TWI602430B - Multimedia content classification system and method - Google Patents

Multimedia content classification system and method Download PDF

Info

Publication number
TWI602430B
TWI602430B TW105125117A TW105125117A TWI602430B TW I602430 B TWI602430 B TW I602430B TW 105125117 A TW105125117 A TW 105125117A TW 105125117 A TW105125117 A TW 105125117A TW I602430 B TWI602430 B TW I602430B
Authority
TW
Taiwan
Prior art keywords
content
multimedia content
attention
event
analysis
Prior art date
Application number
TW105125117A
Other languages
Chinese (zh)
Other versions
TW201811062A (en
Inventor
Dong Chi Lai
Original Assignee
Chunghwa Telecom Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chunghwa Telecom Co Ltd filed Critical Chunghwa Telecom Co Ltd
Priority to TW105125117A priority Critical patent/TWI602430B/en
Priority to CN201610963559.3A priority patent/CN107704477B/en
Application granted granted Critical
Publication of TWI602430B publication Critical patent/TWI602430B/en
Publication of TW201811062A publication Critical patent/TW201811062A/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/40Information retrieval; Database structures therefor; File system structures therefor of multimedia data, e.g. slideshows comprising image and additional audio data
    • G06F16/41Indexing; Data structures therefor; Storage structures
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/24Classification techniques

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Evolutionary Biology (AREA)
  • Evolutionary Computation (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Artificial Intelligence (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Software Systems (AREA)
  • Multimedia (AREA)
  • Databases & Information Systems (AREA)
  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
  • Information Transfer Between Computers (AREA)

Description

多媒體內容分類系統與方法 Multimedia content classification system and method

本發明有關於一種多媒體內容分類系統與方法,特別是關於一種蒐集外部之社群媒體內容介接平台與多媒體內容介接平台之資料並動態的調整提供給使用者內容的系統與方法。 The present invention relates to a multimedia content classification system and method, and more particularly to a system and method for collecting information of an external social media content interface platform and a multimedia content interface platform and dynamically adjusting the content provided to the user.

為了因應現今多媒體使用者透過多螢多屏取得內容的發展趨勢下,未來的影視平台應該會延伸至同時跨越不同之終端。 In order to cope with the current trend of multimedia users accessing content through multiple screens, future video platforms should extend to different terminals at the same time.

為了根據使用者的操作行為、使用習慣來為使用者調整適合的影音專區內容,先前技術中有著介接各影音平台後端產生之使用者記錄來達成之方式,然而,此種方法將導致所提出的影音服務有著平台侷限性,或是分類種類的侷限性。另外,今日機上盒常常都是多人或家庭成員相互共用,故此種方法透過分析單一個體之使用者操作行為,進而調整提供之內容亦不適合。 In order to adjust the content of the appropriate audio-visual area for the user according to the user's operating behavior and usage habits, the prior art has a way of connecting the user records generated by the back end of each audio-visual platform, however, this method will lead to The proposed audio and video service has platform limitations or limitations of the classification type. In addition, today's on-board boxes are often shared by multiple people or family members. Therefore, this method is not suitable for analyzing the user's operation behavior of a single individual and then adjusting the content provided.

另外,亦有些先前技術透過使用者經網頁以設定首頁介面選單之主題等資訊的方法來達成彈性提供服務內容之方法。然而,此種方法雖可勉強達成提供內容個人化之功效,然而前提是需要使用者親自透過終端設備來進行設定方 可達成,而且此種方法也不會隨著時間的變化而變動影音之主題專區,會造成使用者進入門檻較高與使用意願降低。 In addition, some prior art methods achieve flexibility in providing service content through a method in which a user sets information such as the theme of a home page menu through a web page. However, although this method can barely achieve the effect of providing content personalization, the premise is that the user needs to set the party through the terminal device. It can be achieved, and this method will not change the theme area of audio and video over time, which will result in higher user entry threshold and lower willingness to use.

故知,若能提供一種可隨社群關注點變化而動態分類與調整排序多媒體內容的方法,當可解決以往透過點擊次數計算熱門度造成之分析失真問題,且可有效增加冷門影音之曝光機會的動態方法,係為此領域所不可或缺的技術。 Therefore, if we can provide a method for dynamically classifying and adjusting the sorted multimedia content with the changes of the community's concerns, it can solve the problem of analyzing distortion caused by the popularity of clicks in the past, and can effectively increase the exposure of the unpopular video. Dynamic methods are indispensable technologies for this field.

本發明提出一種多媒體內容分類系統與方法,其目的係為使隨著社群關注重點之變化而可動態進行分類和調整排序多媒體內容主題的技術,其主要技術內容將在下面段落所中敘述。 The present invention provides a multimedia content classification system and method, the purpose of which is to enable a dynamic classification and adjustment of the subject of sorting multimedia content as the focus of the community changes, the main technical content of which will be described in the following paragraphs.

本發明之多媒體內容分類方法中包含一種計算關注之動態方法,係因先前技術中主要僅透過點擊次數來判斷事件受關注之程度,此種方式容易造成點擊數總次數較高的多媒體內容一直處於熱門狀態,即便是隨著時間漸漸過去其地位亦可能未受動搖。而依照現今之網路媒體生態以及汰舊換新之速度方面來看,此種方式反倒產生了無法快速更隨潮流變化之缺陷;而本發明則是將時間關係值與單位時間內之事件成長比納入考慮,當可計算出某一事件在多媒體使用者使用服務之地區和時間區間中事件所受之總體關注度,讓精選主題等資訊可以動態地隨區間內的關注程度變化而快速調整以被提供。 The multimedia content classification method of the present invention includes a dynamic method for calculating attention, because the degree of attention of the event is mainly determined by the number of clicks in the prior art, and the multimedia content with a high total number of clicks is always in the Hot status, even as time goes by, its status may not be shaken. According to the current network media ecology and the speed of replacement, this method has the disadvantage of not being able to change quickly and more with the trend; while the invention is to grow the time relationship value and the event within the unit time. Compared with the consideration, when the overall attention of an event in the region and time interval of the multimedia user's use of the service can be calculated, the information such as the selected topic can be dynamically adjusted according to the degree of attention in the interval. Provided.

本發明之多媒體內容分類方法中包含了一種資料蒐集方法,先前技術係利用點擊次數或多媒體使用者之個人操作行為來蒐集資料,而本發明則是鎖定群聚效應所造成 之邊際影響來擷取社群中的焦點關注事件,旨在解決需付費之多媒體內容產生較少點擊次數之問題,或是數位機上盒(STB,Set-Top Box)等裝置常是共用之狀況所造成的分析準確度問題,以及造成較冷門之多媒體內容曝光度過低之惡性循環等問題。 The multimedia content classification method of the present invention includes a data collection method. The prior art uses the number of clicks or the personal operation behavior of the multimedia user to collect data, and the present invention is caused by the locking clustering effect. The marginal impact is to capture the focus of attention in the community, aiming to solve the problem of less clicks on multimedia content that needs to be paid, or devices such as STB (Set-Top Box) are often shared. The problem of analytical accuracy caused by the situation, as well as the vicious circle that causes the exposure of less popular multimedia content to be too low.

本發明之多媒體內容分類方法中更包含了一種優化排序方法,係透過多媒體內容平台選擇適合度高之主題並依照關注程度再進行排序,所謂的主題係指印象鮮明之個體,可以是一個人物、事件、地點、組織等等個體,本發明更可依關注度來對主題排序後再提供給多媒體內容平台。 The multimedia content classification method of the present invention further includes an optimized ranking method, which selects a theme with high fitness through a multimedia content platform and sorts according to the degree of attention. The so-called theme refers to an individual with an obvious impression, and may be a character. Individuals of events, places, organizations, etc., the present invention can further sort the topics according to the degree of attention and then provide them to the multimedia content platform.

