TWI595636B - Image sensor and process thereof - Google Patents

Image sensor and process thereof Download PDF

Info

Publication number
TWI595636B
TWI595636B TW101144730A TW101144730A TWI595636B TW I595636 B TWI595636 B TW I595636B TW 101144730 A TW101144730 A TW 101144730A TW 101144730 A TW101144730 A TW 101144730A TW I595636 B TWI595636 B TW I595636B
Authority
TW
Taiwan
Prior art keywords
layer
reflection layer
thickness
image sensor
filter
Prior art date
Application number
TW101144730A
Other languages
Chinese (zh)
Other versions
TW201421656A (en
Inventor
申旭陽
廖星華
劉宇恒
李琴
周傑鴻
Original Assignee
聯華電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 聯華電子股份有限公司 filed Critical 聯華電子股份有限公司
Priority to TW101144730A priority Critical patent/TWI595636B/en
Publication of TW201421656A publication Critical patent/TW201421656A/en
Application granted granted Critical
Publication of TWI595636B publication Critical patent/TWI595636B/en

Links

Landscapes

  • Solid State Image Pick-Up Elements (AREA)

Description

影像感測器及其製程 Image sensor and its process

本發明係關於一種影像感測器及其製程,且特別係關於一種影像感測器及其製程,其具有不同厚度的抗反射層對應各彩色濾光片。 The present invention relates to an image sensor and a process thereof, and in particular to an image sensor and a process thereof, which have anti-reflection layers of different thicknesses corresponding to the respective color filters.

由於CMOS影像感測器即基於互補金氧半導體(CMOS)技術而製造,因此採用傳統的CMOS電路製程製作的CMOS影像感測器可將影像感測器以及其所需要之週邊電路加以整合,因而被廣泛使用。 Since CMOS image sensors are fabricated based on complementary metal oxide semiconductor (CMOS) technology, CMOS image sensors fabricated using conventional CMOS circuit processes can integrate image sensors and their peripheral circuits. being widely used.

傳統的CMOS影像感測器係採用前照式(Front Side Illumination,FSI)技術來製造像素陣列上的像素,其入射光需經過像素的前端(front side)才能到達光感測區域(photo-sensing area)。也就是說,傳統的前照式CMOS影像感測器的結構,使得入射光需要先通過介電層(dielectric layer)、金屬層(metal layer)之後才會到達光感測區域,而這導致傳統CMOS影像感測器需面臨低量子效率(quantum efficiency)、像素間嚴重的交叉干擾(cross talk)以及暗電流(dark current)等等問題。 Conventional CMOS image sensors use Front Side Illumination (FSI) technology to fabricate pixels on a pixel array whose incident light passes through the front side of the pixel to reach the photo-sensing area (photo-sensing). Area). That is to say, the structure of the conventional front-illuminated CMOS image sensor is such that the incident light needs to pass through the dielectric layer and the metal layer before reaching the light sensing region, which leads to the tradition. CMOS image sensors face problems such as low quantum efficiency, severe cross talk between pixels, and dark current.

另一種CMOS影像感測器為背照式(Back Side Illumination,BSI)CMOS影像感測器。由於背照式影像感測器亦可以整合於傳統的 半導體製程製作,因此具有製作成本較低、元件尺寸較小以及積集度(integration)較高的優點。此外背照式影像感測器還具有低操作電壓、低功率消耗、高量子效率(quantum efficiency)、低雜訊(read-out noise)以及可根據需要進行隨機存取(random access)等優勢,因此已廣泛應用在個人電腦相機(PC camera)以及數位相機(digital camera)等電子產品上。不同於前照式技術,其由矽晶(silicon die)的前端建構影像感測器;背照式CMOS影像感測器將彩色濾光片(color filter)以及微鏡片(microlens)放置於像素的背部(back side)使得入射光由影像感測器的背部進入影像感測器。相較於前照式CMOS影像感測器,這種背照式CMOS影像感測器具有數種優點:較少的光損失(light loss)、較輕微的交叉干擾現象,以及更優異的量子效率。 Another CMOS image sensor is a Back Side Illumination (BSI) CMOS image sensor. Because back-illuminated image sensors can also be integrated into traditional Semiconductor process manufacturing has the advantages of lower fabrication cost, smaller component size, and higher integration. In addition, the back-illuminated image sensor has the advantages of low operating voltage, low power consumption, high quantum efficiency, low-read-out noise, and random access as needed. Therefore, it has been widely used in electronic products such as PC cameras and digital cameras. Unlike the front-illuminated technology, the front end of the silicon die is constructed with an image sensor; the back-illuminated CMOS image sensor places a color filter and a microlens on the pixel. The back side causes incident light to enter the image sensor from the back of the image sensor. Compared to front-illuminated CMOS image sensors, this back-illuminated CMOS image sensor has several advantages: less light loss, lesser cross-interference, and better quantum efficiency.

典型的背照式影像感測器可依其功能劃分為一光感測區與一周邊電路區,其中光感測區通常設有複數個成陣列排列的感光二極體(photodiode),並分別搭配重置電晶體(reset transistor)、電流汲取元件(current source follower)及列選擇開關(row selector)等之MOS電晶體,用來接收外部的光線並感測光照的強度,而周邊電路區則用來串接內部的金屬內連線及外部的連接線路。背照式影像感測器之感光原理係將入射光線區分為各種不同波長光線的組合,再分別由半導體基底上之複數個感光元件予以接收,並轉換為不同強弱之數位訊號。例如,將入射光區分為紅、藍、綠三色光線之組合, 再由相對應之感光二極體予以接收,進而轉換為數位訊號。 A typical back-illuminated image sensor can be divided into a light sensing area and a peripheral circuit area according to its function, wherein the light sensing area is usually provided with a plurality of photodiodes arranged in an array, and respectively A MOS transistor with a reset transistor, a current source follower, and a row selector is used to receive external light and sense the intensity of the illumination, while the peripheral circuit area Used to connect internal metal interconnects and external connection lines. The photosensitive principle of the back-illuminated image sensor is to distinguish the incident light into a combination of light of different wavelengths, and then receive them by a plurality of photosensitive elements on the semiconductor substrate, and convert them into digital signals of different strengths and weaknesses. For example, the incident light is divided into a combination of three colors of red, blue, and green. It is then received by the corresponding photodiode and converted into a digital signal.

本發明提出一種影像感測器及其製程,其藉由形成具有不同厚度之抗反射層以進一步改善抗反射層的抗反射率,進而改善影像感測器的光穿透率以及提高特定顏色的光感測靈敏度。 The invention provides an image sensor and a process thereof, which further improve the anti-reflection rate of the anti-reflection layer by forming an anti-reflection layer having different thicknesses, thereby improving the light transmittance of the image sensor and improving the specific color. Light sensing sensitivity.

本發明提供一種影像感測器包含複數個彩色濾光片以及一抗反射層。彩色濾光片位於一基底上。抗反射層位於基底與彩色濾光片之間,且彩色濾光片之至少二者所對應的抗反射層具有不同的厚度。 The invention provides an image sensor comprising a plurality of color filters and an anti-reflection layer. The color filter is located on a substrate. The anti-reflection layer is located between the substrate and the color filter, and the anti-reflection layer corresponding to at least two of the color filters has different thicknesses.

本發明提供一種影像感測製程,包含有下述步驟。首先,形成一抗反射層於一基底上。接著,形成複數個彩色濾光片於抗反射層上,其中至少二彩色濾光片之正下方之部分的抗反射層的厚度不同。 The present invention provides an image sensing process comprising the following steps. First, an anti-reflection layer is formed on a substrate. Next, a plurality of color filters are formed on the anti-reflection layer, wherein the thickness of the anti-reflection layer of the portion directly under the at least two color filters is different.

基於上述,本發明提出一種影像感測器及其製程,其形成抗反射層於基底與彩色濾光片之間,且該些彩色濾光片之至少二者所對應的部分的抗反射層具有不同的厚度。因此,本發明之抗反射層相較於僅具有單一厚度之抗反射層,能具有更佳之抗反射率,進而能增進影像感測器的特定顏色的光穿透率以及光感測靈敏度。 Based on the above, the present invention provides an image sensor and a process thereof, which form an anti-reflection layer between a substrate and a color filter, and a portion of the anti-reflection layer corresponding to at least two of the color filters has Different thicknesses. Therefore, the antireflection layer of the present invention can have better antireflection than the antireflection layer having only a single thickness, thereby improving the light transmittance and the light sensing sensitivity of the specific color of the image sensor.

第1-5圖係繪示本發明第一實施例之影像感測製程之剖面示意 圖。如第1圖所示,進行一影像感測製程之前端製程,其可包含下述步驟。首先,提供一基底110,具有一正面S1以及一背面S2。基底110例如是一矽基底、一含矽基底、一三五族覆矽基底(例如GaN-on-silicon)、一石墨烯覆矽基底(graphene-on-silicon)或一矽覆絕緣(silicon-on-insulator,SOI)基底等半導體基底。接著,形成複數個隔離結構10於基底110之正面S1,其中隔離結構10可為淺溝隔離結構,且其可以一淺溝隔離製程形成,但本發明不以此為限。而後,可在各隔離結構10之間形成複數個成陣列排列的感光區,例如感光二極體(photodiode)22、24、26來接收入射光線,以及形成至少一MOS電晶體40,其可為配重置電晶體(reset transistor)、電流汲取元件(current source follower)及列選擇開關(row selector)等之MOS電晶體,用以將感測光線轉換為數位訊號,或者是位於週邊電路區內的邏輯MOS電晶體等,本實施例不一一舉例。而後,全面形成一介電層120於基底110的正面S1上。介電層120可例如為一層間介電層,而其可為一氧化層,但本發明不以此為限。之後,進行例如蝕刻製程,以在介電層120中形成接觸洞(未繪示),再將例如銅或鎢等導電材料填入接觸洞(未繪示)中,以形成至少一接觸插塞30,分別連接MOS電晶體40的一閘極42以及一源/汲極44。為簡化本發明使本發明之精神清晰易懂,本實施例係僅繪示三感光二極體22、24、26以及一MOS電晶體40,但感光二極體22、24、26以及MOS電晶體40的個數不以本實施例為限。此外,本發明可能包含其他半導體元件設置於基底110上及介電層120中,例如 在介電層120中亦可能包含其他內連線結構(未繪示)等,本實施例亦不一一舉例。 Figure 1-5 is a schematic cross-sectional view showing the image sensing process of the first embodiment of the present invention Figure. As shown in FIG. 1, an image sensing process front end process is performed, which may include the following steps. First, a substrate 110 is provided having a front surface S1 and a back surface S2. The substrate 110 is, for example, a substrate, a germanium-containing substrate, a tri-five-layer overlying substrate (eg, GaN-on-silicon), a graphene-on-silicon or a silicon-on-insulator (silicon- On-insulator, SOI) A semiconductor substrate such as a substrate. Then, a plurality of isolation structures 10 are formed on the front surface S1 of the substrate 110. The isolation structure 10 may be a shallow trench isolation structure, and may be formed by a shallow trench isolation process, but the invention is not limited thereto. Then, a plurality of photosensitive regions arranged in an array, such as photodiodes 22, 24, 26, to receive incident light, and at least one MOS transistor 40 may be formed between the isolation structures 10, which may be A MOS transistor such as a reset transistor, a current source follower, and a row selector is used to convert the sensed light into a digital signal or in a peripheral circuit region. The logic MOS transistor or the like is not exemplified in this embodiment. Then, a dielectric layer 120 is formed on the front surface S1 of the substrate 110. The dielectric layer 120 can be, for example, an interlayer dielectric layer, and can be an oxide layer, but the invention is not limited thereto. Thereafter, an etching process is performed to form a contact hole (not shown) in the dielectric layer 120, and a conductive material such as copper or tungsten is filled into a contact hole (not shown) to form at least one contact plug. 30. A gate 42 of the MOS transistor 40 and a source/drain 44 are connected, respectively. In order to simplify the present invention, the spirit of the present invention is clearly understood. In this embodiment, only three photodiodes 22, 24, 26 and a MOS transistor 40 are shown, but the photodiodes 22, 24, 26 and MOS are electrically The number of crystals 40 is not limited to this embodiment. In addition, the present invention may include other semiconductor components disposed on the substrate 110 and in the dielectric layer 120, such as Other interconnect structures (not shown) and the like may also be included in the dielectric layer 120, and the present embodiment is not exemplified.

接著,形成一多層的金屬層間介電層(Inter metal dielectric,IMD)130以及一多層的金屬層140。詳細而言,多層的金屬層間介電層(Inter metal dielectric,IMD)130可包含複數層的圖案化的介電層132、134、136、138以及複數層的圖案化的金屬層142、144、146。形成多層的金屬層間介電層130以及多層的金屬層140的製程步驟可包含:先進行沉積並平坦化製程以全面形成一介電層(未繪示)於層間介電層120上;蝕刻介電層(未繪示)而形成圖案化的介電層132;填入金屬(未繪示)以形成金屬層142於圖案化的介電層132中;之後,即反覆進行前述步驟,而形成堆疊的結構,其包含複數層的圖案化的介電層134、136、138以及複數層的圖案化的金屬層144、146。圖案化的介電層132、134、136、138可為氧化層,而圖案化的金屬層142、144、146可為鋁或銅等金屬組成的金屬層,但本發明不以此為限。然後,形成一絕緣層150全面覆蓋多層的金屬層間介電層130以及多層的金屬層140。絕緣層150可例如為一氧化層或一氮化層,但本發明不以此為限。 Next, a multilayer inter-metal dielectric layer (IMD) 130 and a multi-layer metal layer 140 are formed. In detail, a multi-layer inter-metal dielectric layer (IMD) 130 may include a plurality of layers of patterned dielectric layers 132, 134, 136, 138 and a plurality of patterned metal layers 142, 144, 146. The process of forming the multi-layer inter-metal dielectric layer 130 and the multi-layer metal layer 140 may include: performing a deposition and planarization process to form a dielectric layer (not shown) on the interlayer dielectric layer 120; a patterned dielectric layer 132 is formed by an electrical layer (not shown); a metal (not shown) is filled in to form a metal layer 142 in the patterned dielectric layer 132; thereafter, the foregoing steps are repeated to form A stacked structure comprising a plurality of patterned dielectric layers 134, 136, 138 and a plurality of patterned patterned metal layers 144, 146. The patterned dielectric layer 132, 134, 136, 138 may be an oxide layer, and the patterned metal layer 142, 144, 146 may be a metal layer composed of a metal such as aluminum or copper, but the invention is not limited thereto. Then, an insulating layer 150 is formed to completely cover the plurality of metal interlayer dielectric layers 130 and the plurality of metal layers 140. The insulating layer 150 can be, for example, an oxide layer or a nitride layer, but the invention is not limited thereto.

接續,倒置所形成之結構,如第1圖所示之狀態,而將絕緣層150放置於一承載晶圓50上,並自基底110之背面S2薄化基底110。繼之,可選擇性地進行一摻雜製程P1於基底110的背面S2,而形成一摻雜層160。 Next, the formed structure is inverted, as shown in FIG. 1, and the insulating layer 150 is placed on a carrier wafer 50, and the substrate 110 is thinned from the back surface S2 of the substrate 110. Then, a doping process P1 is selectively performed on the back surface S2 of the substrate 110 to form a doping layer 160.

而後,如第2圖所示,先選擇性地形成一氧化層(未繪示)於摻雜層160上,如此可因減少表面缺陷而進一步降低暗電流(dark current)。然後,形成一抗反射層60’於摻雜層160(或者氧化層(未繪示))上,其中抗反射層60,則具有一頂面S3以及一底面S4。抗反射層60’可包含一氮化矽(SiN)層、一碳化矽(SiC)層、一碳氮化矽(SiCN)層、一氮氧化矽(SiON)層、一有機材料層等,可根據通過抗反射層60’之光線波段,選用適合之抗反射層60’的材質,以調整成所需之抗反射層60’之折射係數(refractive index,RI),但本發明不以此為限。 Then, as shown in Fig. 2, an oxide layer (not shown) is selectively formed on the doped layer 160, so that the dark current can be further reduced by reducing surface defects. Then, an anti-reflective layer 60' is formed on the doped layer 160 (or an oxide layer (not shown)), wherein the anti-reflective layer 60 has a top surface S3 and a bottom surface S4. The anti-reflective layer 60' may include a tantalum nitride (SiN) layer, a tantalum carbide (SiC) layer, a tantalum carbonitride (SiCN) layer, a niobium oxynitride (SiON) layer, an organic material layer, and the like. According to the light band passing through the anti-reflection layer 60', a material suitable for the anti-reflection layer 60' is selected to adjust the refractive index (RI) of the anti-reflection layer 60' required, but the present invention does not limit.

如第3圖所示,先全面性覆蓋一光阻層(未繪示),再圖案化光阻層(未繪示)以形成一圖案化的光阻層K1,其暴露出感光二極體22上方所對應之部分的抗反射層62。接著,進行一蝕刻製程P2,蝕刻暴露出的部分的抗反射層62。接續,移除圖案化的光阻層K1,如第4圖所示,即可形成一抗反射層60,其中抗反射層60的底面S4為一平坦面,而部分的抗反射層62之頂面則相對於其他部分之抗反射層60的頂面則為一凹面,因而使抗反射層60對應不同的感光區而具有不同的厚度d1及d2,且厚度d2小於厚度d1。 As shown in FIG. 3, a photoresist layer (not shown) is fully covered, and then a photoresist layer (not shown) is patterned to form a patterned photoresist layer K1, which exposes the photodiode. The anti-reflection layer 62 of the portion corresponding to the upper portion of 22. Next, an etching process P2 is performed to etch the exposed portion of the anti-reflective layer 62. Subsequently, the patterned photoresist layer K1 is removed, and as shown in FIG. 4, an anti-reflection layer 60 is formed, wherein the bottom surface S4 of the anti-reflection layer 60 is a flat surface, and a portion of the anti-reflection layer 62 is at the top. The surface is a concave surface with respect to the top surface of the anti-reflection layer 60 of other portions, so that the anti-reflection layer 60 has different thicknesses d1 and d2 corresponding to different photosensitive regions, and the thickness d2 is smaller than the thickness d1.

如第5圖所示,依序形成複數個彩色濾光片70於抗反射層60上。在本實施例中,係形成藍色、綠色及紅色之三彩色濾光片70於抗反射層60上;在其他實施例中亦可形成其他個數或色系之彩色濾光片,視實際需要而定。更進一步而言,彩色濾光片70分別為一 藍色濾光片72、一綠色濾光片74以及一紅色濾光片76,而各彩色濾光片70下方所對應之抗反射層的厚度則分別為:藍色濾光片72正下方之部分的抗反射層62的厚度d2為藍光波長的四分之一,而位於綠色濾光片74以及紅色濾光片76正下方之部分的抗反射層64及66的厚度d1則介於綠光波長與紅光波長之間的波長的四分之一。如此一來,相較於直接形成一抗反射層,其厚度皆為藍光波長的四分之一的厚度d2,本實施例可增加綠光波段及紅光波段5%的抗反射率。再者,相較於藍光波長,由於綠光波長與紅光波長較為接近,故本實施例在綠色濾光片74以及紅色濾光片76正下方之部分的抗反射層64及66設計為形成單一厚度d1,以簡化製程步驟並同時達到改善抗反射層60的抗反射率的效果。 As shown in FIG. 5, a plurality of color filters 70 are sequentially formed on the anti-reflection layer 60. In this embodiment, three color filters 70 of blue, green, and red are formed on the anti-reflection layer 60; in other embodiments, other color filters of color or color may be formed, depending on the actual Need to be determined. Further, the color filters 70 are respectively one The blue filter 72, the green filter 74 and the red filter 76, and the thickness of the anti-reflection layer corresponding to each of the color filters 70 are respectively below the blue filter 72. The thickness d2 of the portion of the anti-reflection layer 62 is a quarter of the wavelength of the blue light, and the thickness d1 of the anti-reflection layers 64 and 66 located directly below the green filter 74 and the red filter 76 is between green light. One quarter of the wavelength between the wavelength and the wavelength of the red light. In this way, compared with directly forming an anti-reflection layer, the thickness thereof is a thickness d2 of a quarter of the blue light wavelength, and the embodiment can increase the anti-reflection rate of 5% in the green light band and the red light band. Furthermore, since the green light wavelength is closer to the red light wavelength than the blue light wavelength, the anti-reflection layers 64 and 66 of the portion directly below the green color filter 74 and the red color filter 76 are designed to be formed. A single thickness d1 is used to simplify the process steps and at the same time achieve the effect of improving the antireflection of the antireflection layer 60.

更進一步而言,本實施例係將藍色濾光片72正下方之部分的抗反射層62的厚度d2設計為藍光波長的四分之一,而位於綠色濾光片74以及紅色濾光片76正下方之部分的抗反射層64及66的厚度d1則設計為介於綠光波長與紅光波長之間的波長的四分之一;但在其他實施例中,可將藍色濾光片72正下方之部分的抗反射層62的厚度d2設計為藍光波長的四分之三或四分之五等,亦即波長的四分之一加上n倍的半波長(n為正整數),而位於綠色濾光片74以及紅色濾光片76正下方之部分的抗反射層64及66的厚度d1則設計為介於綠光波長與紅光波長之間的波長的四分之三或四分之五等,亦即波長的四分之一加上n倍的半波長(n為正整數),其亦可達到本發明所述之功效。然而,由於較薄之抗反射層60有助於增加光線之穿 透,故又以將各部分的抗反射層62、64、66的厚度設計為各對應之主要穿透波長之四分之一為佳。 Further, in the present embodiment, the thickness d2 of the anti-reflection layer 62 of the portion directly below the blue filter 72 is designed to be one quarter of the blue wavelength, and is located at the green filter 74 and the red filter. The thickness d1 of the portions of the anti-reflective layers 64 and 66 directly below the 76 is designed to be one quarter of the wavelength between the wavelength of the green light and the wavelength of the red light; however, in other embodiments, the blue color can be filtered. The thickness d2 of the anti-reflection layer 62 directly under the sheet 72 is designed to be three-quarters or five-quarters of the blue wavelength, that is, one quarter of the wavelength plus n times the half wavelength (n is a positive integer) The thickness d1 of the anti-reflective layers 64 and 66 located directly below the green filter 74 and the red filter 76 is designed to be three-quarters of the wavelength between the green and red wavelengths. Or a quarter of a fifth, etc., that is, a quarter of the wavelength plus a half wavelength of n times (n is a positive integer), which also achieves the effects of the present invention. However, since the thinner anti-reflective layer 60 helps to increase light penetration Therefore, it is preferable to design the thickness of each portion of the anti-reflection layers 62, 64, 66 to be one quarter of each of the corresponding main penetration wavelengths.

在其他實施例中,在如第4圖所示形成具有不同厚度d1及d2之抗反射層60之後,可再進行其他蝕刻製程,以進一步改變綠色濾光片74以及紅色濾光片76下方所對應之抗反射層60之厚度,以進一步改善抗反射層60的抗反射率。 In other embodiments, after forming the anti-reflective layer 60 having different thicknesses d1 and d2 as shown in FIG. 4, another etching process may be performed to further change the green filter 74 and the red filter 76. The thickness of the anti-reflection layer 60 is corresponding to further improve the anti-reflection rate of the anti-reflection layer 60.

第6-8圖係繪示本發明第二實施例之影像感測製程之剖面示意圖。在完成第4圖之步驟後,如第6圖所示,先全面性覆蓋一光阻層(未繪示)並圖案化光阻層(未繪示),以形成一圖案化的光阻層K2,其暴露出感光二極體22及24上方所對應之部分的抗反射層62及64。接著,進行一蝕刻製程P3,同時蝕刻暴露出的部分的抗反射層62及64。接續,移除圖案化的光阻層K2,如第7圖所示,即可形成一抗反射層60a,其中抗反射層60a的底面S4為一平坦面,而部分的抗反射層62及64之頂面則相對於部分的抗反射層66的頂面則為一凹面,因而使抗反射層60a對應不同的感光區而具有不同的厚度d1、d2及d3,且厚度d3小於厚度d2,而厚度d2又小於厚度d1。 6-8 are schematic cross-sectional views showing an image sensing process according to a second embodiment of the present invention. After the step of FIG. 4 is completed, as shown in FIG. 6, a photoresist layer (not shown) is comprehensively covered and a photoresist layer (not shown) is patterned to form a patterned photoresist layer. K2, which exposes the antireflection layers 62 and 64 corresponding to the portions above the photodiodes 22 and 24. Next, an etching process P3 is performed while etching the exposed portions of the anti-reflective layers 62 and 64. Subsequently, the patterned photoresist layer K2 is removed, and as shown in FIG. 7, an anti-reflection layer 60a is formed, wherein the bottom surface S4 of the anti-reflection layer 60a is a flat surface, and a part of the anti-reflection layers 62 and 64 are formed. The top surface is a concave surface with respect to a portion of the top surface of the anti-reflection layer 66, so that the anti-reflection layer 60a has different thicknesses d1, d2, and d3 corresponding to different photosensitive regions, and the thickness d3 is smaller than the thickness d2. The thickness d2 is again smaller than the thickness d1.

此外,在第二實施例中由第3-4、6-7圖所形成之結構,亦可由第9-10圖所代替。第9-10圖係繪示本發明第三實施例之影像感測製程之剖面示意圖。在完成第2圖之形成抗反射層60’之步驟後, 如第9圖所示,先全面性覆蓋一光阻層(未繪示)並圖案化光阻層(未繪示),以形成一圖案化的光阻層K3,其暴露出感光二極體22及24上方所對應之部分的抗反射層62及64。接著,進行一蝕刻製程P4,同時蝕刻暴露出的部分的抗反射層62及64。然後,移除圖案化的光阻層K3。接續,如第10圖所示,先全面性覆蓋一光阻層(未繪示)並圖案化光阻層(未繪示),以形成一圖案化的光阻層K4,其暴露出感光二極體22上方所對應之部分的抗反射層62。接著,再進行一蝕刻製程P5,僅蝕刻暴露出的部分的抗反射層62。然後,移除圖案化的光阻層K4。如此一來,亦可形成如第二實施例所述之結構。當然,亦可再應用其他製程以形成如第二實施例所述之結構,在此則不再一一贅述。 Further, the structure formed by the figures 3-4, 6-7 in the second embodiment can also be replaced by the figures 9-10. 9-10 are schematic cross-sectional views showing an image sensing process according to a third embodiment of the present invention. After the step of forming the anti-reflection layer 60' of Fig. 2, As shown in FIG. 9, a photoresist layer (not shown) is integrally covered and patterned with a photoresist layer (not shown) to form a patterned photoresist layer K3, which exposes the photodiode. The antireflection layers 62 and 64 corresponding to the upper portions of 22 and 24 are provided. Next, an etching process P4 is performed while etching the exposed portions of the anti-reflective layers 62 and 64. Then, the patterned photoresist layer K3 is removed. Continuing, as shown in FIG. 10, firstly covering a photoresist layer (not shown) and patterning a photoresist layer (not shown) to form a patterned photoresist layer K4, which exposes the photosensitive layer An anti-reflection layer 62 corresponding to a portion above the polar body 22. Next, an etching process P5 is performed to etch only the exposed portion of the anti-reflection layer 62. Then, the patterned photoresist layer K4 is removed. In this way, the structure as described in the second embodiment can also be formed. Of course, other processes may be applied to form the structure as described in the second embodiment, and will not be further described herein.

在以第二實施例或第三實施例形成相同之結構之後,則如第8圖所示,形成複數個彩色濾光片70於抗反射層60a上。在本實施例中,形成藍色、綠色及紅色之三彩色濾光片70於抗反射層60a上;在其他實施例中亦可形成其他個數或色系之彩色濾光片,視實際需要而定。更進一步而言,彩色濾光片70分別為一藍色濾光片72、一綠色濾光片74以及一紅色濾光片76,而各彩色濾光片70下方所對應之抗反射層的厚度則分別為:藍色濾光片72正下方之部分的抗反射層62的厚度d3為藍光波長的四分之一,位於綠色濾光片74正下方之部分的抗反射層64的厚度d2為綠光波長的四分之一,而紅色濾光片76正下方之部分的抗反射層66的厚度d1為紅光波長的四分之一。如此一來,相較於直接形成具有單一厚度d3之抗反射 層,採用本實施例之抗反射層60a,即可增加綠光波段5%的抗反射率及紅光波段10%的抗反射率。 After the same structure is formed in the second embodiment or the third embodiment, as shown in Fig. 8, a plurality of color filters 70 are formed on the anti-reflection layer 60a. In this embodiment, three color filters 70 of blue, green, and red are formed on the anti-reflection layer 60a; in other embodiments, other color filters of color or color may be formed, depending on actual needs. And set. Furthermore, the color filters 70 are respectively a blue filter 72, a green filter 74 and a red filter 76, and the thickness of the anti-reflection layer corresponding to each of the color filters 70 is corresponding. Then, the thickness d3 of the anti-reflection layer 62 directly under the blue filter 72 is one quarter of the wavelength of the blue light, and the thickness d2 of the anti-reflection layer 64 located directly below the green filter 74 is A quarter of the wavelength of the green light, and a portion d1 of the anti-reflective layer 66 directly below the red filter 76 is one quarter of the wavelength of the red light. In this way, compared to directly forming an anti-reflection having a single thickness d3 The layer, by using the anti-reflection layer 60a of the present embodiment, can increase the anti-reflection rate of 5% in the green light band and the anti-reflection rate of 10% in the red light band.

再者,本實施例係將藍色濾光片72正下方之部分的抗反射層62的厚度d3設計為藍光波長的四分之一,位於綠色濾光片74正下方之部分的抗反射層64的厚度d2設計為綠光波長的四分之一,而紅色濾光片76正下方之部分的抗反射層66的厚度d3設計為紅光波長的四分之一;但在其他實施例中,可將藍色濾光片72正下方之部分的抗反射層62的厚度d3設計為藍光波長的四分之三或四分之五,位於綠色濾光片74正下方之部分的抗反射層64的厚度d2設計為綠光波長的四分之三或四分之五,而紅色濾光片76正下方之部分的抗反射層66的厚度d1設計為紅光波長的四分之三或四分之五,亦可達到本發明所述之功效。然而,由於較薄之抗反射層60a有助於增加光線之穿透,故又以將各部分的抗反射層62、64、66的厚度設計為各部分之主要穿透光之波長的四分之一為佳。 Furthermore, in the present embodiment, the thickness d3 of the anti-reflection layer 62 directly under the blue color filter 72 is designed to be one quarter of the blue light wavelength, and the anti-reflection layer is located at a portion directly below the green color filter 74. The thickness d2 of 64 is designed to be one quarter of the wavelength of the green light, and the thickness d3 of the portion of the anti-reflection layer 66 directly below the red filter 76 is designed to be one quarter of the wavelength of the red light; but in other embodiments The thickness d3 of the anti-reflection layer 62 of the portion directly below the blue filter 72 can be designed to be three-quarters or five-quarters of the wavelength of the blue light, and the anti-reflection layer located in the portion directly below the green filter 74. The thickness d2 of 64 is designed to be three-quarters or five-quarters of the wavelength of the green light, and the thickness d1 of the anti-reflective layer 66 directly below the red filter 76 is designed to be three-quarters or four of the wavelength of the red light. In the fifth part, the effects described in the present invention can also be achieved. However, since the thin anti-reflective layer 60a helps to increase the penetration of light, the thickness of the anti-reflective layers 62, 64, 66 of each portion is designed to be the quarter of the wavelength of the main light transmitted by each portion. One is better.

接著,可先選擇性地分別形成一平坦層(未繪示)於各彩色濾光片70上。然後,再分別形成一微透鏡(未繪示)於各彩色濾光片70或者平坦層(未繪示)上,以將光線集中入射至各彩色濾光片70中。之後,可再選擇性地分別形成一鈍化層(未繪示)於各微透鏡上,並接續後續之外部電連接製程等其他半導體製程。如此,完成一背照式互補式電晶體影像感測裝置100。 Then, a flat layer (not shown) may be selectively formed on each of the color filters 70. Then, a microlens (not shown) is formed on each color filter 70 or a flat layer (not shown) to concentrate the light into each of the color filters 70. Thereafter, a passivation layer (not shown) may be selectively formed on each of the microlenses, and another semiconductor process such as a subsequent external electrical connection process may be followed. Thus, a back-illuminated complementary crystal image sensing device 100 is completed.

在此強調,當位於各彩色濾光片70下方之部分的抗反射層62、64、66之厚度為通過各彩色濾光片70之最大強度之光線的波長的四分之一、四分之三或四分之五時,各部分的抗反射層62、64、66可具有最佳之抗反射率;是以,本發明藉由將至少一彩色濾光片70下方之部分的抗反射層62、64、66之厚度設計為通過該彩色濾光片70之最大強度之光線的四分之一、四分之三或四分之五,以達到較佳之抗反射率。當然,第一、第二及第三實施例之抗反射層60、60a係形成二或三種不同之厚度,但在其他實施例中之抗反射層亦可形成四種以上之厚度,視彩色濾光片的個數、總類以及實際欲形成之影像感測裝置之規格及性能而定。 It is emphasized here that the thickness of the anti-reflection layers 62, 64, 66 located under portions of the respective color filters 70 is one quarter, four quarters of the wavelength of the light passing through the maximum intensity of each color filter 70. At three or five-quarters, the anti-reflective layers 62, 64, 66 of each portion may have an optimum anti-reflectivity; that is, the anti-reflection layer of the portion of the present invention by at least one color filter 70 The thickness of 62, 64, 66 is designed to pass through a quarter, three-quarters, or five-quarters of the maximum intensity of the color filter 70 to achieve better anti-reflectivity. Of course, the anti-reflective layers 60, 60a of the first, second, and third embodiments are formed into two or three different thicknesses, but in other embodiments, the anti-reflective layer may also have four or more thicknesses, depending on the color filter. The number of light sheets, the total class, and the specifications and performance of the actual image sensing device to be formed.

再者,在一實施例中,藍色濾光片72正下方之部分的抗反射層62的厚度d3係較佳為100/RIa+/-15%;綠色濾光片74正下方之部分的抗反射層64的厚度d2係較佳為137.5/RIb+/-10%;紅色濾光片76正下方之部分的抗反射層66的厚度d1係較佳為162.5/RIc+/-10%,其中RIa、RIb、RIc係分別指抗反射層在藍光、綠光、紅光波長時的折射係數(Refractive Index,RI)。例如,一抗反射層材料在波長為400奈米(nm)時之折射係數Refractive index為3.5,則厚度d3較佳為(400奈米1/4)/3.5=28.57奈米,而該抗反射層材料在波長為550奈米(nm)時之折射係數Refractive index為2.4,則厚度d2較佳為(550奈米1/4)/2.4=57.29奈米,依此類推。 Furthermore, in one embodiment, the thickness d3 of the portion of the anti-reflective layer 62 directly below the blue color filter 72 is preferably 100/RIa +/- 15%; the resistance of the portion directly below the green filter 74 The thickness d2 of the reflective layer 64 is preferably 137.5 / RIb +/- 10%; the thickness d1 of the anti-reflective layer 66 directly under the red filter 76 is preferably 162.5 / RIc +/- 10%, wherein RIa, RIb and RIc refer to the refractive index (RI) of the antireflection layer at the wavelengths of blue light, green light and red light, respectively. For example, if the refractive index of the antireflective layer material is 3.5 at a wavelength of 400 nm, the thickness d3 is preferably (400 nm * 1/4) / 3.5 = 28.57 nm, and the anti-reflection The refractive index material has a refractive index of 2.4 at a wavelength of 550 nanometers (nm), and the thickness d2 is preferably (550 nm * 1/4) / 2.4 = 57.29 nm, and so on.

承上,以本發明之形成具有不同厚度之抗反射層60、60a的方法 所形成之背照式互補式電晶體影像感測裝置100,相較於僅具有單一厚度之抗反射層,可增加抗反射層之抗反射率,進而增進背照式互補式電晶體影像感測裝置100對特定顏色的光穿透率以及光感測靈敏度。在第一、第二及第三實施例中,係為形成一抗反射層60、60a,其具有一頂面S3以及一底面S4,且底面S4為一平坦面而部分的頂面S3則為一凹面,因而形成具有不同厚度之抗反射層60、60a。以下,再提出一第四實施例,其所形成之抗反射層具有頂面為一平坦面而部分的底面為一凹面的結構。 A method of forming the antireflection layers 60, 60a having different thicknesses according to the present invention The back-illuminated complementary crystal image sensing device 100 can increase the anti-reflection rate of the anti-reflection layer and improve the back-illuminated complementary crystal image sensing compared to the anti-reflection layer having only a single thickness. The light transmittance of the device 100 for a particular color and the light sensing sensitivity. In the first, second and third embodiments, an anti-reflection layer 60, 60a is formed, which has a top surface S3 and a bottom surface S4, and the bottom surface S4 is a flat surface and a part of the top surface S3 is A concave surface thus forms antireflection layers 60, 60a having different thicknesses. Hereinafter, a fourth embodiment is further provided, in which the anti-reflection layer has a structure in which the top surface is a flat surface and the bottom surface of the portion is a concave surface.

第11-12圖係繪示本發明第四實施例之影像感測製程之剖面示意圖。首先,本實施例之前端製程與第1圖之製程相同,但在本實施例之製程中可先不進行摻雜製程P1。接續,如第11圖所示,先蝕刻基底110之背面S2,以在基底110中形成至少一凹槽R1及R2,而能形成具有不同厚度d4、d5、d6之基底110,其蝕刻方法可類似於前述實施例中蝕刻抗反射層60、60a的方法。例如,可先覆蓋一圖案化的光阻(未繪示)僅暴露出部分之基底112並遮蓋住其他部分之基底,然後再進行一蝕刻製程以使部分之基底112具有一厚度d4。接著,再覆蓋一圖案化的光阻(未繪示)僅暴露出部分之基底114並遮蓋住其他部分之基底,然後再進行一蝕刻製程以使部分之基底114具有一厚度d5。如此,則形成基底110,其具有厚度d4、d5、d6,其中厚度d6大於厚度d5,而厚度d5又大於厚度d4。當然,亦可以其他蝕刻步驟形成此結構。 11-12 are schematic cross-sectional views showing an image sensing process according to a fourth embodiment of the present invention. First, the front end process of the present embodiment is the same as the process of the first drawing, but the doping process P1 may not be performed first in the process of the embodiment. Next, as shown in FIG. 11, the back surface S2 of the substrate 110 is etched to form at least one recess R1 and R2 in the substrate 110, and the substrate 110 having different thicknesses d4, d5, and d6 can be formed. A method of etching the anti-reflection layers 60, 60a is similar to the previous embodiment. For example, a patterned photoresist (not shown) may be exposed to expose only a portion of the substrate 112 and cover the other portions of the substrate, and then an etching process is performed to cause a portion of the substrate 112 to have a thickness d4. Then, a patterned photoresist (not shown) is exposed to expose only a portion of the substrate 114 and cover the other portions of the substrate, and then an etching process is performed to make the portion of the substrate 114 have a thickness d5. As such, a substrate 110 is formed having a thickness d4, d5, d6, wherein the thickness d6 is greater than the thickness d5, and the thickness d5 is again greater than the thickness d4. Of course, other structures can be formed by other etching steps.

然後選擇性進行摻雜製程(未繪示),再如第12圖所示,覆蓋一抗反射層80於基底110上。抗反射層80可包含為一氮化矽(SiN)層、一碳化矽(SiC)層、一碳氮化矽(SiCN)層、一氮氧化矽(SiON)層、一有機材料層。詳細而言,可先全面覆蓋一抗反射層(未繪示)於基底110上,然後再選擇性地平坦化抗反射層(未繪示),而形成抗反射層80。如此一來,本實施例則形成抗反射層80,其具有一頂面S5以及一底面S6,其中頂面S5為一平坦面,而部分的抗反射層的底面S6則為一凹面,因而使抗反射層80具有不同的厚度d7、d8、d9,且厚度d7大於厚度d8,而厚度d8又大於厚度d9。 Then, a doping process (not shown) is selectively performed, and as shown in FIG. 12, an anti-reflective layer 80 is overlaid on the substrate 110. The anti-reflective layer 80 may comprise a tantalum nitride (SiN) layer, a tantalum carbide (SiC) layer, a tantalum carbonitride (SiCN) layer, a niobium oxynitride (SiON) layer, and an organic material layer. In detail, an anti-reflection layer (not shown) may be completely covered on the substrate 110, and then the anti-reflection layer (not shown) may be selectively planarized to form the anti-reflection layer 80. In this way, the embodiment forms an anti-reflection layer 80 having a top surface S5 and a bottom surface S6, wherein the top surface S5 is a flat surface, and the bottom surface S6 of the partial anti-reflection layer is a concave surface, thereby The anti-reflective layer 80 has different thicknesses d7, d8, d9, and the thickness d7 is greater than the thickness d8, and the thickness d8 is greater than the thickness d9.

之後,可再形成複數個彩色濾光片(未繪示)於抗反射層80上,且各彩色濾光片(未繪示)會分別對應各感光二極體22、24、26;選擇性地分別形成一平坦層(未繪示)於各彩色濾光片(未繪示)上;分別形成一微透鏡(未繪示)於各彩色濾光片(未繪示)或者平坦層(未繪示)上,以將光線集中入射至各彩色濾光片(未繪示)中。之後,可再選擇性地分別形成一鈍化層(未繪示)於各微透鏡上,並接續後續之外部電連接製程等其他半導體製程等。如此,則可形成另一背照式互補式電晶體影像感測裝置200。 Thereafter, a plurality of color filters (not shown) may be further formed on the anti-reflection layer 80, and each of the color filters (not shown) respectively correspond to the respective photodiodes 22, 24, 26; Forming a flat layer (not shown) on each color filter (not shown); forming a microlens (not shown) on each color filter (not shown) or a flat layer (not shown) The light is concentrated on the color filters (not shown). Thereafter, a passivation layer (not shown) may be selectively formed on each of the microlenses, and another semiconductor process such as a subsequent external electrical connection process may be followed. As such, another back-illuminated complementary crystal image sensing device 200 can be formed.

因此,本實施例亦形成具有不同厚度之抗反射層80,其對應不同之彩色濾光片(未繪示)所能通過之最大強度之光線,進而能增加抗反射層80的抗反射率。再者,本實施例之抗反射層80係形成三種不同之厚度d7、d8、d9,在其他實施例中亦可形成二種或四種 以上之厚度,視彩色濾光片的個數、總類以及實際欲形成之影像感測裝置之規格及性能而定。再者,本實施例之抗反射層80的厚度與各彩色濾光片(未繪示)的關係與所能達到之功效類似於前述實施例中抗反射層60、60a的厚度與各彩色濾光片70的關係與所能達到之功效,故不再贅述。 Therefore, the embodiment also forms an anti-reflection layer 80 having different thicknesses, which corresponds to the maximum intensity of light that can pass through different color filters (not shown), thereby increasing the anti-reflection rate of the anti-reflection layer 80. Furthermore, the anti-reflection layer 80 of the embodiment is formed into three different thicknesses d7, d8, and d9, and in other embodiments, two or four types may be formed. The above thickness depends on the number of color filters, the total class, and the specifications and performance of the image sensing device to be formed. Furthermore, the relationship between the thickness of the anti-reflection layer 80 of the present embodiment and the color filters (not shown) and the achievable effects are similar to those of the anti-reflection layers 60, 60a and the color filters of the foregoing embodiments. The relationship between the light sheet 70 and the effect that can be achieved will not be described again.

另外,以上所提出之實施例皆以形成背照式互補式電晶體影像感測裝置100及200為例,但本發明亦可應用於前照式(Front Side Illumination,FSI)影像感測器等其他CMOS影像感測器或電荷耦合元件(Charge-Couple Device,CCD)中。更甚者,本發明更可廣泛地應用於採用抗反射層的各種裝置中,例如矽基型液晶顯示器(Liquid Crystal On Silicon,LCOS)或液晶顯示器(liquid crystal display,LCD)等,用以增加抗反射層的抗反射率。 In addition, the embodiments provided above are exemplified by forming the back-illuminated complementary crystal image sensing devices 100 and 200, but the present invention can also be applied to a Front Side Illumination (FSI) image sensor, etc. Other CMOS image sensors or Charge-Couple Devices (CCD). Moreover, the present invention can be widely applied to various devices using an anti-reflection layer, such as a liquid crystal on silicon (LCOS) or a liquid crystal display (LCD), etc., to increase The antireflection rate of the antireflection layer.

綜上所述,本發明提出一種影像感測器及其製程,其形成一抗反射層位於基底與彩色濾光片之間,且該些彩色濾光片之至少二者所對應的抗反射層具有不同的厚度。因此,本發明相較於僅具有單一厚度之抗反射層,可具有更佳之抗反射率,進而能增進影像感測器對特定顏色的光穿透率以及光感測靈敏度。更具體而言,本發明之具有不同厚度之抗反射層具有一頂面以及一底面,其中可藉由將頂面形成為一平坦面以及部分的底面形成為一凹面,或者將底面形成為一平坦面以及部分的頂面形成為一凹面,以形成所需之不同厚度之抗反射層。再者,位於各彩色濾光片正下方之部分的抗反射層之 厚度最佳為通過該彩色濾光片之最大強度之光線的波長的四分之一、四分之三或四分之五,是以本發明藉由將至少一彩色濾光片下方之抗反射層之厚度設計為通過該彩色濾光片之最大強度之光線的波長的四分之一、四分之三或四分之五,以達到較佳之抗反射率。 In summary, the present invention provides an image sensor and a process thereof, which form an anti-reflection layer between an anti-reflection layer and a color filter, and at least two of the color filters correspond to an anti-reflection layer. Have different thicknesses. Therefore, the present invention can have better anti-reflectance than the anti-reflection layer having only a single thickness, thereby improving the light transmittance and light sensing sensitivity of the image sensor for a specific color. More specifically, the anti-reflection layer having different thicknesses of the present invention has a top surface and a bottom surface, wherein the top surface is formed into a flat surface and a portion of the bottom surface is formed as a concave surface, or the bottom surface is formed into a The flat surface and a portion of the top surface are formed as a concave surface to form the desired different thickness of the anti-reflective layer. Furthermore, the anti-reflection layer is located at a portion directly below each color filter Preferably, the thickness is one quarter, three quarters or five quarters of the wavelength of the light passing through the maximum intensity of the color filter, in accordance with the present invention by antireflection of at least one color filter The thickness of the layer is designed to pass through a quarter, three-quarters or five-quarters of the wavelength of the maximum intensity of the color filter to achieve better anti-reflectivity.

以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。 The above are only the preferred embodiments of the present invention, and all changes and modifications made to the scope of the present invention should be within the scope of the present invention.

10‧‧‧隔離結構 10‧‧‧Isolation structure

22、24、26‧‧‧感光二極體 22, 24, 26‧‧‧Photosensitive diodes

30‧‧‧接觸插塞 30‧‧‧Contact plug

40‧‧‧MOS電晶體 40‧‧‧MOS transistor

42‧‧‧閘極 42‧‧‧ gate

44‧‧‧源/汲極 44‧‧‧Source/Bungee

50‧‧‧承載晶圓 50‧‧‧ carrying wafer

60、60’、60a、60b、80‧‧‧抗反射層 60, 60', 60a, 60b, 80‧‧‧ anti-reflection layer

62、64、66‧‧‧部分的抗反射層 62, 64, 66‧‧‧ part of the anti-reflection layer

70‧‧‧彩色濾光片 70‧‧‧Color filters

72‧‧‧藍色濾光片 72‧‧‧Blue filter

74‧‧‧綠色濾光片 74‧‧‧Green Filter

76‧‧‧紅色濾光片 76‧‧‧Red Filter

100、200‧‧‧背照式互補式電晶體影像感測裝置 100,200‧‧‧Back-illuminated complementary crystal image sensing device

110‧‧‧基底 110‧‧‧Base

112、114‧‧‧部分之基底 Base of 112, 114‧‧‧

120‧‧‧介電層 120‧‧‧ dielectric layer

130‧‧‧多層的金屬層間介電層 130‧‧‧Multilayer metal interlayer dielectric layer

132、134、136、138‧‧‧圖案化的介電層 132, 134, 136, 138‧‧‧ patterned dielectric layers

140‧‧‧多層的金屬層 140‧‧‧Multilayer metal layer

142、144、146‧‧‧圖案化的金屬層 142, 144, 146‧‧‧ patterned metal layers

150‧‧‧絕緣層 150‧‧‧Insulation

160‧‧‧摻雜層 160‧‧‧Doped layer

d1、d2、d3、d4、d5、d6、d7、d8、d9‧‧‧厚度 D1, d2, d3, d4, d5, d6, d7, d8, d9‧‧ thickness

K1、K2、K3、K4‧‧‧圖案化的光阻層 K1, K2, K3, K4‧‧‧ patterned photoresist layers

P1‧‧‧摻雜製程 P1‧‧‧ doping process

P2、P3、P4、P5‧‧‧蝕刻製程 P2, P3, P4, P5‧‧‧ etching process

R1、R2‧‧‧凹槽 R1, R2‧‧‧ grooves

S1‧‧‧正面 S1‧‧ positive

S2‧‧‧背面 S2‧‧‧Back

S3、S5‧‧‧頂面 S3, S5‧‧‧ top surface

S4、S6‧‧‧底面 S4, S6‧‧‧ bottom

第1-5圖係繪示本發明第一實施例之影像感測製程之剖面示意圖。 Figure 1-5 is a cross-sectional view showing the image sensing process of the first embodiment of the present invention.

第6-8圖係繪示本發明第二實施例之影像感測製程之剖面示意圖。 6-8 are schematic cross-sectional views showing an image sensing process according to a second embodiment of the present invention.

第9-10圖係繪示本發明第三實施例之影像感測製程之剖面示意圖。 9-10 are schematic cross-sectional views showing an image sensing process according to a third embodiment of the present invention.

第11-12圖係繪示本發明第四實施例之影像感測製程之剖面示意圖。 11-12 are schematic cross-sectional views showing an image sensing process according to a fourth embodiment of the present invention.

10‧‧‧隔離結構 10‧‧‧Isolation structure

22、24、26‧‧‧感光二極體 22, 24, 26‧‧‧Photosensitive diodes

30‧‧‧接觸插塞 30‧‧‧Contact plug

40‧‧‧MOS電晶體 40‧‧‧MOS transistor

42‧‧‧閘極 42‧‧‧ gate

44‧‧‧源/汲極 44‧‧‧Source/Bungee

50‧‧‧承載晶圓 50‧‧‧ carrying wafer

60a‧‧‧抗反射層 60a‧‧‧Anti-reflective layer

62、64、66‧‧‧部分的抗反射層 62, 64, 66‧‧‧ part of the anti-reflection layer

70‧‧‧彩色濾光片 70‧‧‧Color filters

72‧‧‧藍色濾光片 72‧‧‧Blue filter

74‧‧‧綠色濾光片 74‧‧‧Green Filter

76‧‧‧紅色濾光片 76‧‧‧Red Filter

100‧‧‧背照式互補式電晶體影像感測裝置 100‧‧‧Back-illuminated complementary crystal image sensing device

110‧‧‧基底 110‧‧‧Base

120‧‧‧介電層 120‧‧‧ dielectric layer

130‧‧‧多層的金屬層間介電層 130‧‧‧Multilayer metal interlayer dielectric layer

132、134、136、138‧‧‧圖案化的介電層 132, 134, 136, 138‧‧‧ patterned dielectric layers

140‧‧‧多層的金屬層 140‧‧‧Multilayer metal layer

142、144、146‧‧‧圖案化的金屬層 142, 144, 146‧‧‧ patterned metal layers

150‧‧‧絕緣層 150‧‧‧Insulation

160‧‧‧摻雜層 160‧‧‧Doped layer

d1、d2、d3‧‧‧厚度 D1, d2, d3‧‧ thickness

S1‧‧‧正面 S1‧‧ positive

S2‧‧‧背面 S2‧‧‧Back

S3‧‧‧頂面 S3‧‧‧ top surface

S4‧‧‧底面 S4‧‧‧ bottom

Claims (20)

一種影像感測器,包含:複數個彩色濾光片位於一基底上;以及一抗反射層位於該基底與該些彩色濾光片之間並直接接觸該些彩色濾光片,該些彩色濾光片之至少二者所對應的該抗反射層具有不同的厚度,且該些彩色濾光片的底面不共平面。 An image sensor includes: a plurality of color filters on a substrate; and an anti-reflection layer between the substrate and the color filters and directly contacting the color filters, the color filters The anti-reflection layers corresponding to at least two of the light sheets have different thicknesses, and the bottom surfaces of the color filters are not coplanar. 如申請專利範圍第1項所述之影像感測器,其中該抗反射層包含一氮化矽(SiN)層、一碳化矽(SiC)層、一碳氮化矽(SiCN)層、一氮氧化矽(SiON)層。 The image sensor according to claim 1, wherein the anti-reflection layer comprises a tantalum nitride (SiN) layer, a tantalum carbide (SiC) layer, a tantalum carbonitride (SiCN) layer, and a nitrogen. A layer of yttrium oxide (SiON). 如申請專利範圍第1項所述之影像感測器,其中該抗反射層具有一頂面以及一底面。 The image sensor of claim 1, wherein the anti-reflection layer has a top surface and a bottom surface. 如申請專利範圍第3項所述之影像感測器,其中該抗反射層的該頂面為一平坦面,而部分該抗反射層的該底面為一凹面,以使該抗反射層具有不同的厚度。 The image sensor of claim 3, wherein the top surface of the anti-reflection layer is a flat surface, and a portion of the bottom surface of the anti-reflection layer is a concave surface to make the anti-reflection layer different thickness of. 如申請專利範圍第3項所述之影像感測器,其中該抗反射層的該底面為一平坦面,而部分該抗反射層的該頂面為一凹面,以使該抗反射層具有不同的厚度。 The image sensor of claim 3, wherein the bottom surface of the anti-reflection layer is a flat surface, and a portion of the top surface of the anti-reflection layer is a concave surface to make the anti-reflection layer different. thickness of. 如申請專利範圍第1項所述之影像感測器,其中對應各該彩色濾 光片之部分的該抗反射層分別具有一厚度,其為可通過相對應之該彩色濾光片之最大強度的光之波長的四分之一、四分之三或四分之五。 The image sensor according to claim 1, wherein the color filter is corresponding to each The antireflection layer of a portion of the light sheet has a thickness which is one quarter, three quarters or five quarters of the wavelength of light that can pass the maximum intensity of the corresponding color filter. 如申請專利範圍第6項所述之影像感測器,其中該些彩色濾光片包含一藍色濾光片、一綠色濾光片以及一紅色濾光片。 The image sensor of claim 6, wherein the color filters comprise a blue filter, a green filter, and a red filter. 如申請專利範圍第7項所述之影像感測器,其中位於該藍色濾光片正下方之部分的該抗反射層的厚度為藍光波長的四分之一,而位於該綠色濾光片以及紅色濾光片正下方之部分的該抗反射層的厚度為介於綠光波長與紅光波長之間的波長的四分之一。 The image sensor of claim 7, wherein the anti-reflection layer at a portion directly under the blue filter has a thickness of one quarter of a blue wavelength and is located at the green filter. And the thickness of the anti-reflection layer at a portion directly under the red color filter is one quarter of a wavelength between the green light wavelength and the red light wavelength. 如申請專利範圍第8項所述之影像感測器,其中位於該綠色濾光片正下方之該抗反射層的厚度為綠光波長的四分之一,而位於該紅色濾光片下方之該抗反射層的厚度為紅光波長的四分之一。 The image sensor of claim 8, wherein the anti-reflection layer directly under the green filter has a thickness of one quarter of a green light wavelength and is located below the red color filter. The antireflection layer has a thickness of one quarter of the wavelength of the red light. 如申請專利範圍第1項所述之影像感測器,其中該影像感測器包含一CMOS影像感測器。 The image sensor of claim 1, wherein the image sensor comprises a CMOS image sensor. 如申請專利範圍第1項所述之影像感測器,其中該CMOS影像感測器包含一背照式(Back Side Illumination,BSI)影像感測器或一前照式(Front Side Illumination,FSI)影像感測器。 The image sensor of claim 1, wherein the CMOS image sensor comprises a Back Side Illumination (BSI) image sensor or a Front Side Illumination (FSI) Image sensor. 一種影像感測製程,包含有:形成一抗反射層於一基底上;以及形成複數個彩色濾光片直接於該抗反射層上並接觸該抗反射層,其中至少二該彩色濾光片之正下方之部分的該抗反射層的厚度不同,且該些彩色濾光片的底面不共平面。 An image sensing process includes: forming an anti-reflection layer on a substrate; and forming a plurality of color filters directly on the anti-reflection layer and contacting the anti-reflection layer, wherein at least two of the color filters are The thickness of the anti-reflection layer in the portion directly below is different, and the bottom surfaces of the color filters are not coplanar. 如申請專利範圍第12項所述之影像感測製程,其中形成該抗反射層的步驟,包含:覆蓋一抗反射層於該基底上;以及蝕刻部分的該抗反射層,俾使該抗反射層具有至少二種厚度。 The image sensing process of claim 12, wherein the step of forming the anti-reflective layer comprises: covering an anti-reflective layer on the substrate; and etching the anti-reflective layer of the portion to make the anti-reflection The layers have at least two thicknesses. 如申請專利範圍第13項所述之影像感測製程,其中蝕刻部分的該抗反射層包含一次或複數次的蝕刻製程,以形成該抗反射層,其具有二種或二種以上之厚度。 The image sensing process of claim 13, wherein the anti-reflective layer of the etched portion comprises one or more etching processes to form the anti-reflective layer having two or more thicknesses. 如申請專利範圍第12項所述之影像感測製程,其中形成該抗反射層的步驟,包含:蝕刻部分的該基底,以形成至少一凹槽於該基底中;以及覆蓋一抗反射層於該基底上。 The image sensing process of claim 12, wherein the step of forming the anti-reflective layer comprises: etching a portion of the substrate to form at least one recess in the substrate; and covering an anti-reflective layer On the substrate. 如申請專利範圍第12項所述之影像感測製程,其中該抗反射層包含一氮化矽(SiN)層、一碳化矽(SiC)層、一碳氮化矽(SiCN)層、一氮氧化矽(SiON)層。 The image sensing process of claim 12, wherein the anti-reflective layer comprises a tantalum nitride (SiN) layer, a tantalum carbide (SiC) layer, a tantalum carbonitride (SiCN) layer, and a nitrogen. A layer of yttrium oxide (SiON). 如申請專利範圍第12項所述之影像感測製程,其中至少一該彩色濾光片正下方之部分的該抗反射層具有一厚度,該厚度為可通過相對應之該彩色濾光片之最大強度的光之波長的四分之一、四分之三或四分之五。 The image sensing process of claim 12, wherein at least one portion of the anti-reflection layer directly under the color filter has a thickness, and the thickness is corresponding to the color filter. One-quarter, three-quarters, or five-quarters the wavelength of the light of maximum intensity. 如申請專利範圍第17項所述之影像感測製程,其中該些彩色濾光片包含一藍色濾光片、一綠色濾光片以及一紅色濾光片。 The image sensing process of claim 17, wherein the color filters comprise a blue filter, a green filter, and a red filter. 如申請專利範圍第18項所述之影像感測製程,其中位於該藍色濾光片正下方之部分的該抗反射層的厚度為藍光波長的四分之一,而位於該綠色濾光片以及紅色濾光片正下方之部分的該抗反射層的厚度為介於綠光波長與紅光波長之間的波長的四分之一。 The image sensing process of claim 18, wherein the anti-reflection layer at a portion directly under the blue filter has a thickness of one quarter of a blue wavelength and is located at the green filter. And the thickness of the anti-reflection layer at a portion directly under the red color filter is one quarter of a wavelength between the green light wavelength and the red light wavelength. 如申請專利範圍第19項所述之影像感測製程,其中位於該綠色濾光片正下方之部分的該抗反射層的厚度為綠光波長的四分之一,以及位於該紅色濾光片正下方之部分的該抗反射層的厚度為紅光波長的四分之一。 The image sensing process of claim 19, wherein the anti-reflection layer at a portion directly under the green filter has a thickness of one quarter of a green wavelength and is located at the red filter. The thickness of the anti-reflection layer in the portion directly below is one quarter of the wavelength of the red light.
TW101144730A 2012-11-29 2012-11-29 Image sensor and process thereof TWI595636B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW101144730A TWI595636B (en) 2012-11-29 2012-11-29 Image sensor and process thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW101144730A TWI595636B (en) 2012-11-29 2012-11-29 Image sensor and process thereof

Publications (2)

Publication Number Publication Date
TW201421656A TW201421656A (en) 2014-06-01
TWI595636B true TWI595636B (en) 2017-08-11

Family

ID=51393538

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101144730A TWI595636B (en) 2012-11-29 2012-11-29 Image sensor and process thereof

Country Status (1)

Country Link
TW (1) TWI595636B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9570494B1 (en) * 2015-09-29 2017-02-14 Semiconductor Components Industries, Llc Method for forming a semiconductor image sensor device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7772664B2 (en) * 2004-05-14 2010-08-10 Woo Sig Min CMOS image sensor
US20110108705A1 (en) * 2009-11-06 2011-05-12 Sony Corporation Solid-state imaging device, manufacturing method and designing method thereof, and electronic device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7772664B2 (en) * 2004-05-14 2010-08-10 Woo Sig Min CMOS image sensor
US20110108705A1 (en) * 2009-11-06 2011-05-12 Sony Corporation Solid-state imaging device, manufacturing method and designing method thereof, and electronic device

Also Published As

Publication number Publication date
TW201421656A (en) 2014-06-01

Similar Documents

Publication Publication Date Title
US11658196B2 (en) Semiconductor image sensor
US8779484B2 (en) Image sensor and process thereof
USRE46123E1 (en) Solid-state image sensor and method of manufacturing the same
US7541212B2 (en) Image sensor including an anti-reflection pattern and method of manufacturing the same
TWI323035B (en) Backside illuminated image sensor
US7504681B2 (en) Image sensor and method for fabricating the same
US7683408B2 (en) Image sensor
US20080096303A1 (en) Fabrication method of image sensing device
US20090090944A1 (en) Image Sensor and Method of Fabricating the Same
US7875488B2 (en) Method of fabricating image sensor having inner lens
US8951826B2 (en) Method for increasing photodiode full well capacity
US20090090989A1 (en) Image Sensor and Method of Manufacturing the Same
KR20190006764A (en) Backside illuminated image sensor and method of manufacturing the same
US20140124888A1 (en) Image Sensor and Method for Manufacturing the Same
TWI595636B (en) Image sensor and process thereof
KR100922548B1 (en) Method for manufacturing CMOS Image Sendor
KR101380311B1 (en) An image sensor and a method of manufacturing the same
KR100894390B1 (en) Image Sensor and Method for Manufacturing thereof
KR20030037295A (en) Image sensor and fabricating method of the same
TWI669811B (en) Image sensors with light pipe-alike
TWI538179B (en) Backside illumination (bsi) cmos image sensor process
KR20060077135A (en) Cmos image sensor with shortened optical path and method for fabrication thereof
US20100164031A1 (en) Image sensor and manufacturing method thereof
TWI463646B (en) Backside illuminated image sensor
KR100897814B1 (en) Semiconductor device and method of fabricating the same