TWI598860B - Method and apparatus for detecting bending deformation of flexible device - Google Patents

Method and apparatus for detecting bending deformation of flexible device Download PDF

Info

Publication number
TWI598860B
TWI598860B TW105139132A TW105139132A TWI598860B TW I598860 B TWI598860 B TW I598860B TW 105139132 A TW105139132 A TW 105139132A TW 105139132 A TW105139132 A TW 105139132A TW I598860 B TWI598860 B TW I598860B
Authority
TW
Taiwan
Prior art keywords
bending
axis
strain
electronic device
strength
Prior art date
Application number
TW105139132A
Other languages
Chinese (zh)
Other versions
TW201820297A (en
Inventor
張家駿
Original Assignee
友達光電股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 友達光電股份有限公司 filed Critical 友達光電股份有限公司
Priority to TW105139132A priority Critical patent/TWI598860B/en
Priority to CN201710058728.3A priority patent/CN106814857B/en
Application granted granted Critical
Publication of TWI598860B publication Critical patent/TWI598860B/en
Publication of TW201820297A publication Critical patent/TW201820297A/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/017Gesture based interaction, e.g. based on a set of recognized hand gestures
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0484Interaction techniques based on graphical user interfaces [GUI] for the control of specific functions or operations, e.g. selecting or manipulating an object, an image or a displayed text element, setting a parameter value or selecting a range
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0487Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • User Interface Of Digital Computer (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Description

可撓式電子裝置以及利用於可撓式電子裝置中之彎折偵測方法Flexible electronic device and bending detection method used in flexible electronic device

本發明係關於一種可撓式電子裝置以及彎折偵測方法,尤指一種可撓式電子裝置以及利用於可撓式電子裝置中之彎折偵測方法。The present invention relates to a flexible electronic device and a bending detection method, and more particularly to a flexible electronic device and a bending detection method used in the flexible electronic device.

現今各式行動裝置如智慧手機等電子裝置已經高度普及,為提高可攜性之目地,行動裝置的設計傾向於輕、薄、短、小,但為了便於操作與便於閱覽畫面,往往又希望有較大的螢幕,這兩個矛盾的需求之下,可撓式顯示幕的技術因應而生,採用了可撓式顯示幕的電子裝置,可讓行動裝置同時實現方便攜帶與大螢幕顯示的需求。Nowadays, various mobile devices such as smart phones and other electronic devices have become highly popular. For the purpose of improving portability, the design of mobile devices tends to be light, thin, short, and small, but in order to facilitate operation and easy viewing of images, it is often desirable to have The larger screen, under the contradiction of these two requirements, the technology of the flexible display screen, the use of flexible display screen electronic device, allowing the mobile device to achieve the convenience of carrying and large screen display at the same time .

一旦電子裝置的顯示幕具有可撓的特性,此特性將使得電子裝置的操作方式具有超越傳統電子裝置的發展潛力。傳統智慧型的電子裝置在輸入與控制上主要依靠觸控面板,達成平移、選取、放大、縮小、旋轉等顯示指令的控制操作,若是加入彎折顯示幕做為控制操作的方式,將會使得電子裝置的操作方式更為直覺與便利。Once the display screen of the electronic device has flexible characteristics, this feature will enable the electronic device to operate in a manner that surpasses the development potential of conventional electronic devices. Traditional intelligent electronic devices rely mainly on the touch panel for input and control, and achieve control operations such as panning, selecting, enlarging, reducing, rotating, etc. If the bending display screen is added as a control operation, it will make The operation of the electronic device is more intuitive and convenient.

此種新穎的可撓式顯示幕靠著多種手勢態樣來產生相對應且獨特之顯示指令,為達此功效與目的,則需要較良好的判斷模式來輔助完成,因此,本發明的主要目的在於提供一種可撓式電子裝置以及利用於可撓式電子裝置中之彎折偵測方法,以達到上述目的。The novel flexible display screen relies on a variety of gesture patterns to generate corresponding and unique display commands. To achieve this effect and purpose, a better judgment mode is needed to assist the completion. Therefore, the main purpose of the present invention is The invention provides a flexible electronic device and a bending detection method used in the flexible electronic device to achieve the above object.

本發明之目的在提供一種可撓式電子裝置以及利用於可撓式電子裝置中之彎折偵測方法,能具有良好的判斷模式來判斷可撓式顯示幕的多種手勢態樣,藉以成為明確的顯示指令,令使用者以最直覺的方式操控可撓式電子裝置。The object of the present invention is to provide a flexible electronic device and a bending detection method for use in a flexible electronic device, which can have a good judgment mode to determine various gesture patterns of the flexible display screen, thereby becoming clear The display command allows the user to manipulate the flexible electronic device in the most intuitive manner.

本發明係關於一種可撓式電子裝置以及利用於可撓式電子裝置中之彎折偵測方法,可撓式電子裝置係接受複數種手勢態樣以分別產生相對應之顯示指令,可撓式電子裝置係包含可撓式顯示幕、複數個感應器、彎折資訊統析模組、以及手勢對應模組。The present invention relates to a flexible electronic device and a bending detection method for use in a flexible electronic device. The flexible electronic device receives a plurality of gesture patterns to respectively generate corresponding display commands, and is flexible. The electronic device includes a flexible display screen, a plurality of sensors, a bending information analysis module, and a gesture corresponding module.

複數個感應器係分佈設置於可撓式顯示幕,每一個感應器用以感應可撓式顯示幕之彎折以產生彎折強度、以及彎折軸向。彎折資訊統析模組係統合該等感應器之彎折強度,並統合該等感應器之彎折軸向,以成為彎折資訊。手勢對應模組 將彎折資訊中之資訊比對相對應之閾值,以確定為多種預設之手勢態樣中之一種手勢態樣。A plurality of sensors are distributed on the flexible display screen, and each of the inductors is used to sense the bending of the flexible display screen to generate bending strength and bending the axial direction. The bending information analysis module system combines the bending strengths of the sensors and integrates the bending axes of the sensors to become bending information. The gesture corresponding module compares the thresholds corresponding to the information in the bending information to determine one of a plurality of preset gesture patterns.

進一步,如前述之可撓式電子裝置,可撓式電子裝置更包含彎折資料轉換模組,細述係每一個感應器係偵測所在可撓式顯示幕位置之彎折資料,彎折資料轉換模組再將每一個感應器所對應之彎折資料轉換為彎折強度、以及彎折軸向。Further, as described above, the flexible electronic device further includes a bending data conversion module, and each of the sensors detects bending information of the position of the flexible display screen, and bending the data. The conversion module converts the bending data corresponding to each sensor into a bending strength and a bending axis.

感應器係可採用三軸應變規,三軸應變規包含共面且以45度夾角展開之第一應變規、第二應變規、以及第三應變規,分別量測第一軸應變量、第二軸應變量、以及第三軸應變量,所述之彎折資料就是包含第一軸應變量、第二軸應變量、以及第三軸應變量。彎折資料轉換模組係根據莫耳圓理論(Mohr’s circle) ,將第一軸應變量、第二軸應變量、以及第三軸應變量轉換為第一主應變值、第二主應變值、以及主應變方向,其中第一主應變值係與第二主應變值正交。The sensor can adopt a three-axis strain gauge, and the three-axis strain gauge includes a first strain gauge, a second strain gauge, and a third strain gauge that are coplanar and unfolded at an angle of 45 degrees, respectively measuring the first axis strain, the first The two-axis dependent variable, and the third-axis dependent variable, the bending data includes the first-axis dependent variable, the second-axis dependent variable, and the third-axis dependent variable. The bending data conversion module converts the first axis strain, the second axis strain, and the third axis strain into a first main strain value, a second main strain value, according to a Mohr's circle theory. And a principal strain direction, wherein the first main strain value is orthogonal to the second main strain value.

彎折資料轉換模組再將第一主應變值與第二主應變值轉換為彎折強度,及將主應變方向轉換為彎折軸向。進一步說明,彎折資料轉換模組係將第一主應變值與第二主應變值虛擬化(virtualization)為彎折強度,及將主應變方向虛擬化為彎折軸向,其中彎折強度與第一主應變值、第二主應變值正相關,彎折軸向與主應變方向正交。The bending data conversion module converts the first main strain value and the second main strain value into a bending strength, and converts the main strain direction into a bending axial direction. Further, the bending data conversion module virtualizes the first main strain value and the second main strain value into a bending strength, and virtualizes the main strain direction into a bending axial direction, wherein the bending strength and the bending strength The first main strain value and the second main strain value are positively correlated, and the bending axial direction is orthogonal to the main strain direction.

在一個實施例中,依照可撓式顯示幕之撓曲集積度係可分佈有至少一擬節點(node),彎折資訊統析模組係將擬節點所在區域涵蓋之每一個感應器之彎折強度以加權平均統合為擬節點彎折量,彎折資訊統析模組並將擬節點所在區域涵蓋之每一個感應器之彎折軸向以加權平均統合為彎折軸向角度。其中,所述加權之權值係與擬節點與感應器之距離為正相關,則擬節點彎折量以及彎折軸向角度係為所述之彎折資訊。手勢對應模組係將擬節點彎折量以及彎折軸向角度分別比對相對應之閾值,以產生明確的手勢態樣。In one embodiment, according to the flexural display degree of the flexible display screen, at least one node can be distributed, and the bending information analysis module bends each sensor covered by the area where the pseudo node is located. The folding strength is integrated into the pseudo-node bending amount by weighted averaging. The bending information analysis module integrates the bending axes of each sensor covered by the region where the quasi-node is located into a bending axial angle by weighted averaging. Wherein, the weighted weight is positively correlated with the distance between the pseudonode and the inductor, and the pseudonode bending amount and the bending axial angle are the bending information. The gesture corresponding module compares the pseudo-node bending amount and the bending axial angle respectively to the threshold corresponding to the pair to generate a clear gesture state.