更進一步來說,本發明之多媒體內容分類的方法,主要是以一分析伺服器透過一中介伺服器以向多媒體平台取得使用者終端裝置的區域位置,再透過社群媒體內容介接平台與多媒體內容介接平台取得多媒體內容(metadata)與社群事件內容,更可以額外的把社群媒體內容與多媒體內容(metadata)儲存至社群與多媒體內容庫,社群與多媒體內容庫亦可以是設置於系統外部之設備。 Furthermore, the method for classifying the multimedia content of the present invention mainly uses an analysis server to obtain the regional location of the user terminal device through the mediation server, and then through the social media content interface platform and multimedia. The content interface platform can obtain multimedia content and community event content, and can additionally store social media content and multimedia content into the community and multimedia content library. The community and multimedia content library can also be set. Equipment outside the system.

而本發明則是取得使用者終端裝置傳送之主題筆數、區域及看板類型等等,且篩選與多媒體使用者使用區域、愛用看板類型相關之社群事件內容,更可額外排除請益類事件進而分析出適合使用者之最受關注事件再進行排序。 In the present invention, the number of the subject, the area, the kanban type, and the like transmitted by the user terminal device are obtained, and the community event content related to the multimedia user use area and the love kanban type is selected, and the benefit event can be additionally excluded. Then analyze the most interesting events that are suitable for the user and then sort them.

詳細來說,本發明提供了一種多媒體內容分類系統,其系統架構中主要包含下列部分。 In detail, the present invention provides a multimedia content classification system, and the system architecture mainly includes the following parts.

本發明之多媒體內容分類系統包含一中介伺服器,該中介伺服器係透過網路與系統外部的社群媒體內容介接平台,以及外部之多媒體內容介接平台相互連接,而前述 的該外部之社群媒體內容介接平台係指蒐集複數社群媒體網站(Ptt、Sina、Weibo、Facebook等等)內之社群多媒體資料並進行數據結構化程序處理的一個應用程式介接平台,而前述的該外部之多媒體內容介接平台係指蒐集複數多媒體內容網站(如YouTube、MOD、kkBox、Spotify等等)內之多媒體內容文件之元數據資料的一個應用程式介接平台,該中介伺服器係扮演了一個串接整體系統程序並作為各平台之間的溝通橋樑的中介者角色。 The multimedia content classification system of the present invention comprises an intermediary server connected to the social media content interface platform outside the system and the external multimedia content interface platform through the network, and the foregoing The external social media content interface refers to an application programming platform that collects social media data from multiple social media websites (Ptt, Sina, Weibo, Facebook, etc.) and processes data structured programs. And the external multimedia content interface platform refers to an application interface platform for collecting metadata data of multimedia content files in a plurality of multimedia content websites (such as YouTube, MOD, kkBox, Spotify, etc.), the intermediary The server system acts as a mediator in tandem with the overall system program and serves as a bridge between the various platforms.

本發明之多媒體內容分類系統包含一分析伺服器,該分析伺服器係與該中介伺服器連結,其係透過該中介伺服器之串接以向外部之社群媒體內容介接平台與多媒體內容介接平台選擇性地獲取的社群媒體內容資料及多媒體內容,並依據針對外部多媒體使用者使用區間的一關注事件分析演算法,以及一主題優化演算法來對蒐集而來的社群媒體內容資料及多媒體內容進行運算,最後產生一分析內容。 The multimedia content classification system of the present invention comprises an analysis server, which is connected to the mediation server, and is connected to the external social media content platform and multimedia content through the serial connection of the mediation server. The social media content data and the multimedia content selectively acquired by the platform, and the social media content data collected according to an interest event analysis algorithm for the external multimedia user usage interval and a theme optimization algorithm And the multimedia content is calculated, and finally an analysis content is generated.

本發明之多媒體內容分類系統更包含一網頁應用程式伺服器,該網頁應用程式伺服器係透過多媒體內容平台與外部之多媒體內容使用者的終端裝置相聯結。以將該分析伺服器產生出之該分析內容再依據特定格式處理,以對應個別外部之多媒體內容使用者提供客製化的一服務內容,使整體系統提供之分類服務可以更加符合使用者需求,且同時增加複數受關注機率較少的主題類別內容之曝光率。 The multimedia content classification system of the present invention further includes a web application server, which is coupled to the terminal device of the external multimedia content user through the multimedia content platform. The analysis content generated by the analysis server is processed according to a specific format to provide a customized service content corresponding to an individual external multimedia content user, so that the classification service provided by the overall system can more conform to the user's needs. At the same time, the exposure rate of the subject category content with less interest is added.

而前述的該關注事件分析演算法係為一種自大量內容中挑選受關注度較高之關注事件的演算法,該關注事件分析演算法之主要參考參數有二者,分別為個別外部之多媒體內容使用者所處之使用地區以及其使用時間之區間。, 其中,該關注事件分析演算法程序之進行包含有下列步驟:1.本發明之該分析伺服器通過該中介伺服器取得個別外部之多媒體內容使用者之終端裝置的使用地區;2.該分析伺服器通過該中介伺服器向外部之社群媒體內容介接平台以及外部之多媒體內容介接平台蒐集社群媒體內容資料及多媒體內容資料;3.該分析伺服器將社群媒體內容資料及多媒體內容資料中所包含的片單內容與社群事件內容儲存到片單主題資料表以及事件內容表;4.該分析伺服器取得個別外部之多媒體內容使用者使用頻繁之內容主題筆數、其所在區域以及看板類型資訊;5.該分析伺服器自儲存有社群事件內容的事件內容表中找出符合個別外部之多媒體內容使用者使用頻繁之所在區域和看版類型的事件;6.該分析伺服器將個別外部之多媒體內容使用者僅是進行請益之類別事件等事件排除掉,並在排除後再次進行取得個別外部之多媒體內容使用者使用頻繁之內容主題筆數、所在區域以及看板類型資訊的該步驟;7.該分析伺服器進行關注事件分析,關注事件分析係以熱門值成長比與時間關係值兩者為參考參數,其係用以對複數關注事件計算出一關注度權重值,該關注度權重值係為熱門值成長比之值除以時間關係值之計算結果。其中,參考參數中的熱門值成長比係透過TF-IDF(term frequency-inverse document frequency)演算法來運算關注事件之熱門值成長度,而時間關係值則是用以計算關注事件與關注事件分析程序被執行之 時機點的時間差距程度所造成的關係程度;8.該分析伺服器將各該關注事件依該關注度權重值排序以挑選出可選擇數量的關注度權重高之各該關注事件。 The foregoing attention event analysis algorithm is an algorithm for selecting a attention event with a high degree of interest from a large amount of content, and the main reference parameters of the attention event analysis algorithm are two, respectively, for individual external multimedia content. The area in which the user is located and the time period in which they are used. , The performing the event analysis algorithm program includes the following steps: 1. The analysis server of the present invention obtains the use area of the terminal device of the individual external multimedia content user through the mediation server; 2. the analysis servo The media server collects the social media content data and the multimedia content data from the external social media content interface platform and the external multimedia content interface platform through the mediation server; 3. The analysis server uses the social media content data and the multimedia content. The content of the film and the content of the social event included in the data are stored in the theme data table of the film and the event content table; 4. The analysis server obtains the number of content topics and the area where the content of the external multimedia content user is frequently used. And the kanban type information; 5. The analytics server finds an event that matches the area in which the external multimedia content user frequently uses and the type of the viewing version from the event content table in which the content of the community event is stored; 6. The analysis servo Excluding individual external multimedia content users only for events such as category events And after the exclusion, the step of obtaining the content of the topic number, the area and the kanban type of the content of the content of the external external multimedia content is performed again; 7. The analysis server performs the analysis of the event of interest, and the event analysis is popular. The value growth ratio and the time relationship value are both reference parameters, which are used to calculate a attention weight value for the complex attention event, which is the calculation result of the popularity value growth ratio divided by the time relationship value. . The popular value growth ratio in the reference parameter is calculated by the TF-IDF (term frequency-inverse document frequency) algorithm to calculate the popularity value of the attention event, and the time relationship value is used to calculate the attention event and the attention event analysis. The program is executed The degree of relationship caused by the degree of time difference of the timing points; 8. The analysis server sorts each of the attention events according to the attention weight value to select a selectable number of attention events with high attention weights.

