TWI601534B - 內毒素奈米微粒:親水性奈米金控制內毒素聚集結構形成奈米微粒進而調節免疫反應 - Google Patents

內毒素奈米微粒:親水性奈米金控制內毒素聚集結構形成奈米微粒進而調節免疫反應 Download PDF

Info

Publication number
TWI601534B
TWI601534B TW105106483A TW105106483A TWI601534B TW I601534 B TWI601534 B TW I601534B TW 105106483 A TW105106483 A TW 105106483A TW 105106483 A TW105106483 A TW 105106483A TW I601534 B TWI601534 B TW I601534B
Authority
TW
Taiwan
Prior art keywords
lipopolysaccharide
endotoxin
aunds
nanoparticle
gold
Prior art date
Application number
TW105106483A
Other languages
English (en)
Other versions
TW201731517A (zh
Inventor
羅月霞
林淑宜
林嬪嬪
Original Assignee
財團法人國家衛生研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財團法人國家衛生研究院 filed Critical 財團法人國家衛生研究院
Priority to TW105106483A priority Critical patent/TWI601534B/zh
Publication of TW201731517A publication Critical patent/TW201731517A/zh
Application granted granted Critical
Publication of TWI601534B publication Critical patent/TWI601534B/zh

Links

Landscapes

  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Description

內毒素奈米微粒:親水性奈米金控制內毒素聚集結構形成奈米微粒進 而調節免疫反應
本發明係關於佐劑,更具體地係關於脂多醣佐劑。
內毒素又名脂多醣(lipopolysaccharide,LPS),是可以自革蘭氏陰性菌的細胞壁獲得的一種有潛力的發炎活化劑,可用於誘發免疫反應1。藉由活化脂多醣複合受體,宿主免疫細胞能誘發強力的發炎前驅細胞激素(proinflammatory cytokines)以抵抗感染2。雖然細胞激素的過量產生會造成全身性發炎反應3,控制脂多醣引起的反應,例如改變發炎前驅細胞激素的強度或型態,可以促進宿主的抗原辨識能力,並且具有應用於疫苗佐劑(vaccine adjuvants)的潛力。該潛力起因於脂多醣形成的超分子結構,其係由三個部分組成,即一O抗原(O antigen)、一核心碳水化合物(core carbohydrate)、以及一脂質A(lipid A)分子,並且能自發地自我聚集而形成不同類型的聚集體(aggregate)4。一般而言,脂多醣的聚集體形態易與某些細胞蛋白質結合,該些結合最終能導致細胞活化,並進一步導致細胞激素與 趨化因子(chemokines)的釋放5。脂多醣聚集體的多種類型可簡單區分為層狀構造(lamellas)與非層狀構造(non-lamellas),其於誘發發炎反應可發揮不同的力度。在非層狀聚集體中,立方相與六方相(分別名為立方體(cubosomes)與六方體(hexosomes),下文標示為Q與H)被發現具有特別強大的誘導細胞激素表現的能力6。在初始階段,脂多醣會依脂質A的初級化學結構自我聚集以形成層狀聚集體,該層狀聚集體可抑制細胞激素誘導能力6-8。當脂多醣聚集體自發地從層狀構造轉變為非層狀的Q和H,會逐漸引起免疫連鎖反應,甚至包含細胞激素的巨量產生,因此導致多種病理生理效果,例如嚴重的敗血症及其他危及生命的後果6,9。既然該轉變過程能修飾脂質A區域的本身構形10-12,脂多醣的細胞激素誘導能力可被調節,造成發炎的抑制或過度活化10。然而,層狀構造與非層狀構造之間的轉變過程是隨機而無法受到良好控制的,因為聚集體的類型與數種參數高度相關,包含脂多醣的濃度、溫度、及陽離子的類別13-15
就我們所知,控制具有如此化學與結構上複雜性之脂多醣分子的自我聚集仍是一大挑戰。
本發明之一目的係關於一種內毒素聚集體,包含:(a)脂多醣分子,係聚集為一具有包圍一內部空間之壁的微粒,或聚集為一具有包圍一內部核心之壁的球形聚集體;及(b)親水性金奈米點(gold nanodots)或金奈米粒子(gold nanoparticles),係位在該微粒之壁中,或疏水性金奈米點或金奈米粒子,係位在該球形聚集體之壁中。
在本發明一實施例中,該金奈米點或金奈米粒子係包埋於一 樹狀高分子內並形成一金奈米點-或一金奈米粒子-樹狀高分子複合體。
在本發明另一實施例,該樹狀高分子具有分枝胺基或分枝羥基。
在本發明另一實施例,該樹狀高分子係為一第四代樹狀高分子。
在本發明另一實施例,該金奈米點-或金奈米粒子-樹狀高分子複合體表現一親水表面極性。
在本發明另一實施例,本發明之內毒素聚集體不含脂多醣聚集微胞及/或脂多醣聚集層狀構造。
本發明的另一目的係關於一種內毒素奈米微粒,包含:(a)脂多醣分子,係聚集為一具有包圍一內部空間之壁的微粒;及(b)親水性金奈米點或金奈米粒子,係位在該微粒之壁中。
在本發明一實施例中,該親水性金奈米點或金奈米粒子係侷限於一具有分枝胺基的樹狀高分子之內部。
在本發明另一實施例,該親水性金奈米點或金奈米粒子與該脂多醣分子的胺基交互作用。
在本發明另一實施例,該金奈米點係不被烷基硫醇所穩定。
在本發明另一實施例,該微粒之壁的厚度係為約二個脂多醣分子的長度。
在本發明另一實施例,該脂多醣分子採用一脂質A尾端對脂質A尾端的排列。
在本發明另一實施例,該內毒素聚集體不含立方體及/或六方體。
在本發明另一實施例,該球形聚集體係為一在該內部核心充滿反微胞的大型複合微胞。
本發明的又一目的係關於一種組成物,包含:(a)如前述之內毒素奈米微粒或內毒素聚集體;及(b)一選擇性地免疫性產生抗原。
本發明的又一目的係關於一種製備一脂多醣佐劑的方法,包含:(a)混合脂多醣分子與親水性金奈米點或金奈米粒子;及(b)使該脂多醣分子聚集形成前述之內毒素奈米微粒,因而製得該脂多醣佐劑。
本發明的又一目的係關於一種在脂多醣聚合或聚集時抑制立方體及/或六方體形成的方法,包含:(a)混合脂多醣分子與親水性或疏水性的金奈米點或金奈米粒子;及(b)使該脂多醣分子聚集形成前述之內毒素聚集體。
本發明的又一目的係關於一種在脂多醣聚合或聚集時抑制立方體及/或六方體形成的方法,包含:(a)混合脂多醣分子與親水性金奈米點或金奈米粒子;及(b)使該脂多醣分子聚集形成前述之內毒素奈米微粒。
本發明的另一目的係關於一種增強第一型輔助性T細胞誘導之免疫反應於一有此需求之個體的方法,包含對該有此需求之個體施用一有效量之前述組成物,因而增強該有此需求之個體中該第一型輔助性T細胞誘導之免疫反應。
本發明之各目的將以下列較佳實施例之說明並結合下列圖式清楚描述,在不脫離所揭示之新穎概念的精神和範圍內,當可對其做變更與修飾。
所附圖式係說明本發明至少一個實施例,連同文字說明,用以解釋本發明的原理。在所有圖式中盡可能地使用相同的參考數字指稱一實施例之相同或相似元件。
第1圖顯示兩種金奈米點(AuNDs)在(a)粒徑與(b)表面濕潤性上的差異;應注意在滯留體積約20mL處的向下或向上凹陷是溶劑訊號。
第2圖顯示脂多醣聚集體在金奈米點存在時之形態的穿透式電子顯微鏡(TEM)影像;畫面(a)的左側和右側分別顯示羥基金奈米點/脂多醣(AuNDs-OH/LPS)及胺基金奈米點/脂多醣(AuNDs-NH2/LPS)聚集體;各別聚集體的壁厚度和脂質排列是穩定的,分別以畫面(b)和畫面(c)說明;TEM的暗視野影像表示於畫面(d);胺基金奈米點/脂多醣奈米微粒(NVAuNDs-NH2/LPS)之可能的融合和其粒徑延展分別表示於畫面(e,白色箭頭)和畫面(f)。
第3圖顯示經內毒素奈米微粒NVAuNDs-NH2/LPS和羥基金奈米點/脂多醣大型複合微胞(LCMAuNDs-OH/LPS)處理之細胞中的介白素-6(IL-6)的生成;IL-6的mRNA量及蛋白質量係由(a)即時聚合酶連鎖反應(real-time PCR)及(b)酵素連結免疫吸附試驗(ELISA)測定。PMA活化之細胞係經內毒素奈 米微粒NVAuNDs-NH2/LPS和LCMAuNDs-OH/LPS處理(a)24小時或(b)48小時。*:相較於細胞組,p<0.05;#:相較於脂多醣組,p<0.05。
第4圖顯示脂多醣(LPS)和NVAuNDs-NH2/LPS之PCR陣列比較;PMA活化之細胞係經脂多醣和NVAuNDs-NH2/LPS處理24小時。(a)一熱圖以圖表現脂多醣和NVAuNDs-NH2/LPS間的調控倍率表現資料並重疊至PCR陣列盤面排布。(b)該圖在Y軸及X軸分別顯示統計上顯著性及倍率變化。P值的截切值為0.01,倍率變化的界限為1.5X。