再另一個實施例中,彎折資訊統析模組係將每一個感應器之彎折強度統合為統整彎折量,彎折資訊統析模組將每一個感應器之彎折軸向依感應器之彎折強度加權再平均以統合為彎折軸向角度,彎折資訊統析模組並將每一個感應器之平面座標位置依感應器之彎折強度加權再平均以統合為統整偏移量,則統整彎折量、彎折軸向角度、以及統整偏移量係為所述之彎折資訊。手勢對應模組係將統整彎折量、彎折軸向角度、以及統整偏移量分別比對相對應之閾值,以產生明確的手勢態樣。In still another embodiment, the bending information analysis module integrates the bending strength of each sensor into a unified bending amount, and the bending information analysis module bends the bending axis of each sensor. The bending strength of the sensor is weighted and averaged to be integrated into the bending axial angle. The information analysis module is bent and the plane coordinate position of each sensor is weighted and averaged according to the bending strength of the inductor to be integrated. For the offset, the integrated bending amount, the bending axial angle, and the integrated offset are the bending information. The gesture corresponding module compares the threshold of the integrated bending amount, the bending axial angle, and the integrated offset to respectively generate a clear gesture state.

本發明也係一種利用於可撓式電子裝置中之彎折偵測方法,可撓式電子裝置係接受複數種手勢態樣以分別產生相對應之顯示指令。可撓式電子裝置包含可撓式顯示幕、以及分佈設置於可撓式顯示幕之複數個感應器,彎折偵測方法係包含下列步驟:The invention also relates to a bending detection method for use in a flexible electronic device. The flexible electronic device accepts a plurality of gesture patterns to respectively generate corresponding display instructions. The flexible electronic device comprises a flexible display screen and a plurality of sensors distributed on the flexible display screen. The bending detection method comprises the following steps:

步驟一:藉由每一個感應器感應可撓式顯示幕之彎折,以產生彎折強度、以及彎折軸向;Step 1: Inductive bending of the flexible display screen by each sensor to generate bending strength and bending axial direction;

步驟二:統合該等感應器之彎折強度,並統合該等感應器之彎折軸向,以成為彎折資訊;以及Step 2: integrate the bending strength of the inductors and integrate the bending axes of the inductors to become bending information;

步驟三:比對彎折資訊中之資訊以及相對應之閾值,以確定為多種預設之手勢態樣中之一種手勢態樣。Step 3: Align the information in the bending information with the corresponding threshold to determine one of a plurality of preset gesture patterns.

其中,步驟一進一步包含下列步驟:步驟一之1:藉由每一個感應器偵測所在可撓式顯示幕位置之彎折資料;以及步驟一之2:將每一個感應器所對應之彎折資料轉換為彎折強度、以及彎折軸向。Step 1 further includes the following steps: Step 1 of 1: detecting, by each sensor, the bending data of the position of the flexible display screen; and Step 2: bending the corresponding one of the sensors The data is converted into bending strength and bending axial direction.

進一步說明,感應器係可採用三軸應變規,所述之彎折資料係包含第一軸應變量、第二軸應變量、以及第三軸應變量,步驟一之2進一步包含下列步驟:將第一軸應變量、第二軸應變量、以及第三軸應變量轉換為第一主應變值、第二主應變值、以及主應變方向,其中第一主應變值係與第二主應變值正交;接續,再將第一主應變值與第二主應變值轉換為彎折強度,及將主應變方向轉換為彎折軸向。Further, the inductor may adopt a three-axis strain gauge, and the bending data includes a first axis strain, a second axis strain, and a third axis strain, and step one of the second step further includes the following steps: The first axis strain, the second axis strain, and the third axis strain are converted into a first main strain value, a second main strain value, and a main strain direction, wherein the first main strain value and the second main strain value Orthogonal; connecting, converting the first principal strain value and the second principal strain value into bending strength, and converting the main strain direction into the bending axial direction.

配合前述第一個實施例,步驟二進一步包含下列步驟:依照可撓式顯示幕之撓曲集積度分佈有至少一擬節點;將擬節點所在區域涵蓋之每一個感應器之彎折強度以加權平均統合為擬節點彎折量,並將擬節點所在區域涵蓋之每一個感應器之彎折軸向以加權平均統合為彎折軸向角度,其中所述加權之權值係與擬節點與感應器之距離為正相關,則擬節點彎折量以及彎折軸向角度係為所述之彎折資訊。後續係將擬節點彎折量以及彎折軸向角度分別比對相對應之閾值,以產生明確的手勢態樣。In conjunction with the foregoing first embodiment, the second step further comprises the steps of: distributing at least one quasi-node according to the flexural degree distribution of the flexible display screen; weighting the bending strength of each of the inductors covered by the region of the quasi-node The average integration is the pseudo-node bending amount, and the bending axial direction of each inductor covered by the region where the quasi-node is located is integrated into a bending axial angle by weighted averaging, wherein the weighted weight system and the pseudo-node and the induction The distance between the devices is positively correlated, and the amount of bending of the pseudonodes and the axial angle of the bending are the bending information. The subsequent system compares the pseudo-node bending amount and the bending axial angle to the corresponding threshold values to generate a clear gesture state.

配合前述第二個實施例,步驟二進一步包含下列步驟:將每一個感應器之彎折強度統合為統整彎折量,也將每一個感應器之彎折軸向依感應器之彎折強度加權再平均以統合為彎折軸向角度,並將每一個感應器之平面座標位置依感應器之彎折強度加權再平均以統合為統整偏移量,統整彎折量、彎折軸向角度、以及統整偏移量則為所述之彎折資訊。後續係將統整彎折量、彎折軸向角度、以及統整偏移量分別比對相對應之閾值,以產生明確的手勢態樣。In conjunction with the foregoing second embodiment, the second step further comprises the steps of: integrating the bending strength of each sensor into a unified bending amount, and also bending the bending axis of each sensor according to the bending strength of the inductor. The weighted re-averaging is integrated into the bending axial angle, and the plane coordinate position of each sensor is weighted and averaged according to the bending strength of the inductor to be integrated into the overall offset, and the bending amount and the bending axis are integrated. The angle of the angle and the offset are the bend information. The subsequent system will combine the bending amount, the bending axial angle, and the overall offset to respectively correspond to the threshold value to generate a clear gesture state.

因此,利用本發明所提供一種可撓式電子裝置以及利用於可撓式電子裝置中之彎折偵測方法,藉由彎折資訊統析模組對於多個感應器的判斷,再利用手勢對應模組比對相對應之閾值,以確定為多種預設之手勢態樣中之一種手勢態樣,藉此能具有良好的判斷模式來判斷可撓式顯示幕的多種手勢態樣,以成為明確的顯示指令,令使用者以最直覺的方式操控可撓式電子裝置。Therefore, by using the flexible electronic device and the bending detection method in the flexible electronic device, the bending information is used to determine the plurality of sensors, and the gesture is correspondingly used. The module compares the thresholds to determine one of a plurality of preset gesture patterns, thereby having a good judgment mode to determine various gesture patterns of the flexible display screen to become clear The display command allows the user to manipulate the flexible electronic device in the most intuitive manner.

關於本發明之優點與精神可以藉由以下的發明詳述及所附圖式得到進一步的瞭解。The advantages and spirit of the present invention will be further understood from the following detailed description of the invention.

請參閱圖1A以及圖1B,兩圖皆為本發明可撓式電子裝置10接受手勢態樣之示意圖。本發明係關於一種可撓式電子裝置10以及彎折偵測方法,可撓式電子裝置10具有可撓式顯示幕30,能夠接受複數種手勢態樣以分別產生相對應之顯示指令。如圖1A例中可見到內凹10a的手勢態樣,並由圖1B例中可見到外扳10b的手勢態樣,內凹10a的手勢態樣產生了畫面內容放大的顯示指令,而外扳10b的手勢態樣產生了畫面內容縮小的顯示指令。本實施例僅為簡潔說明而舉兩種手勢態樣的實例,實務上,可利用更多的手勢態樣來產生更多的顯示指令。Please refer to FIG. 1A and FIG. 1B , both of which are schematic diagrams of the gesture of the flexible electronic device 10 of the present invention. The present invention relates to a flexible electronic device 10 and a bending detection method. The flexible electronic device 10 has a flexible display screen 30 capable of accepting a plurality of gesture patterns to respectively generate corresponding display commands. As shown in FIG. 1A, the gesture state of the concave portion 10a can be seen, and the gesture state of the outer pull 10b can be seen from the example of FIG. 1B, and the gesture state of the concave portion 10a generates a display instruction for enlarging the screen content, and the outer panel is pulled. The gesture pattern of 10b produces a display instruction for reducing the content of the screen. This embodiment is only an example of two gestures for the sake of brevity. In practice, more gestures can be utilized to generate more display instructions.

進一步參閱圖2,圖2係本發明可撓式電子裝置10中配置感應器32之示意圖。可撓式電子裝置10除了前述的可撓式顯示幕30之外,還包含複數個感應器32,係分佈設置於可撓式顯示幕30,每一個感應器32用以感應可撓式顯示幕30之彎折以產生彎折資料,再藉由彎折資料產生彎折強度、以及彎折軸向。Referring to FIG. 2, FIG. 2 is a schematic diagram of the configuration of the inductor 32 in the flexible electronic device 10 of the present invention. In addition to the flexible display screen 30 described above, the flexible electronic device 10 further includes a plurality of sensors 32 disposed on the flexible display screen 30, and each of the sensors 32 is configured to sense a flexible display screen. The bending of 30 is performed to generate bending data, and the bending strength and the bending axial direction are generated by bending the data.

再進一步參閱圖3,圖3係本發明可撓式電子裝置10之功能方塊圖。可撓式電子裝置10除了圖1由外觀可見之可撓式顯示幕30,圖2所述之感應器32之外,進一步還包含彎折資料轉換模組34、彎折資訊統析模組35、手勢對應模組36、以及儲存裝置38。Referring to FIG. 3, FIG. 3 is a functional block diagram of the flexible electronic device 10 of the present invention. The flexible electronic device 10 further includes a flexible display screen 30 as shown in FIG. 1 and a sensor 32 as shown in FIG. 2, and further includes a bending data conversion module 34 and a bending information analysis module 35. The gesture corresponding module 36 and the storage device 38.

前述的每一個感應器32係偵測所在可撓式顯示幕30位置之彎折資料,彎折資料轉換模組34再將每一個感應器32所對應之彎折資料轉換為彎折強度、以及彎折軸向。彎折資訊統析模組35係統合該等感應器32之彎折強度,並統合該等感應器32之彎折軸向,以成為彎折資訊。Each of the foregoing sensors 32 detects the bending data of the position of the flexible display screen 30, and the bending data conversion module 34 converts the bending data corresponding to each of the sensors 32 into a bending strength, and Bend the axial direction. The bending information analysis module 35 system combines the bending strengths of the sensors 32 and integrates the bending axes of the sensors 32 to become bending information.

儲存裝置38中預先儲存很多閾值,這些閾值所限定的多種範圍會對應出多種的手勢態樣。手勢對應模組36將彎折資訊中之資訊,如彎折強度以及彎折軸向的數值,分別比對在儲存裝置38中所預儲相對應之閾值,藉以確定為多種預設之手勢態樣中之一種手勢態樣,後續,可撓式電子裝置10會根據所判定之手勢態樣來產生顯示指令,就如圖1A、圖1B所述例一般。A plurality of thresholds are pre-stored in the storage device 38, and the plurality of ranges defined by the thresholds correspond to a plurality of gesture patterns. The gesture corresponding module 36 compares the information in the bending information, such as the bending strength and the value of the bending axis, respectively, to the threshold corresponding to the pre-stored in the storage device 38, to determine a plurality of preset gesture states. In one of the gestures, the flexible electronic device 10 generates a display command according to the determined gesture pattern, as exemplified in FIGS. 1A and 1B.

圖3係本發明可撓式電子裝置10架構運作之概述,以下將針對細部運作清楚說明,請參閱圖4,圖4係本發明感應器32之說明圖。如前述之可撓式電子裝置10,其中感應器32可採用三軸應變規40,三軸應變規40包含共面且以45度夾角展開之第一應變規42、第二應變規44、以及第三應變規46,受彎折時實際上會如圖有一個最大彎折量ε max 以及與最大彎折量ε max 垂直的最小彎折量ε min ,第一應變規42與最大彎折量ε max 或最小彎折量ε min 其一的夾角為主應變方向θ。所述之彎折資料係包含第一軸應變量ε a 、第二軸應變量ε b 、以及第三軸應變量ε c ,而第一應變規42、第二應變規44、以及第三應變規46即可分別量測出第一軸應變量ε a 、第二軸應變量ε b 、以及第三軸應變量ε c 3 is an overview of the operation of the flexible electronic device 10 of the present invention. The following is a clear description of the detailed operation. Please refer to FIG. 4, which is an explanatory diagram of the inductor 32 of the present invention. The flexible electronic device 10 as described above, wherein the inductor 32 can employ a three-axis strain gauge 40 that includes a first strain gauge 42 that is coplanar and spread at an angle of 45 degrees, a second strain gauge 44, and The third strain gauge 46, when bent, actually has a maximum bending amount ε max and a minimum bending amount ε min perpendicular to the maximum bending amount ε max , the first strain gauge 42 and the maximum bending amount The angle between ε max or the minimum bending amount ε min is the main strain direction θ. The bending data includes a first axis strain ε a , a second axis strain ε b , and a third axis strain ε c , and the first strain gauge 42 , the second strain gauge 44 , and the third strain The gauge 46 can measure the first axis strain ε a , the second axis strain ε b , and the third axis strain ε c , respectively .

彎折資料轉換模組34係根據莫耳圓理論(Mohr’s circle),將第一軸應變量ε a 、第二軸應變量ε b 、以及第三軸應變量ε c 轉換為第一主應變值ε 1 、第二主應變值ε 2 、以及主應變方向θ,第一主應變值ε 1 係與第二主應變值ε 2 正交。 The bending data conversion module 34 converts the first axis strain ε a , the second axis strain ε b , and the third axis strain ε c into the first principal strain value according to the Mohr's circle theory. ε 1 , the second principal strain value ε 2 , and the main strain direction θ , the first principal strain value ε 1 is orthogonal to the second principal strain value ε 2 .

根據莫耳圓理論,計算式如下,可得第一主應變值ε 1 = (ε a c ) /2+ / ; 也得第二主應變值ε 2 =(ε a c )/2- / ; 再得主應變方向θ = 。如此,彎折資料轉換模組34可由第一軸應變量ε a 、第二軸應變量ε b 、以及第三軸應變量ε c 求取第一主應變值ε 1 、第二主應變值ε 2 、以及主應變方向θ。 According to the Moore circle theory, the calculation formula is as follows, and the first principal strain value ε 1 = (ε a + ε c ) / 2+ can be obtained. / ; also has the second principal strain value ε 2 = (ε a + ε c )/2- / ; then get the main strain direction θ = . Thus, the bending data conversion module 34 can obtain the first main strain value ε 1 and the second main strain value ε from the first axis strain ε a , the second axis strain ε b , and the third axis strain ε c . 2 , and the main strain direction θ.

接著,彎折資料轉換模組34係將第一主應變值ε 1 與第二主應變值ε 2 虛擬化(virtualization) 轉換為彎折強度 C,及將主應變方向θ虛擬化轉換為彎折軸向α。其中彎折強度 C與第一主應變值ε 1 、第二主應變值ε 2 正相關,彎折軸向α與主應變方向θ正交。關於彎折強度 C與彎折軸向α計算式可如後,彎折強度 C=F(ε 1 2 );彎折軸向α=θ+ Next, the bending data conversion module 34 converts the first principal strain value ε 1 and the second principal strain value ε 2 into a bending strength C , and converts the main strain direction θ into a bending. Axial α. The bending strength C is positively correlated with the first main strain value ε 1 and the second main strain value ε 2 , and the bending axial direction α is orthogonal to the main strain direction θ. The calculation formula of the bending strength C and the bending axial α can be as follows, the bending strength C = F (ε 1 , ε 2 ); the bending axial direction α = θ + .

以下彎折資訊統析模組35所實施的方式可有兩種實施例,請參閱圖5,圖5係本發明彎折資訊統析模組35所實施第一實施例之示意說明圖。依照可撓式顯示幕30之撓曲集積度,係可於可撓式顯示幕30上虛擬分佈有至少一擬節點50,圖例中可撓式顯示幕30有三個擬節點50。The following embodiments of the bending information analysis module 35 can be implemented in two embodiments. Please refer to FIG. 5. FIG. 5 is a schematic explanatory diagram of the first embodiment of the bending information analysis module 35 of the present invention. According to the flexural accumulation degree of the flexible display screen 30, at least one quasi-node 50 may be virtually distributed on the flexible display screen 30. In the illustrated example, the flexible display screen 30 has three quasi-nodes 50.

我們以右上圖塊中,右方那個擬節點50來舉例說明,此區域5002中有六個感應器32,六個感應器32的彎折強度分別為 C 1 C 2 C 3 C 4 C 5 C 6 ,六個感應器32的彎折軸向α分別為α 1 、α 2 、α 3 、α 4 、α 5 、α 6 ,跟擬節點50的距離分別為 d 1 d 2 d 3 d 4 d 5 d 6 We take the example of the quasi-node 50 on the right in the upper right block. There are six inductors 32 in this area 5002. The bending strengths of the six inductors 32 are C 1 , C 2 , C 3 , C 4 , respectively. , C 5 , C 6 , the bending axes α of the six inductors 32 are α 1 , α 2 , α 3 , α 4 , α 5 , α 6 , respectively, and the distances from the analog nodes 50 are d 1 , d , respectively . 2 , d 3 , d 4 , d 5 , d 6 .

彎折資訊統析模組35將擬節點50所在區域涵蓋之每一個感應器32之彎折強度以及彎折軸向以加權平均統合為至少一特徵值,此特徵值包含擬節點彎折量 C m 以及彎折軸向角度α m 。進一步解釋,彎折資訊統析模組35將擬節點50所在區域5002涵蓋之每一個感應器32之彎折強度 C以加權平均統合為擬節點彎折量 C m ,並且彎折資訊統析模組35將擬節點50所在區域5002涵蓋之每一個感應器32之彎折軸向α以加權平均統合為彎折軸向角度α m 。其中所述加權之權值 W係與擬節點50與感應器32之距離 d為正相關,則擬節點彎折量 C m 以及彎折軸向角度α m 係為所述之彎折資訊。 The bending information analysis module 35 integrates the bending strength and the bending axis of each of the inductors 32 covered by the region of the quasi-node 50 into at least one eigenvalue by weighted averaging, and the eigenvalue includes the quasi-node bending amount C. m and the bending axial angle α m . Further, the bending information analysis module 35 integrates the bending strength C of each of the inductors 32 covered by the region 502 of the quasi-node 50 into a quasi-node bending amount C m and bends the information analysis model. Group 35 combines the bending axes a of each of the inductors 32 covered by the region 502 of the pseudonodes 50 into a weighted average angle α m . Wherein the weighted weight W is positively correlated with the distance d between the quasi-node 50 and the inductor 32, and the pseudo-node bending amount C m and the bending axial angle α m are the bending information.

配合圖例說明計算式,六個權值 W n =exp^(d n 2/2),n=1~6。所以,擬節點彎折量 C m= ( W 1C 1+ W 2C 2+ W 3C 3+ W 4C 4+ W 5C 5+ W 6C 6 )/( W 1+ W 2+ W 3+ W 4+ W 5+ W 6 ); 彎折軸向角度α m= ( W 1 α 1 + W 2 α 2 + W 3 α 3 + W 4 α 4 + W 5 α 5 + W 6 α 6 )/( W 1+ W 2+ W 3+ W 4+ W 5+ W 6 )。擬節點彎折量 C m 以及彎折軸向角度α m 就為所述之彎折資訊,後續,手勢對應模組36將擬節點彎折量 C m 以及彎折軸向角度α m 分別比對相對應之閾值,可以得到每一個擬節點50的結果狀態。 The calculation formula is described with the legend, six weights W n =exp^(d n 2 /2), n=1~6. Therefore, the pseudonode bending amount C m = ( W 1 C 1 + W 2 C 2 + W 3 C 3 + W 4 C 4 + W 5 C 5 + W 6 C 6 ) / ( W 1 + W 2 + W 3 + W 4 + W 5 + W 6 ); bending axial angle α m = ( W 1 α 1 + W 2 α 2 + W 3 α 3 + W 4 α 4 + W 5 α 5 + W 6 α 6 ) / ( W 1 + W 2 + W 3 + W 4 + W 5 + W 6 ). The pseudo-node bending amount C m and the bending axial angle α m are the bending information, and subsequently, the gesture corresponding module 36 compares the pseudo-node bending amount C m and the bending axial angle α m respectively. The resulting state of each of the quasi-nodes 50 can be obtained from the corresponding threshold.

擬節點50的結果狀態可以藉由圖6來說明,手勢態樣可以藉由圖7來說明,請同時參閱圖6以及圖7,圖6係本發明擬節點50對應結果狀態之示意圖。圖6係本發明結果狀態對應手勢態樣之示意圖。儲存裝置38中預先儲存擬節點彎折量 C m 以及彎折軸向角度α m 的閾值如後,結果狀態0:除了結果狀態1~6的結果狀態,結果狀態1: 5> C m >0,結果狀態2: C m ≧10;α m >10,結果狀態3:0> C m >-5,結果狀態4: -5> C m >-10;10>α m >-10,結果狀態5: -5> C m >-10;30>α m >10,結果狀態6: -5> C m >-10;-10>α m >-30。 The result state of the quasi-node 50 can be illustrated by FIG. 6. The gesture state can be illustrated by FIG. 7. Please refer to FIG. 6 and FIG. 7 at the same time. FIG. 6 is a schematic diagram of the state of the corresponding result of the quasi-node 50 of the present invention. 6 is a schematic diagram of a gesture state corresponding to a gesture state of the present invention. The threshold value of the pseudonode bending amount C m and the bending axial angle α m is stored in the storage device 38 as before, and the result state 0: except the result state of the result states 1 to 6, the result state 1: 5> C m >0 , Result State 2: C m ≧10; α m >10, result state 3:0> C m >-5, result state 4: -5> C m >-10;10>α m >-10, result state 5: -5> C m >-10;30>α m >10, result state 6: -5> C m >-10;-10>α m >-30.

圖6中擬節點0的擬節點彎折量 C m 為10,彎折軸向角度α m 為14,比對上述閾值後,則對應出結果狀態為結果狀態2。圖6中擬節點1的擬節點彎折量 C m 為20,彎折軸向角度α m 為30,比對上述閾值後,則對應出結果狀態也為結果狀態2。圖6中擬節點2的擬節點彎折量 C m 為4,彎折軸向角度α m 為60,比對上述閾值後,則對應出結果狀態為結果狀態1。 In Fig. 6, the quasi-node bending amount C m of the quasi-node 0 is 10, and the bending axial angle α m is 14, and after comparing the above threshold values, the corresponding result state is the result state 2. In Fig. 6, the pseudo-node bending amount C m of the pseudo-node 1 is 20, and the bending axial angle α m is 30. After comparing the above threshold values, the corresponding result state is also the result state 2. In Fig. 6, the quasi-node bending amount C m of the quasi-node 2 is 4, and the bending axial angle α m is 60. After comparing the above threshold values, the corresponding result state is the result state 1.

接著看圖7說明,手勢態樣0,1~6所預儲對應擬節點的結果狀態如表中所示,如手勢態樣0對應擬節點0、擬節點1、擬節點2的結果狀態分別為2、1、1,手勢態樣1對應擬節點0、擬節點1、擬節點2的結果狀態分別為2、2、1,則圖6例擬節點彎折量 C m 與彎折軸向角度α m 所對應結果狀態為2、2、1,對應到圖7就為手勢態樣1了。而每種手勢態樣皆有原本對應的顯示指令,假如如圖1所述手勢態樣1就是內凹10a的手勢態樣,則後續就會產生了畫面內容放大的顯示指令。 Next, FIG. 7 illustrates that the result state of the gesture state 0, 1~6 pre-stored corresponding to the pseudo-node is as shown in the table, for example, the gesture state 0 corresponds to the result state of the quasi-node 0, the quasi-node 1, and the quasi-node 2 respectively. 2, 1, 1, gesture state 1 corresponds to the quasi-node 0, quasi-node 1, quasi-node 2, the result states are 2, 2, 1, respectively, then the pseudo-node bending amount C m and bending axial direction of Figure 6 The result state corresponding to the angle α m is 2, 2, 1, and corresponds to Figure 7 as the gesture state 1 . Each gesture mode has an original corresponding display instruction. If the gesture aspect 1 is the gesture of the concave 10a as shown in FIG. 1, then a display instruction for enlarging the screen content is generated.

請參閱圖8A、圖8B、圖8C,皆係本發明彎折資訊統析模組35所實施第二實施例,圖8A係感應器32配置之示意圖,圖8B係彎折後感應器32感應彎折強度與彎折軸向之示意圖,圖8C係統合彎折強度與彎折軸向之示意圖。如前述之可撓式電子裝置10,四個感應器32之彎折強度分別為 C 11 C 12 C 21 C 22 ,彎折資訊統析模組35係計算四個彎折強度 C 11 C 12 C 21 C 22 的算術平均數,可統合為統整彎折量 C ,數學式可如下 C =( C 11+ C 12+ C 21+ C 22 )/4。 Referring to FIG. 8A, FIG. 8B, and FIG. 8C, the second embodiment of the bending information analysis module 35 of the present invention is implemented. FIG. 8A is a schematic diagram of the configuration of the sensor 32, and FIG. 8B is a sensor 32 after bending. A schematic diagram of the bending strength and the bending axial direction, and the schematic diagram of the bending strength and the bending axial direction of the system of Fig. 8C. The flexible electronic device 10 of the foregoing, four sensors 32 of the bending strength are C 11, C 12, C 21 , C 22, bending information is calculated based system analysis module 35 four bending strength C 11 , C 12, C 21, C 22 of the arithmetic mean, can be folded integration integration of the amount of C, equation may be (C 11 + C 12 + C 21 + C 22) / 4 as follows C =.

四個感應器32之彎折軸向分別為α 11 、α 12 、α 21 、α 22 ,彎折資訊統析模組35係將每一個感應器32之彎折軸向,分別依感應器32之彎折強度 C加權後,再平均以統合為彎折軸向角度 α,數學式可如下 α= ( C 11 11 + C 12 12 + C 21 21 + C 22 22 )/( C 11+ C 12+ C 21+ C 22 )/4。 The bending axes of the four inductors 32 are α 11 , α 12 , α 21 , α 22 , respectively, and the bending information analysis module 35 bends the axial direction of each of the inductors 32 according to the inductor 32 respectively. After the bending strength C is weighted, the average is taken as the bending axial angle α , and the mathematical expression can be as follows: α = ( C 11 11 + C 12 12 + C 21 21 + C 22 22 ) / ( C 11 + C 12 + C 21 + C 22 ) / 4.

四個感應器32之平面座標位置分別為( X 11 , Y 11 )、( X 12 , Y 12 )、( X 21 , Y 21 )、( X 22 , Y 22 ),彎折資訊統析模組35係將每一個感應器32之平面座標位置,依感應器32之彎折強度 C加權後,再平均以統合為統整偏移量S,數學式可如下 S= Sx= ( C 11 * X 11 + C 12 * X 12 + C 21 * X 21 + C 22 * X 22 )/( C 11+ C 12+ C 21+ C 22 )/4; Sy= ( C 11*Y 11+ C 12*Y 12+ C 21*Y 21+ C 22*Y 22 )/( C 11+ C 12+ C 21+ C 22 )/4。 The plane coordinates of the four sensors 32 are ( X 11 , Y 11 ), ( X 12 , Y 12 ), ( X 21 , Y 21 ), ( X 22 , Y 22 ), and the bending information analysis module 35 lines each of the coordinate position sensor plane 32, the bending strength weighted by the C of the sensor 32, then averaged to integration of the entire system shift amount S, the following equation may be S = Sx = ( C 11 * X 11 + C 12 * X 12 + C 21 * X 21 + C 22 * X 22 ) / ( C 11 + C 12 + C 21 + C 22 ) / 4; Sy = ( C 11 *Y 11 + C 12 *Y 12 + C 21 *Y 21 + C 22 *Y 22 )/( C 11 + C 12 + C 21 + C 22 )/4.

最後,統整彎折量 C 、彎折軸向角度 α、以及統整偏移量S係為所述之彎折資訊,其意義為最後能以一個統整的數值來代表每一個感應器32所統合的總結果。 Finally, the integrated bending amount C , the bending axial angle α , and the integrated offset S are the bending information, which means that each sensor 32 can be represented by a unified value. The overall result of the integration.

後續,手勢對應模組36係將統整彎折量 C 、彎折軸向角度 α、以及統整偏移量S分別比對相對應之閾值。請參閱圖9,圖9係本發明圖8實施例以閾值比對複數種手勢態樣之示意圖。假設有三種手勢態樣分別為: 手勢態樣1、手勢態樣2、手勢態樣3,其閾值如圖9所式分別為手勢態樣1: 5< C<8; 12<α<17; 3< S<6。手勢態樣2: 10< C<15; 5<α<10; 0< S<6。手勢態樣3: 5< C<10; 5<α<10; 10< S<15。藉此,只要圖8例統合出統整彎折量 C 、彎折軸向角度 α、以及統整偏移量S等彎折資訊,及能夠透過閾值的比對,找到落入範圍的手勢態樣,後續則可利用此手勢態樣產生顯示指令。 Subsequently, the gesture corresponding module 36 compares the integrated bending amount C , the bending axial angle α , and the integrated offset S by respective threshold values. Please refer to FIG. 9. FIG. 9 is a schematic diagram of the plurality of gesture patterns in the embodiment of FIG. 8 according to the threshold value. Suppose there are three gestures: gesture state 1, gesture pattern 2, gesture pattern 3, and the threshold values are as shown in Fig. 9: gesture state 1: 5< C <8;12<α<17;3< S <6. Gesture 2: 10< C <15;5<α<10;0< S <6. Gesture pattern 3: 5< C <10;5<α<10;10< S <15. Therefore, as shown in FIG. 8 , the bending information such as the integrated bending amount C , the bending axial angle α , and the integrated offset S, and the comparison of the threshold values can be integrated to find the gesture state falling within the range. In this case, the gesture can be used to generate display instructions.

請參閱圖10,圖10係本發明彎折偵測方法之流程圖。本發明也係一種利用於可撓式電子裝置10中之彎折偵測方法,可撓式電子裝置10係接受複數種手勢態樣以分別產生相對應之顯示指令,可撓式電子裝置10包含可撓式顯示幕30以及分佈設置於可撓式顯示幕30之複數個感應器32,該彎折偵測方法係包含下列步驟:Please refer to FIG. 10. FIG. 10 is a flow chart of the bending detection method of the present invention. The present invention is also a bending detection method for use in the flexible electronic device 10. The flexible electronic device 10 receives a plurality of gesture patterns to respectively generate corresponding display commands, and the flexible electronic device 10 includes The flexible display screen 30 and the plurality of sensors 32 disposed on the flexible display screen 30, the bending detection method comprises the following steps:

步驟一:藉由每一個感應器32感應可撓式顯示幕30之彎折以產生彎折強度 C、以及彎折軸向α;進一步,步驟一細分以包含下列步驟: Step 1: Inductive bending of the flexible display screen 30 by each of the inductors 32 to generate a bending strength C and a bending axis α; further, the step is subdivided to include the following steps:

步驟一之1(S01):藉由每一個感應器32偵測所在可撓式顯示幕30位置之彎折資料;以及Step 1 of 1 (S01): detecting, by each of the sensors 32, the bending data of the position of the flexible display screen 30;

步驟一之2(S02):將每一個感應器32所對應之彎折資料轉換為彎折強度 C、以及彎折軸向α。 Step 1 of 2 (S02): Convert the bending data corresponding to each of the inductors 32 into a bending strength C and a bending axis α.

接續步驟一,即步驟二:統合該等感應器32之彎折強度 C(S03),並統合該等感應器32之彎折軸向α(S04),以成為彎折資訊;以及 Step 1 is followed by step 2: integrating the bending strength C (S03) of the inductors 32, and integrating the bending axis α (S04) of the inductors 32 to become bending information;

步驟三(S05):比對彎折資訊中之資訊以及相對應之閾值,以確定為多種預設之手勢態樣中之一種手勢態樣。Step 3 (S05): Align the information in the bending information with the corresponding threshold to determine one of a plurality of preset gesture patterns.

如前述之彎折偵測方法,其中感應器32係為三軸應變規40,三軸應變規40包含共面且以45度夾角展開之第一應變規42、第二應變規44、以及第三應變規46,分別量測第一軸應變量ε a 、第二軸應變量ε b 、以及第三軸應變量ε c ,所述之彎折資料係包含第一軸應變量ε a 、第二軸應變量ε b 、以及第三軸應變量ε c The bending detection method as described above, wherein the inductor 32 is a three-axis strain gauge 40, and the triaxial strain gauge 40 includes a first strain gauge 42, a second strain gauge 44, and a first surface that are coplanar and spread at an angle of 45 degrees. The three strain gauges 46 respectively measure the first axis strain ε a , the second axis strain ε b , and the third axis strain ε c , wherein the bending data includes the first axis strain ε a , The two-axis strain ε b and the third axis strain ε c .

所以,步驟一之2進一步可包含下列步驟:將第一軸應變量ε a 、第二軸應變量ε b 、以及第三軸應變量ε c ,根據莫耳圓理論(Mohr’s circle),轉換為第一主應變值ε 1 、第二主應變值ε 2 、以及主應變方向θ,其中第一主應變值ε 1 係與第二主應變值ε 2 正交;接著,再將第一主應變值ε 1 與第二主應變值ε 2 轉換為彎折強度 C,及將主應變方向θ轉換為彎折軸向α。 Therefore, step one of 2 further includes the steps of: converting the first axis dependent variable ε a , the second axis dependent variable ε b , and the third axis dependent variable ε c according to the Mohr's circle to a first principal strain value ε 1 , a second principal strain value ε 2 , and a principal strain direction θ, wherein the first principal strain value ε 1 is orthogonal to the second principal strain value ε 2 ; and then the first principal strain is further The value ε 1 and the second principal strain value ε 2 are converted into the bending strength C , and the main strain direction θ is converted into the bending axial direction α.

進一步,將第一主應變值ε 1 與第二主應變值ε 2 虛擬化(virtualization)為彎折強度 C,及將主應變方向θ虛擬化為彎折軸向α,其中彎折強度 C與第一主應變值ε 1 、第二主應變值ε 2 正相關,彎折軸向α與主應變方向θ正交。 Further, the first principal strain value ε 1 and the second principal strain value ε 2 are virtualized as the bending strength C , and the main strain direction θ is virtualized into the bending axial direction α, wherein the bending strength C and The first principal strain value ε 1 and the second principal strain value ε 2 are positively correlated, and the bending axial direction α is orthogonal to the main strain direction θ.

請參閱圖11,圖11係本發明彎折偵測方法一實施例之方法流程圖。步驟二進一步可細述為包含下列步驟:(S10)依照可撓式顯示幕30之撓曲集積度係分佈有至少一擬節點50;(S11)將擬節點50所在區域5002涵蓋之每一個感應器32之彎折強度 C以加權平均統合為擬節點彎折量 C m ;(S12)並將擬節點50所在區域5002涵蓋之每一個感應器32之彎折軸向α以加權平均統合為彎折軸向角度α m 。其中所述加權之權值 W係與擬節點50與感應器32之距離 d為正相關,擬節點彎折量 C m 以及彎折軸向角度α m 係為所述之彎折資訊,則後續如步驟三(S05),係將擬節點彎折量 C m 以及彎折軸向角度α m 分別比對相對應之閾值,以確定為多種預設之手勢態樣中之一種手勢態樣。 Please refer to FIG. 11. FIG. 11 is a flowchart of a method for detecting a bending detection method according to the present invention. Step 2 is further detailed to include the following steps: (S10) distributing at least one quasi-node 50 according to the flexural degree of the flexible display screen 30; (S11) sensing each of the areas covered by the region 502 of the quasi-node 50 The bending strength C of the device 32 is integrated into a pseudo-node bending amount C m by weighted averaging; (S12) and the bending axial direction α of each of the inductors 32 covered by the region 502 of the pseudo-node 50 is integrated into a weighted average. Fold the axial angle α m . Wherein the weighted weight W is positively related to the distance d between the quasi-node 50 and the inductor 32, and the quasi-node bending amount C m and the bending axial angle α m are the bending information, and then For example, in step 3 (S05), the pseudo-node bending amount C m and the bending axial angle α m are respectively compared with the corresponding thresholds to determine one of a plurality of preset gesture patterns.

請參閱圖12,圖12係本發明彎折偵測方法另一實施例之方法流程圖。如前述之彎折偵測方法,其中步驟二進一步可細述為包含下列步驟:(S21)將每一個感應器32之彎折強度 C統合為統整彎折量 C ,(S22)也將每一個感應器32之彎折軸向α依感應器32之彎折強度 C加權再平均以統合為彎折軸向角度 α,(S23)並將每一個感應器32之平面座標位置依感應器32之彎折強度 C加權再平均以統合為統整偏移量 S,統整彎折量 C 、彎折軸向角度 α、以及統整偏移量 S係為所述之彎折資訊,則後續係將統整彎折量 C 、彎折軸向角度 α、以及統整偏移量 S分別比對相對應之閾值,以確定為多種預設之手勢態樣中之一種手勢態樣。 Referring to FIG. 12, FIG. 12 is a flowchart of a method for another embodiment of the bending detection method of the present invention. As described in the above-mentioned bending detection method, the second step can be further described as including the following steps: (S21) integrating the bending strength C of each of the inductors 32 into a unified bending amount C , and (S22) will also be The bending axis α of one of the inductors 32 is weighted and averaged by the bending strength C of the inductor 32 to be integrated into the bending axial angle α , (S23) and the plane coordinate position of each of the inductors 32 is determined by the sensor 32. The bending strength C- weighted re-average is integrated into the overall offset S , the integrated bending amount C , the bending axial angle α , and the unified offset S are the bending information, and then The threshold value corresponding to the comparison of the bending amount C , the bending axial angle α , and the unified offset S is respectively determined to determine one of a plurality of preset gesture patterns.

因此,利用本發明所提供一種可撓式電子裝置10以及利用於可撓式電子裝置10中之彎折偵測方法,藉由彎折資訊統析模組35對於多個感應器32的判斷,再利用手勢對應模組36比對相對應之閾值,以確定為多種預設之手勢態樣中之一種手勢態樣,藉此能具有良好的判斷模式來判斷可撓式顯示幕30的多種手勢態樣,以成為明確的顯示指令。Therefore, by using the flexible electronic device 10 and the bending detection method in the flexible electronic device 10, the determination of the plurality of sensors 32 by the bending information analysis module 35 is Reusing the gesture corresponding module 36 to compare the corresponding thresholds to determine one of a plurality of preset gesture patterns, thereby having a good judgment mode to determine various hands of the flexible display screen 30 The situation is to become a clear display instruction.

藉由以上較佳具體實施例之詳述,係希望能更加清楚描述本發明之特徵與精神,而並非以上述所揭露的較佳具體實施例來對本發明之範疇加以限制。相反地,其目的是希望能涵蓋各種改變及具相等性的安排於本發明所欲申請之專利範圍的範疇內。The features and spirit of the present invention will be more apparent from the detailed description of the preferred embodiments. On the contrary, the intention is to cover various modifications and equivalents within the scope of the invention as claimed.

10a‧‧‧內凹
10b‧‧‧外扳
10‧‧‧可撓式電子裝置
30‧‧‧可撓式顯示幕
32‧‧‧感應器
34‧‧‧彎折資料轉換模組
35‧‧‧彎折資訊統析模組
36‧‧‧手勢對應模組
38‧‧‧儲存裝置
40‧‧‧三軸應變規
42‧‧‧第一應變規
44‧‧‧第二應變規
46‧‧‧第三應變規
ε max ‧‧‧最大彎折量
ε min ‧‧‧最小彎折量
ε a ‧‧‧第一軸應變量
ε b ‧‧‧第二軸應變量
ε c ‧‧‧第三軸應變量
θ‧‧‧主應變方向
50‧‧‧擬節點
5002‧‧‧區域
C11 C12 C21 C22 ‧‧‧四個感應器之彎折強度
α 11 、α 12 、α 21 、α 22 ‧‧‧四個感應器之彎折軸向
C ‧‧‧統整彎折量
α‧‧‧彎折軸向角度
S‧‧‧統整偏移量
10a‧‧‧ concave
10b‧‧‧Outside
10‧‧‧Flexible electronic devices
30‧‧‧Flexible display
32‧‧‧ sensor
34‧‧‧Bending data conversion module
35‧‧‧Bending information analysis module
36‧‧‧ gesture corresponding module
38‧‧‧Storage device
40‧‧‧Three-axis strain gauge
42‧‧‧First strain gauge
44‧‧‧Second strain gauge
46‧‧‧ Third strain gauge ε max ‧‧‧Maximum bending amount ε min ‧‧‧Minimum bending amount ε a ‧‧‧First axis strain ε b ‧‧‧Second axis strain ε c ‧ ‧ Third axis strain θ‧‧‧ main strain direction
50‧‧‧ Quasi-node
5002‧‧‧Area
C 11 , C 12 , C 21 , C 22 ‧ ‧ four bends of the inductors α 11 , α 12 , α 21 , α 22 ‧ ‧ four bending axes of the inductor
C ‧‧‧Complete bending
α ‧‧‧ bending axial angle
S ‧‧‧ overall offset

圖1A 係本發明可撓式電子裝置接受內凹手勢態樣之示意圖; 圖1B 係本發明可撓式電子裝置接受外扳手勢態樣之示意圖; 圖2 係本發明可撓式電子裝置中配置感應器之示意圖; 圖3 係本發明可撓式電子裝置之功能方塊圖; 圖4 係本發明感應器之說明圖; 圖5 係本發明彎折資訊統析模組所實施第一實施例之示意說明圖; 圖6 係本發明擬節點對應結果狀態之示意圖; 圖7 係本發明結果狀態對應手勢態樣之示意圖; 圖8A 係感應器配置之示意圖; 圖8B 係彎折後感應器感應彎折強度與彎折軸向之示意圖; 圖8C 係統合彎折強度與彎折軸向之示意圖; 圖9 係本發明圖8實施例以閾值比對複數種手勢態樣之示意圖; 圖10 係本發明彎折偵測方法之流程圖; 圖11 係本發明彎折偵測方法一實施例之方法流程圖;以及 圖12 係本發明彎折偵測方法另一實施例之方法流程圖。1A is a schematic view showing a flexible gesture of a flexible electronic device according to the present invention; FIG. 1B is a schematic view showing a state in which a flexible electronic device of the present invention receives an external wrench; FIG. 2 is a configuration of a flexible electronic device according to the present invention; Figure 3 is a functional block diagram of the flexible electronic device of the present invention; Figure 4 is an explanatory view of the inductor of the present invention; Figure 5 is a schematic view of the first embodiment of the bending information analysis module of the present invention Figure 6 is a schematic diagram showing the state of the corresponding result of the pseudo-node of the present invention; Figure 7 is a schematic diagram of the gesture state corresponding to the result state of the present invention; Figure 8A is a schematic diagram of the sensor configuration; Figure 8B is a sensor-induced bending after bending FIG. 8 is a schematic view showing the bending strength and the bending axial direction of the system; FIG. 9 is a schematic diagram showing the plurality of gesture patterns in the embodiment of FIG. 8 according to the threshold value; FIG. 10 is a schematic diagram of the present invention. FIG. 11 is a flowchart of a method for detecting a bend detection method according to the present invention; and FIG. 12 is a flowchart of a method for another embodiment of the bend detection method of the present invention.

10‧‧‧可撓式電子裝置 10‧‧‧Flexible electronic devices

30‧‧‧可撓式顯示幕 30‧‧‧Flexible display

32‧‧‧感應器 32‧‧‧ sensor

34‧‧‧彎折資料轉換模組 34‧‧‧Bending data conversion module

35‧‧‧彎折資訊統析模組 35‧‧‧Bending information analysis module

36‧‧‧手勢對應模組 36‧‧‧ gesture corresponding module

38‧‧‧儲存裝置 38‧‧‧Storage device

Claims (13)

一種可撓式電子裝置,係接受複數種手勢態樣以分別產生相對應之顯示指令,該可撓式電子裝置係包含:一可撓式顯示幕;至少一擬節點,係分佈於該可撓式顯示幕;複數個感應器,係分佈設置於該可撓式顯示幕,每一個感應器用以感應該可撓式顯示幕之彎折以產生一彎折強度、以及一彎折軸向;一彎折資訊統析模組,係統合該等感應器之彎折強度,並統合該等感應器之彎折軸向,以成為一彎折資訊;以及一手勢對應模組,將該彎折資訊中之資訊比對相對應之閾值,以確定為多種預設之手勢態樣中之一種手勢態樣;其中該彎折資訊統析模組係將該擬節點所在區域涵蓋之每一個感應器之彎折強度以加權平均統合為一擬節點彎折量,該彎折資訊統析模組係將該擬節點所在區域涵蓋之每一個感應器之彎折軸向以加權平均統合為一彎折軸向角度,其中該加權平均之一權值係與該擬節點與該感應器之距離為正相關,則該擬節點彎折量以及該彎折軸向角度係為該彎折資訊,該手勢對應模組係將該擬節點彎折量以及該彎折軸向角度分別比對相對應之閾值。 A flexible electronic device that accepts a plurality of gesture patterns to respectively generate corresponding display instructions, the flexible electronic device comprising: a flexible display screen; at least one pseudo-node distributed in the flexible a display screen; a plurality of sensors are disposed on the flexible display screen, each sensor is configured to sense the bending of the flexible display screen to generate a bending strength and a bending axial direction; The bending information analysis module, the system combines the bending strength of the sensors, and integrates the bending axes of the sensors to become a bending information; and a gesture corresponding module, the bending information The information is compared with a corresponding threshold to determine one of a plurality of preset gesture patterns; wherein the bending information analysis module is for each sensor covered by the region where the pseudo node is located The bending strength is integrated into a quasi-node bending amount by weighted averaging, and the bending information analysis module integrates the bending axes of each of the inductors covered by the region of the quasi-node into a bending axis by weighted averaging Angle, where the plus The average weight value is positively correlated with the distance between the pseudo node and the sensor, and the bending amount of the quasi-node and the bending axial angle are the bending information, and the gesture corresponding module is to The node bending amount and the bending axial angle respectively correspond to the threshold values. 如申請專利範圍第1項所述之可撓式電子裝置,該可撓式電子裝置更包含一彎折資料轉換模組,每一個感應器係偵測所在該可撓式顯示幕位置之一彎折資料,該彎折資料轉換模組係將每一個感應器所對應之彎折資料轉換為該彎折強度、以及該彎折軸向。 The flexible electronic device of claim 1, wherein the flexible electronic device further comprises a bending data conversion module, wherein each sensor detects a bend of the flexible display position. The folding data conversion module converts the bending data corresponding to each sensor into the bending strength and the bending axial direction. 如申請專利範圍第2項所述之可撓式電子裝置,其中該感應器係為一三軸應變規,該彎折資料係包含一第一軸應變量、一第二軸應變量、以及一第 三軸應變量,該彎折資料轉換模組係將該第一軸應變量、該第二軸應變量、以及該第三軸應變量轉換為一第一主應變值、一第二主應變值、以及一主應變方向,該第一主應變值係與該第二主應變值正交,該彎折資料轉換模組再將該第一主應變值與該第二主應變值轉換為該彎折強度,及將該主應變方向轉換為該彎折軸向。 The flexible electronic device of claim 2, wherein the inductor is a three-axis strain gauge, and the bending data includes a first axis strain amount, a second axis strain amount, and a First The triaxial strain variable, the bending data conversion module converts the first axis strain, the second axis strain, and the third axis strain into a first main strain value and a second main strain value And a main strain direction, the first main strain value is orthogonal to the second main strain value, and the bending data conversion module converts the first main strain value and the second main strain value into the bend The bending strength and the transformation of the main strain direction into the bending axis. 如申請專利範圍第3項所述之可撓式電子裝置,其中該三軸應變規包含共面且以45度夾角展開之一第一應變規、一第二應變規、以及一第三應變規,分別量測該第一軸應變量、該第二軸應變量、以及該第三軸應變量,其中該彎折資料轉換模組根據莫耳圓理論(Mohr’s circle),由該第一軸應變量、該第二軸應變量、以及該第三軸應變量以求取該第一主應變值、該第二主應變值、以及該主應變方向。 The flexible electronic device of claim 3, wherein the triaxial strain gauge comprises coplanar and unfolds one of the first strain gauge, the second strain gauge, and the third strain gauge at an angle of 45 degrees. Measure the first axis strain, the second axis strain, and the third axis strain, respectively, wherein the bending data conversion module is based on the Mohr's circle, and the first axis strain is The quantity, the second axis dependent variable, and the third axis dependent variable are used to determine the first primary strain value, the second primary strain value, and the primary strain direction. 如申請專利範圍第4項所述之可撓式電子裝置,其中該彎折資料轉換模組係將該第一主應變值與該第二主應變值虛擬化(virtualization)為該彎折強度,及將該主應變方向虛擬化為該彎折軸向,其中該彎折強度與該第一主應變值、該第二主應變值正相關,該彎折軸向與該主應變方向正交。 The flexible electronic device of claim 4, wherein the bending data conversion module virtualizes the first principal strain value and the second principal strain value to the bending strength, And virtualizing the main strain direction into the bending axial direction, wherein the bending strength is positively correlated with the first main strain value and the second main strain value, and the bending axial direction is orthogonal to the main strain direction. 如申請專利範圍第1項所述之可撓式電子裝置,其中該彎折資訊統析模組係將該擬節點所在區域涵蓋之每一個感應器之彎折強度以及彎折軸向以加權平均統合為至少一特徵值,該特徵值包含該擬節點彎折量及該彎折軸向角度。 The flexible electronic device of claim 1, wherein the bending information analysis module is a weighted average of a bending strength and a bending axis of each of the inductors included in the region where the pseudonode is located. The integration is at least one feature value, and the feature value includes the pseudonode bending amount and the bending axial angle. 一種可撓式電子裝置,係接受複數種手勢態樣以分別產生相對應之顯示指令,該可撓式電子裝置係包含:一可撓式顯示幕;複數個感應器,係分佈設置於該可撓式顯示幕,每一個感應器用以感應該可撓式顯示幕之彎折以產生一彎折強度、以及一彎折軸向;一彎折資訊統析模組,係統合該等感應器之彎折強度,並統合該等感 應器之彎折軸向,以成為一彎折資訊;以及一手勢對應模組,將該彎折資訊中之資訊比對相對應之閾值,以確定為多種預設之手勢態樣中之一種手勢態樣;其中該彎折資訊統析模組係將每一個感應器之彎折強度統合為一統整彎折量,該彎折資訊統析模組係將每一個感應器之彎折軸向依該感應器之彎折強度加權再平均以統合為一彎折軸向角度,該彎折資訊統析模組係將每一個感應器之平面座標位置依該感應器之彎折強度加權再平均以統合為一統整偏移量,則該統整彎折量、該彎折軸向角度、以及該統整偏移量係為所述之彎折資訊,該手勢對應模組係將該統整彎折量、該彎折軸向角度、以及該統整偏移量分別比對相對應之閾值。 A flexible electronic device that accepts a plurality of gesture patterns to respectively generate corresponding display commands, the flexible electronic device includes: a flexible display screen; and a plurality of sensors distributed in the a flexible display screen, each sensor is used to sense the bending of the flexible display screen to generate a bending strength and a bending axial direction; a bending information analysis module, the system is combined with the sensors Bending the strength and integrating the senses The bending axis of the device is to become a bending information; and a gesture corresponding module compares the threshold corresponding to the information in the bending information to determine one of a plurality of preset gesture patterns a gesture state; wherein the bending information analysis module integrates the bending strength of each sensor into a unified bending amount, and the bending information analysis module bends the bending axis of each sensor Weighted and averaged according to the bending strength of the inductor to be integrated into a bending axial angle. The bending information analysis module weights the plane coordinate position of each sensor according to the bending strength of the sensor. Taking the integration as a unified offset, the unified bending amount, the bending axial angle, and the unified offset are the bending information, and the gesture corresponding module is integrated. The bending amount, the bending axial angle, and the adjustment offset respectively correspond to threshold values. 一種利用於可撓式電子裝置中之彎折偵測方法,該可撓式電子裝置係接受複數種手勢態樣以分別產生相對應之顯示指令,該可撓式電子裝置包含一可撓式顯示幕以及分佈設置於該可撓式顯示幕之複數個感應器,其中該可撓式顯示幕分佈有至少一擬節點,該彎折偵測方法係包含下列步驟:步驟一:藉由每一個感應器感應該可撓式顯示幕之彎折以產生一彎折強度、以及一彎折軸向;步驟二:統合該等感應器之彎折強度,並統合該等感應器之彎折軸向,以成為一彎折資訊,將該擬節點所在區域涵蓋之每一個感應器之彎折強度以加權平均統合為一擬節點彎折量,並將該擬節點所在區域涵蓋之每一個感應器之彎折軸向以加權平均統合為一彎折軸向角度,其中所述加權平均之一權值係與該擬節點與該感應器之距離為正相關,該擬節點彎折量以及該彎折軸向角度係為該彎折資訊,則後續係將該擬節點彎折量以及該彎折軸向角度分別比對相對應之閾值;以及 步驟三:比對該彎折資訊中之資訊以及相對應之閾值,以確定為多種預設之手勢態樣中之一種手勢態樣。 A bending detection method for use in a flexible electronic device, the flexible electronic device accepting a plurality of gesture patterns to respectively generate corresponding display instructions, and the flexible electronic device includes a flexible display And a plurality of sensors disposed on the flexible display screen, wherein the flexible display screen is distributed with at least one quasi-node, and the bending detection method comprises the following steps: Step 1: using each sensing The bending of the flexible display screen is induced to generate a bending strength and a bending axial direction; Step 2: integrating the bending strength of the inductors and integrating the bending axes of the inductors, In order to become a bending information, the bending strength of each sensor covered by the region of the pseudo-node is integrated into a quasi-node bending amount by weighted averaging, and the bending of each sensor covered by the region where the quasi-node is located The folding axial direction is integrated into a bending axial angle by weighted averaging, wherein one weight of the weighted average is positively correlated with the distance between the pseudonode and the inductor, and the bending amount of the pseudonode and the bending axis Angle of view For bending information, then the subsequent quasi-based nodes, and bending the bending angle of each axial alignment of the corresponding threshold; Step 3: Compare the information in the bending information with the corresponding threshold to determine one of a plurality of preset gesture patterns. 如申請專利範圍第8項所述之彎折偵測方法,其中該步驟一進一步包含下列步驟:步驟一之1:藉由每一個感應器偵測所在該可撓式顯示幕位置之彎折資料;以及步驟一之2:將每一個感應器所對應之彎折資料轉換為該彎折強度、以及該彎折軸向。 The bending detection method of claim 8, wherein the step 1 further comprises the following steps: Step 1: 1: detecting, by each sensor, the bending data of the flexible display position And step 2 of 2: converting the bending data corresponding to each sensor into the bending strength and the bending axis. 如申請專利範圍第9項所述之彎折偵測方法,其中該感應器係為一三軸應變規,所述之彎折資料係包含一第一軸應變量、一第二軸應變量、以及一第三軸應變量,其中步驟一之2進一步包含下列步驟:將該第一軸應變量、該第二軸應變量、以及該第三軸應變量轉換為一第一主應變值、一第二主應變值、以及一主應變方向,該第一主應變值係與該第二主應變值正交;再將該第一主應變值與該第二主應變值轉換為該彎折強度,及將該主應變方向轉換為該彎折軸向。 The bending detection method of claim 9, wherein the inductor is a three-axis strain gauge, and the bending data comprises a first axis strain variable, a second axis strain amount, And a third axis dependent variable, wherein the step one of the second step further comprises the steps of: converting the first axis dependent variable, the second axis dependent variable, and the third axis dependent variable into a first principal strain value, a second main strain value, and a main strain direction, the first main strain value is orthogonal to the second main strain value; and converting the first main strain value and the second main strain value into the bending strength And converting the main strain direction into the bending axis. 如申請專利範圍第10項所述之彎折偵測方法,其中該三軸應變規包含共面且以45度夾角展開之一第一應變規、一第二應變規、以及一第三應變規,分別量測該第一軸應變量、該第二軸應變量、以及該第三軸應變量,其中該第一軸應變量、該第二軸應變量、以及該第三軸應變量,係根據莫耳圓理論(Mohr’s circle),以求取該第一主應變值、該第二主應變值、以及該主應變方向。 The bending detection method of claim 10, wherein the triaxial strain gauge comprises coplanar and unfolds one of the first strain gauge, the second strain gauge, and the third strain gauge at an angle of 45 degrees. Measuring the first axis dependent variable, the second axis dependent variable, and the third axis dependent variable, wherein the first axis dependent variable, the second axis dependent variable, and the third axis dependent variable are respectively According to the Mohr's circle, the first main strain value, the second main strain value, and the main strain direction are obtained. 如申請專利範圍第11項所述之彎折偵測方法,係將該第一主應變值與該第二主應變值虛擬化(virtualization)為該彎折強度,及將該主應變方向虛擬化為該彎折軸向,其中該彎折強度與該第一主應變值、該第二主應變值正相關,該彎折軸向與該主應變方向正交。 The bending detection method according to claim 11, wherein the first main strain value and the second main strain value are virtualized to the bending strength, and the main strain direction is virtualized. In the bending axial direction, the bending strength is positively correlated with the first main strain value and the second main strain value, and the bending axial direction is orthogonal to the main strain direction. 一種利用於可撓式電子裝置中之彎折偵測方法,該可撓式電子裝置係接受複數種手勢態樣以分別產生相對應之顯示指令,該可撓式電子裝置包含一可撓式顯示幕以及分佈設置於該可撓式顯示幕之複數個感應器,該彎折偵測方法係包含下列步驟:步驟一:藉由每一個感應器感應該可撓式顯示幕之彎折以產生一彎折強度、以及一彎折軸向;步驟二:統合該等感應器之彎折強度,並統合該等感應器之彎折軸向,以成為一彎折資訊,將每一個感應器之彎折強度統合為一統整彎折量,也將每一個感應器之彎折軸向依該感應器之彎折強度加權再平均以統合為一彎折軸向角度,並將每一個感應器之平面座標位置依該感應器之彎折強度加權再平均以統合為一統整偏移量,該統整彎折量、該彎折軸向角度、以及該統整偏移量係為該彎折資訊,則後續係將該統整彎折量、該彎折軸向角度、以及該統整偏移量分別比對相對應之閾值;以及步驟三:比對該彎折資訊中之資訊以及相對應之閾值,以確定為多種預設之手勢態樣中之一種手勢態樣。 A bending detection method for use in a flexible electronic device, the flexible electronic device accepting a plurality of gesture patterns to respectively generate corresponding display instructions, and the flexible electronic device includes a flexible display The screen and the plurality of sensors disposed on the flexible display screen, the bending detection method comprises the following steps: Step 1: sensing the bending of the flexible display screen by each sensor to generate a Bending strength and a bending axis; Step 2: Integrating the bending strength of the inductors and integrating the bending axes of the inductors to become a bending information, bending each of the inductors The folding strength is integrated into a unified bending amount, and the bending axial direction of each sensor is weighted and averaged according to the bending strength of the inductor to be integrated into a bending axial angle, and the plane of each inductor is integrated. The coordinate position is weighted and averaged according to the bending strength of the inductor to be integrated into a unified offset, and the unified bending amount, the bending axial angle, and the unified offset are the bending information. Then the subsequent system will adjust the amount of bending The bending axial angle and the adjustment offset respectively correspond to the threshold; and the third step: comparing the information in the bending information with the corresponding threshold to determine a plurality of preset gesture states One of the gestures in the sample.
TW105139132A 2016-11-28 2016-11-28 Method and apparatus for detecting bending deformation of flexible device TWI598860B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW105139132A TWI598860B (en) 2016-11-28 2016-11-28 Method and apparatus for detecting bending deformation of flexible device
CN201710058728.3A CN106814857B (en) 2016-11-28 2017-01-23 Flexible electronic device and bending detection method used in same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW105139132A TWI598860B (en) 2016-11-28 2016-11-28 Method and apparatus for detecting bending deformation of flexible device

Publications (2)

Publication Number Publication Date
TWI598860B true TWI598860B (en) 2017-09-11
TW201820297A TW201820297A (en) 2018-06-01

Family

ID=59112256

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105139132A TWI598860B (en) 2016-11-28 2016-11-28 Method and apparatus for detecting bending deformation of flexible device

Country Status (2)

Country Link
CN (1) CN106814857B (en)
TW (1) TWI598860B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108848298B (en) * 2018-04-26 2021-02-09 努比亚技术有限公司 Picture shooting method, flexible terminal and computer readable storage medium

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101599054B (en) * 2009-06-22 2011-05-25 哈尔滨工业大学 Stress equation solver applying Mohr circle calculation method
JP2013105310A (en) * 2011-11-14 2013-05-30 Sony Corp Information processing device, control method, and program
CN105979034B (en) * 2012-03-05 2019-07-26 联想(北京)有限公司 A kind of method and electronic equipment of controlling electronic devices
KR102104588B1 (en) * 2012-07-11 2020-04-24 삼성전자주식회사 Flexible display apparatus and operating method thereof
CN103594025A (en) * 2013-09-30 2014-02-19 友达光电股份有限公司 Flexible display
CN105091833B (en) * 2015-08-21 2018-01-16 华勤通讯技术有限公司 The curved detection method and bending detection device of flexible screen

Also Published As

Publication number Publication date
CN106814857B (en) 2020-05-08
TW201820297A (en) 2018-06-01
CN106814857A (en) 2017-06-09

Similar Documents

Publication Publication Date Title
US10942546B2 (en) Electronic device and method for processing gesture thereof
JP5427240B2 (en) User command input method and device based on motion sensing
KR102080896B1 (en) Mobile device and method for operating the same
US10186019B2 (en) Information processing apparatus, information processing method and computer program that enables canceling of screen rotation
US9223422B2 (en) Remote controller and display apparatus, control method thereof
US8847978B2 (en) Information processing apparatus, information processing method, and information processing program
TWI419023B (en) Use the touch device to control the positioning of the cursor on the screen
TWI584157B (en) Mobile devices and methods for determining orientation information thereof
US20160299606A1 (en) User input processing device using limited number of magnetic field sensors
CN107682520A (en) For deformation effect and the system and method for haptic effect
TWI480768B (en) Display method and system with adjustment function
US20110012927A1 (en) Touch control method
JP2013105310A (en) Information processing device, control method, and program
WO2009121227A1 (en) Method and apparatus for operating multi-object touch handheld device with touch sensitive display
JP2013105312A (en) Information processing device, control method, and program
KR102379635B1 (en) Electronic device and method for processing gesture thereof
WO2014112132A1 (en) Information apparatus and information processing method
TWI598860B (en) Method and apparatus for detecting bending deformation of flexible device
US20160018917A1 (en) Touch system, touch apparatus, and mobile device
US20160018924A1 (en) Touch device and corresponding touch method
KR20130085094A (en) User interface device and user interface providing thereof
CN104375697A (en) Mobile device
CN104063046B (en) Input Device And Method Of Switching Input Mode Thereof
CN103869959B (en) Electronic apparatus control method and electronic installation
TW200830163A (en) Handheld electric apparatus with a cursor and method thereof