而本發明之多媒體內容分類系統中,所述的該主題優化演算法係為針對個別外部之多媒體內容使用者使用平台之間的變異性,來運算出適合於使用者的多媒體主題集合,而其中該主題優化演算法程序之執行包含有下列步驟:1.該分析伺服器取得個別外部之多媒體內容使用者的影音內容下限數;2.該分析伺服器從關注事件中依該集合關注度權重值中過濾出排序最前之若干名次的關注事件;3.該分析伺服器將過濾出的關注事件依片單主題與事件主題分類;4.該分析伺服器判斷集合主題數是否不為空,且影音內容下限數是否大於等於一定值,若否,再次從關注事件中依該集合關注度權重值中過濾出排序最前之其他若干名次的關注事件;以及5.該分析伺服器將挑選出且通過判斷之關注事件之主題集合依該關注權重值進行排序。 In the multimedia content classification system of the present invention, the theme optimization algorithm is configured to calculate a multimedia theme set suitable for a user by using variability between platforms for individual external multimedia content users, wherein The execution of the theme optimization algorithm program includes the following steps: 1. The analysis server obtains the lower limit of the video content content of the individual external multimedia content user; 2. The analysis server selects the attention weight value from the attention event. Filtering out the attention events of the top ranked rankings; 3. The analysis server classifies the filtered attention events according to the movie theme and the event theme; 4. The analysis server determines whether the number of collection topics is not empty, and the video and audio Whether the lower limit of the content is greater than or equal to a certain value, and if not, filtering out the attention events of the most prior rankings from the attention attention weights in the attention event; and 5. the analysis server will select and pass the judgment The set of topics of interest is sorted by the weight of interest.

在本發明之多媒體內容分類系統中,所述的關注事件分析參考參數中的熱門值成長比之運算方式,係為該分析伺服器擷取出社群媒體內容資料及多媒體內容資料當中,單一的關鍵字詞彙出現於各社群媒體或多媒體分類看板的主題內容中、留言內容中、看板分類名稱中以及被搜尋關鍵字之內容集合中,每個個別詞彙的TF-IDF(term frequency-inverse document frequency)數值。其中,TF(term frequency)之數值的計算式如下:d j D;另外,IDF(inverse document frequency)數值之計算式如下: 而上述公式中,D代表所有社群媒體內容資料及多媒體內容資料文件總數,而i代表個別關鍵字詞彙的序號數,D代表所有社群媒體內容資料及多媒體內容資料文件總數,d j 代表D中的個別文件,t i 代表個別詞彙,Σ j count(t i ,d j )代表t i d j 中出現次數,而Σ k Σj count(t k ,d j )則代表在d j 中所有詞出現次數和;而|t i {jt i d j }|代表第i個個別關鍵字詞彙出現在所有社群媒體內容資料及多媒體內容資料總數中有出現的文件數量。其中,最終的TF-IDF數值之計算式如下所列:(tf-idf) i =tf i ×idf i In the multimedia content classification system of the present invention, the calculation method of the popularity value growth ratio in the reference event analysis reference parameter is a single key for the analysis server to extract the social media content data and the multimedia content data. The word vocabulary appears in the subject content of each social media or multimedia classification kanban, in the message content, in the kanban classification name, and in the content collection of the searched keywords, TF-IDF (term frequency-inverse document frequency) of each individual vocabulary Value. Among them, the calculation formula of the value of TF (term frequency) is as follows: , d j D ; In addition, the calculation formula of the IDF (inverse document frequency) value is as follows: In the above formula, D represents the total number of all social media content materials and multimedia content data files, and i represents the serial number of individual keyword vocabulary, D represents the total number of all social media content materials and multimedia content data files, and d j represents D. In the individual files, t i represents an individual vocabulary, Σ j count ( t i , d j ) represents the number of occurrences of t i in d j , and Σ k Σ j count ( t k , d j ) represents d j The number of occurrences of all words; and | t i { j : t i d j }| represents the number of files that appear in the total number of all social media content materials and multimedia content data for the i- th individual keyword vocabulary. Among them, the final TF-IDF value is calculated as follows: ( tf - idf ) i = tf i × idf i .

多媒體內容分類系統。其中,關注事件分析參考參數中的時間關係值係指個別關注事件被發佈的年月日時分秒之當下時機點,與關注事件分析程序被執行的年月日時分秒之當下時機點的差值再取絕對值。其中,該時間關係值之運算式如下:f(a,b,c,d,e,f)=a i λ year +b i λ month +c i λ day +d i λ hour +e i λ min +f i λ sec +C;其中,f(a,b,c,d,e,f)1,C為非零常數,i代表個別關注事件 序號數,a i ,b i ,c i ,d i ,e i ,f i 依序各自代表年月日時分秒的差值取絕對值;其中,λ year =1010λ month =108λ day =106λ hour =104λ min =102λ sec =100Multimedia content classification system. Among them, the time relationship value in the attention event analysis reference parameter refers to the current time point of the year, month, day, minute, and second of the individual attention event being issued, and the current time point of the year, month, day, minute, and second of the event analysis program being executed. Take the absolute value again. Wherein, the expression of the time relationship value is as follows: f ( a , b , c , d , e , f )= a i λ year + b i λ month + c i λ day + d i λ hour + e i λ min + f i λ sec + C ; where f (a, b, c, d, e, f) 1, C is a non-zero constant, i represents the number of individual attention event numbers, a i , b i , c i , d i , e i , f i respectively represent the absolute value of the difference between the year, month, day, hour, minute and second; , λ year = 10 10 , λ month = 10 8 , λ day = 10 6 , λ hour = 10 4 , λ min = 10 2 , λ sec = 10 0 .

而相對於本發明之系統,本發明亦提供了一種多媒體內容分類方法,其步驟包含:1.一分析伺服器通過一中介伺服器之串接以蒐集外部之社群媒體內容介接平台與多媒體內容介接平台之社群媒體內容資料及多媒體內容,並依據使用區間之一關注事件分析演算法以及一主題優化演算法對社群媒體內容資料及多媒體內容進行運算以產生一分析內容;以及2.一網頁應用程式伺服器將該分析伺服器產生之該分析內容依據特定格式對應個別外部之多媒體內容使用者提供一服務內容。 With respect to the system of the present invention, the present invention also provides a multimedia content classification method, the steps of which include: 1. An analysis server is connected through an intermediary server to collect external social media content interface platform and multimedia. The content mediation of the social media content data and the multimedia content of the platform, and the social media content data and the multimedia content are calculated according to an event analysis algorithm and a theme optimization algorithm to generate an analysis content; and 2 A web application server provides the service content generated by the analysis server to a multimedia content user corresponding to an individual external content according to a specific format.

綜上可知,本發明提供了一種多媒體內容分類系統及方法,其主要目的係為發展一種可隨著社群關注重點之變化而動態進行分類和調整排序多媒體內容主題的技術。 In summary, the present invention provides a multimedia content classification system and method, the main purpose of which is to develop a technology that can dynamically classify and adjust the content of sorted multimedia content as the focus of the community changes.

A‧‧‧社群媒體內容介接平台 A‧‧‧Community media content interface platform

B‧‧‧多媒體內容介接平台 B‧‧‧Multimedia Content Interface Platform

1‧‧‧中介伺服器 1‧‧‧Intermediary server

2‧‧‧分析伺服器 2‧‧‧Analysis server

3‧‧‧網頁應用程式伺服器 3‧‧‧Web application server

4‧‧‧社群與多媒體內容庫 4‧‧‧Community and multimedia content library

5‧‧‧多媒體內容平台 5‧‧‧Multimedia content platform

S201~S207‧‧‧方法步驟 S201~S207‧‧‧ method steps

S301~S309‧‧‧方法步驟 S301~S309‧‧‧ method steps

S401~S406‧‧‧方法步驟 S401~S406‧‧‧ method steps

圖1為本發明多媒體內容分類系統之系統架構圖。 1 is a system architecture diagram of a multimedia content classification system of the present invention.

圖2為本發明多媒體內容分類方法之方法步驟圖。 2 is a schematic diagram of steps of a method for classifying a multimedia content according to the present invention.

圖3為本發明多媒體內容分類方法中之關注事件分析演算法的方法步驟圖。 FIG. 3 is a schematic diagram of method steps of an event analysis algorithm of interest in a multimedia content classification method according to the present invention.

圖4為本發明多媒體內容分類方法中之優化主題演算法的方法步驟圖 4 is a method diagram of a method for optimizing a theme algorithm in a multimedia content classification method according to the present invention;

以下將以實施例結合圖式對本發明進行進一步說明,首先請參照圖1,係為本發明多媒體內容分類系統之系統架構圖。其中,系統內部有一中介伺服器1,該中介伺服器1係透過網路與外部之社群媒體內容介接平台A以及外部之多媒體內容介接平台B連接。其中,該外部之社群媒體內容介接平台A與複數社群媒體網站連結( )內以蒐集社群多媒體資料,而該外部之多媒體內容介接平台B係用以蒐集複數多媒體內容網站( )內之多媒體內容文件之元數據資料。 The present invention will be further described by way of embodiments with reference to the drawings. First, please refer to FIG. 1, which is a system architecture diagram of the multimedia content classification system of the present invention. There is an intermediary server 1 in the system, and the intermediary server 1 is connected to the external social media content interface platform A and the external multimedia content interface platform B through the network. The external social media content interface platform A and the plural social media website link ( ) to collect community multimedia materials, and the external multimedia content interface platform B is used to collect plural multimedia content websites ( ) Metadata of the multimedia content files within.

而繼續參照圖1,本發明之系統亦包含一分析伺服器2,該分析伺服器2係與該中介伺服器1連結,使其得以蒐集外部之社群媒體內容介接平台A與多媒體內容介接平台B之資料,該分析伺服器2並依據針對使用者所處區間及時間區間進行分析的關注事件分析演算法以及主題優化演算法對蒐集而來的資料進行運算來產生一分析內容。 With continued reference to FIG. 1, the system of the present invention also includes an analysis server 2, which is coupled to the mediation server 1 to enable collection of external social media content interface platform A and multimedia content media. Based on the data of the platform B, the analysis server 2 performs an operation on the collected data according to the focused event analysis algorithm and the topic optimization algorithm for analyzing the interval and time interval of the user to generate an analysis content.

系統亦包含了一網頁應用程式伺服器3,係用以將該分析伺服器2產生之該分析內容按照設定的格式來對使用者提供服務內容,該網頁應用程式伺服器3透過網路連接多媒體內容平台5,多媒體使用者則可透過其終端裝置向多媒體內容平台5連接以獲取針對其各自喜好適合之服務內容。 The system also includes a web application server 3 for providing the analysis content generated by the analysis server 2 to the user according to a set format, and the web application server 3 connects the multimedia through the network. The content platform 5, the multimedia user can connect to the multimedia content platform 5 through its terminal device to obtain service content suitable for their respective preferences.

最後,本發明之系統包含一社群與多媒體內容庫4,該社群與多媒體內容庫4係與中介伺服器1連結,用以儲存蒐集而來的社群媒體內容資料、多媒體內容資料、該分析 內容或該服務內容。 Finally, the system of the present invention includes a community and multimedia content library 4, and the community and multimedia content library 4 is coupled to the mediation server 1 for storing the collected social media content data, multimedia content data, analysis Content or content of the service.

再請參閱圖2,係為本發明多媒體內容分類方法之方法步驟圖,可大略分為以下步驟:步驟S201:取得終端裝置的使用地區;步驟S202:介接平台片單內容與社群事件內容;步驟S203:儲存平台片單內容與社群事件內容;步驟S204:分析片單內容與社群事件內容之主題;步驟S205:關注事件分析;步驟S206:優化主題演算法;步驟S207:產生主題集合給使用者。 Referring to FIG. 2, it is a method step diagram of the multimedia content classification method of the present invention, which can be roughly divided into the following steps: Step S201: Acquire a use area of the terminal device; Step S202: Interface platform content and community event content Step S203: storing the platform content and the community event content; step S204: analyzing the theme of the content and the community event content; step S205: focusing on the event analysis; step S206: optimizing the theme algorithm; step S207: generating the theme Gather to the user.

其中,各步驟之細部程序將在以下段落中所述。 Among them, the detailed procedures of each step will be described in the following paragraphs.

請參閱圖3,其為本發明多媒體內容分類方法中之關注事件分析演算法的方法步驟圖,其步驟如下所列:步驟S301:取得終端裝置的使用地區,即為該分析伺服器通過該中介伺服器,以取得外部多媒體內容使用者的終端裝置所處之使用地區;步驟S302:介接平台片單內容與社群事件內容,即係該分析伺服器通過該中介伺服器向外部之社群媒體內容介接平台,以及外部之多媒體內容介接平台取得社群媒體內容資料和多媒體內容資料;步驟S303:儲存片單內容與社群事件內容,該分析伺服器儲存社群媒體內容資料及多媒體內容資料中的片單內容與社群事件內容到片單主題資料表以及事件內容表;步驟S304:取得介接者的主題筆數、區域和看板類型,係為該分析伺服器取得個別外部之多媒體內容使用者使用頻繁之內容主題筆數、所在區域以及看板類型資訊; 步驟S305:從事件資料表中找出符合該區域和看板類型之事件,係該分析伺服器自事件內容表中找出符合個別外部之多媒體內容使用者使用頻繁之所在區域和看版類型的事件;步驟S306:是否為請益類事件,係為一判斷步驟,該分析伺服器將判斷並排除個別外部之多媒體內容使用者進行請益類別之事件並在排除後再次進行步驟S305取得個別外部之多媒體內容使用者使用頻繁之內容主題筆數、所在區域以及看板類型資訊步驟;步驟S307:關注事件分析,該分析伺服器進行關注事件分析係以熱門值成長比與時間關係值為參考參數以對複數關注事件計算出一關注度權重值,該關注度權重值係為熱門值成長比之值除以時間關係值之計算結果;步驟S308:依權重值排序事件,該分析伺服器將各該關注事件依該關注度權重值排序以挑選關注度權重高之各該關注事件;以及步驟S309:從事件資料表中擷取Top(m)事件,即為該分析伺服器將依該關注度權重值排序後之各該關注事件挑選出m個排序最前的關注事件。 Please refer to FIG. 3 , which is a method step diagram of an event analysis algorithm for interest in a multimedia content classification method according to the present invention. The steps are as follows: Step S301: Obtain a use area of the terminal device, that is, the analysis server passes the intermediary. a server to obtain a use area where the terminal device of the external multimedia content user is located; step S302: interface between the platform piece content and the community event content, that is, the analysis server sends the mediation server to the external community through the mediation server The media content interface platform and the external multimedia content interface platform obtain the social media content data and the multimedia content data; step S303: storing the content of the piece and the content of the community event, the analysis server stores the social media content data and the multimedia The content of the content in the content material and the content of the community event to the theme information table of the movie and the event content table; Step S304: obtaining the number of the subject, the area, and the kanban type of the interface, and obtaining the external external for the analysis server Multimedia content users use frequently used content topics, location and kanban type information; Step S305: Find an event that matches the area and the kanban type from the event data table, and the analysis server finds, from the event content table, an event that matches the area and the type of the version in which the external multimedia content user frequently uses. Step S306: Whether it is a request-type event, which is a judgment step, the analysis server will judge and exclude the event of the individual external multimedia content user to perform the benefit category, and after the exclusion, proceed to step S305 to obtain the individual external The multimedia content user uses the frequent content subject number, the area and the kanban type information step; step S307: focus on the event analysis, and the analysis server performs the attention event analysis by using the popular value growth ratio and the time relationship value as reference parameters. The plural attention event calculates a attention weight value, which is a calculation result of the value of the popular value growth ratio divided by the time relationship value; step S308: sorting the events according to the weight value, the analysis server will focus on each of the concerns The events are sorted according to the attention weight value to select each of the attention events with high attention weight; And step S309: retrieving Top (m) event from the event information table, that is, the analysis server will be selected m sort of attention before the event most of the attention, according to the weight value ordering of the event of interest.

其中,參考參數中的熱門值成長比係透過TF-IDF演算法運算關注事件之熱門值成長度。舉例表示為:=TF-IDF(a,b,c,d),其意義係為高單詞頻率再乘上該單詞在文件總數中的低文件頻率,便可以產生TF-IDF權重值,當中的a代表電子論壇看板的內容;b代表各分類看板的留言內容;c代表看板分類名稱;d代表各分類看板的搜尋關鍵字。而時間關係值係為計算關注事件與關注事件分析程序被執行之時機點的時間點差距程度,可舉例表示為: =f(|今日(Y)-發佈日(Y)|,|今日(M)-發佈日(M)|,|今日(D)-發佈日(D)|,|今日(H)-發佈日(H)|,|今日(M)-發佈日(M)|,|今日(S)-發佈日(S)|),其差距精準到秒位數,實際之計算方式為f(a,b,c,d,e,f)=a i λ year +b i λ month +c i λ day +λ hour +e i λ min +f i λ sec +C;其中,λ year =1010λ month =108λ day =106λ hour =104λ min =102λ sec =100Among them, the popularity value growth ratio in the reference parameter is calculated by the TF-IDF algorithm to calculate the popularity value of the event of interest into a length. The example is expressed as: =TF-IDF( a , b , c , d ), the meaning of which is the high word frequency and then multiply the low file frequency of the word in the total number of files, then the TF-IDF weight value can be generated, where a represents the electronic forum. The content of the kanban; b represents the message content of each classification kanban; c represents the kanban classification name; d represents the search keyword of each classification kanban. The time relationship value is the time point difference between the timing of the execution of the attention event and the attention event analysis program, which can be expressed as: = f (|Today (Y)-release date (Y)|,|Today (M)-release date (M)|,|Today (D)-release date (D)|,|Today (H)-release date (H)|,|Today (M)-release date (M)|,|Today (S)-release date(S)|), the difference is accurate to the number of seconds, the actual calculation method is f ( a , b , c , d , e , f ) = a i λ year + b i λ month + c i λ day + λ hour + e i λ min + f i λ sec + C ; where λ year =10 10 , λ month = 10 8, λ day = 10 6, λ hour = 10 4, λ min = 10 2, λ sec = 10 0.

而關注度權重值則是以/來計算。 The weight of attention is based on / To calculate.

以上,本發明多媒體內容分類方法中之關注事件分析演算法的步驟完成。 In the above, the steps of the event analysis algorithm of interest in the multimedia content classification method of the present invention are completed.

接著,請參閱圖4,其為本發明多媒體內容分類方法中之優化主題演算法的方法步驟圖,其步驟包含:步驟S401:取得介接者的影音下限數(n),係為該分析伺服器取得個別外部之多媒體內容使用者的影音內容下限數;步驟S402:取得事件資料集合中Top(m)事件,該分析伺服器從關注事件中依該集合關注度權重值中過濾出排序最前之m個名次的關注事件;步驟S403:分類片單主題與事件主題,係為該分析伺服器將過濾出的關注事件依片單主題與事件主題分類;步驟S404:集結主題數不為零,係一判斷步驟,即為該分析伺服器判斷集合主題數是否不為空,而若結果否,返回步驟S402,其再次從關注事件中依該集合關注度權重值中過濾出排序最前之m的關注事件;步驟S405:影音下限數大於等於定值,亦係一判斷步驟,影音內容下限數是否大於等於一定值,而若結果否,返回步驟S402,其再次從關注事件中依該集合關注度權重值中過濾出 排序最前之m的關注事件;步驟S406:依權重值排序主題集合,則為該分析伺服器挑選出且通過判斷之關注事件之主題集合依該關注權重值進行排序。 Next, referring to FIG. 4, which is a method step diagram of optimizing a theme algorithm in the multimedia content classification method of the present invention, the steps of the method include: Step S401: Obtaining the lower and lower video and audio number (n) of the interface, which is the analysis servo Obtaining the lower limit of the content of the audio and video content of the individual external multimedia content user; Step S402: Obtaining the Top(m) event in the event data set, and the analysis server filters out the highest ranking according to the set attention weight value from the attention event The m-th order attention event; step S403: classifying the film-single topic and the event topic, wherein the analysis server classifies the filtered attention event according to the piece-single theme and the event topic; step S404: the number of the assembly topics is not zero, a judging step, that is, the analysis server determines whether the number of collection topics is not empty, and if the result is no, returns to step S402, which again filters out the attention of the top m from the attention event weights according to the set attention degree weight value. Event; step S405: the number of lower and lower audio and video is greater than or equal to the fixed value, and is also a determining step, whether the lower limit of the content of the video or audio is greater than or equal to a certain value, and if the result is no Returns to step S402, it is again filtered out of the events of interest in accordance with the set value of the heavy weights in attention Sorting the attention event of the top m; Step S406: Sorting the topic set according to the weight value, and sorting the theme set selected by the analysis server and determining the attention event according to the attention weight value.

以上,本發明多媒體內容分類方法中之優化主題演算法的步驟完成。其中,最主要參考的三個因子組成為:結合關注度權重值(考慮使用時間區間)、符合平台所需主題數(m)以及符合影音下限數(n)。 In the above, the steps of optimizing the theme algorithm in the multimedia content classification method of the present invention are completed. Among them, the three main components of the main reference are: combined attention weight value (considering the use of time interval), the number of topics required to meet the platform (m), and the number of lower audio and video (n).

本發明的確提供了一種可隨社群關注點變化而動態分類與調整排序多媒體內容的系統及方法,其可解決以往透過點擊次數計算熱門度造成非屬此使用區間、或付費影音造成較少點擊次數、或機上盒共用所造成之分析失真問題。 The present invention does provide a system and method for dynamically classifying and adjusting the sorted multimedia content with changes in the focus of the community, which can solve the problem that the popularity of the clicks is not used in the usage interval, or the paid video and audio causes fewer clicks. The number of times, or the analysis distortion caused by the sharing of the set-top box.