第5圖係一簡圖,說明具有密集的脂質A單元之內毒素奈米微粒如何能有效率地調節人類THP-1巨噬細胞的免疫反應。L(層狀構造)及NVAuNDs-NH2/LPS(奈米微粒)係呈現不同的脂多醣聚集類型。
第6圖係一簡圖,顯示金奈米點存在與否之脂多醣聚集體間的差異。箭頭6指出在金奈米點存在時,轉變會止於奈米微粒(NV),抑制Q/H的形成。脂多醣聚集體的次類未涵蓋在內。
第7圖顯示金奈米點及其親代樹狀高分子間的界達電位之比較。
第8圖顯示第四代羥基末端的樹狀高分子(G4OH)在金奈米點包埋前後之極性比較。
第9a圖顯示金奈米點穩定脂多醣聚集複合體之形成(AuNDs/LPS)。脂多醣(1ug/ml)與金奈米點(1mg/ml)係經培養72小時,並以4X RPMI培養基稀釋。依強度(%)(上方畫面)及依數目(%)(下方畫面)之粒子粒徑係由動態光散射(DLS)分析。
第9b圖顯示脂多醣本身在室溫下呈現隨時間變化的聚集及聚集分解。
第10圖顯示金奈米點/脂多醣聚集體之元素組成,係利用穿透式電子顯微鏡結合能量散佈X-射線光譜而測定。
第11a-b圖顯示由畫面(a)所示NVAuNDs-NH2/LPS的TEM影像,而得之NVAuNDs-NH2/LPS粒徑分布(b),計數約為250。
第12圖顯示衍生自脂多醣本身的立方體及六方體的TEM影像。需注意本觀察係在高濃度脂多醣的情況下進行。
第13圖顯示金奈米點在THP-1細胞的細胞毒性。THP-1細胞經PMA活化3天,且該細胞在移除PMA後以不含血清之培養基再培養24小時。以MTT試驗測定在24小時之細胞毒性。金奈米點無法在PMA活化之THP-1細胞誘導細胞毒性。
本發明由以下實施例更具體地描述,該實施例係僅用於說明,凡熟習此技藝者當清楚其諸多變更與修飾。現將詳細說明本發明之各實施例。參考圖式,該數字標明所有圖式中之對應元件。在本說明書及其後之申請專利範圍中,除非內文明確指定者,所謂「一」及「該」之意義包括複數指稱。同時,在本說明書及其後之申請專利範圍中,除非內文明確指定者,所謂「在…中」之意義包括「在…內」及「在…上」。此外,說明書中會使用標題及副標題以方便讀者,其不應影響本發明之範圍。另外,本說明書使用的某些用語在下方有更明確的定義。
定義
本說明書中之用語在所屬技術領域、在本發明之情境下、以及在各用語使用之特定情況下通常有其一般意義。某些用於描述本發明之用語會在下方或說明書他處加以討論,以提供實施者關於本發明之說明的其他指引。為方便描述,某些用語會被突顯標記,例如使用斜體及/或引號。該突顯標記之使用不影響一用語的範圍和意義;一用語的範圍和意義在同一內容中是相同的,不論其是否被突顯標記。同一事物能以一種以上的方式敘述是可以理解的。因此,本文討論之任一或更多用語可以有替代用語及同義詞,不論一用語是否在此加以闡述或討論,其並未被特別強調。某些用語會被賦予同義詞。一或更多同義詞之敘述並不排除其他同義詞之使用。本說明書中任何一處之舉例,包含本文所討論之任何用語的例子,皆僅用於說明,而絕非用於限定本發明或任何例示之用語的範圍和意義。同樣地,本發明不限於本說明書中提出的多種實施例。
除非另有定義,本文使用的所有技術及科學用語皆有本發明所屬技術領域中具有通常知識者普遍理解的相同意義。如遇衝突,以本文件為準,包含定義。
本文所用「大概(around)」、「約(about)」、或「近似(approximately)」,通常表示一給定數值或範圍的百分之二十以內,較佳為百分之十以內,更佳為百分之五以內。本文中以數值表示之數量係為近似值,亦即若未明確指出,其可推斷為所謂「大概」、「約」、或「近似」。
本文所用「奈米團簇(nanocluster)」及「奈米點(nanodots)」係可互換的。所謂「奈米點」係指直徑小於2nm或由少於100個原子組成的粒子。
所謂「金奈米粒子(gold nanoparticles)」係指直徑範圍為2nm 以上至100nm的球形金粒子。
樹狀高分子(dendrimers)係為重複分枝的分子。一樹狀高分子通常是圍繞核心而對稱的,並且通常具有一球形的三維形態。樹狀高分子亦依世代分類,係指其合成過程中進行重複分枝之循環的數目。例如,若一樹狀高分子是由收斂合成法製造,並且分枝反應是在核心分子上進行三次,則所得之樹狀高分子被視為一第三代樹狀高分子。每個連續世代會導致分子量約二倍於前代的樹狀高分子。第一、第二、及第三代樹狀高分子分別被標示為第一代(G-1)、第二代(G-2)及第三代(G-3)樹狀高分子。被樹狀高分子包埋的金奈米粒子係為本技術領域所熟知。
所謂「侷限的(confined)」、「陷入的(trapped)」、「包裹的(caged)」、及「包埋的(entrapped)」係可互換。
樹狀高分子的終端基團(end-group)亦通稱為該樹狀高分子的「末端基團(terminal group)」或「表面基團(surface group)」。具有胺基之終端基團的樹狀高分子被稱為「胺基末端的樹狀高分子」。所謂「具有分枝胺基的樹狀高分子」和「胺基末端的樹狀高分子」係可互換的。
所謂「加以處理(treating)」或「處理(treatment)」係指施用一有效量之治療物質於有此需求的一個體,以達到治癒、緩和、紓解、治療、改善或預防該疾病、該疾病之症狀、或向該疾病發展之趨勢的目的。此一個體可由一保健專家基於任何適當診斷方法的結果加以辨認。
所謂「一有效量」係指對一經處理之個體造成治療功效的一活性物質的必要用量。如熟習技藝人士所知,有效劑量會因施用途徑、賦形劑之使用、及可能與其他治療處理共同使用而改變。
在美國衛生與人群服務部食品藥物管理局出版的「評估臨床試驗中成人健康受試者治療之安全起始劑量之產業及評審指南」中,揭露「人體等效劑量(human equivalent dose,HED)」可由下列公式計算而得: HED=動物劑量mg/kg×(動物體重kg/人類體重kg)0.33
HED會隨其他因子而改變,例如施用途徑。
縮寫:CCR2,CC趨化因子受體2(CC chemokine receptor 2);CCL2,CC趨化因子配體2(CC chemokine ligand 2);CCR5,CC趨化因子受體5(CC chemokine receptor 5);TLC,薄層層析(thin layer chromatography)。
實施例
以下提出依據本發明之實施例的例示儀器、設備、方法及其相關結果,其並非用以限定本發明之範圍。需注意標題或副標題會用於實施例中以方便讀者,其不應限制本發明之範圍。此外,本文中會提出及揭露一些理論,然而,不論其為正確或錯誤,皆不應限制本發明之範圍,只要本發明之實施係依據本發明,而非考慮任何特定理論或行動架構。
方法 材料
第四代胺基末端的樹狀高分子(G4NH2)、第四代羥基末端的樹狀高分子(G4OH)、四氯金酸(HAuCl4)及脂多醣(大腸桿菌Escherichia coli 0111:B4)係自Sigma公司(聖地牙哥,加州,美國)獲得;截留分子量(MWCO)濾膜係購自Millipore(聚醚碸(PES)膜);WST-8係自Dojindo Laboratories(熊本市,日本)獲得。金奈米點(AuNDs)係依據先前公開的步驟合成1。簡言之,將150mM四氯金酸(200μL)加入含有G4NH2的20mL去離子水。該溶液在4℃下隔夜培養,接著在120℃下以微波照射30分鐘(CEM,Discover LabMate系統)。還原後之沉澱物及金奈米點以截留分子量濾膜(3kDa)過 濾。多餘的四氯金離子(AuCl4 -)以陰離子交換層析儀移除(Merck,FRACTOGEL® EMD TMAE Hicap)。
金奈米點的表面濕潤性(surface wettabilities)
以TA儀器之配備TAM III恆溫器之相對濕度(RH)灌注微熱量計測量濕潤/去濕潤曲線。相對溼度保持恆定在10%直至達到一穩定熱流(訊號範圍介於-1μW至+1μW)。其後所有測量之相對溼度維持在一控制良好的範圍,從10%至90%(黑線)。該TAM II維持恆溫於室溫(25℃±1℃)以在實驗開始前校正空置的不鏽鋼安瓶(4mL安瓶)。所有測量均以30-50mg樣品進行。
羥基金奈米點(AuNDs-OH)的表面極性(surface polarity)
所有螢光光譜均在水中含芘(Pyrene;8×10-8M)的情況下測量。因為多種AuNDs-OH及G4OH的濃度,可以觀察到芘螢光訊號的強度比例會改變。Y軸係為I1/I3之比例,I1和I3分別為在372nm及383nm之強度。
金奈米點之動態光散射(dynamic light scattering)分析及界達電位(zeta potential)測量
粒徑之測定係利用動態光散射儀(Malvern Zetasizer,Nano-ZS)配合氬雷射(波長633nm,偵測器角度173°,及一般樣品體積100μL)。將兩種金奈米點之一等分試樣(1μL,100mg/mL)與脂多醣(1μL,100μg/mL)在室溫下混合於RPMI-1640培養基(不含血清)中以供粒徑測量。72小時培養後,金奈米點與脂多醣的混合物以等體積之RPMI培養基進行連 續稀釋,以測量金奈米點/脂多醣(AuNDs/LPS)複合體之粒徑。為了統計分析,每一樣品測量三次。界達電位之測定係利用zetasizer nano系統(Zetasizer Nano ZS,Malvern Instruments,伍斯特郡,英國)。待測樣品與G4NH2(6μL)、胺基金奈米點(AuNDs-NH2,25μL)、及AuNDs-OH(25μL)混合於去離子水(800μL)。所有測量在室溫下進行。為了統計分析,每一參數測量三次。參見Luo等人(“Endotoxin nanovesicles:hydrophilic gold nanodots control lipopolysaccharide assembly for modulating immunological responses”American Chemical Society,Nano Lett.2015,15,6446-6453),藉由引用該文獻將其整體納入本文。
利用膠體滲透層析儀(gel permeation chromatography,GPC)測定金奈米點的粒徑
金奈米點的粒徑係藉由膠體滲透層析儀分析,使用含0.2M硝酸納(pH 3)及0.5M醋酸之溶液;管柱類型:ShodexR-SB-802.5 HQ,沖提速度:0.5ml/min;分離溫度:40℃。
穿透式電子顯微鏡(Transmission electron microscopy)
在RPMI 1640培養基中製備脂多醣與各別金奈米點、AuNDs-NH2、及AuNDs-OH的混合物。將樣品置於400孔的鍍碳銅網上並且以2%醋酸鈾醯溶液染色。過量染劑以濾紙移除,且使該網在測量前乾燥,測量係使用100kV穿透式電子顯微鏡(Hitachi H-7650,日本)及200keV場發射槍穿透式電子顯微鏡(JEOL,JEM-2100F,日本)。
細胞培養
在本研究中我們使用THP-1細胞株,其為人類急性單核球 白血病之細胞株。該THP-1細胞以懸浮培養方式生長,可利用佛波醇-12-肉蔻酯-13-乙酯(phorbol 12-myristate 13-acetate,PMA 100nM,Sigma-Aldrich)使其分化為類巨噬細胞(macrophage-like)細胞。該細胞培養於RPMI 1640培養基,其中含有2mM左旋麩醯胺酸,1.5g/L碳酸氫鈉,4.5g/L葡萄糖,10mM 4-羥乙基乙磺酸(HEPS),1.0mM丙酮酸鈉,0.05mM 2-巰基乙醇(2-mercaptoethanol),及10%胎牛血清。
WST-8細胞存活率試驗(cell viability assay)
細胞毒性之測定係利用微孔盤WST-8試驗2。此係一種敏感的呈色分析,用於細胞增生及細胞毒性分析中測定細胞存活率。WST-8是一種高水溶性四唑鹽(tetrazolium salt),其可被細胞內去氫酶活性還原而在培養基中獲得黃色甲(formazan)染料。因為細胞內去氫酶活性而產生的甲染料的量係直接與活細胞數目成正比。在96-孔微孔盤中放置適當數目的細胞(5×104/孔),再以100nM PMA處理3天。以新鮮的不含血清培養基置換1天,該細胞再以多種濃度的金奈米點處理24小時。在96-孔微孔盤之每一孔所含100mL細胞及培養液中加入WST-8試劑溶液(10μL),接著在37℃下培養該盤2小時。使用一微孔盤分析儀測量在450nm之吸光值。相對存活率以未經處理之控制組的百分比表示。透過檢視僅有金奈米點之組別以排除WST-8測量之干擾(資料未顯示)。
定量即時反轉錄聚合酶連鎖反應(quantitative real-time reverse transcription polymerase chain reaction)試驗
PMA活化之細胞(2×106細胞;6-cm培養盤)以金奈米點處 理24小時,再以RNAzol RT套組(Life Technologies,羅克維爾,馬里蘭州,美國)萃取RNA。純化得之RNA儲存於-80℃,並使用全部RNA(3μg)合成cDNA。透過定量PCR測定介白素-6(IL-6),且該試驗使用assay-on-demand基因表現試驗預混液(gene expression assay mix)(Applied Biosystems,福斯特市,加州,美國)。以定量PCR測定IL-6及甘油醛-3-磷酸去氫酶(GAPDH),其係使用TaqMan通用PCR預混液(universal PCR master mix)(Applied Biosystems,福斯特市,加州,美國)。該反應混合物之配製係藉由混合cDNA的等分試樣、0.5μL assay-on-demand基因表現試驗預混液、及5μL TaqMan通用PCR預混液以形成10μL之最終體積。該反應混合物之分析係使用ABI PRISM 7900序列偵測系統(Applied Biosystems,福斯特市,加州,美國)配合以下PCR程式:95℃下10分鐘,其後為60℃下1分鐘之40個循環,及95℃下15秒。定量數值係取由閾值循環數(Ct)。目標基因的mRNA相對量係推導自方程式2-△Ct,其中△Ct=Ct目標基因-CtGAPDH。資料係以相較於控制組的倍數來呈現3
IL-6之酵素連結免疫吸附試驗(enzyme-linked immunosorbent assay)
PMA活化之THP-1細胞(3×105cells/孔,24-孔盤)以脂多醣、金奈米點或脂多醣+金奈米點處理2天。培養基中IL-6的濃度係依據製造商手冊使用人類IL-6 ELISA套組(R&D Systems,Inc.)而測定。
人類細胞激素及趨化因子PCR陣列
PMA活化之THP-1細胞係種植於6cm培養皿(1×105),再以脂多醣及脂多醣+AuNDs-NH2處理24小時。RNA之萃取係使用RNAzol RT套組。純化得之RNA儲存於-80℃,並使用全部RNA合成cDNA。透 過定量PCR測定細胞激素及趨化因子的基因表現,且該試驗使用細胞激素及趨化因子RT2 profiler PCR陣列(QIAGEN,GmbH,德國)。資料分析係由QIAGEN Technologies進行。
Luminex人類細胞激素酵素連結免疫吸附試驗
PMA活化之THP-1細胞(3×105cells/孔,24-孔盤)以脂多醣、AuNDs-NH2、及AuNDs-NH2/LPS處理2天。人類細胞激素係依據製造商手冊使用Luminex之Bio-Plex多重標的系統(Bio-Rad,Bio-Plex Pro Human Cytokine 27-Plex Panel)偵測及測量。該Luminex之ELISA試驗包含介白素-1b(IL-1b)、介白素-1ra(IL-1ra)、介白素-2(IL-2)、介白素-4(IL-4)、介白素-5(IL-5)、介白素-6(IL-6)、介白素-7(IL-7)、介白素-8(IL-8)、介白素-9(IL-9)、介白素-10(IL-10)、介白素-12(IL-12(P70))、介白素-13(IL-13)、介白素-15(IL-15)、介白素-17A(IL-17A)、鹼性纖維母細胞生長因子(basic FGF)、伊紅趨素(eotaxin)、顆粒性白血球聚落刺激因子(G-CSF)、顆粒性白血球巨噬細胞聚落刺激因子(GM-CSF)、干擾素-r(IFN-r)、干擾素誘導蛋白-10(IP-10)、單核細胞趨化蛋白-1(MCP-1)、巨噬細胞炎性蛋白-α(MIP-α)、巨噬細胞炎性蛋白-β(MIP-β)、血小板衍生生長因子-BB(PDGF-BB)、活化調節的正常T細胞表現及分泌因子(RANTES)、腫瘤壞死因子-α(TNF-α)、及血管內皮生長因子(VEGF)。
統計分析
統計分析之進行係使用軟體Prism 4.0(GraphPad Software,聖地牙哥,加州,美國)。細胞激素及趨化因子陣列之分析是藉由非成對t 檢定以獲得顯著差異。統計上顯著差異係指*p<0.05、**p<0.01、及***p<0.001。
結果
在本研究中我們規畫了一種簡單策略,藉由操縱金奈米點(AuNDs)的表面親水性以控制超分子的脂多醣聚集,作為一種產生內毒素奈米微粒(NV)的方法。由於理論研究顯示在微粒的形成過程中納入金奈米粒子會存在粒徑選擇性限制32,我們以金奈米點為候選以符合此規則。此外,烷基硫醇所穩定的金奈米點會造成金奈米點彼此間的吸引力,並且減少奈米粒子和兩親性分子的共同聚集26。因此,我們直接製備親水性和疏水性的金奈米點(標示為胺基金奈米點(AuNDs-NH2)相對於羫基金奈米點(AuNDs-OH)),係分別利用第四代(G4)樹狀高分子之具有分枝胺基(G4NH2)及羫基(G4OH)者的二種外側基團。該二種金奈米點的多種生理化學性質,包含其粒徑、表面電荷、及表面濕潤性,皆經過檢驗,且其相關資料顯示於第1圖。首先,藉由分子篩選管柱(size-exclusive column)的分離(第1a圖;參考附件之第1a圖),AuNDs-NH2及AuNDs-OH相較於其初始樹狀高分子(即G4NH2及G4OH,其數據分別以黑線及紅線表示,以作為控制組)皆表現出較少的滯留體積。這些差異顯示AuNDs-NH2及AuNDs-OH的尺寸小於其親代樹狀高分子。這樣的結果與我們先前的報告一致33,在該報告中顯示樹狀高分子的骨架與金奈米點之間的特定交互作用會啟動結構收縮。其次,含有或者不含包埋之金奈米點的兩種樹狀高分子的界達電位被發現有顯著差異,如第7圖所示。有別於帶有大量正電荷的G4NH2(約64mV), AuNDs-NH2的表面電荷大幅下降至約3mV,該數值幾乎等同於G4OH及AuNDs-OH之值。第三,AuNDs-NH2及AuNDs-OH的表面濕潤性係由等溫微熱量計檢驗,其係一種監測有關於濕潤/去濕潤過程之熱變化的靈敏工具34。第1b圖(參考附件之第1b圖)係分別顯示AuNDs-NH2(藍線)及AuNDs-OH(綠線)之濕潤及去濕潤曲線的熱圖,其係在控制良好的溼度範圍10%至90%(黑線)下測量。相較之下,AuNDs-NH2的水分吸濕及脫濕值高於AuNDs-OH。這些結果顯示AuNDs-NH2的表面親水性高於AuNDs-OH。同時,我們使用一著名的極性探針(即芘(pyrene))35以辨明AuNDs-OH的表面極性是否為疏水性。具有電荷間排斥力的初始G4NH2能延伸其分枝再分枝空間而將原始極性由疏水性反轉為親水性。然而,G4OH的分枝再分枝空間維持小巧,使G4OH保留疏水性狀態36。如第8圖所示,芘在370nm(I1)及380nm(I2)的螢光強度比例非常近似於初始G4OH。該結果顯示AuNDs-OH的表面極性仍保留源自樹狀高分子的原始疏水性。綜合而言,該些結果顯示AuNDs-NH2及AuNDs-OH的表面極性分別傾向親水性及疏水性。
在混合脂多醣(即內毒素)與AuNDs-OH(疏水性)或AuNDs-NH2(親水性)之後,藉由動態光散射(dynamic light scattering,DLS)測量能發現大幅粒徑增加(第9a圖)。儘管脂多醣的濃度1μg/mL(約67nM)實際上高於室溫下的臨界微胞濃度(CMC)之值(約41nM)37,仍可觀察到自發地自我聚集及分解過程(第9b圖)。此結果顯示脂多醣本身的聚合過程是動態的。相較之下,脂多醣在金奈米點存在時被發現會形成較脂多醣本身 更穩定的聚集體(見第9a圖)。為進一步闡明脂多醣的細部聚合結構,我們使用穿透式電子顯微鏡(TEM)以顯示羥基金奈米點/脂多醣(AuNDs-OH/LPS)聚集體(第2a圖,左畫面)及胺基金奈米點/脂多醣(AuNDs-NH2/LPS)聚集體(第2a圖,右畫面)的球形形態非常相似。然而,AuNDs-NH2/LPS聚集體的粒徑(>200nm)幾乎皆大於AuNDs-OH/LPS聚集體的粒徑(142.8±22.8nm)。有趣地是,所有聚集體具備一外壁及一內部核心,連同相等的壁厚度。AuNDs-OH/LPS及AuNDs-NH2/LPS聚合的厚度值分別為36.4±6.1nm(第2b圖,灰色長條)及67.0±8.9nm(第2b圖,黑色長條),其值正好分別對應至單一脂多醣及二個脂多醣分子的長度。該些結果顯示脂多醣分子在AuNDs-NH2/LPS聚集體中採用一種尾端對尾端的排列(以脂質A部分作為尾端區域),以形成微粒結構(下文標示為NVAuNDs-NH2/LPS)。相對地,AuNDs-OH/LPS聚集體之較薄壁顯示該些聚集體不形成微粒。因為該些聚集體的平均粒徑(142.8±22.8nm)較一般微胞(micelle)更大,這類AuNDs-OH/LPS聚集體可能是一種大型複合微胞(large compound micelle,下文標示為LCMAuNDs-OH/LPS),其內部核心可能填充反微胞(reverse micelle)16,19。推測AuNDs-NH2/LPS及AuNDs-OH/LPS聚集體之間的這種差異可能歸因於其表面極性不同,因而可能影響脂多醣聚集。親水性金奈米點(即AuNDs-NH2)可能在其聚集時提供一種側向力以連結脂多醣分子的極性區域。接著,脂質A聚集能逐漸地延伸直到奈米微粒形成。我們推測AuNDs-NH2能藉由一種特定交互作用而輕易與脂多醣極性區域的胺基作用,為了進一步探討此一可能性,脂多醣的胺基被碘甲烷(methyl iodide)修飾以形成四級銨離子(4°-銨離子)。如同預期,多種NVAuNDs-NH2/LPS中沒有一 種可被TEM觀察到(資料未顯示),顯示金奈米點和脂多醣間的特定交互作用在該化學修飾後被消除。利用高解析度TEM觀察金奈米點在NVAuNDs-NH2/LPS及LCMAuNDs-OH/LPS中的位置仍是一種挑戰。由於金奈米點的有限尺寸而造成的此一挑戰已在先前研究中提及19,22。作為替代,金元素的存在可利用能量散佈X-射線光譜(energy-dispersive X-ray spectroscopy)驗證(第10圖)。此外,TEM的暗視野影像(第2d圖)結果顯示數個微粒表面呈現明亮對比,強烈暗示AuNDs-NH2位在壁上。如第2f圖所示,進一步檢視奈米微粒的穩定性顯示脂多醣聚集體的粒徑透過納入AuNDs-NH2而逐漸增加。因此,進一步辨明這些奈米微粒在延長培養時間後是否能轉變為Q或H是很重要的。第2e圖顯示這些液狀奈米微粒能彼此融合,但無法形成高度活躍的Q和H。這種融合過程應是隨機的,由NVAuNDs-NH2/LPS的直徑可預測邊界範圍。經計算含有數百個NVAuNDs-NH2/LPS的數張TEM影像(見第11a圖),其粒徑分布非常廣,範圍從120nm至800nm(見第11b圖)。另外,另一由脂多醣本身構成的控制組(即AuNDs-NH2不存在)說明Q和H在高於臨界微胞濃度時確實能被觀察到(見第12圖),儘管它們的數量非常有限。因此,在脂多醣聚集時,我們能夠透過NVAuNDs-NH2/LPS及LCMAuNDs-OH/LPS與金奈米點的結合而成功地抑制其轉變為Q和H。關於兩種金奈米點與脂多醣共同聚集的途徑,以第6圖簡單圖示說明。仍然值得注意的是已確知之脂多醣的Q和H引發巨量免疫反應的事實。承上,穩定的NVAuNDs-NH2/LPS形成有助於促使天然發炎活化劑(即脂多醣)作為,至少部分作為一種誘發特定免疫反應的有潛力之疫苗佐劑。
眾所皆知疫苗佐劑能激發早期先天性發炎反應及啟動第一型輔助性T細胞(Th1)或第二型輔助性T細胞(Th2)反應38。常用佐劑通常啟動強烈的Th2反應,但在對抗需要Th1調控之免疫力的細胞內病原的效果卻相當有限。因此,疫苗佐劑開發的挑戰之一即為選擇適當的佐劑,其能有效且選擇性地啟動Th1或Th2反應。於此,我們打算檢驗NVAuNDs-NH2/LPS及LCMAuNDs-OH/LPS是否能在人類THP-1細胞有效且選擇性地啟動Th1或Th2反應。THP-1細胞是單核細胞系統(monocytic lineage)的細胞株,其在經過佛波醇-12-肉蔻酯-13-乙酯(phorbol 12-myristate 13-acetate,PMA)處理會分化為類巨噬細胞細胞。首先,NVAuNDs-NH2/LPS及LCMAuNDs-OH/LPS的免疫活性係由發炎前趨細胞激素之介白素-6(interleukin-6,IL-6)的生成而測定。兩種金奈米點經檢驗並顯示為具高度生物相容性(第13圖)。介白素-6(IL-6)的mRNA及蛋白質生成量係利用即時反轉錄聚合酶連鎖反應(RT-PCR)及酵素連結免疫吸附試驗(ELISA)而測定。如第3a圖及第3b圖,相較於脂多醣本身在1μg/ml時所誘導IL-6之量,在NVAuNDs-NH2/LPS及LCMAuNDs-OH/LPS容易誘導較大程度的IL-6產生,在此情況下層狀構造或一般微胞在脂多醣聚集體中仍佔多數。應注意由於金奈米點本身無法激發THP-1細胞的IL-6生成,我們可以排除金奈米點直接與類鐸受體(TLRs)結合或受到免疫刺激物汙染的可能39。相較之下,NVAuNDs-NH2/LPS較LCMAuNDs-OH/LPS表現出更強的發炎前趨IL-6誘導能力。該差異可歸因於LCMAuNDs-OH/LPS較NVAuNDs-NH2/LPS具有更小的粒徑及更低的脂質A密度,因而導致較差的誘導IL-6生成的效果。雖然不明顯,LCMAuNDs-OH/LPS也表現出誘導IL-6的生成。我們的結果顯示LCMAuNDs-OH/LPS的聚合結構屬於非典型的微胞,其表現出較一般微胞 更高的脂質A密度(即脂多醣本身)。既然脂質A是脂多醣活化免疫系統的活性成分,LCMAuNDs-OH/LPS的略高脂質A密度因此造成較脂多醣更有效的IL-6生成之誘導。
我們進一步探討由NVAuNDs-NH2/LPS激發的先天性趨化(chemotactic)訊號及發炎細胞激素以描述佐劑活性的特徵。藉由使用Luminex多重標的人類細胞激素ELISA,相較於僅有脂多醣之組別的生成量,我們發現NVAuNDs-NH2/LPS增加IL-6、IL-10、顆粒性白血球聚落刺激因子(granulocyte colony-stimulating factor,G-CSF)、干擾素誘導蛋白-10(interferon gamma-induced protein 10,IP-10)、及血小板衍生生長因子(platelet-derived growth factor,PDGF)-BB之生成;然而,NVAuNDs-NH2/LPS降低IL-7、IL-9、IL-12(P70)、鹼性纖維母細胞生長因子(basic fibroblast growth factor(FGF))、及血管內皮生長因子(vascular endothelial growth factor,VEGF)之生成(見表1)。相較NVAuNDs-NH2/LPS,LCMAuNDs-OH/LPS會誘導較不顯著的發炎訊號及細胞激素(見表3)。因為較大的IL-6誘導,NVAuNDs-NH2/LPS被選用於測定先天性趨化訊號及發炎細胞激素。表1顯示AuNDs-NH2、脂多醣、及NVAuNDs-NH2/LPS的細胞激素量及趨化因子量。
我們使用細胞激素及趨化因子PCR陣列去測定由NVAuNDs-NH2/LPS誘導之大範圍的發炎介質。該PCR陣列的結果顯示,相較於脂多醣本身,NVAuNDs-NH2/LPS能調節數種細胞激素及趨化因子的mRNA量。第4a圖以圖表現脂多醣和NVAuNDs-NH2/LPS間的調控倍率表現資料並重疊至PCR陣列盤面排布。受到內毒素奈米微粒NVAuNDs-NH2/LPS激發而增多的細胞激素係為IL-10、IL-24、IL-6、IL-7、IL-8、轉型生長因子β2(transforming growth factor-beta 2,TGFB2)、腫瘤壞死因子(tumor necrosis factor,TNF)、及淋巴毒素α(lymphotoxin alpha,LTA);受到正向調控的趨化因子係為CC趨化因子配體18(CCL18)、CXC趨化因子配體1(CXCL1)、CXC趨化因子配體2(CXCL2)、及原血小板鹼性蛋白(proplatelet basic protein,PPBP);及受到正向調控的生長因子係為聚落刺激因子2(colony-stimulating factor 2,CSF2)及聚落刺激因子3(colony-stimulating factor 3,CSF3)。減少的細胞激素係為IL-12b、IL-16、及腫瘤壞死因子家族CD40配體(TNF super-family CD40LG);受到負向調控的趨化因子係為CC趨化因子配體1(CCL1)、CC趨化因子配體13(CCL13)、CC趨化因子配體19(CCL19)、CC趨化因子配體2(CCL2)、CC趨化因子配體22(CCL22)、CC趨化因子配體24(CCL24)、CX3C趨化因子配體1(CX3CL1)、CXC趨化因子配體12(CXCL12)、CXC趨化因子配體13(CXCL13)、及CXC趨化因子配體16(CXCL16);及受到負向調控的生長因子係為骨成形性蛋白6(bone morphogenetic protein 6,BMP6)及血管內皮生長因子A(vascular endothelial growth factor A,VEGFA)。補體成分5(complement component 5,C5)亦減少(第4b圖,表4)。我們的細胞激素ELISA的結果大多與基因表現一致,例如IL-6、IL-10、G-CSF(CSF-3)、及VEGFA。然而,IL-7的基因表現與ELISA資料不一致。重組人類IL-7的半衰期曾被報導為在活體內非常短40。或許上升的IL-7的mRNA量仍不夠高以便反應IL-7的蛋白質量。
我們進一步分析何種細胞訊息路徑(pathways)係為NVAuNDs-NH2/LPS所激發。表5顯示受到正向調控及負向調控的基因,利用比 較毒理基因體學資料庫(comparative toxicogenomics database,CTD)分析而在統計上活化的路徑。大部分受到正向調控的趨化因子屬於CXC次家族(CXCL1、CXCL2、CXCL7、IL-8、CXCL9、及CXCL11),而有一者屬於CC次家族(CCL18)。大部分受到負向調控的趨化因子屬於CC次家族(CCL1、CCL2、CCL13、CCL19、CCL22、及CCL24),有一者屬於CX3C次家族(CX3CL1),且有三者屬於CXC次家族(CXCL12、CXCL13、及CXCL16)。CTD分析提供了更加系統性及全面性的資訊並可用於評估,以提供NVAuNDs-NH2/LPS調控之細胞訊息路徑的完整視野。
最終,我們依據PCR陣列的結果,亦檢驗NVAuNDs-NH2/LPS是否影響THP-1巨噬細胞活化。巨噬細胞能有效率地對環境刺激產生反應,並且表現差異性的細胞激素及趨化因子生成,以活化第一型輔助性T細胞(Th1)及Th2細胞。表2顯示NVAuNDs-NH2/LPS促進6個Th1相關細胞激素及趨化因子的基因(例如IL-12A、TNFα,IL6、IL1α、CXCL-1、CXCL11)及3個Th2相關基因(例如IL-10、TGFβ、CCL18)。然而,NVAuNDs-NH2/LPS降低3個Th1相關基因表現(例如IL-12B、CXCl16、及CCL2)及6個Th2相關基因(例如VEGFA、CCL1、CCL13、CCL17、CCL22、CCL24)。該些增加的細胞激素及趨化因子符合大多數的Th1佐劑之基因表現型態38。表2顯示不同的細胞激素及趨化因子之基因表現。
CCL24、CCL17、及CCL22被報導為會召集嗜酸性球(eosinophils)、嗜鹼性球(basophils)、及Th2細胞,導致Th2反應41,42。CCL1能促進嗜酸性球、Th2細胞、及調節性T細胞的穿透43。IL-10在限制免疫及發炎反應的時間長度及強度上扮演重要角色。在巨噬細胞中,IL-10抑制發炎前趨細胞激素的生成,例如TNF-α、IL-6、及IL-12,並且負向調控第二型主要組織相容性複合物(MHC II)及共同刺激分子44。此外,IL-10的生成亦被認為是針對TLR訊號傳遞的一種回饋機制45。TGFB是一種調控細胞分化、活化、及增生之諸多效果的多效細胞激素。其作為一負向調控因子,抑制脂多醣誘發之巨噬細胞所產生發炎前趨細胞激素TNF-α、IL-1α、及IL-18。NVAuNDs-NH2/LPS增加IL-10及TGFB2之生成可能表示巨噬細胞的一種回饋機制。綜合而言,我們的結果顯示NVAuNDs-NH2/LPS不僅能有效率地引起發炎細胞激素及趨化因子的表現,還具有第一型輔助性T細胞佐劑的特性;上述說明總結於第5圖。
表3顯示AuNDs-OH、脂多醣、及LCMAuNDs-OH/LPS的細胞激素量及趨化因子量。
表4顯示NVAuNDs-NH2/LPS相較於脂多醣組之過度表現及表現不足的基因。
表5顯示受到正向調控及負向調控的基因,以比較毒理基因體學資料庫(CTD)分析而在統計上活化的路徑。
綜合而言,我們使用一種簡單策略,藉由利用親水性金奈米點控制超分子之脂多醣聚集,以促進穩定的內毒素奈米微粒NVAuNDs-NH2/LPS的形成,進而避免高度活躍的Q和H的形成。因此,內毒素奈米微粒NVAuNDs-NH2/LPS能選擇性地表現第一型輔助性T細胞佐劑的活性,包含IL-6細胞激素及數種Th1相關細胞激素/趨化因子的活性。相較之下,衍生自疏水性金奈米點的LCMAuNDs-OH/LPS在產生發炎細胞激素方面的效果較差,因為其較內毒素奈米微粒NVAuNDs-NH2/LPS有較小的粒徑及較低的脂質A密度。就我們所知,我們的研究是第一次報導如此操縱金奈米點的表面親水性以控制脂多醣聚集,並因此避免高度活躍的Q和H的形成。藉由親水性金奈米點之參與以控制脂多醣引起的反應,或許能夠促進第一型輔助性T細胞調控的免疫力而應用於特定疫苗的開發。
前述本發明之例示性實施例僅出於說明和描述的目的,而非用於詳盡或限制本發明於所揭露之確切形式。基於上述教示當可做諸多修飾與變更。
該實施方式和實施例之選擇及描述是為了解釋本發明的原理及其實際應用,使本領域熟習技藝人士能夠以適合預期中特定用途之各種修飾來利用本發明及各種實施例。在本發明所屬且不背離其精神及範圍內,替代的實施例對本領域熟習技藝人士係顯而易見。因此,本發明之範圍係由所附申請專利範圍而定義,並非依據前述說明及其中所述之例示性實施例。
在本發明的說明中引用並討論若干參考文獻,其可包含專利、專利申請及各種出版品。這些參考文獻之引用及/或討論僅是為了闡明本發明的說明,而非承認任何這樣的參考文獻是本文中所述發明的先前技術。本說明書中所有引用和討論的參考文獻係透過引用將其整體納入本文中,如同各參考文獻透過引用而被個別納入。
【參考文獻】
(1) Aderem, A.; Ulevitch, R. J. Nature 2000, 406, 782-787.
(2) Bohannon, J. K.; Hernandez, A.; Enkhbaatar, P.; Adams, W. L.; Sherwood, E. R. Shock 2013, 40, 451-462.
(3) Needham, B. D.; Carroll, S. M.; Giles, D. K.; Georgiou, G.; Whiteley, M.; Trent, M. S. Proc. Natl. Acad. Sci. U S A 2013, 110, 1464-1469.
(4) Calabrese, V.; Cighetti, R.; Peri, F. Mol. Immunol. 2015, 63, 153-161.
(5) Park, B. S.; Lee, J. O. Exp. Mol. Med. 2013, 45, e66.
(6) Brandenburg, K.; Mayer, H.; Koch, M. H. J.; Weckesser, J.; Rietschel, E. T.; Seydel, U. Eur. J. Biochem. 1993, 218, 555-563.
(7) Gutsmann, T.; Schromm, A. B.; Brandenburg, K. Int. J. Med. Microbiol. 2007, 297, 341-352.
(8) Sigalov, A. B. Mol. Immunol. 2012, 51, 356-362.
(9) Molinaro, A.; Holst, O.; Di Lorenzo, F.; Callaghan, M.; Nurisso, A.; D'Errico, G.; Zamyatina, A.; Peri, F.; Berisio, R.; Jerala, R.; Jimenez-Barbero, J.; Silipo, A.; Martin-Santamaria, S. Chem. Eur. J. 2015, 21, 500-519.
(10) Seydel, U.; Oikawa, M.; Fukase, K.; Kusumoto, S.; Brandenburg, K. Eur. J. Biochem. 2000, 267, 3032-3039.
(11) Seydel, U.; Hawkins, L.; Schromm, A. B.; Heine, H.; Scheel, O.; Koch, M. H. J.; Brandenburg, K. Eur. J. Immunol. 2003, 33, 1586-1592.
(12) Brandenburg, K.; Hawkins, L.; Garidel, P.; Andra, J.; Muller, M.; Heine, H.; Koch, M. H. J.; Seydel, U. Biochemistry 2004, 43, 4039-4046.
(13) Pontes, F. J. S.; Rusu, V. H.; Soares, T. A.; Lins, R. D. J. Chem. Theory Comput. 2012, 8, 3830-3838.
(14) Adams, P. G.; Lamoureux, L.; Swingle, K. L.; Mukundan, H.; Montano, G. A. Biophys. J. 2014, 106, 2395-2407.
(15) Nascimento, A., Jr.; Pontes, F. J. S.; Lins, R. D.; Soares, T. A. Chem. Commun. 2014, 50, 231-233.
(16) Zhang, L. F.; Eisenberg, A. J. Am. Chem. Soc. 1996, 118, 3168-3181.
(17) Chiu, J. J.; Kim, B. J.; Kramer, E. J.; Pine, D. J. J. Am. Chem. Soc. 2005, 127, 5036-5037.
(18) Kim, B. S.; Qiu, J. M.; Wang, J. P.; Taton, T. A. Nano Lett. 2005, 5, 1987-1991.
(19) Sanchez-Gaytan, B. L.; Cui, W.; Kim, Y.; Mendez-Polanco, M. A.; Duncan, T. V.; Fryd, M.; Wayland, B. B.; Park, S.-J. Angew. Chem. Int. Ed. 2007, 46, 9235-9238.
(20) Chen, T.; Yang, M.; Wang, X.; Tan, L. H.; Chen, H. J. Am. Chem. Soc. 2008, 130, 11858-11859.
(21) Kamps, A. C.; Sanchez-Gaytan, B. L.; Hickey, R. J.; Clarke, N.; Fryd, M.; Park, S.-J. Langmuir 2010, 26, 14345-14350.
(22) Mai, Y.; Eisenberg, A. J. Am. Chem. Soc. 2010, 132, 10078-10084.
(23) Fuks, G.; Talom, R. M.; Gauffre, F. Chem. Soc. Rev. 2011, 40, 2475-2493.
(24) Mai, Y.; Eisenberg, A. Macromolecules 2011, 44, 3179-3183.
(25) Sanchez-Gaytan, B. L.; Li, S.; Kamps, A. C.; Hickey, R. J.; Clarke, N.; Fryd, M.; Wayland, B. B.; Park, S. J. J. Phys. Chem. C 2011, 115, 7836-7842.
(26) Hickey, R. J.; Meng, X.; Zhang, P.; Park, S.-J. ACS Nano 2013, 7, 5824-5833.
(27) Aota-Nakano, U.; Li, S. J.; Yamazaki, M. Biochim. Biophys. Acta Biomembranes 1999, 1461, 96-102.
(28) Li, S. J.; Yamashita, Y.; Yamazaki, M. Biophys. J. 2001, 81, 983-993.
(29) Masum, S. M.; Li, S. J.; Tamba, Y.; Yamashita, Y.; Tanaka, T.; Yamazaki, M. Langmuir 2003, 19, 4745-4753.
(30) Masahito, Y., Transformation between liposomes and cubic phases of biological lipid membranes induced by modulation of electrostatic intteractions. In Advances in Planar Lipid Bilayers and Liposomes, Leitmannova Liu, A., Ed. Academic Press: San Diego, CA, 2009; Vol. 9, pp 163-209.
(31) Muir, B. W.; Zhen, G. L.; Gunatillake, P.; Hartley, P. G. J. Phys. Chem. B 2012, 116, 3551-3556.
(32) Xu, J.; Han, Y.; Cui, J.; Jiang, W. Langmuir 2013, 29, 10383-10392.
(33) Chien, C. T.; Liu, C. Y.; Wu, Z. W.; Chen, P. J.; Chu, C. L.; Lin, S. Y. J. Mater. Chem. B 2014, 2, 6730-6737.
(34) Ratoi, M.; Hoet, P. H. M.; Crossley, A.; Dobson, P. RSC Adv. 2014, 4, 20573-20581.
(35) Glushko, V.; Thaler, M. S. R.; Karp, C. D. Arch. Biochem. Biophys. 1981, 210, 33-42.
(36) Chen, W.; Tomalia, D. A.; Thomas, J. L. Macromolecules 2000, 33, 9169-9172.
(37) Sasaki, H.; White, S. H. Biophys. J. 2008, 95, 986-993.
(38) Korsholm, K. S.; Petersen, R. V.; Agger, E. M.; Andersen, P. Immunology 2010, 129, 75-86.
(39) Vallhov, H.; Qin, J.; Johansson, S. M.; Ahlborg, N.; Muhammed, M. A.; Scheynius, A.; Gabrielsson, S. Nano Lett. 2006, 6, 1682-1686.
(40) Sportes, C.; Babb, R. R.; Krumlauf, M. C.; Hakim, F. T.; Steinberg, S. M.; Chow, C. K.; Brown, M. R.; Fleisher, T. A.; Noel, P.; Maric, I.; Stetler-Stevenson, M.; Engel, J.; Buffet, R.; Morre, M.; Amato, R. J.; Pecora, A.; Mackall, C. L.; Gress, R. E. Clin. Cancer Res. 2010, 16, 727-735.
(41) Mantovani, A.; Sozzani, S.; Locati, M.; Allavena, P.; Sica, A. Trends Immunol. 2002, 23, 549-555.
(42) Martinez, F. O.; Gordon, S.; Locati, M.; Mantovani, A. J. Immunol. 2006, 177, 7303-7311.
(43) Hao, N. B.; Lu, M. H.; Fan, Y. H.; Cao, Y. L.; Zhang, Z. R.; Yang, S. M. Clin. Dev. Immunol. 2012.
(44) Martinez, F. O.; Sica, A.; Mantovani, A.; Locati, M. Front Biosci. 2008, 13, 453-461.
(45) Iyer, S. S.; Ghaffari, A. A.; Cheng, G. J. Immunol. 2010, 185, 6599-6607.

Claims (20)

  1. 一種內毒素聚集體,包含:(a)脂多醣分子,係聚集為一具有包圍一內部空間之壁的微粒,或聚集為一具有包圍一內部核心之壁的球形聚集體;及(b)親水性金奈米點或金奈米粒子,係位在該微粒之壁中,或疏水性金奈米點或金奈米粒子,係位在該球形聚集體之壁中。
  2. 如申請專利範圍第1項所述之內毒素聚集體,其中該金奈米點或金奈米粒子係包埋於一樹狀高分子內並形成一金奈米點-或一金奈米粒子-樹狀高分子複合體。
  3. 如申請專利範圍第2項所述之內毒素聚集體,其中該樹狀高分子具有分枝胺基或分枝羥基。
  4. 如申請專利範圍第2項所述之內毒素聚集體,其中該樹狀高分子係為一第四代樹狀高分子。
  5. 如申請專利範圍第2項所述之內毒素聚集體,其中該金奈米點或金奈米粒子-樹狀高分子複合體表現一親水表面極性。
  6. 一種內毒素奈米微粒,包含:(a)脂多醣分子,係聚集為一具有包圍一內部空間之壁的微粒;及(b)親水性金奈米點或金奈米粒子,係位在該微粒之壁中。
  7. 如申請專利範圍第6項所述之奈米微粒,其中該親水性金奈米點或金奈米粒子係侷限於一具有分枝胺基的樹狀高分子之內部。
  8. 如申請專利範圍第6項所述之奈米微粒,其中該親水性金奈米點或金奈米粒子與該脂多醣分子的胺基交互作用。
  9. 如申請專利範圍第6項所述之奈米微粒,其中該金奈米點或金奈米粒子係不被烷基硫醇所穩定。
  10. 如申請專利範圍第6項所述之奈米微粒,其中該微粒之壁的厚度係為約二個脂多醣分子的長度。
  11. 如申請專利範圍第6項所述之奈米微粒,其中該脂多醣分子採用一脂質A尾端對脂質A尾端的排列。
  12. 如申請專利範圍第1項所述之內毒素聚集體,該內毒素聚集體不含立方體及/或六方體。
  13. 如申請專利範圍第1項所述之內毒素聚集體,其中該球形聚集體係為一在該內部核心充滿反微胞的大型複合微胞。
  14. 一種組成物,包含:(a)如申請專利範圍第6項所述之內毒素奈米微粒;及(b)一選擇性地免疫性產生抗原。
  15. 一種組成物,包含:(a)如申請專利範圍第13項所述之內毒素聚集體;及(b)一選擇性地免疫性產生抗原。
  16. 一種製備一脂多醣佐劑的方法,包含:(a)混合脂多醣分子與親水性金奈米點或金奈米粒子;及(b)使該脂多醣分子聚集形成如申請專利範圍第6項所述之內毒素奈米微粒,因而製得該脂多醣佐劑。
  17. 一種在脂多醣聚合或聚集時抑制立方體及/或六方體形成的方法,包含:(a)混合脂多醣分子與親水性或疏水性的金奈米點或金奈米粒子;及 (b)使該脂多醣分子聚集形成如申請專利範圍第1項所述之內毒素聚集體。
  18. 一種在脂多醣聚合或聚集時抑制立方體及/或六方體形成的方法,包含:(a)混合脂多醣分子與親水性金奈米點或金奈米粒子;及(b)使該脂多醣分子聚集形成如申請專利範圍第6項所述之內毒素奈米微粒。
  19. 一種如申請專利範圍第14項所述之組成物用於製備選擇性增強第一型輔助性T細胞誘導之免疫反應之醫藥組成物之用途。
  20. 如申請專利範圍第1項所述之內毒素聚集體,其不含脂多醣聚集微胞及/或脂多醣聚集層狀構造。
TW105106483A 2016-03-03 2016-03-03 內毒素奈米微粒:親水性奈米金控制內毒素聚集結構形成奈米微粒進而調節免疫反應 TWI601534B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW105106483A TWI601534B (zh) 2016-03-03 2016-03-03 內毒素奈米微粒:親水性奈米金控制內毒素聚集結構形成奈米微粒進而調節免疫反應

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW105106483A TWI601534B (zh) 2016-03-03 2016-03-03 內毒素奈米微粒:親水性奈米金控制內毒素聚集結構形成奈米微粒進而調節免疫反應

Publications (2)

Publication Number Publication Date
TW201731517A TW201731517A (zh) 2017-09-16
TWI601534B true TWI601534B (zh) 2017-10-11

Family

ID=60479767

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105106483A TWI601534B (zh) 2016-03-03 2016-03-03 內毒素奈米微粒:親水性奈米金控制內毒素聚集結構形成奈米微粒進而調節免疫反應

Country Status (1)

Country Link
TW (1) TWI601534B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019190491A1 (en) * 2018-03-27 2019-10-03 National Health Research Institutes Sub-nanometer gold sticker and methods for protecting against endotoxin-induced sepsis thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201005293A (en) * 2008-07-25 2010-02-01 Nat Health Research Institutes Functionalized quantum dots and methods for preparing them
TW201444565A (zh) * 2013-02-19 2014-12-01 Nat Health Research Institutes 用於抗癌化療法之籠狀鉑金奈米團簇

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201005293A (en) * 2008-07-25 2010-02-01 Nat Health Research Institutes Functionalized quantum dots and methods for preparing them
TW201444565A (zh) * 2013-02-19 2014-12-01 Nat Health Research Institutes 用於抗癌化療法之籠狀鉑金奈米團簇

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
AnthonyE.Gregory et al.;"Vaccine delivery using nanoparticles"; Front. Cell. Infect. Microbiol, vol.3, 2013, pp.1-13. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019190491A1 (en) * 2018-03-27 2019-10-03 National Health Research Institutes Sub-nanometer gold sticker and methods for protecting against endotoxin-induced sepsis thereof

Also Published As

Publication number Publication date
TW201731517A (zh) 2017-09-16

Similar Documents

Publication Publication Date Title
Lebre et al. The shape and size of hydroxyapatite particles dictate inflammatory responses following implantation
Adibrad et al. Signs of the presence of Th17 cells in chronic periodontal disease
Kim et al. Anti-inflammatory actions of folate-functionalized bioactive ion-releasing nanoparticles imply drug-free nanotherapy of inflamed tissues
ES2229286T3 (es) Cesion prolongada de gm-csf.
Pajarinen et al. The response of macrophages to titanium particles is determined by macrophage polarization
Zhang et al. Immunomodulatory microneedle patch for periodontal tissue regeneration
Brekalo Pršo et al. Tumor necrosis factor-alpha and interleukin 6 in human periapical lesions
Veiga et al. Leukocyte-specific siRNA delivery revealing IRF8 as a potential anti-inflammatory target
Yue et al. Macrophage responses to the physical burden of cell-sized particles
JP2014533740A (ja) 疎水性薬物送達材料、その製造方法および薬物送達組成物の送達方法
Xu et al. Tailorable hierarchical structures of biomimetic hydroxyapatite micro/nano particles promoting endocytosis and osteogenic differentiation of stem cells
Rocca et al. Pectin-coated boron nitride nanotubes: In vitro cyto-/immune-compatibility on RAW 264.7 macrophages
TWI601534B (zh) 內毒素奈米微粒:親水性奈米金控制內毒素聚集結構形成奈米微粒進而調節免疫反應
Peng et al. Development of a hollow mesoporous silica nanoparticles vaccine to protect against house dust mite induced allergic inflammation
Souza et al. IL-17 and IL-22 serum cytokine levels in patients with squamous intraepithelial lesion and invasive cervical carcinoma.
Choi et al. Dexamethasone-conjugated polyethylenimine/MIF siRNA complex regulation of particulate matter-induced airway inflammation
Sun et al. Differential effect of tantalum nanoparticles versus tantalum micron particles on immune regulation
Deptuch et al. In vivo study of the immune response to bioengineered spider silk spheres
Shnayder et al. Cytokine imbalance as a biomarker of intervertebral disk degeneration
Zhao et al. Chitosan derivative composite nanoparticles as adjuvants enhance the cellular immune response via activation of the cGAS-STING pathway
Hung et al. Regulation of airway innate and adaptive immune responses: the IL-17 paradigm
Ruvalcaba-Ontiveros et al. Treatment with silica–gold nanostructures decreases inflammation-related gene expression in collagen-induced arthritis
Yuan et al. Calcium phosphate silicate and calcium silicate cements suppressing osteoclasts activity through cytokine regulation
JP2009149526A (ja) サイトカイン−ナノゲル複合体を含む皮下注射又は筋肉内注射徐放製剤
US20170258896A1 (en) Endotoxin nanovesicles: hydrophilic gold nanodots control lipopolysaccharide assembly for modulating immunological responses