的速度或是改變跑帶的傾斜度。In the traditional way, the treadmill can only adjust the load on the human body for a single physiological parameter, or it can only monitor a variety of physiological parameters during running, so that the runner can visually understand his or her physiological state, such as the heart rate or Blood oxygen concentration, then change the speed of running or change the inclination of the running belt.

但是,跑步原本是個輕鬆愉快的活動,如果在跑步的過程中還需顧慮各種數值,則會失去跑步的樂趣,但這些生理數值對於跑步者真正需要的負荷量,關係又非常密切,並且,多種生理數值的交互影響又是非常複雜,因此, 有必要需要一種更新穎的方式協調多種生理數值來控制跑步機跑帶的轉速以及傾斜度。However, running is originally a lighthearted activity. If you need to worry about various values during the running process, you will lose the joy of running, but these physiological values are very close to the amount of load the runner really needs, and various The interactive effects of physiological values are very complex, so it is necessary to have a newer way to coordinate multiple physiological values to control the speed and inclination of the treadmill belt.

本發明的主要目的在於提供一種具有雙生理自動控制之跑步機以及雙生理跑步機之自動控制方法,以解決上述問題。The main object of the present invention is to provide a treadmill with dual physiological automatic control and an automatic control method for a dual physiological treadmill to solve the above problems.

本發明之目的在提供一種具有雙生理自動控制之跑步機以及雙生理跑步機之自動控制方法,能夠協調跑步者心跳頻率以及血氧濃度的現況數值,對跑步機控制適當的跑帶轉速以及跑帶傾斜度,調整適當的負荷以使跑步者維持預定需要的心跳頻率以及血氧濃度。The object of the present invention is to provide a treadmill with dual physiological automatic control and an automatic control method for a double physiological treadmill, which can coordinate the current value of the heartbeat frequency and blood oxygen concentration of the runner, control the appropriate running speed of the treadmill and run With an inclination, the appropriate load is adjusted to maintain the runner's desired heart rate and blood oxygen concentration.

本發明係關於一種具有雙生理自動控制之跑步機,跑步機係包含跑帶、跑帶轉動機構、跑帶傾斜機構、血氧感測模組、心率感測模組、以及類神經分析模組。The invention relates to a treadmill with dual physiological automatic control. The treadmill comprises a running belt, a running belt rotating mechanism, a running belt tilting mechanism, a blood oxygen sensing module, a heart rate sensing module, and a neurological analysis module. .

跑帶係轉動使跑步者能持續跑步在跑帶上;跑帶轉動機構帶動跑帶轉動,接收轉速參數以控制跑帶轉動的轉速;跑帶傾斜機構接收傾角參數以控制跑帶的傾斜度;血氧感測模組用以偵測所述跑步者的生理血氧參數;心率感測模組用以偵測所述跑步者的心跳頻率參數。The running belt rotation enables the runner to continue running on the running belt; the running belt rotating mechanism drives the running belt to rotate, receives the rotation speed parameter to control the rotation speed of the running belt; and the running belt tilting mechanism receives the inclination parameter to control the inclination of the running belt; The blood oxygen sensing module is configured to detect a physiological blood oxygen parameter of the runner; the heart rate sensing module is configured to detect a heartbeat frequency parameter of the runner.

類神經分析模組係根據類神經網路理論,以生理血氧參數與心跳頻率參數為輸入層參數,以轉速參數與傾角參數為輸出層參數,經過隱藏層處理後,收斂出理想的轉速參數與傾角參數,後續以收斂後之轉速參數與傾角參數分別輸出給跑帶轉動機構與跑帶傾斜機構。The neurological analysis module is based on the neural network theory. The physiological blood oxygen parameters and the heartbeat frequency parameters are used as the input layer parameters, and the rotational speed parameters and the inclination parameters are used as the output layer parameters. After the hidden layer processing, the ideal rotational speed parameters are converged. And the inclination angle parameter, the subsequent rotation speed parameter and the inclination angle parameter are respectively output to the running belt rotation mechanism and the running belt tilting mechanism.

如前述之跑步機,跑步機係接受外部預先輸入血氧設定值以及心率設定值,生理血氧參數包含二個參數,分別為 e BO:跑步者血氧數值與血氧設定值的差值、以及 BO: 為 e BO的變量,心跳頻率參數包含二個參數,分別為 e h: 跑步者心率值與心率設定值的差值、以及 h: 為 e h的變量。 Preceding the treadmill, the treadmill receiving an external input in advance based oxygen setpoint and setpoint heart rate, blood oxygen physiological parameters include two parameters, namely e BO: oxygen runners difference value and the set value of the oxygen, as well as BO : is the variable of e BO , the heartbeat frequency parameter contains two parameters, respectively e h : the difference between the runner's heart rate value and the heart rate set value, and h : a variable of e h .

進一步,如前述之跑步機,類神經分析模組係根據模糊類神經網路理論,其中所偵測之生理血氧參數以及心跳頻率參數先進行模糊化處理,類神經分析模組對所述收斂後之轉速參數與傾角參數進行解模糊化處理,以產生轉速指令以及傾角指令。Further, as described above, the treadmill-like neural analysis module is based on a fuzzy neural network theory, wherein the detected physiological blood oxygen parameters and the heartbeat frequency parameters are first subjected to fuzzification, and the neurological analysis module performs the convergence. The subsequent speed parameter and the tilt parameter are defuzzified to generate a speed command and a tilt command.

本發明也係一種雙生理跑步機之自動控制方法,雙生理跑步機具有跑帶、跑帶轉動機構、以及跑帶傾斜機構,跑帶係轉動使跑步者能持續跑步在跑帶上,跑帶轉動機構帶動跑帶轉動並控制跑帶轉動的轉速,跑帶傾斜機構控制跑帶的傾斜度,自動控制方法係包含下列步驟:The invention also relates to an automatic control method for a double physiological treadmill, the double physiological treadmill has a running belt, a running belt rotating mechanism, and a running belt tilting mechanism, and the running belt system rotates so that the runner can continuously run on the running belt, and the running belt The rotating mechanism drives the running belt to rotate and controls the rotation speed of the running belt, and the running belt tilting mechanism controls the inclination of the running belt. The automatic control method comprises the following steps:

步驟一:偵測所述跑步者的生理血氧參數以及偵測所述跑步者的心跳頻率參數;步驟二:係根據類神經網路理論,以生理血氧參數與心跳頻率參數為輸入層參數,以轉速參數與傾角參數為輸出層參數;步驟三:經過隱藏層處理後,收斂出理想的轉速參數與傾角參數;步驟四:以收斂後之轉速參數與傾角參數分別輸出給跑帶轉動機構與跑帶傾斜機構,藉以控制跑帶轉動的轉速以及控制跑帶的傾斜度。Step 1: detecting the physiological blood oxygen parameter of the runner and detecting the heartbeat frequency parameter of the runner; Step 2: using the physiological blood oxygen parameter and the heartbeat frequency parameter as input layer parameters according to the neural network theory The rotation speed parameter and the inclination angle parameter are output layer parameters; Step 3: After the hidden layer processing, the ideal rotation speed parameter and the inclination angle parameter are converged; Step 4: the convergence speed parameter and the inclination angle parameter are respectively output to the running belt rotation mechanism The running belt tilting mechanism controls the rotation speed of the running belt and controls the inclination of the running belt.

因此,利用本發明所提供一種具有雙生理自動控制之跑步機以及雙生理跑步機之自動控制方法,藉由類神經分析模組,能協調跑步者心跳頻率以及血氧濃度的現況數值,對跑步機控制適當的跑帶轉速以及跑帶傾斜度,進而調整適當的負荷以使跑步者維持預定需要的心跳頻率以及血氧濃度。Therefore, the present invention provides a treadmill with dual physiological automatic control and an automatic control method for a dual physiological treadmill, and the neurological analysis module can coordinate the current value of the runner's heart rate and blood oxygen concentration, and is running. The machine controls the appropriate running speed and the running belt inclination to adjust the appropriate load to maintain the runner's desired heart rate and blood oxygen concentration.

關於本發明之優點與精神可以藉由以下的發明詳述及所附圖式得到進一步的瞭解。The advantages and spirit of the present invention will be further understood from the following detailed description of the invention.

請參閱圖1,圖1係本發明跑步機10之外觀示意圖。本發明係關於一種具有雙生理自動控制之跑步機10,由外觀看,跑步機10係包含跑帶20、跑帶轉動機構22、以及跑帶傾斜機構24。Please refer to FIG. 1. FIG. 1 is a schematic view showing the appearance of the treadmill 10 of the present invention. The present invention relates to a treadmill 10 having dual physiological automatic control. The treadmill 10 includes a running belt 20, a running belt rotating mechanism 22, and a running belt tilting mechanism 24, as viewed from the outside.

跑帶20能轉動而使跑步者可以持續跑步在跑帶20上。跑帶轉動機構22帶動跑帶20轉動,跑帶轉動機構22有控制器、伺服馬達、傳動裝置等,控制器接收轉速參數後,以驅動並控制伺服馬達運作,伺服馬達藉由傳動裝置來帶動跑帶20轉動,藉由轉速參數內的資訊可以控制跑帶20轉動的轉速。跑帶傾斜機構24中也有控制器、伺服馬達、傳動裝置等,其控制器接收傾角參數之後,驅動並控制伺服馬達運作,伺服馬達藉由傳動裝置來控制跑帶20的傾斜度。The running belt 20 can be rotated so that the runner can continue to run on the running belt 20. The running belt rotating mechanism 22 drives the running belt 20 to rotate. The running belt rotating mechanism 22 has a controller, a servo motor, a transmission device, etc., and the controller receives the rotational speed parameter to drive and control the operation of the servo motor, and the servo motor is driven by the transmission device. The running belt 20 rotates, and the rotation speed of the running belt 20 can be controlled by the information in the rotation speed parameter. The running belt tilting mechanism 24 also has a controller, a servo motor, a transmission device and the like. After the controller receives the inclination parameter, the controller drives and controls the operation of the servo motor, and the servo motor controls the inclination of the running belt 20 by the transmission device.