綜上所述,本發明於技術思想上實屬創新,也具備先前技術不及的多種功效,已充分符合新穎性及進步性之法定發明專利要件,爰依法提出專利申請,懇請貴局核准本件發明專利申請案以勵發明,至感德便。 In summary, the present invention is innovative in terms of technical ideas, and also has various functions that are not in the prior art, and has fully complied with the statutory invention patent requirements of novelty and progressiveness, and has filed a patent application according to law, and invites you to approve the invention. The patent application was inspired to invent, and it was a matter of feeling.

A‧‧‧社群媒體內容介接平台 A‧‧‧Community media content interface platform

B‧‧‧多媒體內容介接平台 B‧‧‧Multimedia Content Interface Platform

1‧‧‧中介伺服器 1‧‧‧Intermediary server

2‧‧‧分析伺服器 2‧‧‧Analysis server

3‧‧‧網頁應用程式伺服器 3‧‧‧Web application server

4‧‧‧社群與多媒體內容庫 4‧‧‧Community and multimedia content library

5‧‧‧多媒體內容平台 5‧‧‧Multimedia content platform

Claims (8)

一種多媒體內容分類系統,其包含:一中介伺服器,該中介伺服器係透過網路與外部之社群媒體內容介接平台以及外部之多媒體內容介接平台連接,其中,該外部之社群媒體內容介接平台係指蒐集複數社群媒體網站內之社群多媒體資料並進行數據結構化程序處理的應用程式介接平台,而該外部之多媒體內容介接平台係指蒐集複數多媒體內容網站內之多媒體內容文件之元數據資料的應用程式介接平台;一分析伺服器,該分析伺服器透過該中介伺服器之串接以蒐集外部之社群媒體內容介接平台與多媒體內容介接平台之社群媒體內容資料及多媒體內容資料,並依據使用區間之一關注事件分析演算法以及一主題優化演算法對社群媒體內容資料及多媒體內容進行運算以產生一分析內容;一社群與多媒體內容庫,該社群與多媒體內容庫係用以儲存外部之社群媒體內容介接平台的社群媒體內容資料、多媒體內容介接平台之多媒體內容資料、該分析內容或一服務內容;以及一網頁應用程式伺服器,該網頁應用程式伺服器係將該分析伺服器產生之該分析內容依據特定格式對應個別外部之多媒體內容使用者提供該服務內容。 A multimedia content classification system, comprising: an intermediary server, wherein the intermediary server is connected to an external social media content interface platform and an external multimedia content interface platform through the network, wherein the external social media interface The content interface platform refers to an application programming platform that collects community multimedia data in a plurality of social media websites and processes the data structure program, and the external multimedia content interface platform refers to collecting multimedia content in the website. An application programming platform for the metadata of the multimedia content file; an analysis server, the analysis server is connected through the intermediary server to collect the external social media content interface platform and the multimedia content interface platform Group media content data and multimedia content data, and according to one of the usage intervals, an event analysis algorithm and a theme optimization algorithm are used to calculate social media content data and multimedia content to generate an analysis content; a community and multimedia content library The community and multimedia content library are used to store external social media. The social media content material of the content interface platform, the multimedia content material of the multimedia content interface platform, the analysis content or a service content; and a web application server, the web application server generates the analysis server The analysis content provides the service content according to a specific format corresponding to an individual external multimedia content user. 如申請專利範圍第1項所述之多媒體內容分類系統,其中,該關注事件分析演算法係為挑選關注度高之關注事件的演算法,該關注事件分析演算法之主要參考參數為個別 外部之多媒體內容使用者之使用地區以及使用時間區間,其中,該關注事件分析演算法之程序包含下列步驟:該分析伺服器通過該中介伺服器取得個別外部之多媒體內容使用者之終端裝置的使用地區;該分析伺服器並通過該中介伺服器向外部之社群媒體內容介接平台以及外部之多媒體內容介接平台取得社群媒體內容資料及多媒體內容資料;該分析伺服器儲存社群媒體內容資料及多媒體內容資料中的片單內容與社群事件內容至片單主題資料表以及事件內容表;該分析伺服器取得個別外部之多媒體內容使用者使用頻繁之內容主題筆數、所在區域以及看板類型資訊;該分析伺服器自事件內容表中找出符合個別外部之多媒體內容使用者使用頻繁之所在區域和看版類型的事件;該分析伺服器將排除個別外部之多媒體內容使用者進行請益類別之事件並在排除後再次進行取得個別外部之多媒體內容使用者使用頻繁之內容主題筆數、所在區域以及看板類型資訊步驟;該分析伺服器進行關注事件分析,關注事件分析係以熱門值成長比與時間關係值為參考參數以對複數關注事件計算出一關注度權重值,該關注度權重值係為熱門值成長比之值除以時間關係值之計算結果,其中,參考參數中的熱門值成長比係透過TF-IDF演算法運算關注事件之熱門值成長度,而時間關係值係為計算關注事件與關注事件分析程序被執行之時間點的時間差距程度;以及該分析伺服器將各該關注事件依該關注度權重值排序以 挑選關注度權重高之各該關注事件。 The multimedia content classification system according to claim 1, wherein the attention event analysis algorithm is an algorithm for selecting a attention event with high attention, and the main reference parameters of the attention event analysis algorithm are individual The use area of the external multimedia content user and the use time interval, wherein the program of the event analysis algorithm includes the following steps: the analysis server obtains the use of the terminal device of the individual external multimedia content user through the mediation server The analysis server obtains the social media content data and the multimedia content data from the external community media content interface platform and the external multimedia content interface platform through the mediation server; the analysis server stores the social media content The content of the film and the contents of the social event data and the content of the social event to the topic data table of the film and the event content table; the analysis server obtains the number of content topics, the area and the billboard of the content of the external external multimedia content user Type information; the analysis server finds events from the event content table that match the area in which the external external multimedia content users frequently use and the type of the viewing version; the analysis server will exclude individual external multimedia content users from the benefit Category events and after exclusion The steps of obtaining the content topic number, the area and the kanban type information frequently used by the individual external multimedia content users are performed; the analysis server performs the attention event analysis, and the attention event analysis system uses the popular value growth ratio and the time relationship value as reference. The parameter calculates a attention weight value for the complex attention event, and the attention weight value is a calculation result of the value of the popular value growth ratio divided by the time relationship value, wherein the growth ratio of the popular value in the reference parameter is transmitted through the TF- The IDF algorithm operation focuses on the popularity value of the event into a length, and the time relationship value is a time difference between the time point at which the attention event and the attention event analysis program are executed; and the analysis server according to the attention level of each attention event Weight value ordering Select each of these attention events with a high degree of attention. 如申請專利範圍第2項所述之多媒體內容分類系統,其中,該主題優化演算法係為依據個別外部之多媒體內容使用者使用平台之間變異性以運算出合適於使用者的主題集合,其中,該主題優化演算法之程序包含下列步驟:該分析伺服器取得個別外部之多媒體內容使用者的影音內容下限數;該分析伺服器從關注事件中依該集合關注度權重值中過濾出排序最前之若干名次的關注事件;該分析伺服器將過濾出的關注事件依片單主題與事件主題分類;該分析伺服器判斷集合主題數是否不為空,且影音內容下限數是否大於等於一定值,若否,再次從關注事件中依該集合關注度權重值中過濾出排序最前之其他若干名次的關注事件;以及該分析伺服器將挑選出且通過判斷之關注事件之主題集合依該關注權重值進行排序。 The multimedia content classification system according to claim 2, wherein the theme optimization algorithm is to calculate a theme set suitable for the user according to the variability of the platform between the external multimedia content users. The program of the theme optimization algorithm includes the following steps: the analysis server obtains the lower limit number of the audio and video content of the individual external multimedia content user; the analysis server filters out the sorting priority from the attention event weight value in the attention event The number of ranking events of interest; the analysis server classifies the filtered attention events according to the topic of the sheet and the subject of the event; the analysis server determines whether the number of the collection topics is not empty, and whether the lower limit of the content of the audio and video content is greater than or equal to a certain value, If not, the attention event is filtered out from the attention attention weight value again by the other ranking priority events; and the theme set selected by the analysis server and determined by the attention weight value according to the attention weight value Sort. 如申請專利範圍第3項所述之多媒體內容分類系統,其中,關注事件分析參考參數中的熱門值成長比之運算,係為該分析伺服器擷取出社群媒體內容資料及多媒體內容資料中,個別詞彙出現於各社群媒體或多媒體分類看板之內容中、留言內容中、看板分類名稱中以及搜尋關鍵字之集合中每個個別詞彙之TF-IDF數值,其中,TF數值之計算式如下: 其中,D代表所有社群媒體內容資料及多媒體內容資料文件總數,d j 代表D中的個別文件,t i 代表個別詞彙,Σ j count(t i ,d j )代表t i d j 中出現次數,而Σ k Σj count(t k ,d j )則代表在d j 中所有詞出現次數總和;其中,IDF數值之計算式如下: 其中,|t i {jt i d j }|代表個別詞彙i出現在所有社群媒體內容資料及多媒體內容資料總數中所出現的文件數;其中,TF-IDF數值之計算式如下:(tf-idf) i =tf i ×idf i For example, in the multimedia content classification system described in claim 3, wherein the calculation of the popularity value growth ratio in the event analysis reference parameter is performed by the analysis server for extracting the social media content data and the multimedia content data. The individual vocabulary appears in the content of each social media or multimedia classification kanban, in the message content, in the kanban classification name, and in the TF-IDF value of each individual vocabulary in the collection of search keywords, wherein the TF value is calculated as follows: Where D represents the total number of all social media content materials and multimedia content data files, d j represents individual files in D , t i represents individual words, Σ j count ( t i , d j ) represents t i appears in d j The number, Σ k Σ j count ( t k , d j ) represents the sum of the occurrences of all words in d j ; where the IDF value is calculated as follows: Where | t i { j : t i d j} | i representative of the individual words present in all social media content information and the number of files that appear in the total number of data of the multimedia content; wherein the TF-IDF value calculation formula as follows :( tf - idf) i = tf i × idf i . 如申請專利範圍第3或4項中任一項所述之多媒體內容分類系統,其中,關注事件分析參考參數中的時間關係值係為個別關注事件被發佈的年月日時分秒之時間點與關注事件分析程序被執行的年月日時分秒之時間點的差值取絕對值,時間關係值之運算式如下:f(a,b,c,d,e,f)=a i λ year +b i λ month +c i λ day +di λ hour +eiλ min +fiλ sec +C;其中,f(a,b,c,d,e,f)1,C為非零常數,i代表個別關注事件序號數,a i ,b i ,c i ,d i ,e i ,f i 依序各自代表年月日時分秒的差值取絕對值;其中, λ year =1010λ month =108λ day =106λ hour =104λ min =102λ sec =100The multimedia content classification system according to any one of claims 3 or 4, wherein the time relationship value in the attention event analysis reference parameter is a time point of the year, month, day, minute, minute, and second when the individual attention event is issued. Pay attention to the difference between the time point of the year, month, day, minute, and second when the event analysis program is executed. The value of the time relationship value is as follows: f ( a , b , c , d , e , f )= a i λ year + b i λ month + c i λ day + di λ hour + eiλ min + fiλ sec + C ; where f (a, b, c, d, e, f) 1, C is a nonzero constant, i representative of the sequence number of individual events of interest, a i, b i, c i, d i, e i, minutes and seconds of the absolute value when the difference f i each represent sequential date; wherein , λ year = 10 10 , λ month = 10 8 , λ day = 10 6 , λ hour = 10 4 , λ min = 10 2 , λ sec = 10 0 . 一種多媒體內容分類方法,其步驟包含:一分析伺服器通過一中介伺服器之串接以蒐集外部之社群媒體內容介接平台與多媒體內容介接平台之社群媒體內容資料及多媒體內容,並依據使用區間之一關注事件分析演算法以及一主題優化演算法對社群媒體內容資料及多媒體內容進行運算以產生一分析內容,其中,該外部之社群媒體內容介接平台係指蒐集複數社群媒體網站內之社群多媒體資料並進行數據結構化程序處理的應用程式介接平台,而該外部之多媒體內容介接平台係指蒐集複數多媒體內容網站內之多媒體內容文件之元數據資料的應用程式介接平台,其中該關注事件分析參考參數中的熱門值成長比之運算,係為該分析伺服器擷取出社群媒體內容資料及多媒體內容資料中,個別詞彙出現於各社群媒體或多媒體分類看板之內容中、留言內容中、看板分類名稱中以及搜尋關鍵字之集合中每個個別詞彙之TF-IDF數值,其中,TF數值之計算式如下: 其中,D代表所有社群媒體內容資料及多媒體內容資料文件總數,d j 代表D中的個別文件,t i 代表個別詞彙,Σ j count(t i ,d j )代表t i d j 中出現次數,而Σ k Σ j count(t k ,d j )則代表在d j 中所有詞出現次數總和; 其中,IDF數值之計算式如下: 其中,|t i {jt i d j }|代表個別詞彙i出現在所有社群媒體內容資料及多媒體內容資料總數中所出現的文件數;其中,TF-IDF數值之計算式如下:(tf-idf) i =tf i ×idf i ;以及一網頁應用程式伺服器將該分析伺服器產生之該分析內容依據特定格式對應個別外部之多媒體內容使用者提供一服務內容。 A multimedia content classification method includes the following steps: an analysis server serializes through an intermediary server to collect social media content data and multimedia content of an external social media content interface platform and a multimedia content interface platform, and The social media content data and the multimedia content are calculated according to one of the usage intervals and the theme optimization algorithm to generate an analysis content, wherein the external social media content interface platform refers to collecting plural society An application programming platform for community multimedia materials and data structure processing in a group media website, and the external multimedia content interface platform refers to an application for collecting metadata data of multimedia content files in a plurality of multimedia content websites The program interface platform, wherein the interest rate growth reference ratio in the attention event analysis reference parameter is used by the analysis server to extract the social media content data and the multimedia content data, and the individual words appear in each social media or multimedia category In the content of the board, in the message content, and in the board Names TF-IDF value and a set of search keywords for each word of the individual, wherein the TF value calculation formula as follows: Where D represents the total number of all social media content materials and multimedia content data files, d j represents individual files in D , t i represents individual words, Σ j count ( t i , d j ) represents t i appears in d j The number, Σ k Σ j count ( t k , d j ) represents the sum of the occurrences of all words in d j ; where the IDF value is calculated as follows: Where | t i { j : t i d j} | i representative of the individual words present in all social media content information and the number of files that appear in the total number of data of the multimedia content; wherein the TF-IDF value calculation formula as follows :( tf - idf) i = tf i × idf And a web application server provides the service content generated by the analysis server to a multimedia content user corresponding to an individual external content according to a specific format. 如申請專利範圍第6項所述之多媒體內容分類方法,其中,該主題優化演算法係為依據個別外部之多媒體內容使用者使用平台之間變異性以運算出合適於使用者的主題集合,其中,該主題優化演算法之程序包含下列步驟:該分析伺服器取得個別外部之多媒體內容使用者的影音內容下限數;該分析伺服器從關注事件中依該集合關注度權重值中過濾出排序最前之若干名次的關注事件;該分析伺服器將過濾出的關注事件依片單主題與事件主題分類;該分析伺服器判斷集合主題數是否不為空,且影音內容下限數是否大於等於一定值,若否,再次從關注事件中依該集合關注度權重值中過濾出排序最前之其他若干名次的關注事件;以及該分析伺服器將挑選出且通過判斷之關注事件之主題集 合依該關注權重值進行排序。 The multimedia content classification method according to claim 6, wherein the theme optimization algorithm is to calculate a theme set suitable for the user according to the variability between the platforms of the individual external multimedia content users, wherein The program of the theme optimization algorithm includes the following steps: the analysis server obtains the lower limit number of the audio and video content of the individual external multimedia content user; the analysis server filters out the sorting priority from the attention event weight value in the attention event The number of ranking events of interest; the analysis server classifies the filtered attention events according to the topic of the sheet and the subject of the event; the analysis server determines whether the number of the collection topics is not empty, and whether the lower limit of the content of the audio and video content is greater than or equal to a certain value, If not, the attention event is filtered out from the attention attention weight value by the other attention rankings; and the theme set of the attention event that the analysis server will select and pass the judgment Sort by the weight of interest. 如申請專利範圍第6或7項中任一項所述之多媒體內容分類方法,其中,關注事件分析參考參數中的時間關係值係為個別關注事件被發佈的年月日時分秒之時間點與關注事件分析程序被執行的年月日時分秒之時間點的差值取絕對值,時間關係值之運算式如下:f(a,b,c,d,e,f)=a i λ year +b i λ month +c i λ day +d i λ hour +e i λ min +f i λ sec +C;其中,f(a,b,c,d,e,f)1,C為非零常數,i代表個別關注事件序號數,a i ,b i ,c i ,d i ,e i ,f i 依序各自代表年月日時分秒的差值取絕對值;其中,λ year =1010λ month =108 ,λ day =106λ hour =104λ min =102λ sec =100The multimedia content classification method according to any one of claims 6 to 7, wherein the time relationship value in the attention event analysis reference parameter is a time point of the year, month, day, minute, minute, and second when the individual attention event is issued. Pay attention to the difference between the time point of the year, month, day, minute, and second when the event analysis program is executed. The value of the time relationship value is as follows: f ( a , b , c , d , e , f )= a i λ year + b i λ month + c i λ day + d i λ hour + e i λ min + f i λ sec + C ; where f (a, b, c, d, e, f) 1, C is a non-zero constant, i represents the number of individual attention event numbers, a i , b i , c i , d i , e i , f i respectively represent the absolute value of the difference between the year, month, day, hour, minute and second; , λ year = 10 10 , λ month = 10 8 , λ day = 10 6 , λ hour = 10 4 , λ min = 10 2 , λ sec = 10 0 .
TW105125117A 2016-08-08 2016-08-08 Multimedia content classification system and method TWI602430B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW105125117A TWI602430B (en) 2016-08-08 2016-08-08 Multimedia content classification system and method
CN201610963559.3A CN107704477B (en) 2016-08-08 2016-11-04 Multimedia content classification system and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW105125117A TWI602430B (en) 2016-08-08 2016-08-08 Multimedia content classification system and method

Publications (2)

Publication Number Publication Date
TWI602430B true TWI602430B (en) 2017-10-11
TW201811062A TW201811062A (en) 2018-03-16

Family

ID=61010951

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105125117A TWI602430B (en) 2016-08-08 2016-08-08 Multimedia content classification system and method

Country Status (2)

Country Link
CN (1) CN107704477B (en)
TW (1) TWI602430B (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101271454A (en) * 2007-03-23 2008-09-24 百视通网络电视技术发展有限责任公司 Multimedia content association search and association engine system for IPTV

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102750299B (en) * 2011-11-30 2018-03-16 新奥特(北京)视频技术有限公司 A kind of method of network information convergence
CN103577501B (en) * 2012-08-10 2019-03-19 深圳市世纪光速信息技术有限公司 Hot topic search system and hot topic searching method
CN102831234B (en) * 2012-08-31 2015-04-22 北京邮电大学 Personalized news recommendation device and method based on news content and theme feature
EP2811752B1 (en) * 2013-06-03 2018-08-15 Alcatel Lucent Synchronization between multimedia flows and social network threads
CN103577593B (en) * 2013-11-14 2017-07-07 中国科学院声学研究所 A kind of video aggregation method and system based on microblog hot topic
CN105224576A (en) * 2014-07-01 2016-01-06 上海视畅信息科技有限公司 A kind of video display intelligent recommendation method
US10255244B2 (en) * 2014-08-01 2019-04-09 Facebook, Inc. Search results based on user biases on online social networks
CN104268267A (en) * 2014-10-13 2015-01-07 英华达(上海)科技有限公司 Social media sharing system and method
TWI650655B (en) * 2015-05-07 2019-02-11 浚鴻數據開發股份有限公司 Network event automatic collection and analysis method and system
CN105141982B (en) * 2015-08-13 2019-04-26 天脉聚源(北京)传媒科技有限公司 A kind of method and device for the EPG generating popular program
CN105224608B (en) * 2015-09-06 2019-04-09 华南理工大学 Hot news prediction technique and system based on microblog data analysis

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101271454A (en) * 2007-03-23 2008-09-24 百视通网络电视技术发展有限责任公司 Multimedia content association search and association engine system for IPTV

Also Published As

Publication number Publication date
CN107704477A (en) 2018-02-16
CN107704477B (en) 2020-09-22
TW201811062A (en) 2018-03-16

Similar Documents

Publication Publication Date Title
CN109189951B (en) Multimedia resource recommendation method, equipment and storage medium
CN109327714B (en) Method and system for supplementing live broadcast
CN103559206B (en) A kind of information recommendation method and system
WO2021042826A1 (en) Video playback completeness prediction method and apparatus
US7890513B2 (en) Providing community-based media item ratings to users
CN105095508B (en) A kind of multimedia content recommended method and multimedia content recommendation apparatus
RU2627717C2 (en) Method and device for automatic generation of recommendations
US20150205580A1 (en) Method and System for Sorting Online Videos of a Search
CN105975472A (en) Method and device for recommendation
CN106326391A (en) Method and device for recommending multimedia resources
JP2013517563A (en) User communication analysis system and method
CN105282565A (en) Video recommendation method and device
US20140074828A1 (en) Systems and methods for cataloging consumer preferences in creative content
WO2011101527A1 (en) Method for providing a recommendation to a user
JP4569380B2 (en) Vector generation method and apparatus, category classification method and apparatus, program, and computer-readable recording medium storing program
CN107645667A (en) Video recommendation method, system and server apparatus
US20130108180A1 (en) Information processing device, information processing method, and program
CN109063080B (en) Video recommendation method and device
CN108769730B (en) Video playing method and device, computing equipment and storage medium
CN106534984A (en) TV program pushing method and device
CN112163163B (en) Multi-algorithm fused information recommendation method, device and equipment
KR101621735B1 (en) Recommended search word providing method and system
CN105956061A (en) Method and device for determining similarity between users
CN106445922B (en) Method and device for determining title of multimedia resource
Rui et al. Whose and what chatter matters? The impact of tweets on movie sales

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees