TWI597419B - Calibration apparauts for flickermeter and calibration mehtod thereof - Google Patents

Calibration apparauts for flickermeter and calibration mehtod thereof Download PDF

Info

Publication number
TWI597419B
TWI597419B TW103103138A TW103103138A TWI597419B TW I597419 B TWI597419 B TW I597419B TW 103103138 A TW103103138 A TW 103103138A TW 103103138 A TW103103138 A TW 103103138A TW I597419 B TWI597419 B TW I597419B
Authority
TW
Taiwan
Prior art keywords
signal
analog
calibration
digital
frequency
Prior art date
Application number
TW103103138A
Other languages
Chinese (zh)
Other versions
TW201529969A (en
Inventor
陳正一
Original Assignee
陳正一
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 陳正一 filed Critical 陳正一
Priority to TW103103138A priority Critical patent/TWI597419B/en
Publication of TW201529969A publication Critical patent/TW201529969A/en
Application granted granted Critical
Publication of TWI597419B publication Critical patent/TWI597419B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Description

閃爍分析儀校準裝置及校準方法 Scintillation analyzer calibration device and calibration method

本發明是有關於一種閃爍分析儀之校準裝置及校準方法,特別是一種應用於風力發電裝置之閃爍分析儀之校準裝置及校準方法。 The invention relates to a calibration device and a calibration method for a scintillation analyzer, in particular to a calibration device and a calibration method for a scintillation analyzer for a wind power generation device.

近年來能源價格高漲,世界各國正積極推動再生能源的開發,台灣也不例外,隨著設備價格的降低,風力發電機組裝置的個數及容量不斷增加,未來藉由民間及廠商的力量,發電比率將會有所提昇。由於風力發電機組的啟動、停止、切換或在不穩定風速下運轉,其輸出電壓及電流皆會產生變動,因此可能造成電壓閃爍的問題。一般而言,當風力發電機組併聯於高壓線路,電壓閃爍的問題較不嚴重。若接至中壓系統,則風速變動所造成之電壓變動則不可忽略,為解決風力機組可能造成之電壓閃爍問題,IEC 61400-21提供了風力機組併聯於電力系統之相關規範與限制。 In recent years, energy prices have risen, and countries around the world are actively promoting the development of renewable energy. Taiwan is no exception. As the price of equipment decreases, the number and capacity of wind turbine installations continue to increase. In the future, power will be generated by the power of private and manufacturers. The ratio will increase. Due to the start, stop, switch or operation of the wind turbine, the output voltage and current will fluctuate, which may cause voltage flicker. In general, when the wind turbine is connected in parallel to the high voltage line, the problem of voltage flicker is less serious. If connected to a medium voltage system, the voltage fluctuation caused by the change of wind speed can not be ignored. In order to solve the problem of voltage flicker caused by the wind turbine, IEC 61400-21 provides the relevant specifications and restrictions for the wind turbine to be connected in parallel with the power system.

對於風力發電機組產生電壓閃爍的影響範圍與程度,會因為風力發電機組控制結構、裝設容量大小、併接點所在位置及輸配電網路結構等差異而有所不同。當感應式發電機以馬達方式帶動風機時將從系統吸入突波電流,在無適當控制下將造成數秒鐘的壓降。若風力場含有數量較多的風機時,一般是採用順序 啟動的方式以降低對系統電壓的衝擊,但是在配電網路較弱的地點,順序啟動可能造成較大電壓閃爍現象,相對降低該地點可以裝設風機的架數。另外,在風機連續運轉操作中,也會因不同的流體效應而影響其轉矩不能維持固定,以上的因素在三葉片風機系統中,會影響轉矩效率,這些轉矩的變化直接造成併接點上的電壓與電力發生擾動之現象,尤其在配電網路較脆弱的地點,就需特別考慮電壓閃爍的問題並限制在一定的範圍之內。 The extent and extent of the voltage flicker generated by the wind turbine will vary depending on the wind turbine control structure, the installed capacity, the location of the joints, and the structure of the transmission and distribution network. When the inductive generator drives the fan in a motor mode, the surge current will be drawn from the system, causing a voltage drop of several seconds without proper control. If the wind farm contains a large number of fans, the order is generally The method of starting to reduce the impact on the system voltage, but in the weaker distribution network, the sequential start may cause a large voltage flicker, and the number of fans that can be installed at the location is relatively reduced. In addition, in the continuous operation of the fan, the torque will not be fixed due to different fluid effects. The above factors will affect the torque efficiency in the three-blade fan system. These torque changes directly cause parallel connection. The phenomenon of voltage and power disturbance at the point, especially in locations where the distribution network is weak, requires special consideration of the problem of voltage flicker and is limited to a certain range.

風力發電之電壓閃爍有傳遞的特性,所以必須同時考慮各變動性負載及電源的總合效應。由於各國對電壓閃爍的定義不盡相同,因此就有不同的方法來衡量電壓閃爍嚴重程度。日本、韓國及中國等國家是使用△V10值以評估電壓閃爍程度的量,在歐美國家則採用IEC的規範,以電壓閃爍嚴重性之統計值來表示電壓閃爍的程度,根據其發表閃爍問題標準的量測程序中指出,電壓閃爍嚴重性之統計值可以分為短時間嚴重性(P st )及長時間嚴重性(P lt )二種。 The voltage flashing of wind power has the characteristics of transmission, so it is necessary to consider the combined effect of each variable load and power source. Since countries have different definitions of voltage flicker, there are different ways to measure the severity of voltage flicker. Countries such as Japan, South Korea, and China use the ΔV 10 value to estimate the amount of voltage flicker. In Europe and the United States, the IEC specification is used to indicate the degree of voltage flicker based on the statistical value of the voltage flicker severity. The standard measurement procedure states that the statistical value of the severity of voltage flicker can be divided into short-term severity ( P st ) and long-term severity ( P lt ).

IEC提出之閃爍分析儀可以模擬及量測人眼感受到由主要電源供應器之低振幅、低頻率改變所造成的照度改變。目前已經出現針對閃爍分析儀電壓波動之量測方法,並據以計算對應的參數。使用全時域計算的閃爍分析儀電壓量測方法可以減少系統頻率改變造成的計算誤差以及快速傅立業轉換(fast Fourier transform,FFT)所造成的頻譜洩漏(spectral leakage)。然而,為了要將類比濾波器轉轉換為數位化實現,必須使用雙線性轉換(bi-linear transformation)並須要使用浪費大量時間進行計算。相對地,對於電壓閃爍的量測完全採用頻率域的途徑可以得到令人滿意的結果,而且已在標準化的IEC閃爍分析儀運用於電弧熔爐的 電壓量測上得到驗證。這種途徑可以針對電壓閃爍得到快速且良好的估計。然而,若是系統的頻率逐漸在改變,且頻率解析度降低時,在這種途徑中使用快速傅立葉轉換進行直接解調會比較不準確且會造成頻譜洩漏的效應。因此,必須提出一種對於閃爍分析儀的新校正方法以彌補兩種習知方法之不足,並在準確度及開發成本取得最佳的平衡。 The flicker analyzer proposed by the IEC can simulate and measure the illuminance changes caused by the low amplitude and low frequency changes of the main power supply. A measurement method for the voltage fluctuation of the scintillation analyzer has been appeared, and corresponding parameters are calculated accordingly. The flicker analyzer voltage measurement method using full time domain calculation can reduce the calculation error caused by system frequency change and the spectral leakage caused by fast Fourier transform (FFT). However, in order to convert an analog filter to a digital implementation, bi-linear transformation must be used and a lot of time is wasted to perform the calculation. In contrast, the measurement of voltage flicker can achieve satisfactory results by completely adopting the frequency domain approach, and has been applied to the arc furnace in a standardized IEC scintillation analyzer. The voltage measurement was verified. This approach can be quickly and well estimated for voltage flicker. However, if the frequency of the system is gradually changing and the frequency resolution is reduced, direct demodulation using fast Fourier transform in this approach will be less accurate and will cause spectral leakage effects. Therefore, a new calibration method for the scintillation analyzer must be proposed to compensate for the shortcomings of the two conventional methods and to achieve an optimal balance between accuracy and development cost.

有鑑於上述習知技藝之問題,本發明之目的就是在提供一種閃爍分析儀之校準裝置及校準方法,以解決閃爍分析儀的校正方法中習知時域途徑技術與頻率域途徑技術分別的問題。 In view of the above problems of the prior art, the object of the present invention is to provide a calibration apparatus and a calibration method for a scintillation analyzer to solve the problems of the conventional time domain approach technique and the frequency domain approach technique in the calibration method of the scintillation analyzer. .

基於上述目的,本發明係提供一種校準裝置,適用於校準風力發電裝置之閃爍分析儀,其包含校準信號產生模組、數位至類比轉換器(digital-to-analog converter,DAC)、功率放大器、類比至數位轉換器(analog-to-digital converter,ADC)、帶通濾波器(bandpass filter,BPF)及信號處理模組。校準信號產生模組用以產生及輸出數位校準信號。數位至類比轉換器為電性連接至校準信號產生模組,用以將數位校準信號轉換成為類比校準信號。功率放大器為電性連接至數位至類比轉換器,用以將類比校準信號調整至特定振幅後輸出至待測之閃爍分析儀。類比至數位轉換器為電性連接至功率放大器,用以對類比校準信號進行取樣並轉換為包含複數個數位值之取樣信號。帶通濾波器為電性連接至類比至數位轉換器,用以接收取樣信號並濾除取樣信號中由於取樣而產生的複數個諧波信號及帶通濾波器頻帶外之雜訊。信號處理模組為電性連接至帶通濾波器,以接受濾波後之取樣信號並解出第一 頻率及第一振幅;此外,信號處理模組更電性連接至校準信號產生模組,以藉由第一頻率及第一振幅調整數位校準信號。信號處理模組又電性連接至數位至類比轉換器及類比至數位轉換器,以藉由第一頻率對數位至類比轉換器及類比至數位轉換器進行同步。校準信號產生模組係包含風力發電裝置之閃爍量測模型,且風力發電裝置之閃爍量測模型係為IEC 61000-4-15標準所構成。 Based on the above object, the present invention provides a calibration apparatus suitable for calibrating a scintillation analyzer of a wind power generation apparatus, comprising a calibration signal generation module, a digital-to-analog converter (DAC), a power amplifier, An analog-to-digital converter (ADC), a bandpass filter (BPF), and a signal processing module. The calibration signal generation module is configured to generate and output a digital calibration signal. The digital to analog converter is electrically coupled to the calibration signal generation module for converting the digital calibration signal into an analog calibration signal. The power amplifier is electrically connected to the digital to analog converter to adjust the analog calibration signal to a specific amplitude and output to the scintillation analyzer to be tested. The analog to digital converter is electrically coupled to the power amplifier for sampling the analog calibration signal and converting it to a sampled signal comprising a plurality of digital values. The band pass filter is electrically connected to the analog to digital converter for receiving the sampled signal and filtering out a plurality of harmonic signals generated by the sampling in the sampled signal and noise outside the band pass filter band. The signal processing module is electrically connected to the band pass filter to receive the filtered sample signal and solve the first The frequency and the first amplitude; in addition, the signal processing module is further electrically connected to the calibration signal generating module to adjust the digital calibration signal by the first frequency and the first amplitude. The signal processing module is further electrically connected to the digital to analog converter and the analog to digital converter for synchronizing by the first frequency to digital analog to analog converter and the analog to digital converter. The calibration signal generation module includes a scintillation measurement model of the wind power generation device, and the scintillation measurement model of the wind power generation device is composed of the IEC 61000-4-15 standard.

較佳地,帶通濾波器之通帶頻寬之下限範圍係為0至1Hz且上限範圍為40至70Hz。 Preferably, the lower limit of the passband bandwidth of the bandpass filter is in the range of 0 to 1 Hz and the upper limit is in the range of 40 to 70 Hz.

較佳地,信號處理模組根據下列公式以估計第一頻率: ,其中為估計之第一頻率、△t為取樣週期、y(n)為第n個取樣週期時之該濾波後之取樣信號;信號處理模組根據下列公式以估計數位至類比轉換器及類比至數位轉換器之同步信號頻率 ,其中fs為同步信號頻率、M為該類比至數位轉換器之總取樣週期數、N為該類比至數位轉換器在該總取樣週期數之內所取得之總取樣資料點數;以及信號處理模組將估計出之第一頻率帶入適應性線性神經網路(adaptive linear neural network,ADALINE)以估計第一振幅。 Preferably, the signal processing module estimates the first frequency according to the following formula: ,among them The estimated first frequency, Δt is the sampling period, and y(n) is the filtered sampling signal at the nth sampling period; the signal processing module estimates the digit to analog converter and analog to digital according to the following formula Converter sync signal frequency Where f s is the sync signal frequency, M is the analog to the total number of sample cycles of the digital converter, N is the total sampled data points obtained by the analog to digital converter within the total number of sample cycles; and the signal The processing module brings the estimated first frequency into an adaptive linear neural network (ADALINE) to estimate the first amplitude.

根據本發明之再一目的,提出一種校準方法,適用於校準風力發電裝置之閃爍分析儀,校準方法包含下列步驟:利 用校準信號產生模組,以產生及輸出數位校準信號。利用數位至類比轉換器將數位校準信號轉換成為類比校準信號。利用功率放大器將類比校準信號調整至特定振幅後輸出至待測之閃爍分析儀。利用類比至數位轉換器對類比校準信號進行取樣,並轉換為包含複數個數位值之取樣信號。利用帶通濾波器以接收該取樣信號,並濾除取樣信號中由於取樣而產生的複數個諧波信號及帶通濾波器頻帶外之雜訊。利用信號處理模組,以接受濾波後之取樣信號並解出第一頻率及第一振幅,再藉由第一頻率及第一振幅以調整數位校準信號使其符合閃爍分析儀之測試需求,更藉由第一頻率對數位至類比轉換器及類比至數位轉換器進行同步。 According to still another object of the present invention, a calibration method is provided, which is suitable for calibrating a scintillation analyzer of a wind power generator, and the calibration method comprises the following steps: A calibration signal is used to generate a module to generate and output a digital calibration signal. The digital calibration signal is converted to an analog calibration signal using a digital to analog converter. The analog amplifier is adjusted to a specific amplitude by a power amplifier and output to the scintillation analyzer to be tested. The analog calibration signal is sampled using an analog to digital converter and converted to a sampled signal containing a plurality of digital values. A band pass filter is used to receive the sampled signal, and a plurality of harmonic signals generated by sampling in the sampled signal and noise outside the band pass filter band are filtered out. The signal processing module is configured to receive the filtered sampling signal and solve the first frequency and the first amplitude, and then adjust the digital calibration signal by the first frequency and the first amplitude to meet the testing requirements of the scintillation analyzer, and further Synchronization is performed by a first frequency log to analog converter and an analog to digital converter.

較佳地,產生及輸出數位校準信號步驟更包含輸出類比校準信號至量測風力發電裝置之閃爍分析儀。 Preferably, the step of generating and outputting the digital calibration signal further comprises outputting the analog calibration signal to the scintillation analyzer of the wind power generator.

較佳地,產生及輸出數位校準信號步驟更包含將複數個不同的輸入相位帶入由IEC 61000-4-15標準所構成之閃爍量測模型,以產生適用於校準閃爍分析儀之數位校準信號。 Preferably, the step of generating and outputting the digital calibration signal further comprises bringing a plurality of different input phases into a scintillation measurement model consisting of the IEC 61000-4-15 standard to generate a digital calibration signal suitable for calibrating the scintillation analyzer. .

較佳地,解出取樣信號之該頻率及該振幅之步驟更包含藉由第(1)式以估計第一頻率以及藉由將估計出之第一頻率帶入適應性線性神經網路以估計第一振幅。 Preferably, the step of decoding the frequency of the sampled signal and the amplitude further comprises estimating the first frequency by the equation (1) and estimating by introducing the estimated first frequency into the adaptive linear neural network. First amplitude.

較佳地,校準方法更包含藉由已知之閃爍量測模型對應輸入相位及由取樣信號估計出之第一頻率及第一振幅與輸入類比校準信號之閃爍分析儀輸出之第二頻率及第二振幅進行比對,以進行對閃爍分析儀之校準。 Preferably, the calibration method further comprises: a second frequency and a second output of the scintillation analyzer output corresponding to the input phase and the first frequency estimated by the sampling signal and the first amplitude and the input analog calibration signal by the known flicker measurement model The amplitudes are aligned for calibration of the scintillation analyzer.

承上所述,依據本發明之閃爍分析儀之校準裝置及校準方法,其可具有一或多個下述優點: As described above, the calibration apparatus and calibration method of the scintillation analyzer according to the present invention may have one or more of the following advantages:

(1)本發明之閃爍分析儀之校準裝置及校準方法,無須進行雙線性轉換即可求得欲校正閃爍分析儀之頻率及振幅,可以大量減少計算所消耗的時間。 (1) The calibration device and the calibration method of the scintillation analyzer of the present invention can obtain the frequency and amplitude of the scintillation analyzer to be corrected without performing bilinear conversion, and the time consumed for the calculation can be greatly reduced.

(2)本發明之閃爍分析儀之校準裝置及校準方法,對於帶校準系統之頻率變動及解析度具有強健特性,可以減低由於頻譜洩漏所造成量測頻率或振幅之誤差。 (2) The calibration device and the calibration method of the scintillation analyzer of the present invention have robust characteristics for the frequency variation and resolution of the calibration system, and can reduce the error of the measurement frequency or amplitude caused by the spectrum leakage.

茲為使 貴審查委員對本發明之技術特徵及所達到之功效有更進一步之瞭解與認識,謹佐以較佳之實施例及配合詳細之說明如後。 For a better understanding and understanding of the technical features and the efficacies of the present invention, the preferred embodiments and the detailed description are as follows.

1‧‧‧校準裝置 1‧‧‧ calibration device

10‧‧‧校準信號產生模組 10‧‧‧Calibration Signal Generation Module

20‧‧‧數位至類比轉換器 20‧‧‧Digital to analog converter

30‧‧‧功率放大器 30‧‧‧Power Amplifier

40‧‧‧類比至數位轉換器 40‧‧‧ Analog to Digital Converter

50‧‧‧帶通濾波器 50‧‧‧ bandpass filter

60‧‧‧信號處理模組 60‧‧‧Signal Processing Module

70‧‧‧閃爍分析儀 70‧‧‧Flicker Analyzer

S10~S70‧‧‧步驟 S10~S70‧‧‧Steps

本發明之上述及其他特徵及優勢將藉由參照附圖詳細說明其例示性實施例而變得更顯而易知,其中:第1圖係為根據本發明之閃爍分析儀之校準裝置之功能方塊圖;第2圖係為根據本發明之閃爍分析儀之校準方法之實施例之流程圖;第3圖係為根據本發明應用於風力發電裝置之閃爍分析儀之電力系統頻率對相對誤差圖;第4圖係為根據本發明應用於風力發電裝置之閃爍分析儀之閃爍嚴重性對相對誤差圖。 The above and other features and advantages of the present invention will become more apparent from the detailed description of the exemplary embodiments thereof. Figure 2 is a flow chart of an embodiment of a calibration method for a scintillation analyzer according to the present invention; and Figure 3 is a diagram showing a power system frequency versus relative error for a scintillation analyzer applied to a wind power generation device according to the present invention. Fig. 4 is a graph showing the scintillation severity versus relative error of a scintillation analyzer applied to a wind power generator according to the present invention.

於此使用,詞彙“與/或”包含一或多個相關條列項目 之任何或所有組合。當“至少其一”之敘述前綴於一元件清單前時,係修飾整個清單元件而非修飾清單中之個別元件。 As used herein, the term "and/or" includes one or more related items. Any or all combinations of these. When the phrase "at least one of" is preceded by a list of elements, the entire list of elements is modified instead of the individual elements in the list.

請參閱第1圖,第1圖係為根據本發明之閃爍分析儀之校準裝置之功能方塊圖。在第1圖中,本發明之提供一種閃爍分析儀之校準裝置1,包含校準信號產生模組10、數位至類比轉換器20、功率放大器30、類比至數位轉換器40、帶通濾波器50及信號處理模組60。校準信號產生模組10用以產生及輸出數位校準信號。數位至類比轉換器20為電性連接至校準信號產生模組10,用以將數位校準信號轉換成為類比校準信號。功率放大器30為電性連接至數位至類比轉換器20,用以將類比校準信號調整至特定振幅後輸出至待測之閃爍分析儀70。類比至數位轉換器40為電性連接至功率放大器30,用以對類比校準信號進行取樣並轉換為包含複數個數位值之取樣信號。帶通濾波器50為電性連接至類比至數位轉換器40,用以接收取樣信號並濾除取樣信號中由於取樣而產生的複數個諧波信號及帶通濾波器頻帶外之雜訊。信號處理模組60為電性連接至帶通濾波器50,以接受濾波後之取樣信號並解出第一頻率及第一振幅;此外,信號處理模組60更電性連接至校準信號產生模組10,以藉由第一頻率及第一振幅調整數位校準信號。信號處理模組60又電性連接至數位至類比轉換器20及類比至數位轉換器40,以藉由第一頻率對數位至類比轉換器20及類比至數位轉換器40進行同步。 Please refer to Fig. 1, which is a functional block diagram of a calibration device for a scintillation analyzer according to the present invention. In the first diagram, the present invention provides a calibration apparatus 1 for a scintillation analyzer, comprising a calibration signal generation module 10, a digital to analog converter 20, a power amplifier 30, an analog to digital converter 40, and a bandpass filter 50. And signal processing module 60. The calibration signal generation module 10 is configured to generate and output a digital calibration signal. The digital to analog converter 20 is electrically coupled to the calibration signal generation module 10 for converting the digital calibration signal into an analog calibration signal. The power amplifier 30 is electrically connected to the digital to analog converter 20 for adjusting the analog calibration signal to a specific amplitude and outputting to the scintillation analyzer 70 to be tested. The analog to digital converter 40 is electrically coupled to the power amplifier 30 for sampling the analog calibration signal and converting it to a sampled signal comprising a plurality of digital values. The bandpass filter 50 is electrically coupled to the analog to digital converter 40 for receiving the sampled signal and filtering out a plurality of harmonic signals generated by the sampling in the sampled signal and noise outside the bandpass filter band. The signal processing module 60 is electrically connected to the band pass filter 50 to receive the filtered sample signal and solve the first frequency and the first amplitude. In addition, the signal processing module 60 is further electrically connected to the calibration signal generating mode. Group 10, for adjusting the digital calibration signal by the first frequency and the first amplitude. The signal processing module 60 is further electrically coupled to the digital to analog converter 20 and the analog to digital converter 40 for synchronization by the first frequency to digital to analog converter 20 and analog to digital converter 40.

以下為應用本發明之閃爍分析儀之校準裝置及校準方法於量測風力發電裝置之閃爍分析儀,以驗證本發明之可行性,但不以此為限。 The following is a scintillation analyzer for measuring a wind power generator using the calibration device and calibration method of the scintillation analyzer of the present invention to verify the feasibility of the present invention, but not limited thereto.

為校準量測風力發電裝置之閃爍分析儀,帶通濾波器之通帶頻寬之下限範圍係為0至1Hz且上限範圍為40至70Hz, 且校準信號產生模組為依據IEC 61000-4-15*標準所構成。依據IEC 61000-4-15標準,下表一為對A-級性能的不穩定性測試狀態。 In order to calibrate the scintillation analyzer of the wind power generation device, the lower limit of the passband bandwidth of the band pass filter is 0 to 1 Hz and the upper limit range is 40 to 70 Hz. And the calibration signal generation module is constructed according to the IEC 61000-4-15* standard. According to the IEC 61000-4-15 standard, Table 1 below shows the state of instability test for A-level performance.

在表一中f nom 代表主要頻率(nominal frequency),U din 代表由指定電源電壓(declared supply voltage)藉由轉換器比率(transducer ratio)獲得之指定輸入電壓(declared input voltage),P st 代表閃爍嚴重性(flicker severity)。 *參考文獻一:Wind Turbines-Part 21:Measurement and Assessment of Power Quality Characteristics of Grid Connected Wind Turbines, IEC Std. 61400-21, 2008. In Table 1, f nom represents the nominal frequency, U din represents the specified input voltage obtained by the specified supply voltage by the converter ratio, and P st represents the flicker. Severity (flicker severity). *Reference 1: Wind Turbines-Part 21: Measurement and Assessment of Power Quality Characteristics of Grid Connected Wind Turbines , IEC Std. 61400-21, 2008.

閃爍分析儀對於每一個量測值的不穩定度性測試程序如下: The instability test procedure for the scintillation analyzer for each measurement is as follows:

1.選擇一個欲量測參數,例如均方根(root-mean-square,RMS)電壓大小。 1. Select a parameter to be measured, such as the root-mean-square (RMS) voltage.

2.設定測試狀態一的所有參數值,在影響參數的範圍內,例如Udin:0%到200%,平均取五點進行測試,以驗證欲量測參數 的穩定性。 2. Set all the parameter values of test state one, within the range of influence parameters, such as U din : 0% to 200%, and take an average of five points to test to verify the stability of the parameters to be measured.

3.設定測試狀態二的所有參數值,重覆步驟2。 3. Set all parameter values for test state two and repeat step 2.

4.設定測試狀態三的所有參數值,重覆步驟2。 4. Set all parameter values for test state three and repeat step 2.

為量測電力系統的頻率,本發明採用一種自迴歸(autoregressive,AR)模型為基礎且具有高頻率解析度之技術**。假設在第1圖中經過帶通濾波器50過濾之信號可表示為 ,其中A 0為信號振幅,ψ0為起始相角,f 0為電力系統元件的頻率。 **參考文獻二:C. I. Chen and G. W. Chang, "Virtual Instrumentation and Educational Platform for Time-Varying Harmonics and Interharmonics Detection," IEEE Trans. on Industtial Electronics, Vol. 57, No 10, Oct. 2010, pp. 3334-3342. To measure the frequency of the power system, the present invention employs an autoregressive (AR) model based on techniques with high frequency resolution**. It is assumed that the signal filtered by the band pass filter 50 in Fig. 1 can be expressed as Where A 0 is the signal amplitude, ψ 0 is the starting phase angle, and f 0 is the frequency of the power system component. **Reference 2: CI Chen and GW Chang, "Virtual Instrumentation and Educational Platform for Time-Varying Harmonics and Interharmonics Detection," IEEE Trans. on Industtial Electronics, Vol. 57, No 10, Oct. 2010, pp. 3334- 3342.

依據自迴歸模型,當第(3)式中信號y(n)進入信號處理模組60之後依據線性估側(linear prediction)理論可表示為 ,其中參數a p 為實數且P為自迴歸模型的估測級數。相對地,估測之信號(n)則可表示為 在第(5)式中ε(n)代表誤差。若是對於任何一個n值都能夠使誤差最小化,則真實信號y(n)與估測之信號(n)就會相同。由上述參考 文獻二可得知參數a p 與自迴歸模型的轉移函數(transfer function)的關係可表示為a 0 z P +a 1 z P-1+…+a P-1 z+a P =0, (6)其中. According to the autoregressive model, when the signal y(n) in the equation (3) enters the signal processing module 60, it can be expressed as a linear prediction theory. Where the parameter a p is a real number and P is the estimated progression of the autoregressive model. Relatively estimated signal (n) can be expressed as In the formula (5), ε(n) represents an error. If the error can be minimized for any n value, then the true signal y(n) and the estimated signal (n) will be the same. It can be known from the above reference 2 that the relationship between the parameter a p and the transfer function of the autoregressive model can be expressed as a 0 z P + a 1 z P -1 +... + a P -1 z + a P = 0, (6) where .

因此,若是能求得上述參數a p ,則對於電力系統的頻率的估測就很容易進行。進一步地,由於電力信號y(n)是經由一個帶通濾波器進行濾波,P的值可被設為2。在這種條件下,z1和z2會是共軛複數。在實際應用情況下,可以方便地設定a 0=a 2a 1=1以簡化計算。電力信號y(n)在N個取樣資料點之下,其總估測誤差(total estimation error)會等於 ,在量測誤差最小化條件下,下列方程式必須成立 。利用第(8)式可以解出a 0如下 。再將第(9)式中的a 0帶入第(6)式求解,則可得電力信號的估測頻率 ,其中為估計之電力信號頻率、△t為取樣週期、y(n)為第n個取樣週期時之該濾波後之取樣信號。最後,對數位至類比轉換器及類比至數位轉換器之同步部信號頻率f s 可以以下式求出,以進行同步 其中M為該類比至數位轉換器之總取樣週期數、N為該類比至數位轉換器在該總取樣週期數之內所取得之總取樣資料點數。 Therefore, if the above parameter a p can be obtained, the estimation of the frequency of the power system can be easily performed. Further, since the power signal y(n) is filtered via a band pass filter, the value of P can be set to 2. Under these conditions, z 1 and z 2 will be conjugate complex numbers. In practical applications, a 0 = a 2 and a 1 =1 can be conveniently set to simplify the calculation. The power signal y(n) is below the N sample data points, and the total estimation error will be equal to Under the condition that the measurement error is minimized, the following equation must be established. . Using equation (8), we can solve for a 0 as follows . Then, taking a 0 in the equation (9) into the equation (6), the estimated frequency of the power signal can be obtained. for ,among them The filtered sampling signal is the estimated power signal frequency, Δt is the sampling period, and y(n) is the nth sampling period. Finally, the synchronizing signal frequency f s of the digital to analog converter and the analog to digital converter can be obtained by the following equation for synchronization. Where M is the total number of sampling cycles of the analog to digital converter, and N is the total number of sampled data points obtained by the analog to digital converter within the total number of sampling cycles.

一般常用於獲取電壓振幅包絡線(voltage envelope)的方法為結合使用平方乘法器及特定帶通濾波器之間接解調(indirect demodulation)方法。然而,乘法會衍生出更多閃爍雜訊。由上述參考文獻二可知適應性線性神經網路可適用於獲取電壓振幅包絡線。然而,估測電力系統頻率的誤差會損害適應性線性神經網路的準確度,並減慢收斂的速度。這部分可經由觀察在第k個時序時真實信號y(n)與藉由適應性線性神經網路求得之估測信號(n)之估測誤差e(k)而得出 (12)其中△ω0、△ω2m-1及△ω2m分別為真實的電力信號角頻率ω0與真實權重ω2m-1及ω2m與估測的電力信號角頻率ω0與估計權重ω2m-1及ω2m的差。由第(12)式可以得出估測誤差e(k)會受到第一個總和項之中△ω0以及第二個總和項之中△ω2m-1及△ω2m的影響。 A commonly used method for obtaining a voltage amplitude envelope is a combination of a square multiplier and a specific band pass filter indirect demodulation method. However, multiplication will produce more flickering noise. It can be seen from the above reference 2 that the adaptive linear neural network can be adapted to acquire the voltage amplitude envelope. However, estimating the error of the power system frequency can impair the accuracy of the adaptive linear neural network and slow down the rate of convergence. This part can be obtained by observing the real signal y(n) at the kth timing and the estimated signal obtained by the adaptive linear neural network. (n) the estimated error e(k) (12) wherein Δω 0 , Δω 2m-1 and Δω 2m are the true power signal angular frequency ω 0 and the true weight ω 2m-1 and ω 2m and the estimated power signal angular frequency ω 0 and the estimated weight, respectively The difference between ω 2m-1 and ω 2m . From equation (12), it can be concluded that the estimated error e(k) is affected by Δω 0 in the first sum term and Δω 2m-1 and Δω 2m in the second sum term.

為解決在平方乘法解調方法以及傳統適應性線性神經網路之中電力信號頻率的獲取問題,習知技術使用頻率域插值技術。然而,由於使用快速傅立葉轉換造成估測精確度的限制,必須大量的取樣資料點才能夠較佳的頻率解析度。因此,上述之具有高頻率解析度之自迴歸模型為基礎的估測方法被採用以解決此問題,且其程序及準確性已經被驗證,例如已揭露於參考文獻二G.W.Chang and C.I.Chen,"An Accurate Time-Domain Procedure for Harmonics and Interharmonics Detection," IEEE Trans.on Power Delivery,Vol.25,No.3,July 2011,第1787頁至第1795頁的段落。當第(10)式中的電力信號的估測頻率被求得之後,可以帶入適應性線性神經網路之分析模型,則第(12)式中電力信號頻率偏差造成的估測誤差可以得到最小化。 To solve the problem of acquisition of power signal frequencies in squared multiplication demodulation methods and traditional adaptive linear neural networks, conventional techniques use frequency domain interpolation techniques. However, due to the limitation of estimation accuracy caused by the use of fast Fourier transform, a large number of sampled data points are required to achieve better frequency resolution. Therefore, the above-mentioned autoregressive model-based estimation method with high frequency resolution is adopted to solve this problem, and its procedure and accuracy have been verified, for example, as disclosed in reference GWChang and CIChen," An Accurate Time-Domain Procedure for Harmonics and Interharmonics Detection, "IEEE Trans. on Power Delivery, Vol. 25, No. 3, July 2011, pages 1787 to 1795. When the estimated frequency of the power signal in the equation (10) is obtained, it can be brought into the analysis model of the adaptive linear neural network, and the estimation error caused by the frequency deviation of the power signal in the equation (12) can be obtained. minimize.

根據本發明之再一目的,提出一種閃爍分析儀之校準方法,適用於校準風力發電裝置之閃爍分析儀,校準方法包含下列:步驟S10是利用IEC 61000-4-15標準所構成之閃爍量測模型,以產生及輸出數位校準信號。步驟S20是利用數位至類比轉換器將數位校準信號轉換成為類比校準信號。步驟S30是利用功率放大器將類比校準信號調整至特定振幅後輸出至待測之閃爍分析儀。步驟S40是利用一類比至數位轉換器對類比校準信號進行取樣,並轉換為包含複數個數位值之取樣信號。步驟S50利用一帶通濾波器以接收該取樣信號,並濾除取樣信號中由於取樣而產生的複數個諧波信號及帶通濾波器頻帶外之雜訊。步驟S60是利用信號處理模組,以接受濾波後之取樣信號並解出第一頻率及第一振幅,再藉由第一頻率及第一振幅以調整數位校準信號使其符合閃爍分析儀之測試需求,更藉由第一頻率對數位至類比轉換器及類比至數位轉換器進行同步。 According to still another object of the present invention, a calibration method for a scintillation analyzer is provided, which is suitable for calibrating a scintillation analyzer of a wind power generator. The calibration method comprises the following steps: Step S10 is a scintillation measurement using the IEC 61000-4-15 standard. Model to generate and output digital calibration signals. Step S20 is to convert the digital calibration signal into an analog calibration signal using a digital to analog converter. Step S30 is to use the power amplifier to adjust the analog calibration signal to a specific amplitude and output it to the scintillation analyzer to be tested. Step S40 is to sample the analog calibration signal by using a analog-to-digital converter and convert it into a sampling signal including a plurality of digital values. Step S50 uses a band pass filter to receive the sampled signal, and filters out a plurality of harmonic signals generated by the sampling in the sampled signal and noise outside the band pass filter band. Step S60 is to use a signal processing module to receive the filtered sample signal and solve the first frequency and the first amplitude, and then adjust the digital calibration signal by the first frequency and the first amplitude to conform to the test of the scintillation analyzer. The demand is synchronized by the first frequency-to-digital to analog converter and the analog to digital converter.

較佳地,解出取樣信號之該頻率及該振幅之步驟更包含步驟S51:藉由第(1)式以估計第一頻率以及藉由將估計出之第一頻率帶入適應性線性神經網路以估計第一振幅。 Preferably, the step of decoding the frequency of the sampled signal and the amplitude further comprises the step S51 of: estimating the first frequency by the equation (1) and bringing the estimated first frequency into the adaptive linear neural network. The road is used to estimate the first amplitude.

較佳地,校準方法更包含步驟S70:藉由已知之閃爍量測模型對應輸入相位及由取樣信號估計出之第一頻率及第一振幅與輸入類比校準信號之閃爍分析儀輸出之第二頻率及第二振幅進行比對,以進行對閃爍分析儀之校準。 Preferably, the calibration method further comprises the step S70: the second frequency of the scintillation analyzer output corresponding to the input phase and the first frequency estimated by the sampling signal and the first amplitude and the input analog calibration signal by the known flicker measurement model. The second amplitude is compared for calibration of the scintillation analyzer.

請一併參考第3圖及第4圖,第3圖係為根據本發明之閃爍分析儀之校準裝置及校準方法應用於風力發電裝置之閃爍分析儀之電力系統頻率對相對誤差圖,而第4圖係為根據本發明之閃爍分析儀之校準裝置及校準方法應用於風力發電裝置之閃 爍分析儀之閃爍嚴重性對相對誤差圖。在第3圖及第4圖中,相對誤差的定義為 其中Relative Error代表相對誤差,Actual Value代表真實值,Estimated Value代表估測值。由第3圖及第4圖可以得知與主要基本頻率的較大偏移會造成相對誤差的增加。由於自迴歸模型對於電力信號頻率估測之高解析度,在第3圖中的三種測試狀態的相對誤差都低於IEC 61000-4-7標準所要求之最大容許值0.03%。同樣地,對於閃爍嚴重性P st 的估測,三種測試狀態的相對誤差也都低於上述標準所要求之最大容許值5%。由此可證實本發明之閃爍分析儀之校準裝置及校準方法的確可應用於測定擾動信號的特性且適於作為校準商業化閃爍分析儀的標準。 Please refer to FIG. 3 and FIG. 4 together. FIG. 3 is a diagram showing a power system frequency versus relative error diagram of a scintillation analyzer applied to a wind power generator according to the calibration apparatus and calibration method of the scintillation analyzer according to the present invention. 4 is a scintillation severity versus relative error map of a scintillation analyzer applied to a wind power generator according to the calibration apparatus and calibration method of the scintillation analyzer of the present invention. In Figures 3 and 4, the relative error is defined as Where Relative Error represents the relative error, Actual Value represents the true value, and Estimated Value represents the estimated value. It can be seen from Figures 3 and 4 that a large offset from the main fundamental frequency causes an increase in the relative error. Due to the high resolution of the autoregressive model for power signal frequency estimation, the relative error of the three test states in Figure 3 is lower than the maximum allowable value of 0.03% required by the IEC 61000-4-7 standard. Similarly, for the estimation of the scintillation severity P st , the relative errors of the three test states are also lower than the maximum allowable value of 5% required by the above criteria. It can thus be confirmed that the calibration device and the calibration method of the scintillation analyzer of the present invention are indeed applicable to the determination of the characteristics of the disturbance signal and are suitable as a standard for calibrating a commercial scintillation analyzer.

雖然本發明已參照其例示性實施例而特別地顯示及描述,將為所屬技術領域具通常知識者所理解的是,於不脫離以下申請專利範圍及其等效物所定義之本發明之精神與範疇下可對其進行形式與細節上之各種變更。 The present invention has been particularly shown and described with reference to the exemplary embodiments thereof, and it is understood by those of ordinary skill in the art Various changes in form and detail can be made in the context of the category.

1‧‧‧校準裝置 1‧‧‧ calibration device

10‧‧‧校準信號產生模組 10‧‧‧Calibration Signal Generation Module

20‧‧‧數位至類比轉換器 20‧‧‧Digital to analog converter

30‧‧‧功率放大器 30‧‧‧Power Amplifier

40‧‧‧類比至數位轉換器 40‧‧‧ Analog to Digital Converter

50‧‧‧帶通濾波器 50‧‧‧ bandpass filter

60‧‧‧信號處理模組 60‧‧‧Signal Processing Module

70‧‧‧閃爍分析儀 70‧‧‧Flicker Analyzer

Claims (8)

一種校準裝置,適用於校準風力發電裝置之一閃爍分析儀,該校準裝置包含:一校準信號產生模組,以產生及輸出一數位校準信號;一數位至類比轉換器,係電性連接至該校準信號產生模組,以將該數位校準信號轉換成為一類比校準信號;一功率放大器,係電性連接至該數位至類比轉換器,以將該類比校準信號調整至一特定振幅後輸出至待校準之該閃爍分析儀;一類比至數位轉換器,係電性連接至該功率放大器,以對該類比校準信號進行取樣並轉換為包含複數個數位值之一取樣信號;一帶通濾波器,係電性連接至該類比至數位轉換器,以接收該取樣信號並濾除該取樣信號中由於取樣而產生的複數個諧波信號及該帶通濾波器頻帶外之雜訊;以及一信號處理模組,係電性連接至該帶通濾波器,以接受濾波後之該取樣信號並解出一第一頻率及一第一振幅;該信號處理模組更電性連接至該校準信號產生模組,以藉由該第一頻率及該第一振幅調整該數位校準信號;該信號處理模組又電性連接至該數位至類比轉換器及該類比至數位轉換器,以藉由該第一頻率對該數位至類比轉換器及該類比至數位轉換器進行同步;其中該校準信號產生模組係包含一風力發電裝置之閃爍量測模型,且該風力發電裝置之閃爍量測模型係為IEC 61000-4-15標準所構成其中該帶通濾波器之一通帶頻寬之下限範圍係為0至1Hz且上限範圍為40至70Hz。 A calibration device suitable for calibrating a scintillation analyzer of a wind power generation device, the calibration device comprising: a calibration signal generation module for generating and outputting a digital calibration signal; a digital to analog converter electrically connected to the Calibrating a signal generating module to convert the digital calibration signal into an analog calibration signal; a power amplifier electrically connected to the digital to analog converter to adjust the analog calibration signal to a specific amplitude and output to Calibrating the scintillation analyzer; a analog to digital converter electrically coupled to the power amplifier to sample the analog calibration signal and convert it to a sample signal comprising a plurality of digital values; a band pass filter Electrically connecting to the analog to digital converter to receive the sampling signal and filtering out a plurality of harmonic signals generated by sampling in the sampling signal and noise outside the band pass filter band; and a signal processing mode The group is electrically connected to the band pass filter to receive the filtered sample signal and solve a first frequency and a first amplitude The signal processing module is further electrically connected to the calibration signal generating module to adjust the digital calibration signal by the first frequency and the first amplitude; the signal processing module is electrically connected to the digital to analog conversion And the analog to digital converter for synchronizing the digital to analog converter and the analog to digital converter by the first frequency; wherein the calibration signal generating module comprises a scintillation measurement of a wind power generation device Model, and the scintillation measurement model of the wind power generation device is IEC The 61000-4-15 standard is constructed in which the lower limit of the passband bandwidth of the bandpass filter is 0 to 1 Hz and the upper limit is 40 to 70 Hz. 如申請專利範圍第1項之校準裝置,其中該信號處理模組係根據下列公式以估計該第一頻率 ,其中為該第一頻率、△t為一取樣週期、y(n)為第n個取樣週期時之濾波後之該取樣信號;以及該信號處理模組係根據下列公式以估計該數位至類比轉換器及該類比至數位轉換器之一同步信號頻率 ,其中fs為該同步信號頻率、M為該類比至數位轉換器之一總取樣週期數、N為該類比至數位轉換器在該總取樣週期數之內所取得之一總取樣資料點數。 The calibration device of claim 1, wherein the signal processing module estimates the first frequency according to the following formula ,among them For the first frequency, Δt is a sampling period, y(n) is the filtered sampling signal at the nth sampling period; and the signal processing module estimates the digital to analog converter according to the following formula And analog to one of the digital converters Where f s is the frequency of the synchronization signal, M is the analog to one of the total number of sampling cycles of the digital converter, and N is one of the total sampled data points obtained by the analog to digital converter within the total number of sampling cycles . 如申請專利範圍第2項之校準裝置,其中信號處理模組係將該第一頻率帶入一適應性線性神經網路以估計該第一振幅。 The calibration device of claim 2, wherein the signal processing module brings the first frequency into an adaptive linear neural network to estimate the first amplitude. 一種校準方法,適用於校準風力發電裝置之閃爍分析儀,該校準方法包含下列步驟:利用一校準信號產生模組,以產生及輸出一數位校準信號;利用一數位至類比轉換器將該數位校準信號轉換成為一類 比校準信號;利用一功率放大器將該類比校準信號調整至一特定振幅;利用一類比至數位轉換器對該類比校準信號進行取樣,並轉換為包含複數個數位值之一取樣信號;利用一帶通濾波器以接收該取樣信號,並濾除該取樣信號中由於取樣而產生的複數個諧波信號及該帶通濾波器頻帶外之雜訊,其中該帶通濾波器之一通帶頻寬之下限範圍係為0至1Hz且上限範圍為40至70Hz;以及利用一信號處理模組,以接受濾波後之該取樣信號並解出一第一頻率及一第一振幅,再藉由該第一頻率及該第一振幅以調整該數位校準信號使其符合該閃爍分析儀之測試需求,更藉由該第一頻率對該數位至類比轉換器及該類比至數位轉換器進行同步。 A calibration method for calibrating a scintillation analyzer of a wind power generator, the calibration method comprising the steps of: generating and outputting a digital calibration signal using a calibration signal generation module; calibrating the digit using a digital to analog converter Signal conversion into a class Ratio calibration signal; the analog calibration signal is adjusted to a specific amplitude by a power amplifier; the analog calibration signal is sampled by an analog to digital converter, and converted into a sample signal including one of a plurality of digital values; Filtering to receive the sampling signal, and filtering out a plurality of harmonic signals generated by sampling in the sampling signal and noise outside the band pass filter band, wherein a limit of a passband bandwidth of the band pass filter The range is 0 to 1 Hz and the upper limit is 40 to 70 Hz; and a signal processing module is used to receive the filtered sample signal and solve a first frequency and a first amplitude, and then the first frequency And the first amplitude is used to adjust the digital calibration signal to meet the test requirements of the scintillation analyzer, and the digital to analog converter and the analog to digital converter are synchronized by the first frequency. 如申請專利範圍第4項之校準方法,其中調整該類比校準信號振幅的步驟更包含下列步驟:輸出具該特定振幅之該類比校準信號至一量測風力發電裝置之閃爍分析儀。 The calibration method of claim 4, wherein the step of adjusting the amplitude of the analog calibration signal further comprises the step of outputting the analog calibration signal having the specific amplitude to a scintillation analyzer of a wind power generation device. 如申請專利範圍第5項之校準方法,其中產生及輸出該數位校準信號的步驟包含下列步驟:分別將複數個不同的輸入相位帶入由一IEC 61000-4-15標準所構成之一閃爍量測模型,以產生適用於校準該閃爍分析儀之該數位校準信號。 The calibration method of claim 5, wherein the step of generating and outputting the digital calibration signal comprises the steps of: respectively bringing a plurality of different input phases into a flashing amount formed by an IEC 61000-4-15 standard. The model is measured to generate the digital calibration signal suitable for calibrating the scintillation analyzer. 如申請專利範圍第6項之校準方法,其中解出該取樣信號之該第一頻率及該第一振幅之步驟包含下列步驟:藉由下列公式以估計該第一頻率 ,其中為估測之該第一頻率、△t為取樣週期、y(n)為第n個取樣週期時之濾波後之該取樣信號;藉由下列公式以估計該數位至類比轉換器及該類比至數位轉換器之同步信號之頻率 ,其中fs為該同步信號頻率、M為該類比至數位轉換器之一總取樣週期數、N為該類比至數位轉換器在該總取樣週期數之內所取得之總取樣資料點數;以及藉由將估計出之該第一頻率帶入一適應性線性神經網路以估計該第一振幅。 The calibration method of claim 6, wherein the step of solving the first frequency and the first amplitude of the sampling signal comprises the following steps: estimating the first frequency by using the following formula ,among them To estimate the first frequency, Δt is the sampling period, and y(n) is the filtered sampling signal at the nth sampling period; the following formula is used to estimate the digit to the analog converter and the analogy to Frequency of the sync signal of the digital converter Where f s is the frequency of the synchronization signal, M is the analog to one of the total number of sampling cycles of the digital converter, and N is the total number of sampled data points obtained by the analog to digital converter within the total number of sampling cycles; And estimating the first amplitude by bringing the estimated first frequency into an adaptive linear neural network. 如申請專利範圍第7項之校準方法,更包含下列步驟:藉由已知之該閃爍量測模型對應輸入相位及由該取樣信號估計出之該第一頻率與該第一振幅與輸入該類比校準信號之該閃爍分析儀輸出之一第二頻率及一第二振幅進行比對,以進行對該閃爍分析儀之校準。 The calibration method of claim 7 further includes the following steps: calibrating the input phase by the known scintillation measurement model and the first frequency estimated by the sampling signal and the first amplitude and input analogy A second frequency of the scintillation analyzer output of the signal is compared to a second amplitude for calibration of the scintillation analyzer.
TW103103138A 2014-01-28 2014-01-28 Calibration apparauts for flickermeter and calibration mehtod thereof TWI597419B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW103103138A TWI597419B (en) 2014-01-28 2014-01-28 Calibration apparauts for flickermeter and calibration mehtod thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW103103138A TWI597419B (en) 2014-01-28 2014-01-28 Calibration apparauts for flickermeter and calibration mehtod thereof

Publications (2)

Publication Number Publication Date
TW201529969A TW201529969A (en) 2015-08-01
TWI597419B true TWI597419B (en) 2017-09-01

Family

ID=54342604

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103103138A TWI597419B (en) 2014-01-28 2014-01-28 Calibration apparauts for flickermeter and calibration mehtod thereof

Country Status (1)

Country Link
TW (1) TWI597419B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI668454B (en) * 2018-08-06 2019-08-11 國立中正大學 Flicker analysis device and method
CN112129492A (en) * 2020-09-08 2020-12-25 广州广电计量检测股份有限公司 Calibration method and calibration system of simple light source stroboscopic tester based on light-emitting diode

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103116064A (en) * 2013-02-06 2013-05-22 湖南大学 Method and device for detecting voltage fluctuation and flicker based on energy operator and spectrum correction
TW201346282A (en) * 2012-05-04 2013-11-16 Univ Asia Flicker analysis device and analysis method thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201346282A (en) * 2012-05-04 2013-11-16 Univ Asia Flicker analysis device and analysis method thereof
CN103116064A (en) * 2013-02-06 2013-05-22 湖南大学 Method and device for detecting voltage fluctuation and flicker based on energy operator and spectrum correction

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
C. Cepisca, G. Seritan. S. Grigorescu, F. Argatu, "Aspects of metrological calibration of power quality analyzers", THE 8th INTERNATIONAL SYMPOSIUM ON ADVANCED TOPICS IN ELECTRICAL ENGINEERING,May 23-25, 2013,Bucharest, Romania *

Also Published As

Publication number Publication date
TW201529969A (en) 2015-08-01

Similar Documents

Publication Publication Date Title
Liang et al. A survey of harmonic emissions of a commercially operated wind farm
Kitzig et al. Power quality measurement system with PMU functionality based on interpolated sampling
WO2015157989A1 (en) Synchronous phasor measurement method applicable to p-type phasor measurement unit (mpu)
JP2013044752A (en) Phase identification system and method
CN108169540A (en) A kind of measuring method of wind power generating set voltage flicker
CN113064021B (en) Measurement and control device and method for realizing power electronic power grid higher harmonic suppression
Adamo et al. A proposal for an open source energy meter
CN110389312A (en) A kind of calibrator phasor measurement method being applicable in PMU test on site
CN110967658B (en) Analog input merging unit calibrator tracing method based on digital differential method
Yang et al. Research on a power quality monitoring technique for individual wind turbines
TWI597419B (en) Calibration apparauts for flickermeter and calibration mehtod thereof
CN113341224B (en) Method and device for measuring low-frequency oscillation signal of power system
WO2013025293A2 (en) Apparatus and method for measuring active/reactive powers
Djokic et al. Impact of operating conditions on harmonic and interharmonic emission of PV inverters
Roinila et al. Pseudo-random sequences in DQ-domain analysis of feedforward control in grid-connected inverters
CN111537780B (en) Method for extracting three-port electromagnetic interference model parameters of converter
Lei et al. Behavior of voltage transformers under distorted conditions
Chang et al. A digital implementation of flickermeter in the hybrid time and frequency domains
Gutierrez et al. Power quality in grid-connected wind turbines
Faifer et al. A medium voltage signal generator for the testing of voltage measurement transducers
Cataliotti et al. A time-domain strategy for the measurement of IEEE Standard 1459-2000 power quantities in nonsinusoidal three-phase and single-phase systems
CN109307800A (en) A kind of total harmonic detecting method of power grid
Redondo et al. A strategy for improving the accuracy of flicker emission measurement from wind turbines
De Araujo et al. Integrated circuit for real-time poly-phase power quality monitoring
Gallo et al. A voltage transducer for electrical grid disturbance monitoring over a wide frequency range