請參閱圖2,圖2係本發明跑步機10之功能方塊圖。本發明之跑步機10除了前述的跑帶20、跑帶轉動機構22、以及跑帶傾斜機構24之外,還包含血氧感測模組30、心率感測模組32、以及類神經分析模組34。Please refer to FIG. 2. FIG. 2 is a functional block diagram of the treadmill 10 of the present invention. In addition to the aforementioned running belt 20, running belt rotating mechanism 22, and running belt tilting mechanism 24, the treadmill 10 of the present invention further includes a blood oxygen sensing module 30, a heart rate sensing module 32, and a neurological analysis module. Group 34.

血氧感測模組30用以偵測所述跑步者的生理血氧參數,一般來說,血氧感測模組30可藉由兩道不同波長的光穿透血液吸收度的差異,再經過計算後就可取得血氧濃度,人體中的手指或耳垂組織較薄且充滿微血管,所以血氧感測模組30的感應器大都以測量這兩部位為主,另也有少數感應器設計成額頭式的貼片。The blood oxygen sensing module 30 is configured to detect the physiological blood oxygen parameters of the runner. Generally, the blood oxygen sensing module 30 can penetrate the difference in blood absorbance by two different wavelengths of light, and then After calculation, the blood oxygen concentration can be obtained, and the finger or earlobe tissue in the human body is thin and full of micro blood vessels, so the sensors of the blood oxygen sensing module 30 are mostly measured by the two parts, and a few sensors are designed. Forehead patch.

心率感測模組32用以偵測所述跑步者的心跳頻率參數。心率感測模組32可利用數種方法來偵測心跳或心跳訊號,有的使用遠紅外線感應器去偵測在指頭或是耳垂上的微血管裡血液的流動,有的是在手掌區域偵測心電脈衝訊號,或也有使用彈性皮帶綁在胸膛上的胸膛電極去偵測心電脈衝訊號,藉由這些方是可以量測心跳頻率。The heart rate sensing module 32 is configured to detect the heartbeat frequency parameter of the runner. The heart rate sensing module 32 can use several methods to detect heartbeat or heartbeat signals, and some use far infrared sensors to detect blood flow in the microvessels on the finger or earlobe, and some detect the heartbeat in the palm area. Pulse signals, or chest electrodes that are strapped to the chest with an elastic strap to detect ECG pulse signals, by which the heartbeat frequency can be measured.

類神經分析模組34係根據類神經網路理論,進一步,可以根據模糊類神經網路理論。由於心率和血氧濃度都是生理訊號,而且屬於非線性系統,連動性的關係非常複雜,且又因人而異,所以使用模糊類神經網路來實現為佳。The neurological analysis module 34 is based on the neural network theory and can be further based on the fuzzy neural network theory. Since heart rate and blood oxygen concentration are physiological signals and belong to a nonlinear system, the relationship between linkages is very complicated and varies from person to person, so it is better to use fuzzy neural networks.

首先,先對所偵測之生理血氧參數以及心跳頻率參數先進行模糊化處理,接著再以生理血氧參數與心跳頻率參數為輸入層參數,以轉速參數與傾角參數為輸出層參數,經過隱藏層處理後,收斂出理想的轉速參數與傾角參數。Firstly, the detected physiological blood oxygen parameters and the heartbeat frequency parameters are first blurred, and then the physiological blood oxygen parameters and the heartbeat frequency parameters are used as input layer parameters, and the rotational speed parameters and the inclination parameters are used as output layer parameters. After the hidden layer processing, the ideal speed parameter and inclination parameter are converged.

後續對收斂後之轉速參數與傾角參數進行解模糊化處理,以產生轉速指令以及傾角指令,再分別將轉速指令以及傾角指令輸出給跑帶轉動機構22與跑帶傾斜機構24,如此,就可控制跑帶轉動機構22輸出跑帶20的轉速,與控制跑帶傾斜機構24輸出跑帶20的傾斜度。Subsequently, the convergence speed parameter and the inclination parameter are defuzzified to generate a rotation speed command and a tilting command, and then the rotation speed command and the inclination command are respectively output to the running belt rotating mechanism 22 and the running belt tilting mechanism 24, so that The running belt rotating mechanism 22 controls the rotation speed of the running belt 20, and controls the running belt tilting mechanism 24 to output the inclination of the running belt 20.

進一步說明,跑步機10可以接受外部如跑步者本身預先輸入的血氧設定值BO以及心率設定值H。則前述以生理血氧參數與心跳頻率參數為輸入層參數,生理血氧參數可以包含二個參數,分別為 e BO:跑步者血氧數值與血氧設定值BO的差值、以及 BO: 為 e BO的變量;心跳頻率參數也可以包含二個參數,分別為 e h: 跑步者心率值與心率設定值H的差值、以及 h: 為 e h的變量。 Further, the treadmill 10 can accept a blood oxygen setting value BO and a heart rate setting value H that are externally input by the runner itself. Then, the physiological blood oxygen parameter and the heartbeat frequency parameter are input layer parameters, and the physiological blood oxygen parameter may include two parameters, respectively: e BO : a difference between the blood oxygen value of the runner and the blood oxygen set value BO, and BO : is the variable of e BO ; the heartbeat frequency parameter can also contain two parameters, respectively e h : the difference between the heart rate value of the runner and the heart rate setting value H, and h : a variable of e h .

其模糊類神經架構實際可以如圖3所式,請參閱圖3,圖3係本發明類神經分析模組34所進行模糊類神經之示意圖。由圖中可見,輸入層(Input Layer)有四個參數,就是上一段所提及的 e h he BO BO,隱藏層(Hiding Layer)包含了有歸屬函數層(Membership Layer)以及模糊規則層(Rule Layer),而輸出層(Output Layer)有兩個參數,分別為轉速參數 與傾角參數 ,其數學模式概述如下。 The fuzzy neural structure can be actually as shown in FIG. 3, please refer to FIG. 3, which is a schematic diagram of the fuzzy neural system performed by the neurological analysis module 34 of the present invention. As can be seen from the figure, the input layer has four parameters, which is the e h mentioned in the previous paragraph. h , e BO , BO , the Hiding Layer contains a Membership Layer and a Rule Layer, and the Output Layer has two parameters, which are the rotation parameters. And inclination parameters The mathematical model is outlined below.

以輸入層來說,以 e代表 e he BO,以 代表 h BO,此層的輸入是 e,則輸出 可以表示如下: 經過個別的模糊歸屬函數進行運算。 In the input layer, e represents e h , e BO , representative h , BO , the input of this layer is e and , then output versus Can be expressed as follows: The operation is performed by an individual fuzzy attribution function.

以歸屬函數層來說,此層的輸出 ,以高斯函數(Gaussian Function)表現如下: 其中, 為高斯函數向量(Gaussian function vector), 為高斯函數標準偏差向量(Gaussian function standard deviation vector),將各類別的歸屬函數輸出,彼此間以乘積之模糊規則運算,來得到模糊神經元程度輸出。 The output of this layer in terms of the attribution function layer versus The Gaussian Function is expressed as follows: among them, Is a Gaussian function vector, For the Gaussian function standard deviation vector, the attribution functions of each class are output and operated by the fuzzy rule of the product to obtain the fuzzy neuron degree output.

以模糊規則層來說,此層的輸出表示如下: 其中, 為循環權重向量(recurrent weight vector)。 In the case of a fuzzy rule layer, the output of this layer is expressed as follows: among them, Is a recurrent weight vector.

將前一級模糊規則層的輸出,乘以可自我調整之權重值w,加總後分別得到推動跑帶20的伺服馬達的控制力、以及揚升跑帶20的伺服馬達的控制力,而 u C1 u C2 為一個讓系統控制可以更接近理想控制的補償力(compensated force)。所以,以輸出層來說,此層輸出為 ,可表現如下: The output of the fuzzy layer of the previous level is multiplied by the self-adjustable weight value w, and the control force of the servo motor that drives the running belt 20 and the control force of the servo motor of the ascending running belt 20 are respectively obtained, and u C1 and u C2 are a compensating force that allows the system control to be closer to the ideal control. So, in terms of the output layer, this layer is output as versus Can be expressed as follows: .

最後,進行解模糊,將前二式矩陣化如下: 其中, 為模糊理論函數向量(fuzzy rule function vector), 為可調整輸出權重向量(adjustable output weight vectors), 包含了補償力。 Finally, the defuzzification is performed, and the first two formulas are matrixed as follows: among them, Is a fuzzy rule function vector, For adjustable output weight vectors, Contains compensation.

上段所述之 u預儲有下列的矩陣關係 u= T,所以藉由 u可以確認出 ,最後 各自經過其相關的伺服馬達的驅動器之後,可以使跑帶20以適當的速度與傾斜角來運作。 The u pre-stored in the previous paragraph has the following matrix relationship , u = T , so it can be confirmed by u versus ,At last versus After each of the drives through their associated servo motors, the running belt 20 can be operated at an appropriate speed and tilt angle.

請參閱圖4,圖4係本發明自動控制方法之基本流程圖。本發明也係一種雙生理跑步機10之自動控制方法,雙生理跑步機10具有跑帶20、跑帶轉動機構22、以及跑帶傾斜機構24,跑帶20係轉動使跑步者能持續跑步在跑帶20上,跑帶轉動機構22帶動跑帶20轉動並控制跑帶20轉動的轉速,跑帶傾斜機構24控制跑帶20的傾斜度,該自動控制方法係包含下列步驟:Please refer to FIG. 4. FIG. 4 is a basic flow chart of the automatic control method of the present invention. The present invention is also an automatic control method for a dual physiological treadmill 10 having a running belt 20, a running belt rotating mechanism 22, and a running belt tilting mechanism 24, and the running belt 20 is rotated to enable the runner to continue running. On the running belt 20, the running belt rotating mechanism 22 drives the running belt 20 to rotate and controls the rotation speed of the running belt 20, and the running belt tilting mechanism 24 controls the inclination of the running belt 20. The automatic control method comprises the following steps:

步驟一(S10):偵測所述跑步者的生理血氧參數以及偵測所述跑步者的心跳頻率參數;Step 1 (S10): detecting a physiological blood oxygen parameter of the runner and detecting a heartbeat frequency parameter of the runner;

步驟二(S20):係根據類神經網路理論,以生理血氧參數與心跳頻率參數為輸入層參數,以轉速參數與傾角參數為輸出層參數;Step 2 (S20): According to the neural network theory, the physiological blood oxygen parameter and the heartbeat frequency parameter are input layer parameters, and the rotational speed parameter and the tilt angle parameter are output layer parameters;

步驟三(S30):經過隱藏層處理後,收斂出理想的轉速參數與傾角參數;以及Step 3 (S30): After the hidden layer processing, the ideal rotation speed parameter and the inclination angle parameter are converged;

步驟四(S40):以收斂後之轉速參數與傾角參數分別輸出給跑帶轉動機構22與跑帶傾斜機構24,藉以控制跑帶20轉動的轉速以及控制跑帶20的傾斜度。Step 4 (S40): The convergence speed parameter and the inclination angle parameter are respectively output to the running belt rotating mechanism 22 and the running belt tilting mechanism 24, thereby controlling the rotation speed of the running belt 20 and controlling the inclination of the running belt 20.

請參閱圖5,圖5係本發明自動控制方法之細部流程圖。如前述之自動控制方法,其中步驟一進一步包含下列步驟:步驟一之a(S1002):跑步機10係接受外部預先輸入血氧設定值BO以及心率設定值H;步驟一之b(S1004):偵測所述跑步者的生理血氧參數後,產生二個輸入層參數,分別為 e BO:跑步者血氧數值與血氧設定值BO的差值、以及 BO: 為 e BO的變量。步驟一之c(S1006):偵測所述跑步者的心跳頻率參數後,產生二個輸入層參數,分別為 e h: 跑步者心率值與心率設定值H的差值、以及 h: 為 e h的變量。 Please refer to FIG. 5. FIG. 5 is a detailed flow chart of the automatic control method of the present invention. The automatic control method as described above, wherein the step 1 further comprises the following steps: Step 1 a (S1002): The treadmill 10 receives externally input the blood oxygen set value BO and the heart rate set value H; Step 1 b (S1004): after detecting the physiological parameters oxygen runners, generating two input layer parameters are e BO: oxygen runners oxygen setpoint value and the difference of the BO, and BO : is a variable of e BO . A step of c (S1006): After the detection of the heartbeat frequency parameter runners, generating two input layer parameters are e h: runners heart rate and heart rate set value of the differential value H, and h : a variable of e h .

步驟二進一步包含下列步驟:步驟二之a(S2002):根據模糊類神經網路理論,其中所偵測之生理血氧參數以及心跳頻率參數先進行模糊化處理;步驟二之b(S2004):以生理血氧參數與心跳頻率參數為輸入層參數,以轉速參數與傾角參數為輸出層參數。Step 2 further includes the following steps: Step 2 a (S2002): According to the fuzzy neural network theory, the detected physiological blood oxygen parameters and the heartbeat frequency parameters are first subjected to fuzzification; step 2 b (S2004): The physiological blood oxygen parameters and the heartbeat frequency parameters are taken as the input layer parameters, and the rotational speed parameters and the inclination parameters are taken as the output layer parameters.

在進行圖4之步驟三(S30)之後,其中,步驟四進一步包含下列步驟:步驟四之a(S4002):對所述收斂後之轉速參數與傾角參數進行解模糊化處理,以產生轉速指令以及傾角指令;步驟四之b(S4004):將轉速指令以及傾角指令分別輸出給跑帶轉動機構22與跑帶傾斜機構24,藉以控制跑帶20轉動的轉速以及控制跑帶20的傾斜度。After performing step 3 (S30) of FIG. 4, step 4 further includes the following steps: step 4 a (S4002): defuzzifying the converged speed parameter and the tilt parameter to generate a speed command. And the inclination command; step 4b (S4004): the rotation speed command and the inclination command are respectively output to the running belt rotating mechanism 22 and the running belt tilting mechanism 24, thereby controlling the rotation speed of the running belt 20 and controlling the inclination of the running belt 20.

因此,利用本發明所提供一種具有雙生理自動控制之跑步機10以及雙生理跑步機10之自動控制方法,藉由類神經分析模組34,能協調跑步者心跳頻率以及血氧濃度的現況數值,對跑步機10控制適當的跑帶20轉速以及跑帶20傾斜度,進而調整適當的負荷以使跑步者維持預定需要的心跳頻率以及血氧濃度。Therefore, the present invention provides a treadmill 10 with dual physiological automatic control and an automatic control method for the dual physiological treadmill 10. The neurological analysis module 34 can coordinate the current value of the runner's heart rate and blood oxygen concentration. The treadmill 10 controls the appropriate running belt 20 rotation speed and the running belt 20 inclination, and then adjusts the appropriate load to maintain the runner's desired desired heart rate and blood oxygen concentration.

藉由以上較佳具體實施例之詳述,係希望能更加清楚描述本發明之特徵與精神,而並非以上述所揭露的較佳具體實施例來對本發明之範疇加以限制。相反地,其目的是希望能涵蓋各種改變及具相等性的安排於本發明所欲申請之專利範圍的範疇內。The features and spirit of the present invention will be more apparent from the detailed description of the preferred embodiments. On the contrary, the intention is to cover various modifications and equivalents within the scope of the invention as claimed.

10‧‧‧跑步機10‧‧‧Treadmill

20‧‧‧跑帶20‧‧‧Running belt

22‧‧‧跑帶轉動機構22‧‧‧Running belt rotation mechanism

24‧‧‧跑帶傾斜機構24‧‧‧Running belt tilting mechanism

30‧‧‧血氧感測模組30‧‧‧ Blood Oxygen Sensing Module

32‧‧‧心率感測模組32‧‧‧ Heart Rate Sensing Module

34‧‧‧類神經分析模組34‧‧‧Nerve Analysis Module

BO‧‧‧血氧設定值BO‧‧‧ blood oxygen setting

H‧‧‧心率設定值H‧‧‧ heart rate setting

e h he BO BO‧‧‧輸入層參數 e h , h , e BO , BO ‧‧‧Input layer parameters

‧‧‧輸出層參數 , ‧‧‧Output layer parameters

圖1 係本發明跑步機之外觀示意圖; 圖2 係本發明跑步機之功能方塊圖; 圖3 係本發明類神經分析模組所進行模糊類神經之示意圖; 圖4 係本發明自動控制方法之基本流程圖;以及 圖5係本發明自動控制方法之細部流程圖。1 is a schematic diagram of the appearance of the treadmill of the present invention; FIG. 2 is a functional block diagram of the treadmill of the present invention; FIG. 3 is a schematic diagram of the fuzzy-like nerve performed by the neurological analysis module of the present invention; A basic flow chart; and Figure 5 is a detailed flow chart of the automatic control method of the present invention.

10‧‧‧跑步機 10‧‧‧Treadmill

20‧‧‧跑帶 20‧‧‧Running belt

22‧‧‧跑帶轉動機構 22‧‧‧Running belt rotation mechanism

24‧‧‧跑帶傾斜機構 24‧‧‧Running belt tilting mechanism

30‧‧‧血氧感測模組 30‧‧‧ Blood Oxygen Sensing Module

32‧‧‧心率感測模組 32‧‧‧ Heart Rate Sensing Module

34‧‧‧類神經分析模組 34‧‧‧Nerve Analysis Module

BO‧‧‧血氧設定值 BO‧‧‧ blood oxygen setting

H‧‧‧心率設定值 H‧‧‧ heart rate setting

e h e BO‧‧‧輸入層參數 e h , , e BO , ‧‧‧Input layer parameters

u S u θ ‧‧‧輸出層參數 u S , u θ ‧‧‧output layer parameters

Claims (5)

一種具有雙生理自動控制之跑步機,該跑步機係包含:一跑帶,係轉動使跑步者能持續跑步在該跑帶上;一跑帶轉動機構,帶動該跑帶轉動,接收一轉速參數以控制該跑帶轉動的轉速;一跑帶傾斜機構,接收一傾角參數以控制該跑帶的傾斜度;一血氧感測模組,用以偵測所述跑步者的生理血氧參數;一心率感測模組,用以偵測所述跑步者的心跳頻率參數;以及一類神經分析模組,係根據類神經網路理論,以該生理血氧參數與該心跳頻率參數為輸入層參數,以該轉速參數與該傾角參數為輸出層參數,經過隱藏層處理後,收斂出理想的轉速參數與傾角參數,後續以收斂後之轉速參數與傾角參數分別輸出給該跑帶轉動機構與該跑帶傾斜機構;其中該跑步機係接受外部預先輸入一血氧設定值以及一心率設定值,該生理血氧參數包含二個參數,分別為e BO:跑步者血氧數值與該血氧設定值的差值、以及:為e BO的變量,該心跳頻率參數包含二個參數,分別為e h:跑步者心率值與該心率設定值的差值、以及:為e h的變量。 A treadmill with dual physiological automatic control, the treadmill comprising: a running belt, the rotation enables the runner to continue running on the running belt; a running belt rotating mechanism drives the running belt to rotate, receiving a rotational speed parameter To control the rotation speed of the running belt; a running belt tilting mechanism, receiving a tilting parameter to control the inclination of the running belt; a blood oxygen sensing module for detecting the physiological blood oxygen parameter of the runner; a heart rate sensing module for detecting a heartbeat frequency parameter of the runner; and a type of neural analysis module, wherein the physiological blood oxygen parameter and the heartbeat frequency parameter are input layer parameters according to a neural network theory The rotation speed parameter and the inclination parameter are output layer parameters, and after the hidden layer processing, the ideal rotation speed parameter and the inclination angle parameter are converged, and the convergence speed parameter and the inclination angle parameter are respectively output to the running belt rotation mechanism and the running with a tilting mechanism; wherein the treadmill a previously input line receiving an external oxygen setpoint and a setpoint heart rate, the physiological parameter comprises blood oxygen two parameters, namely e BO: Step oxygen by the difference value and the set value of the oxygen, and : is a variable of e BO , the heartbeat frequency parameter includes two parameters, respectively e h : the difference between the runner heart rate value and the heart rate setting value, and : A variable for e h . 如申請專利範圍第1項所述之跑步機,該類神經分析模組係根據模糊類神經網路理論,其中所偵測之生理血氧參數以及心跳頻率參數先進行模糊化處理,該類神經分析模組對所述收斂後之轉速參數與傾角參數進行解模糊化處理,以產生轉速指令以及傾角指令,並傳輸該轉速指令及該傾角指令輸出至該跑帶轉動機構與該跑帶傾斜機構。 For example, in the treadmill described in claim 1, the neuroanalytic module is based on a fuzzy neural network theory, wherein the detected physiological blood oxygen parameters and the heartbeat frequency parameters are first blurred. The analyzing module defuzzifies the convergence speed parameter and the inclination parameter to generate a rotation speed command and a tilting command, and transmits the rotation speed command and the inclination command output to the running belt rotating mechanism and the running belt tilting mechanism . 一種雙生理跑步機之自動控制方法,該雙生理跑步機具有一跑帶、一跑帶轉動機構、以及一跑帶傾斜機構,該跑帶係轉動使跑步者能持續跑步在 該跑帶上,該跑帶轉動機構帶動該跑帶轉動並控制該跑帶轉動的轉速,該跑帶傾斜機構控制該跑帶的傾斜度,該自動控制方法係包含下列步驟:步驟一:偵測所述跑步者的生理血氧參數以及偵測所述跑步者的心跳頻率參數;步驟二:係根據類神經網路理論,以該生理血氧參數與該心跳頻率參數為輸入層參數,以該轉速參數與一傾角參數為輸出層參數;步驟三:經過隱藏層處理後,收斂出理想的轉速參數與傾角參數;以及步驟四:以收斂後之轉速參數與傾角參數分別輸出給該跑帶轉動機構與該跑帶傾斜機構,藉以控制該跑帶轉動的轉速以及控制該跑帶的傾斜度;其中步驟一進一步包含下列步驟:步驟一之a:該跑步機係接受外部預先輸入一血氧設定值以及一心率設定值;步驟一之b:偵測所述跑步者的生理血氧參數後,產生二個輸入層參數,分別為e BO:跑步者血氧數值與該血氧設定值的差值、以及:為e BO的變量。步驟一之c:偵測所述跑步者的心跳頻率參數後,產生二個輸入層參數,分別為e h:跑步者心率值與該心率設定值的差值、以及:為e h的變量。 An automatic control method for a double physiological treadmill, the double physiological treadmill has a running belt, a running belt rotating mechanism, and a running belt tilting mechanism, and the running belt system rotates to enable the runner to continuously run on the running belt, The running belt rotating mechanism drives the running belt to rotate and controls the rotation speed of the running belt, and the running belt tilting mechanism controls the inclination of the running belt. The automatic control method comprises the following steps: Step 1: detecting the runner Physiological blood oxygen parameters and detecting the heartbeat frequency parameter of the runner; Step 2: According to the neural network theory, the physiological blood oxygen parameter and the heartbeat frequency parameter are input layer parameters, and the rotational speed parameter is The dip angle parameter is the output layer parameter; step 3: after the hidden layer processing, the ideal rotation speed parameter and the inclination angle parameter are converged; and step 4: the convergence speed parameter and the inclination angle parameter are respectively output to the running belt rotation mechanism and the running a tilting mechanism for controlling the rotation speed of the running belt and controlling the inclination of the running belt; wherein the step 1 further comprises the following steps: Step one: a: The treadmill accepts externally inputting a blood oxygen set value and a heart rate set value; step one b: detecting the runner's physiological blood oxygen parameter, generating two input layer parameters, respectively e BO : runner The difference between the blood oxygen value and the blood oxygen set value, and : Variable for e BO . A step of c: detecting the heartbeat frequency parameter of the runners, generating two input layer parameters are e h: runners difference value and the heart rate of the heart rate set value, and : A variable for e h . 如申請專利範圍第3項所述之自動控制方法,其中步驟二進一步包含下列步驟:步驟二之a:根據模糊類神經網路理論,其中所偵測之生理血氧參數以及心跳頻率參數先進行模糊化處理;步驟二之b:以該生理血氧參數與該心跳頻率參數為輸入層參數,以該轉速參數與該傾角參數為輸出層參數。 For example, the automatic control method described in claim 3, wherein the second step further comprises the following steps: Step 2 a: According to the fuzzy neural network theory, the detected physiological blood oxygen parameters and the heartbeat frequency parameters are first performed. Blurring processing; step b b: taking the physiological blood oxygen parameter and the heartbeat frequency parameter as input layer parameters, wherein the rotational speed parameter and the inclination parameter are output layer parameters. 如申請專利範圍第3項所述之自動控制方法,其中步驟四進一步包含下列步驟:步驟四之a:對所述收斂後之轉速參數與傾角參數進行解模糊化處理,以產生轉速指令以及傾角指令;步驟四之b:將轉速指令以及傾角指令分別 輸出給該跑帶轉動機構與該跑帶傾斜機構,藉以控制該跑帶轉動的轉速以及控制該跑帶的傾斜度。 The automatic control method according to claim 3, wherein the step 4 further comprises the following steps: Step 4: a: defuzzifying the convergence speed parameter and the inclination parameter to generate a rotation speed command and an inclination angle Command; step 4 b: separate the speed command and the tilt command The running belt rotating mechanism and the running belt tilting mechanism are outputted to control the rotation speed of the running belt and control the inclination of the running belt.
TW105135071A 2016-10-28 2016-10-28 Treadmill with dual physiological signals and automatically controlling method thereof TWI602598B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW105135071A TWI602598B (en) 2016-10-28 2016-10-28 Treadmill with dual physiological signals and automatically controlling method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW105135071A TWI602598B (en) 2016-10-28 2016-10-28 Treadmill with dual physiological signals and automatically controlling method thereof

Publications (2)

Publication Number Publication Date
TWI602598B true TWI602598B (en) 2017-10-21
TW201815440A TW201815440A (en) 2018-05-01

Family

ID=61010988

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105135071A TWI602598B (en) 2016-10-28 2016-10-28 Treadmill with dual physiological signals and automatically controlling method thereof

Country Status (1)

Country Link
TW (1) TWI602598B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109045575A (en) * 2018-08-30 2018-12-21 合肥工业大学 Intelligent running machine based on contactless physiological parameter measurement

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070275830A1 (en) * 2006-05-29 2007-11-29 Yang-Soo Lee Gait training system using motion analysis
TWM327721U (en) * 2007-08-24 2008-03-01 Chun-Hao Lu Treadmill capable of monitoring blood oxygen concentration and heartbeat
CN101385894A (en) * 2008-10-24 2009-03-18 深圳市景新健身产品有限公司 Speed control method and device of running machine
TW201018507A (en) * 2008-11-07 2010-05-16 Nat Univ Chung Hsing Control method and system for intelligent treadmill

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070275830A1 (en) * 2006-05-29 2007-11-29 Yang-Soo Lee Gait training system using motion analysis
TWM327721U (en) * 2007-08-24 2008-03-01 Chun-Hao Lu Treadmill capable of monitoring blood oxygen concentration and heartbeat
CN101385894A (en) * 2008-10-24 2009-03-18 深圳市景新健身产品有限公司 Speed control method and device of running machine
TW201018507A (en) * 2008-11-07 2010-05-16 Nat Univ Chung Hsing Control method and system for intelligent treadmill

Also Published As

Publication number Publication date
TW201815440A (en) 2018-05-01

Similar Documents

Publication Publication Date Title
JP6734944B2 (en) Computerized exercise equipment
US6852069B2 (en) Method and system for automatically evaluating physical health state using a game
US9517008B1 (en) System and method for testing the vision of a subject
US9066667B1 (en) System and method for testing dynamic visual acuity and/or gaze stabilization
WO2020158904A1 (en) Heart rehabilitation assistance device and heart rehabilitation assistance method
EP2830494B1 (en) System for the acquisition and analysis of muscle activity and operation method thereof
US6537227B2 (en) Method and equipment for human-related measuring
US20160059077A1 (en) Exercise therapy and rehabilitation system and method
TWI442956B (en) Intelligent control method and system for treadmill
Li et al. A survey on biofeedback and actuation in wireless body area networks (WBANs)
JPS6335254A (en) Training apparatus for rehabilitation
WO2010140975A1 (en) A system and method for motor learning
CN110782991B (en) Real-time evaluation method for assisting rehabilitation exercise of heart disease patient
Esfahlani et al. An adaptive self-organizing fuzzy logic controller in a serious game for motor impairment rehabilitation
Esfahlani et al. Fusion of artificial intelligence in neuro-rehabilitation video games
TWI602598B (en) Treadmill with dual physiological signals and automatically controlling method thereof
US5980571A (en) Substitute-heart control apparatus
JPS6176130A (en) Optimum motion load apparatus
US6824499B2 (en) Control console automatically planning a personal exercise program in accordance with the physical condition measured through the whole exercise session
Wang et al. Nonparametric modelling based model predictive control for human heart rate regulation during treadmill exercise
Riener et al. Bio-cooperative robotics: controlling mechanical, physiological and mental patient states
WO2021168467A2 (en) A system and method for evaluation, detection, conditioning, and treatment of neurological functioning and conditions
US6967904B2 (en) Electronic watch for sports apparatus
JP7325733B2 (en) Reference exercise intensity setting system and its use
Li et al. Biofeedback technologies for wireless body area networks

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees