TWI593241B - Power compensation in multi-carrier transmitters - Google Patents

Power compensation in multi-carrier transmitters Download PDF

Info

Publication number
TWI593241B
TWI593241B TW105105507A TW105105507A TWI593241B TW I593241 B TWI593241 B TW I593241B TW 105105507 A TW105105507 A TW 105105507A TW 105105507 A TW105105507 A TW 105105507A TW I593241 B TWI593241 B TW I593241B
Authority
TW
Taiwan
Prior art keywords
power
carrier
scaling factor
carriers
transmitter
Prior art date
Application number
TW105105507A
Other languages
Chinese (zh)
Other versions
TW201642593A (en
Inventor
馬吉德 布魯利恩
桑吉夫 塔法西亞
托比斯 史考蘭
Original Assignee
英特爾智財公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 英特爾智財公司 filed Critical 英特爾智財公司
Publication of TW201642593A publication Critical patent/TW201642593A/en
Application granted granted Critical
Publication of TWI593241B publication Critical patent/TWI593241B/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0215Traffic management, e.g. flow control or congestion control based on user or device properties, e.g. MTC-capable devices
    • H04W28/0221Traffic management, e.g. flow control or congestion control based on user or device properties, e.g. MTC-capable devices power availability or consumption
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/34TPC management, i.e. sharing limited amount of power among users or channels or data types, e.g. cell loading
    • H04W52/346TPC management, i.e. sharing limited amount of power among users or channels or data types, e.g. cell loading distributing total power among users or channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/367Power values between minimum and maximum limits, e.g. dynamic range
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/52TPC using AGC [Automatic Gain Control] circuits or amplifiers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/362Aspects of the step size

Description

多載波發射機中的功率補償 Power compensation in multi-carrier transmitters

本發明之揭露係大致有關多載波發射機(multicarrier transmitter)中之功率補償,且尤係有關多載波發射機中之載波功率不平衡及總載波功率之補償。 The disclosure of the present invention is generally related to power compensation in a multicarrier transmitter, and more particularly to compensation of carrier power imbalance and total carrier power in a multi-carrier transmitter.

在諸如根據第三代行動通訊合作計劃(3rd Generation Partnership Project;簡稱3GPP)的雙載波加強型專屬通道(Enhanced Dedicated Channel;簡稱E-DCH)標準(也被稱為雙載波高速上行鏈路封包存取(Dual Carrier High Speed Uplink Packet Access;簡稱DC-HSUPA)標準)的那些多載波發射機等的多載波發射機中,如果多個載波的功率總和被輸入到一單一功率放大器,則射頻電路應被設計成容許特定範圍的載波功率不平衡。能夠處理多個載波間之寬範圍的載波功率不平衡之設計是不切實際的且昂貴的。另一方面,只能適應中等範圍的載波功率不平衡之設計可能導致將降低信號傳輸品質之不希望得到的帶內干擾(in-band interference)。 In the Dual-Carrier Enhanced Dedicated Channel (E-DCH) standard, such as the 3rd Generation Partnership Project (3GPP) (also known as dual-carrier high-speed uplink packet storage) In a multi-carrier transmitter such as a multi-carrier transmitter (Dual Carrier High Speed Uplink Packet Access; DC-HSUPA), if the sum of the powers of the multiple carriers is input to a single power amplifier, the RF circuit should It is designed to tolerate a specific range of carrier power imbalances. The ability to handle a wide range of carrier power imbalances between multiple carriers is impractical and expensive. On the other hand, designs that can only accommodate mid-range carrier power imbalances may result in undesirable in-band interference that would degrade signal transmission quality.

200‧‧‧發射機 200‧‧‧Transmitter

210‧‧‧基頻 210‧‧‧ fundamental frequency

220‧‧‧射頻/中頻 220‧‧‧RF/IF

230‧‧‧天線 230‧‧‧Antenna

212‧‧‧移頻器 212‧‧‧ Frequency shifter

214‧‧‧增益控制器 214‧‧‧gain controller

216‧‧‧定位器 216‧‧‧ Locator

218‧‧‧比例因數估計器 218‧‧‧Scale Factor Estimator

2122‧‧‧第一移頻器 2122‧‧‧First frequency shifter

2124‧‧‧第二移頻器 2124‧‧‧Second frequency shifter

2142‧‧‧第一增益/衰減級 2142‧‧‧First gain/attenuation stage

2144‧‧‧第二增益/衰減級 2144‧‧‧second gain/attenuation stage

222‧‧‧組合器 222‧‧‧ combiner

224‧‧‧升頻器 224‧‧‧Upconverter

226‧‧‧放大器 226‧‧Amplifier

600‧‧‧無線通訊系統 600‧‧‧Wireless communication system

610‧‧‧第一無線通訊裝置 610‧‧‧First wireless communication device

620‧‧‧第二無線通訊裝置 620‧‧‧Second wireless communication device

第1圖示出功率相對於第一及第二載波的頻率之一圖形。 Figure 1 shows a graph of the power versus the frequency of the first and second carriers.

第2圖示出用於發射一通訊信號的一發射機之一示意圖。 Figure 2 shows a schematic diagram of a transmitter for transmitting a communication signal.

第3A圖示出較強載波功率比例相對於較弱載波功率比例之一圖形,圖中示出基於一最大總功率需求的三個例子。 Figure 3A shows a graph of the ratio of the stronger carrier power to the ratio of the weaker carrier power, showing three examples based on a maximum total power demand.

第3B圖示出較強載波功率比例相對於較弱載波功率比例之一圖形,圖中示出基於一最大功率不平衡需求的兩個例子。 Figure 3B shows a graph of the ratio of the stronger carrier power to the weaker carrier power, and two examples based on a maximum power imbalance requirement are shown.

第4A圖示出較強載波功率比例相對於較弱載波功率比例之一圖形,圖中示出基於一最大總功率需求的一個例子。 Figure 4A shows a graph of the ratio of the stronger carrier power to the ratio of the weaker carrier power, and an example based on a maximum total power demand is shown.

第4B圖示出較強載波功率比例相對於較弱載波功率比例之一圖形,圖中示出基於一最大功率不平衡需求的一個例子。 Figure 4B shows a graph of the ratio of the stronger carrier power to the ratio of the weaker carrier power, and an example based on a maximum power imbalance requirement is shown.

第5圖示出較強載波功率比例相對於較弱載波功率比例之一圖形,圖中示出基於一最大總功率需求及一最大功率不平衡需求的一個例子。 Figure 5 shows a graph of the ratio of the stronger carrier power to the weaker carrier power, showing an example based on a maximum total power demand and a maximum power imbalance requirement.

第6圖示出一無線通訊系統之一示意圖。 Figure 6 shows a schematic diagram of a wireless communication system.

第7圖示出用於發射一通訊信號的一方法之一流程圖。 Figure 7 shows a flow chart of a method for transmitting a communication signal.

【發明內容及實施方式】 SUMMARY OF THE INVENTION AND EMBODIMENT

本發明之揭露係有關在不犧牲發射機及系統效能的情形下施加到實體層上的用於將載波功率不平衡及總載波功率同時保持在可接受的範圍內之多載波傳輸補償。 The disclosure of the present invention relates to multi-carrier transmission compensation applied to the physical layer for maintaining carrier power imbalance and total carrier power simultaneously within an acceptable range without sacrificing transmitter and system performance.

第1圖示出多載波傳輸中之第一及第二載波的功率相對於頻率之圖形100。該等圖形係用於解說之目的,且並不意味著在數學上是精確的。 Figure 1 shows a graph 100 of power versus frequency for the first and second carriers in a multi-carrier transmission. These graphics are for illustrative purposes and are not meant to be mathematically accurate.

"載波"是一種用於傳輸資訊之頻率。通常在位於低頻率且無法被用於傳輸之基頻上產生資訊。因而將基頻信號之中心頻率增加到用於傳輸之較高頻率。此種較高頻率被稱為載波。在多載波傳輸中,如第1圖中針對兩個載波的例子而示出的,將一組基頻資訊增加為一第一載波,且將另一組基頻資訊增加為一第二載波...等等。可平行地傳輸分別在該第一及第二載波上的這兩組資訊。本發明之揭露不限於具有兩個載波之多載波傳輸,而是可包括適用於預期用途之任何數目的載波。 "Carrier" is a frequency used to transmit information. Information is typically generated at a fundamental frequency that is low frequency and cannot be used for transmission. The center frequency of the baseband signal is thus increased to the higher frequency used for transmission. This higher frequency is called a carrier. In multi-carrier transmission, as shown in the example of FIG. 1 for two carriers, a set of baseband information is added to a first carrier, and another set of baseband information is added to a second carrier. ..and many more. The two sets of information on the first and second carriers, respectively, may be transmitted in parallel. The disclosure of the present invention is not limited to multi-carrier transmission with two carriers, but may include any number of carriers suitable for the intended use.

例如,DC-HSUPA將該第一及第二載波組合為一較大的資料傳輸,且該較大的資料傳輸具有橫跨該等兩個載波上的上行流量之結合排程(joint scheduling)。DC-HSUPA可讓行動裝置利用任一載波上的可用瞬間容量。其效益為顯著增加了被傳輸的資料量,因而導致較高的系統容量。 For example, the DC-HSUPA combines the first and second carriers into a larger data transmission, and the larger data transmission has a joint scheduling of upstream traffic across the two carriers. DC-HSUPA allows mobile devices to utilize the available instantaneous capacity on any carrier. The benefit is a significant increase in the amount of data being transmitted, resulting in higher system capacity.

理想情況下,載波上的傳輸被限制在特定的頻率範 圍,不會導致對鄰近頻帶/載波的干擾。然而,實際上,如第1圖中之陰影框所示,必然有對鄰近頻帶或載波的干擾。該圖式中示出的"帶內干擾"是會影響到相同發射機的鄰近載波之干擾,其係不同於會影響到不同發射機的鄰近載波的干擾之"帶外干擾"("out-of-band interference")。 Ideally, the transmission on the carrier is limited to a specific frequency range. It does not cause interference to adjacent bands/carriers. However, in reality, as indicated by the shaded box in Fig. 1, there must be interference with adjacent frequency bands or carriers. The "in-band interference" shown in this figure is the interference that affects the adjacent carriers of the same transmitter, which is different from the "out-of-band interference" that affects the interference of adjacent carriers of different transmitters ("out- Of-band interference").

第1圖示出該第二載波的功率類似於該第一載波的功率之情況。在此種情況中,干擾是不顯著的,且可被忽略。另一方面,第1圖示出該第一載波的功率相對低於該第二載波的功率之情況。在此種情況中,較強載波對較弱載波的干擾位準是顯著的。 Figure 1 shows the case where the power of the second carrier is similar to the power of the first carrier. In this case, the interference is not significant and can be ignored. On the other hand, Fig. 1 shows the case where the power of the first carrier is relatively lower than the power of the second carrier. In this case, the interference level of the stronger carrier to the weaker carrier is significant.

如將於下文中更詳細說明的,本發明之揭露係有關使用下列兩個參數調整多載波發射機中之載波功率:(1)最大功率不平衡;以及(2)最大總傳輸功率。 As will be explained in more detail below, the disclosure of the present invention relates to adjusting carrier power in a multi-carrier transmitter using two parameters: (1) maximum power imbalance; and (2) maximum total transmission power.

最大容許功率不平衡Pimb,max是較強載波功率與較弱載波功率之比率,且係根據可容許的最大帶內干擾位準。由設計決定該值。 The maximum allowable power imbalance P imb,max is the ratio of the stronger carrier power to the weaker carrier power and is based on the maximum allowable in-band interference level. This value is determined by the design.

最大載波功率PT,max是可被用於信號傳輸之最大總功率,且由發射機功率能力(power capability)決定最大載波功率PT,max。第1圖中以上方的水平線示出該值。"授與"係有關特定載波於特定時間上的資料傳輸之最大可用功率。例如,在DC-HSUPA中,媒體存取控制(MAC)層將該第一及第二載波之服務授與以及該第一載波之非排程授與用於決定傳輸可用功率的上限。當一載波上的可用資訊量小於對應的功率上限指示的量時,該載波上的可用功 率之一部分仍然未被使用。MAC層可利用未被使用的功率預算(power budget),以便藉由實體層上應用的一演算法而減少功率不平衡。 The maximum carrier power P T, max is the maximum total power that can be used for signal transmission, the carrier and determining the maximum power P T, max power capability of the transmitter (power capability). This value is shown in the upper horizontal line in Fig. 1. "Granting" is the maximum available power for data transmission at a particular time for a particular carrier. For example, in DC-HSUPA, the Medium Access Control (MAC) layer grants the service grant of the first and second carriers and the non-scheduled grant of the first carrier to determine the upper limit of the available power for transmission. When the amount of information available on a carrier is less than the amount indicated by the corresponding power cap, a portion of the available power on that carrier is still unused. The MAC layer can utilize an unused power budget to reduce power imbalance by an algorithm applied on the physical layer.

第2圖示出用於發射至少有一第一載波及一第二載波的一通訊信號的一發射機200之一示意圖。可根據3GPP DC-HSUPA標準而設計該發射機,但是本發明之揭露不限於這方面。可根據任何多載波標準而設計發射機200。 Figure 2 shows a schematic diagram of a transmitter 200 for transmitting a communication signal having at least a first carrier and a second carrier. The transmitter can be designed in accordance with the 3GPP DC-HSUPA standard, but the disclosure of the present invention is not limited in this respect. Transmitter 200 can be designed in accordance with any multi-carrier standard.

發射機200包含一基頻210、一射頻(Radio Frequency;簡稱RF)/中頻(Intermediate Frequency;簡稱IF)220、以及一天線230。 The transmitter 200 includes a baseband 210, a radio frequency (RF)/intermediate frequency (IF) 220, and an antenna 230.

基頻210包含一移頻器212、一增益控制器214、一定位器216、以及一比例因數估計器218。藉由概述之方式,移頻器212被配置成將兩個基頻資料流SL、SH自基頻移到較高頻率,定位器216被配置成根據功率調整且以與最大及最小可用功率有關之方式而在一圖上決定對應於無補償載波功率的一功率調整圖上的一點相對於與每一載波可用的最大及最小功率對應的界限之位置,比例因數估計器218被配置成估計該第一及第二載波的功率比例因數x、y,且增益控制器214被配置成根據該等功率比例因數x、y而調整被移頻後的第一及第二載波之功率。下文中將提供更詳細的解說。 The baseband 210 includes a frequency shifter 212, a gain controller 214, a locator 216, and a scaling factor estimator 218. By way of overview, the frequency shifter 212 is configured to shift the two baseband data streams S L , S H from the base frequency to a higher frequency, and the locator 216 is configured to be adjusted according to power and to be available with maximum and minimum In a power-dependent manner, a position on a map of a power adjustment map corresponding to uncompensated carrier power is determined on a map relative to a limit corresponding to the maximum and minimum power available to each carrier, and the scaling factor estimator 218 is configured to The power scaling factors x, y of the first and second carriers are estimated, and the gain controller 214 is configured to adjust the power of the shifted first and second carriers in accordance with the equal power scaling factors x, y. A more detailed explanation will be provided below.

移頻器212包含一第一移頻器2122及一第二移頻器2124。第一移頻器2122被配置成接收該基頻信號SL作為輸入且將該信號移動一頻率量-Δω。第二移頻器2124被配 置成接收該基頻信號SH作為輸入且將該信號移動一頻率量+Δω。該等基頻信號SL及SH因而在直流電(0頻率)的任一側移動了一距離Δω。基頻信號SL及SH包含將要被發射的資訊,且該資訊可能是語音、視訊、資料等。 The frequency shifter 212 includes a first frequency shifter 2122 and a second frequency shifter 2124. The first frequency shifter 2122 is configured to receive the baseband signal S L as an input and to shift the signal by a frequency amount -Δω. The second frequency shifter 2124 is configured to receive the baseband signal SH as an input and to shift the signal by a frequency amount + Δω. The fundamental frequency signals S L and S H are thus moved by a distance Δω on either side of the direct current (0 frequency). The baseband signals S L and S H contain information to be transmitted, and the information may be voice, video, data, and the like.

如將於下文中以與第3A、3B、4A、4B、及5圖有關之方式說明的,定位器216被配置成以與對應於每一載波可用的最大及最小功率的界限有關之方式決定對應於無補償載波功率的一功率調整圖上的一點之位置。在這些圖式中,x及y軸是功率比例因數,不是實際功率。定位器216被配置成接收一較弱載波功率PL、一較強載波功率PH、該較弱載波功率的最小比例xmin、該較弱載波功率的最大比例xmax、該較強載波功率的最小比例ymin、以及該較強載波功率的最大比例ymax作為輸入。在DC-HSUPA的情況下,由較高層設定xmin、xmax、ymin、及ymax。該較弱載波功率PL以及該較強載波功率PH分別是該第一及第二信號的功率,且即時決定該等功率。 As will be explained below in relation to Figures 3A, 3B, 4A, 4B, and 5, the locator 216 is configured to be determined in a manner related to the limits of the maximum and minimum power available for each carrier. A position corresponding to a point on the power adjustment map of the uncompensated carrier power. In these figures, the x and y axes are power scaling factors, not actual power. The locator 216 is configured to receive a weaker carrier power P L , a stronger carrier power P H , a minimum ratio x min of the weaker carrier power, a maximum ratio x max of the weaker carrier power, the stronger carrier power The minimum ratio y min and the maximum ratio y max of the stronger carrier power are taken as inputs. In the case of DC-HSUPA, x min , x max , y min , and y max are set by the higher layers. The weaker carrier power P L and the stronger carrier power P H are the powers of the first and second signals, respectively, and the power is determined immediately.

位於實體層中之比例因數估計器218被配置成根據下列方程式而估計以避免超過最大發射機功率PT,max及最大功率不平衡Pimb,max之功率比例因數:yx.PL/PH+PT,max (方程式1a-總載波功率需求) The scaling factor estimator 218 located in the physical layer is configured to be estimated according to the following equation to avoid exceeding the maximum transmitter power P T,max and the maximum power imbalance P imb,max power scaling factor: y x. P L /P H +P T,max (Equation 1a - Total carrier power requirement)

總載波功率=x.PL+y.PH (方程式1b) Total carrier power = x. P L +y. P H (Equation 1b)

yx.Pimb,max.PL/PH,以及 (方程式2a-載波功率不平衡需求) 載波功率不平衡=y.PH/x.PL (方程式2b) y x. P imb,max . P L /P H , and (Equation 2a - Carrier Power Unbalance Demand) Carrier Power Imbalance = y. P H /x. P L (Equation 2b)

其中PL是功率較低的第一或第二載波之功率,且PH 是功率較高的第一或第二載波之功率,PT,max是最大傳輸功率,Pimb,max是最大功率不平衡,x是應用於該較弱載波的比例,且y是應用於該較強載波的比例。 Where P L is the power of the first or second carrier with lower power, and P H is the power of the first or second carrier with higher power, P T,max is the maximum transmission power, and P imb,max is the maximum power Unbalanced, x is the ratio applied to the weaker carrier, and y is the ratio applied to the stronger carrier.

方程式1a被用於確保兩個載波的比例功率的總和(x.PL+y.PH)之總功率不大於最大傳輸功率PT,max。最初,在資料傳輸之前,被用於決定PL及PH的值之資訊可能不是精確的。當更接近傳輸時間時,決定該等兩個載波的功率之總和是否超過該最大容許傳輸功率PT,max。如果該總和並未超過該最大容許傳輸功率PT,max,則該等兩個載波功率(PL及PH)之比例因數(x及y)保持等於1。另一方面,如果該總和超過該最大容許傳輸功率PT,max,則比例因數x及y被用於按比例減少該等載波功率(其中x被用於PL,且y被用於PH),以便將總載波功率減少到xPL+yPHEquation 1a is used to ensure that the sum of the proportional powers of the two carriers (x.P L +y.P H ) is not greater than the maximum transmission power P T,max . Initially, the information used to determine the values of P L and P H may not be accurate prior to data transmission. When closer to the transmission time, it is determined whether the sum of the powers of the two carriers exceeds the maximum allowable transmission power P T,max . If the sum does not exceed the maximum allowable transmission power P T,max , the scaling factors (x and y) of the two carrier powers (P L and P H ) remain equal to one. On the other hand, if the sum exceeds the maximum allowable transmission power P T,max , the scaling factors x and y are used to scale down the carrier power (where x is used for P L and y is used for P H ) to reduce the total carrier power to xP L +yP H .

方程式2a被用於確保該等兩個載波的比例功率間之差額之功率不平衡不超過最大容許載波不平衡Pimb,maxEquation 2a is used to ensure that the power imbalance between the proportional powers of the two carriers does not exceed the maximum allowable carrier imbalance P imb,max .

最初,在應用功率比例之前,x的值等於1,且在xmin至xmax的範圍內,且同樣地,y的值等於1,且在ymin至ymax的範圍內。由較高層設定這些值。如我們所知道的,存在不同的傳輸控制層。第一層是代表硬體的實體層。在該實體層之上的層包括為一控制層之MAC層、以及與網路通訊以便將資訊傳輸到較低層(MAC層及實體層)之網路層。由授與決定xmax及ymax。授與是每一載波上的最大功率傳輸。例如,在DC-HSUPA中,自網路接 收一授與。 Initially, before applying the power ratio, the value of x is equal to 1, and is in the range of x min to x max , and as such, the value of y is equal to 1, and is in the range of y min to y max . These values are set by the higher layers. As we know, there are different transmission control layers. The first layer is the physical layer that represents the hardware. The layer above the physical layer includes a MAC layer that is a control layer and a network layer that communicates with the network to transmit information to lower layers (MAC layer and physical layer). The x max and y max are determined by the grant. Grant is the maximum power transfer on each carrier. For example, in DC-HSUPA, a grant is received from the network.

也位於實體層之增益控制器214包含一第一增益/衰減級2142及一第二增益/衰減級2144。該第一級2142被配置成將該較弱載波(亦即,頻移基頻信號SL)放大/衰減x.PL/PT。該第二級2144被配置成將該較強載波(亦即,頻移基頻信號SH)放大/衰減y.PL/PT。x是應用於該較弱載波之比例,y是應用於該較強載波之比例,PL是該較弱載波功率,PH是該較強載波功率,且PT是該較弱及較強載波的總功率。 Gain controller 214, also located in the physical layer, includes a first gain/attenuation stage 2142 and a second gain/attenuation stage 2144. The first stage 2142 is configured to amplify/attenuate the weaker carrier (ie, the frequency shifted baseband signal S L ). PL/P T . The second stage 2144 is configured to amplify/attenuate the stronger carrier (ie, the frequency shifted baseband signal S H ). P L /P T . x is the ratio applied to the weaker carrier, y is the ratio applied to the stronger carrier, P L is the weaker carrier power, P H is the stronger carrier power, and P T is the weaker and stronger The total power of the carrier.

在傳輸通訊信號之前,先執行載波功率調整。可於需要時執行這些調整;在DC-HSUPA的例子中係針對每一時槽執行這些調整,但是本發明之揭露不限於這方面。可週期性地或非週期性地執行這些調整。傳輸及接收被分為一些係為訊框的時間單位。在DC-HSUPA的例子中,一訊框是10毫秒。一訊框被細分為一些時槽,且針對DC-HSUPA,一訊框內有15個時槽。針對DC-HSUPA的例子,逐個時槽執行這些計算。 Perform carrier power adjustment before transmitting the communication signal. These adjustments can be performed as needed; these adjustments are performed for each time slot in the DC-HSUPA example, but the disclosure of the present invention is not limited in this respect. These adjustments can be performed periodically or non-periodically. Transmission and reception are divided into time units that are frames. In the DC-HSUPA example, the frame is 10 milliseconds. The frame is subdivided into time slots, and for DC-HSUPA, there are 15 time slots in the frame. For the DC-HSUPA example, these calculations are performed on a time slot basis.

RF/IF 220包含一組合器222、一升頻器224、及一放大器226。這些組件是習知的。組合器222被配置成組合有被調整的功率之該第一及第二載波。升頻器224被配置成將該被組合之第一及第二載波升頻至一較高頻率。放大器226被配置成先放大該被升頻的被組合之第一及第二載波,然後由天線230發射包含該被升頻的第一及第二載波之通訊信號。 The RF/IF 220 includes a combiner 222, an upconverter 224, and an amplifier 226. These components are well known. Combiner 222 is configured to combine the first and second carriers of the adjusted power. The upconverter 224 is configured to upconvert the combined first and second carriers to a higher frequency. Amplifier 226 is configured to first amplify the upconverted combined first and second carriers, and then transmit, by antenna 230, a communication signal comprising the upconverted first and second carriers.

第3A、3B、4A、4B、及5圖示出較強載波功率比例(y軸)相對於較弱載波功率比例(x軸)之圖形,而以一種可視化方式說明前文所述的用於決定修改該等載波功率的比例因數的方程式1a及2a之解。 3A, 3B, 4A, 4B, and 5 illustrate graphs of a stronger carrier power ratio (y-axis) versus a weaker carrier power ratio (x-axis), and illustrate the above-described decision for determination in a visual manner. The solutions of equations 1a and 2a that modify the scaling factor of these carrier powers.

在該等圖式中,線d1決定對功率比例的需求。線d2決定對功率比例的需求。線d5代表較弱載波功率的最小比例xmin,以及線d6代表較弱載波功率的最大比例xmax。線d8代表較強載波功率的最小比例ymin,以及線d7代表較強載波功率的最大比例ymax。點R=1,1代表在施加比例之前(亦即,當x=1且y=1時)的該等載波功率之初始值。例如,在E-DPDCH中,由較高層設定線d5及d8,且由MAC層根據授與而計算線d6及d7。 In these figures, line d1 determines the need for power ratio. Line d2 determines the demand for power ratio. D5 representative of the power line carrier weaker minimum ratio x min, and weak lines d6 representative of the maximum carrier power ratio x max. Line d8 represents the minimum ratio y min of the stronger carrier power, and line d7 represents the maximum ratio y max of the stronger carrier power. Point R = 1, 1 represents the initial value of the carrier powers before the ratio is applied (i.e., when x = 1 and y = 1). For example, in the E-DPDCH, the lines d5 and d8 are set by the higher layers, and the lines d6 and d7 are calculated by the MAC layer in accordance with the grant.

點R相對於線d1的位置指示是否需要載波功率比例。如果點R位於線d1的右方,則超過了最大容許傳輸功率PT,max,因而指示對功率比例的需求。由下列方程式代表線d1:Line d1:y=x.PL/PH+PT,max (方程式1c)。 The position of point R relative to line d1 indicates whether a carrier power ratio is required. If the point R is to the right of the line d1, the maximum allowable transmission power P T,max is exceeded, thus indicating the demand for the power ratio. The line d1 is represented by the following equation: Line d1: y = x. P L /P H +P T,max (Equation 1c).

點R相對於線d2的位置指示是否需要載波功率平衡。如果點R位於線d2的左方,則超過了最大容許功率不平衡Pimb,max,因而指示對功率平衡的需求。發射機200的信號之品質降低,但是鄰近帶外信號之品質並未降低。由下列方程式代表線d2:Line d2:y=x.Pimb,max.PL/PH (方程式2c)。 The position of point R relative to line d2 indicates whether carrier power balancing is required. If the point R is to the left of the line d2, the maximum allowable power imbalance P imb,max is exceeded, thus indicating the need for power balance. The quality of the signal of the transmitter 200 is reduced, but the quality of the adjacent out-of-band signal is not degraded. The line d2 is represented by the following equation: Line d2: y = x. P imb,max . P L /P H (Equation 2c).

點R總是位於由線d5、d6、d7、及d8界定的矩形 ("d5-d6-d7-d8矩形")之內。為了滿足方程式1a(最大載波功率需求)以及方程式2a(載波功率不平衡需求),點R應位於線d1及d2以及x軸界定的三角形("d1-d2三角形")之內,亦即,位於最大總功率PT,max之內,且位於最大功率不平衡Pimb,max邊界之內。如果點R位於d1-d2三角形之外,則補償一或多個載波功率,以便將點R移到位於d1-d2三角形之內或至少在d1-d2三角形的邊界上。該補償解決了兩個問題。首先,對該等載波功率施加比例,亦即,移動了點R,因而載波功率的總和並未超過最大總功率PT,max。同時,可沿著不同的方向調整比例值x、y(亦即,以便增加一載波功率且/或減少另一載波功率),因而並未超過最大功率不平衡Pimb,maxPoint R is always within the rectangle defined by lines d5, d6, d7, and d8 ("d5-d6-d7-d8 rectangle"). In order to satisfy Equation 1a (maximum carrier power requirement) and Equation 2a (carrier power imbalance requirement), the point R should be within the lines d1 and d2 and the triangle defined by the x-axis ("d1-d2 triangle"), ie, located The maximum total power P T,max is within the boundary of the maximum power imbalance P imb,max . If the point R is outside the d1-d2 triangle, one or more carrier powers are compensated to move the point R to be within the d1-d2 triangle or at least on the boundary of the d1-d2 triangle. This compensation solves two problems. First, the ratio of the carrier power is applied, i.e., the point R is shifted, so that the sum of the carrier powers does not exceed the maximum total power P T,max . At the same time, the scale values x, y can be adjusted in different directions (i.e., to increase one carrier power and/or reduce another carrier power), thus not exceeding the maximum power imbalance P imb,max .

對該等載波功率的補償程度取決於d1-d2三角形及d5-d6-d7-d8矩形的相對位置,且亦取決於點R相對於這兩個區域的初始位置。如果d1-d2三角形與d5-d6-d7-d8矩形重疊,且點R位於該重疊之內,則不需要任何功率修改。如果d1-d2三角形與d5-d6-d7-d8矩形重疊,但是點R不位於該重疊之內,則將點R移到線d1或線d2上的一點。如果d1-d2三角形與d5-d6-d7-d8矩形不重疊,則沿著d1-d2三角形的方向將點R移到d5-d6-d7-d8矩形的一邊界上的一新位置。 The degree of compensation for the carrier power depends on the relative positions of the d1-d2 triangle and the d5-d6-d7-d8 rectangle, and also on the initial position of the point R relative to the two regions. If the d1-d2 triangle overlaps the d5-d6-d7-d8 rectangle and the point R is within the overlap, no power modification is required. If the d1-d2 triangle overlaps the d5-d6-d7-d8 rectangle, but the point R is not within the overlap, the point R is moved to a point on line d1 or line d2. If the d1-d2 triangle does not overlap the d5-d6-d7-d8 rectangle, the point R is moved along the direction of the d1-d2 triangle to a new position on a boundary of the d5-d6-d7-d8 rectangle.

當將點R移到位於d1-d2三角形之內或d1-d2三角形上時,有可考慮的兩個準則。一準則是將導致該等載波功率的最小修改之R的初始位置與新位置間之最小距離。在 此種情況中,將有被施加的最小改變量。為了避免接收信號品質降低,應將載波功率的衰減保持在最小。 There are two criteria to consider when moving the point R to be within the d1-d2 triangle or the d1-d2 triangle. A criterion is the minimum distance between the initial position of R that will result in a minimum modification of the carrier power and the new location. in In this case, there will be a minimum amount of change applied. In order to avoid degradation of the received signal quality, the attenuation of the carrier power should be kept to a minimum.

類似於3GPP的比例程序使用的準則之一替代準則是:根據點R相對於線d1或線d2的位置(視哪一條線最接近而定),先沿著最近的線d1或d2之方向而平行於一軸移動點R,且於必要時,平行於另一軸而移動點R,以便將點R移到線d1或線d2上,或將點R移到儘量接近線d1或線d2。與3GPP規格中概述的該程序不同,可在一步驟而非兩步驟中執行本發明之修改。如果d1-d2三角形與d5-d6-d7-d8矩形之間沒有重疊區,則點R與線d1之間或點R與線d2之間的最短距離可被用來作為選擇點R的新位置時之決定因素。 An alternative to the criteria used by the 3GPP proportional program is to follow the position of the point R relative to the line d1 or the line d2 (depending on which line is closest), first along the direction of the nearest line d1 or d2. The point R is moved parallel to one axis, and if necessary, the point R is moved parallel to the other axis to move the point R onto the line d1 or the line d2, or to move the point R as close as possible to the line d1 or the line d2. Unlike the procedure outlined in the 3GPP specifications, modifications of the invention may be performed in one step rather than in two steps. If there is no overlap between the d1-d2 triangle and the d5-d6-d7-d8 rectangle, the shortest distance between the point R and the line d1 or between the point R and the line d2 can be used as the new position of the selection point R. The determining factor of time.

現在將說明與第3A、3B、4A、4B、及5圖有關之更特定的例子。 More specific examples relating to Figures 3A, 3B, 4A, 4B, and 5 will now be described.

第3A圖示出較強載波功率比例(y軸)相對於較弱載波功率比例(x軸)之一圖形,圖中示出三個例子(三個被標示為"R"的點),其中對該等載波功率施加比例,以便滿足最大總功率PT,max需求(方程式1a;線d1)。這三個例子中之每一例子都涉及點R最初位於線d1的右方且d5-d6-d7-d8矩形的左下角(點A)位於d1-d2三角形之內之情況。因為每一點R都位於線d2的右方,所以沒有載波功率不平衡的問題。在這些例子中,使用比例因數x、y將較弱載波功率PL及較強載波功率PH都補償到較弱,以便將該點R移到位於線d1上的點Rs(被施加比 例的點R),且因而符合該最大總功率PT,max需求。 Figure 3A shows a graph of a stronger carrier power ratio (y-axis) versus a weaker carrier power ratio (x-axis), with three examples (three points labeled "R"), where A ratio is applied to the carrier powers to satisfy the maximum total power P T,max demand (Equation 1a; line d1). Each of these three examples involves the case where the point R is initially located to the right of the line d1 and the lower left corner of the d5-d6-d7-d8 rectangle (point A) is within the d1-d2 triangle. Since each point R is located to the right of the line d2, there is no problem of carrier power imbalance. In these examples, the weaker carrier power P L and the stronger carrier power P H are both compensated to be weaker using the scaling factors x, y to move the point R to the point R s on the line d1 (applied proportional) Point R), and thus meets the maximum total power P T,max demand.

第3B圖示出較強載波功率比例(y軸)相對於較弱載波功率比例(x軸)之一圖形,圖中示出兩個例子(兩個被標示為"R"的點),其中對該等載波功率施加比例,以便滿足最大功率不平衡Pimb,max需求(方程式2a;線d2)。這兩個例子中之每一例子都涉及點R位於線d2的左方,且d5-d6-d7-d8矩形的右下角(點D)位於d1-d2三角形之內之情況。因為每一點R都位於線d1的左方,所以沒有最大總功率PT,max的問題。在位於y軸上較高處的點R所示之例子中,減少較強載波功率PH,且增加較弱載波功率PL,以便將點R移到位於線d2上的點Rs(被施加比例的點R),且因而符合該最大功率不平衡Pimb,max需求。在位於y軸上較低處的點R所示之例子中,使較強載波功率PH保持不變,且增加較弱載波功率PL,以便將點R移到位於線d2上的點Rs(被施加比例的點R),且因而符合該最大功率不平衡Pimb,max需求。 Figure 3B shows a graph of a stronger carrier power ratio (y-axis) versus a weaker carrier power ratio (x-axis), two examples (two points labeled "R"), where A ratio is applied to the carrier powers to satisfy the maximum power imbalance P imb,max demand (Equation 2a; Line d2). Each of these two examples involves the case where the point R is to the left of the line d2 and the lower right corner of the d5-d6-d7-d8 rectangle (point D) is within the d1-d2 triangle. Since each point R is located to the left of line d1, there is no problem with the maximum total power P T,max . In the example shown by point R located higher on the y-axis, the stronger carrier power P H is reduced and the weaker carrier power P L is increased to move the point R to the point R s on line d2 ( The proportional point R) is applied, and thus the maximum power imbalance P imb,max demand is met. In the example shown at point R located lower on the y-axis, the stronger carrier power P H is kept constant, and the weaker carrier power P L is increased to move the point R to the point R on line d2. s (the point R to which the proportional is applied), and thus meets the maximum power imbalance P imb,max requirement.

第4A圖示出較強載波功率比例(y軸)相對於較弱載波功率比例(x軸)之一圖形,圖中示出一個例子,其中對該等載波功率施加比例,以便滿足最大總功率PT,max需求(方程式1a;線d1)。d5-d6-d7-d8矩形的點A位於d1-d2三角形之外(亦即,該矩形與該三角形之間沒有重疊)。於移動點R時,對線d1上的最接近點之搜尋是不成功的,因而指示沒有完全滿足最大總功率PT,max需求的一解。在該特定情況中,最小載波功率比例界限xmin及 ymin不容許自點R調整到位於線d1上的位置。然而,次佳解將點R移到儘量接近線d1的一位置。點A提供了對載波功率位準的最小可能修改。可將一額外的比例步驟用於對整體信號施加比例的一較後級,以便將總功率限制為最大容許總功率PT,maxFigure 4A shows a graph of a stronger carrier power ratio (y-axis) versus a weaker carrier power ratio (x-axis), an example of which is shown in which a ratio is applied to the carrier power to satisfy the maximum total power. P T,max demand (equation 1a; line d1). The point A of the d5-d6-d7-d8 rectangle is outside the d1-d2 triangle (that is, there is no overlap between the rectangle and the triangle). At the point R, the search for the closest point on line d1 is unsuccessful, thus indicating that a solution to the maximum total power P T,max requirement is not fully met. In this particular case, the minimum carrier power ratio limits xmin and ymin are not allowed to adjust from point R to a position on line d1. However, the suboptimal solution moves point R to a position as close as possible to line d1. Point A provides the smallest possible modification to the carrier power level. An additional proportional step can be used to apply a later stage of the ratio to the overall signal to limit the total power to the maximum allowable total power P T,max .

第4B圖示出較強載波功率比例(y軸)相對於較弱載波功率比例(x軸)之一圖形,圖中示出一個例子,其中對該等載波功率施加比例,以便滿足最大功率不平衡Pimb,max需求(方程式2a;線d2)。該例子指示一功率不平衡問題,這是因為點R位於線d2的左方(功率不平衡)。無法完全消除該功率不平衡,這是因為該三角形與該矩形不重疊而沒有自點R至線d2的一位置之可用路徑。由線d8代表的較強載波功率PH之最小載波功率比例ymin以及由線d6代表的較弱載波功率PL之最大載波功率比例xmax導致選擇點D作為最佳可能解。在該例子中,減少較強載波功率PH,且增加較弱載波功率PL,以便將點R移到點Rs,且儘量接近以滿足最大功率不平衡Pimb,max需求。 Figure 4B shows a graph of a stronger carrier power ratio (y-axis) versus a weaker carrier power ratio (x-axis), an example of which is shown in which a ratio is applied to the carrier power to satisfy the maximum power. Balance P imb,max demand (Equation 2a; line d2). This example indicates a power imbalance problem because the point R is to the left of the line d2 (power imbalance). This power imbalance cannot be completely eliminated because the triangle does not overlap the rectangle without the available path from point R to a position of line d2. The minimum carrier power ratio y min of the stronger carrier power P H represented by the line d8 and the maximum carrier power ratio x max of the weaker carrier power P L represented by the line d6 result in the selection point D as the best possible solution. In this example, the stronger carrier power P H is reduced and the weaker carrier power P L is increased to shift the point R to point R s and as close as possible to meet the maximum power imbalance P imb,max demand.

第5圖示出較強載波功率比例(y軸)相對於較弱載波功率比例(x軸)之一圖形,圖中示出一個例子,其中對該等載波功率施加比例,以便滿足最大總功率PT,max需求(方程式1a;線d1)以及最大功率不平衡Pimb,max需求(方程式2a;線d2)。在該例子的情況中,線d8(較強載波功率PH之最小載波功率比例ymin)位於線d1及d2 的交叉點Q之上。d5-d6-d7-d8矩形與d1-d2三角形之間沒有重疊,因而沒有將點R移到位於d1-d2三角形的線d1或線d2上的位置,且因而沒有完全滿足該等需求的解。在該特定情況中,線d8上的最小載波功率比例ymin不容許將點R移到線d1或線d2上的位置。然而,線d3及d8的交叉點Q提供了將導致點R位於儘量接近d1-d2三角形而具有對載波功率位準的最小可能修改之次佳解。可將一額外的比例步驟用於對整體信號施加比例的一較後級,以便將總功率限制為最大容許總功率PT,max需求。 Figure 5 shows a graph of the ratio of the stronger carrier power (y-axis) to the ratio of the weaker carrier power (x-axis), an example is shown in which a ratio is applied to the carrier power to satisfy the maximum total power. P T,max demand (equation 1a; line d1) and maximum power imbalance P imb,max demand (equation 2a; line d2). In the case of this example, line d8 (the minimum carrier power ratio y min of the stronger carrier power P H ) is above the intersection Q of lines d1 and d2. There is no overlap between the d5-d6-d7-d8 rectangle and the d1-d2 triangle, so the point R is not moved to the position on the line d1 or the line d2 of the d1-d2 triangle, and thus the solution that completely satisfies the requirements is not satisfied. . In this particular case, the minimum carrier power ratio y min on line d8 does not allow the point R to be moved to a position on line d1 or line d2. However, the intersection Q of lines d3 and d8 provides a suboptimal solution that would result in point R being as close as possible to the d1-d2 triangle with the smallest possible modification to the carrier power level. An additional proportional step can be used to apply a proportional ratio to the overall signal to limit the total power to the maximum allowable total power P T,max demand.

第6圖示出一無線通訊系統600之一示意圖。系統600包含可相互進行無線通訊之一第一無線通訊裝置610及一第二無線通訊裝置620。第一無線通訊裝置610及第二無線通訊裝置620中之每一無線通訊裝置分別包含第2圖之發射機200以及接收機612、622。 FIG. 6 shows a schematic diagram of a wireless communication system 600. The system 600 includes a first wireless communication device 610 and a second wireless communication device 620 that are capable of wireless communication with each other. Each of the first wireless communication device 610 and the second wireless communication device 620 includes a transmitter 200 and a receiver 612, 622 of FIG. 2, respectively.

第7圖示出發射至少有一第一載波及一第二載波的一通訊信號的一方法之一流程圖700。該通訊信號可以是諸如一DC-HSUPA通訊信號等的任何多載波信號。 Figure 7 shows a flow diagram 700 of a method of transmitting a communication signal having at least a first carrier and a second carrier. The communication signal can be any multi-carrier signal such as a DC-HSUPA communication signal.

在步驟710中,一比例因數估計器218以前文所述之方式估計該第一載波之一第一功率比例因數x及該第二載波之一第二功率比例因數y。在該例子中,該第一載波是具有較低載波功率PL之載波,且該第二載波是具有較高載波功率PH之載波。 In step 710, a scaling factor estimator 218 estimates one of the first carrier first power scaling factor x and one of the second carrier second power scaling factor y in the manner previously described. In this example, the first carrier is a carrier having a lower carrier power P L and the second carrier is a carrier having a higher carrier power P H .

在步驟720中,一增益控制器214根據該第一功率比例因數x而調整該第一載波的功率以及根據該第二功率比 例因數y而調整該第二載波的功率中之至少一者。如前文所述,該第一及第二載波的該等被調整的功率之總和小於或等於一最大總功率PT,max需求,且該第一及第二載波的該等被調整的功率間之功率不平衡小於或等於一最大功率不平衡Pimb,max需求。 In step 720, a gain controller 214 adjusts the power of the first carrier according to the first power scaling factor x and adjusts at least one of the power of the second carrier according to the second power scaling factor y. As described above, the sum of the adjusted powers of the first and second carriers is less than or equal to a maximum total power P T,max requirement, and the adjusted powers of the first and second carriers are The power imbalance is less than or equal to a maximum power imbalance P imb,max demand.

在步驟730中,一組合器222組合有被調整的功率之該第一及第二載波。 In step 730, a combiner 222 combines the first and second carriers of the adjusted power.

在步驟740中,一升頻器224將該被組合之第一及第二載波升頻。 In step 740, an upconverter 224 upconverts the combined first and second carriers.

在步驟750中,一放大器226放大該被升頻的被組合之第一及第二載波。 In step 750, an amplifier 226 amplifies the upconverted combined first and second carriers.

本發明之揭露也包含一種在非暫態電腦可讀取的媒體上實施之電腦程式產品,該電腦程式產品包含程式指令,該等程式指令被配置成:當該等程式指令被處理電路執行時,使該處理電路執行第7圖之方法。 The invention also includes a computer program product embodied on a non-transitory computer readable medium, the computer program product comprising program instructions configured to: when the program instructions are executed by the processing circuit The processing circuit is caused to perform the method of FIG.

本發明揭露之發射機200及對應的方法700比藉由修改MAC層而減少功率不平衡的發射機較不複雜。本發明替代地在實體層中執行功率修改,而沒有由MAC層執行修改的需求。 The transmitter 200 and corresponding method 700 disclosed herein are less complex than transmitters that reduce power imbalance by modifying the MAC layer. The present invention instead performs power modification in the physical layer without the need to perform modifications by the MAC layer.

發射機200及方法700也更為準確。如本發明所述,所述之該方法係基於在上行鏈路傳輸之前才更新之參數,因而導致高準確度。例如,在DC-HSUPA的情況中,可藉由依賴被估計的參數,且藉由選擇對應的傳輸資料速率,而實現功率比例/平衡。然而,係在實際傳輸之前的 某一時間產生該等被估計的參數,所以該等參數在傳輸時可能不再有效,因而導致不準確的功率比例/平衡。 Transmitter 200 and method 700 are also more accurate. As described herein, the method is based on parameters that are updated prior to uplink transmission, thus resulting in high accuracy. For example, in the case of DC-HSUPA, power ratio/balance can be achieved by relying on the estimated parameters and by selecting the corresponding transmission data rate. However, before the actual transmission These estimated parameters are generated at a certain time, so these parameters may no longer be valid at the time of transmission, resulting in an inaccurate power ratio/balance.

此外,發射機200及方法700確保在網路設定的容許功率界限(授與)內之操作。此外,使用相同的演算法同時實現功率不平衡及總載波功率的調整,且因而處理時間是較短的。 In addition, transmitter 200 and method 700 ensure operation within the allowable power limits (grants) set by the network. Furthermore, the same algorithm is used to achieve both power imbalance and total carrier power adjustment, and thus the processing time is shorter.

例子1是一種用於發射有至少第一載波及第二載波的通訊信號之發射機,該發射機包含:一比例因數估計器,該比例因數估計器被配置成估計該第一載波之一第一功率比例因數以及該第二載波之一第二功率比例因數;以及一增益控制器,該增益控制器被配置成根據該第一功率比例因數而調整該第一載波的功率以及根據該第二功率比例因數而調整該第二載波的功率中之至少一者,其中該第一及第二載波的該等被調整的功率之總和小於或等於一最大傳輸功率,且該第一及第二載波的該等被調整的功率間之功率不平衡小於或等於一最大功率不平衡。 Example 1 is a transmitter for transmitting a communication signal having at least a first carrier and a second carrier, the transmitter comprising: a scaling factor estimator configured to estimate one of the first carriers a power scaling factor and a second power scaling factor of the second carrier; and a gain controller configured to adjust a power of the first carrier according to the first power scaling factor and according to the second Adjusting, by the power scaling factor, at least one of the powers of the second carrier, wherein the sum of the adjusted powers of the first and second carriers is less than or equal to a maximum transmission power, and the first and second carriers The power imbalance between the adjusted powers is less than or equal to a maximum power imbalance.

在例子2中,如例子1之標的,其中一實體層中包含該比例因數估計器及該增益控制器。 In Example 2, as the standard of Example 1, the scale factor estimator and the gain controller are included in a physical layer.

在例子3中,如例子1之標的,其中該發射機是一雙載波高速上行鏈路封包存取(DC-HSUPA)發射機。 In Example 3, as in the example 1, wherein the transmitter is a dual carrier high speed uplink packet access (DC-HSUPA) transmitter.

在例子4中,如例子3之標的,其中該增益控制器被進一步配置成週期性地調整該第一及第二載波的功率。 In Example 4, as in the example 3, wherein the gain controller is further configured to periodically adjust the power of the first and second carriers.

在例子5中,如例子3之標的,其中該增益控制器被進一步配置成非週期性地調整該第一及第二載波的功率。 In Example 5, as in the example of Example 3, wherein the gain controller is further configured to non-periodically adjust the power of the first and second carriers.

在例子6中,如例子1之標的,其中在基頻上執行該調整。 In Example 6, as in the example 1, the adjustment is performed on the fundamental frequency.

在例子7中,如例子1之標的,其中由設計決定該最大功率不平衡,且由一授與決定該最大傳輸功率。 In Example 7, as in the example 1, the maximum power imbalance is determined by the design, and the maximum transmission power is determined by an assignment.

在例子8中,如例子1之標的,其中該比例因數估計器被進一步配置成根據下列方程式yx.PL/PH+PT,max以及yx.Pimb,max.PL/PH而估計該第一載波之第一功率比例因數及該第二載波之第二功率比例因數,其中x是第一功率比例因數,y是第二功率比例因數,PL是功率較低的第一或第二載波之功率,PH是功率較高的第一或第二載波之功率,PT,max是最大傳輸功率,且Pimb,max是最大功率不平衡。 In Example 8, as in the example 1, wherein the scaling factor estimator is further configured to be according to the following equation y x. P L /P H +P T,max and y x. Pi mb,max . P L /P H and estimating a first power scaling factor of the first carrier and a second power scaling factor of the second carrier, wherein x is a first power scaling factor, y is a second power scaling factor, and P L is power The power of the lower first or second carrier, P H is the power of the first or second carrier with higher power, P T,max is the maximum transmission power, and P imb,max is the maximum power imbalance.

在例子9中,如例子1之標的,進一步包含:被配置成組合具有被調整的功率之該第一及第二載波之一組合器。 In Example 9, the subject matter of Example 1, further comprising: a combiner configured to combine the first and second carriers having the adjusted power.

在例子10中,如例子9之標的,進一步包含:被配置成將該被組合之至少第一及第二載波升頻之一升頻器;以及被配置成放大該被升頻的被組合之第一及第二載波之一放大器。 In Example 10, the subject matter of Example 9, further comprising: an upconverter configured to upconvert the at least first and second carriers to be combined; and configured to amplify the upconverted combination One of the first and second carriers.

例子11是一種包含例子1之發射機之無線通訊裝置。 Example 11 is a wireless communication device including the transmitter of Example 1.

例子12是一種用於發射有至少第一載波及第二載波的通訊信號之方法,該方法包含:由一比例因數估計器估計該第一載波之一第一功率比例因數以及該第二載波之一 第二功率比例因數;以及由一增益控制器根據該第一功率比例因數而調整該第一載波的功率以及根據該第二功率比例因數而調整該第二載波的功率中之至少一者,其中該第一及第二載波的該等被調整的功率之總和小於或等於一最大傳輸功率,且該第一及第二載波的該等被調整的功率間之功率不平衡小於或等於一最大功率不平衡。 Example 12 is a method for transmitting a communication signal having at least a first carrier and a second carrier, the method comprising: estimating, by a scaling factor estimator, a first power scaling factor of the first carrier and the second carrier One a second power scaling factor; and adjusting, by the gain controller, the power of the first carrier according to the first power scaling factor and adjusting the power of the second carrier according to the second power scaling factor, wherein The sum of the adjusted powers of the first and second carriers is less than or equal to a maximum transmission power, and the power imbalance between the adjusted powers of the first and second carriers is less than or equal to a maximum power unbalanced.

在例子13中,如例子12之標的,其中在一實體層中執行該估計及調整。 In Example 13, as in the subject of Example 12, the estimation and adjustment are performed in a physical layer.

在例子14中,如例子12之標的,其中該通訊信號是一雙載波高速上行鏈路封包存取(DC-HSUPA)通訊信號。 In Example 14, as in the example 12, wherein the communication signal is a dual carrier high speed uplink packet access (DC-HSUPA) communication signal.

在例子15中,如例子14之標的,其中週期性地執行該估計及調整。 In Example 15, as in the example of Example 14, the estimation and adjustment are performed periodically.

在例子16中,如例子14之標的,其中非週期性地執行該估計及調整。 In Example 16, as in the example of Example 14, the estimation and adjustment are performed aperiodically.

在例子17中,如例子12之標的,其中在基頻上執行該調整。 In Example 17, as in the example 12, wherein the adjustment is performed on the fundamental frequency.

在例子18中,如例子12之標的,其中於製造用於執行該發射方法的一發射機時決定該最大功率不平衡,且由一授與決定該最大傳輸功率。 In Example 18, as in the example 12, wherein the maximum power imbalance is determined when a transmitter for performing the transmitting method is manufactured, and the maximum transmission power is determined by an assignment.

在例子19中,如例子12之標的,其中根據下列方程式yx.PL/PH+PT,max以及yx.Pimb,max.PL/PH而估計該第一載波之第一功率比例因數及該第二載波之第二功率比例因數,其中x是第一功率比例因數,y是第二功率比例因 數,PL是功率較低的第一或第二載波之功率,PH是功率較高的第一或第二載波之功率,PT,max是最大傳輸功率,且Pimb,max是最大功率不平衡。 In Example 19, as the standard of Example 12, according to the following equation y x. P L /P H +P T,max and y x. P imb,max . P L /P H and estimating a first power scaling factor of the first carrier and a second power scaling factor of the second carrier, wherein x is a first power scaling factor, y is a second power scaling factor, and P L is power The power of the lower first or second carrier, P H is the power of the first or second carrier with higher power, P T,max is the maximum transmission power, and P imb,max is the maximum power imbalance.

在例子20中,如例子12之標的,進一步包含:由一組合器組合具有被調整的功率之該第一及第二載波。 In Example 20, the subject matter of Example 12, further comprising: combining the first and second carriers having the adjusted power by a combiner.

在例子21中,如例子20之標的,進一步包含:由一升頻器將該被組合之第一及第二載波升頻;以及由一放大器放大該被升頻的被組合之第一及第二載波。 In Example 21, the subject matter of Example 20, further comprising: up-converting the combined first and second carriers by an upconverter; and amplifying the up-combined first and first by an amplifier Two carriers.

例子22是一種在非暫態電腦可讀取的媒體上實施之電腦程式產品,該電腦程式產品包含程式指令,該等程式指令被配置成:當該等程式指令被處理電路執行時,使該處理電路執行如例子12之方法。 Example 22 is a computer program product embodied on a non-transitory computer readable medium, the computer program product comprising program instructions, the program instructions being configured to: when the program instructions are executed by the processing circuit, The processing circuit performs the method as in Example 12.

例子23是一種用於發射有至少第一載波及第二載波的通訊信號之發射機,該發射機包含:一比例因數估計裝置,用以估計該第一載波之一第一功率比例因數以及該第二載波之一第二功率比例因數;以及一增益控制裝置,用以根據該第一功率比例因數而調整該第一載波的功率以及根據該第二功率比例因數而調整該第二載波的功率中之至少一者,其中該第一及第二載波的該等被調整的功率之總和小於或等於一最大傳輸功率,且該第一及第二載波的該等被調整的功率間之功率不平衡小於或等於一最大功率不平衡。 Example 23 is a transmitter for transmitting a communication signal having at least a first carrier and a second carrier, the transmitter comprising: a scaling factor estimating means for estimating a first power scaling factor of the first carrier and the a second power scaling factor of the second carrier; and a gain control device configured to adjust a power of the first carrier according to the first power scaling factor and adjust a power of the second carrier according to the second power scaling factor At least one of the first and second carriers, the sum of the adjusted powers being less than or equal to a maximum transmission power, and the power between the adjusted powers of the first and second carriers is not The balance is less than or equal to a maximum power imbalance.

在例子24中,如例子23之標的,進一步包含:一組合裝置,用以組合具有被調整的功率之該第一及第二載 波。 In Example 24, the subject matter of Example 23, further comprising: a combination device for combining the first and second loads having the adjusted power wave.

在例子25中,如例子24之標的,進一步包含:一升頻裝置,用以將該被組合之第一及第二載波升頻;以及一放大裝置,用以放大該被升頻的被組合之第一及第二載波。 In the example 25, as defined in the example 24, further comprising: an up-converting device for up-converting the combined first and second carriers; and an amplifying device for amplifying the up-combined combined The first and second carriers.

在例子26中,如例子1-6中之任一例子之標的,其中由設計決定該最大功率不平衡,且由一授與決定該最大傳輸功率。 In Example 26, the subject matter of any of Examples 1-6, wherein the maximum power imbalance is determined by design and the maximum transmission power is determined by an assignment.

在例子27中,如例子1-6中之任一例子之標的,其中該比例因數估計器被進一步配置成根據下列方程式yx.PL/PH+PT,max以及yx.Pimb,max.PL/PH而估計該第一載波之第一功率比例因數及該第二載波之第二功率比例因數,其中x是第一功率比例因數,y是第二功率比例因數,PL是功率較低的第一或第二載波之功率,PH是功率較高的第一或第二載波之功率,PT,max是最大傳輸功率,且Pimb,max是最大功率不平衡。 In Example 27, the subject matter of any of Examples 1-6, wherein the scaling factor estimator is further configured to be according to the following equation y x. P L /P H +P T,max and y x. P imb,max . P L /P H and estimating a first power scaling factor of the first carrier and a second power scaling factor of the second carrier, wherein x is a first power scaling factor, y is a second power scaling factor, and P L is power The power of the lower first or second carrier, P H is the power of the first or second carrier with higher power, P T,max is the maximum transmission power, and P imb,max is the maximum power imbalance.

在例子28中,如例子1-6中之任一例子之標的,進一步包含:被配置成組合具有被調整的功率之該第一及第二載波之一組合器。 In Example 28, the subject matter of any of Examples 1-6, further comprising: a combiner configured to combine the first and second carriers having the adjusted power.

在例子29中,如例子12-17中之任一例子之標的,其中於製造用於執行該發射方法的一發射機時決定該最大功率不平衡,且由一授與決定該最大傳輸功率。 In the example 29, the subject matter of any of the examples 12-17, wherein the maximum power imbalance is determined when a transmitter for performing the transmitting method is manufactured, and the maximum transmission power is determined by a grant.

在例子30中,如例子12-17中之任一例子之標的,其中根據下列方程式yx.PL/PH+PT,max以及yx.Pimb,max.PL/PH 而估計該第一載波之第一功率比例因數及該第二載波之第二功率比例因數,其中x是第一功率比例因數,y是第二功率比例因數,PL是功率較低的第一或第二載波之功率,PH是功率較高的第一或第二載波之功率,PT,max是最大傳輸功率,且Pimb,max是最大功率不平衡。 In Example 30, the subject matter of any of Examples 12-17, wherein according to the following equation y x. P L /P H +P T,max and y x. P imb,max . P L /P H and estimating a first power scaling factor of the first carrier and a second power scaling factor of the second carrier, wherein x is a first power scaling factor, y is a second power scaling factor, and P L is power The power of the lower first or second carrier, P H is the power of the first or second carrier with higher power, P T,max is the maximum transmission power, and P imb,max is the maximum power imbalance.

在例子31中,如例子12-17中之任一例子之標的,進一步包含:由一組合器組合具有被調整的功率之該第一及第二載波。 In the example 31, the subject matter of any of the examples 12-17, further comprising: combining the first and second carriers having the adjusted power by a combiner.

在例子32中,如例子23-24中之任一例子之標的,進一步包含:一升頻裝置,用以將該被組合之第一及第二載波升頻;以及一放大裝置,用以放大該被升頻的被組合之第一及第二載波。 In the example 32, the subject matter of any of the examples 23-24, further comprising: an up-converting device for up-converting the combined first and second carriers; and an amplifying device for amplifying The up-converted first and second carriers are combined.

例子33是一種實質上如所示及所述之設備。 Example 33 is an apparatus substantially as shown and described.

例子34是一種實質上如所示及所述之方法。 Example 34 is a method substantially as shown and described.

雖然已連同例示性觀點而說明了前文,但是我們應可瞭解:術語"例示性"只意味著作為一例子,而不是最好的或最佳的例子。因此,本發明之揭露將意圖涵蓋可被包含在本發明揭露的範圍內之替代、修改、及等效物。 Although the foregoing has been described in connection with the illustrative aspects, it should be understood that the term "exemplary" is merely meant to be an example, rather than the best or best example. Therefore, the disclosure of the invention is intended to cover alternatives, modifications, and equivalents, which are included within the scope of the invention.

雖然本說明書中已示出且說明了一些特定觀點,但是對此項技術具有一般知識者當可了解:可在不脫離本申請案之範圍下,以各種替代的及/或等效的實施來取代所示及所述的該等特定觀點。本申請案將意圖涵蓋本說明書所述的該等特定觀點之任何改作或變形。 While certain features have been shown and described in the present specification, it is understood by those of ordinary skill in the art that the invention can be practiced in various alternative and/or equivalent embodiments without departing from the scope of the application. These particular points are shown and described. This application is intended to cover any adaptations or variations of the specific embodiments described herein.

Claims (23)

一種用於發射有至少第一載波及第二載波的通訊信號之發射機,該發射機包含:一比例因數估計器,該比例因數估計器被配置成估計該第一載波之一第一功率比例因數以及該第二載波之一第二功率比例因數;以及一增益控制器,該增益控制器被配置成根據該第一功率比例因數而調整該第一載波的功率以及根據該第二功率比例因數而調整該第二載波的功率中之至少一者,其中該第一及第二載波的該等被調整的功率之總和小於或等於一最大傳輸功率,且該第一及第二載波的該等被調整的功率間之功率不平衡小於或等於一最大功率不平衡,其中該比例因數估計器被進一步配置成根據下列方程式而估計該第一載波之該第一功率比例因數及該第二載波之該第二功率比例因數:yx.PL/PH+PT,max,以及yx.Pimb,max.PL/PH,其中x是該第一功率比例因數,y是該第二功率比例因數,PL是功率較低的該第一或第二載波之該功率,PH是功率較高的該第一或第二載波之該功率,PT,max是該最大傳輸功率,且Pimb,max是該最大功率不平衡。 A transmitter for transmitting a communication signal having at least a first carrier and a second carrier, the transmitter comprising: a scaling factor estimator configured to estimate a first power ratio of the first carrier a factor and a second power scaling factor of the second carrier; and a gain controller configured to adjust a power of the first carrier and a second power scaling factor according to the first power scaling factor And adjusting at least one of the powers of the second carrier, wherein the sum of the adjusted powers of the first and second carriers is less than or equal to a maximum transmission power, and the first and second carriers The power imbalance between the adjusted powers is less than or equal to a maximum power imbalance, wherein the scaling factor estimator is further configured to estimate the first power scaling factor of the first carrier and the second carrier according to the following equation The second power scaling factor: y x. P L /P H +P T,max , and y x. P imb,max . P L /P H , where x is the first power scaling factor, y is the second power scaling factor, P L is the power of the first or second carrier with lower power, and P H is higher power The power of the first or second carrier, P T,max is the maximum transmission power, and P imb,max is the maximum power imbalance. 如申請專利範圍第1項之發射機,其中一實體層中包含該比例因數估計器及該增益控制器。 The transmitter of claim 1, wherein the scale factor estimator and the gain controller are included in a physical layer. 如申請專利範圍第1項之發射機,其中該發射機是一雙載波高速上行鏈路封包存取(DC-HSUPA)發射機。 The transmitter of claim 1, wherein the transmitter is a dual carrier high speed uplink packet access (DC-HSUPA) transmitter. 如申請專利範圍第3項之發射機,其中該增益控制器被進一步配置成週期性地調整該第一及第二載波的該功率。 The transmitter of claim 3, wherein the gain controller is further configured to periodically adjust the power of the first and second carriers. 如申請專利範圍第3項之發射機,其中該增益控制器被進一步配置成非週期性地調整該第一及第二載波的該功率。 The transmitter of claim 3, wherein the gain controller is further configured to aperiodically adjust the power of the first and second carriers. 如申請專利範圍第1項之發射機,其中在基頻上執行該調整。 The transmitter of claim 1, wherein the adjustment is performed on the fundamental frequency. 如申請專利範圍第1項之發射機,其中由設計決定該最大功率不平衡,且由一授與決定該最大傳輸功率。 The transmitter of claim 1, wherein the maximum power imbalance is determined by design, and the maximum transmission power is determined by a grant. 如申請專利範圍第1項之發射機,進一步包含:被配置成組合具有該被調整的功率之該第一及第二載波之一組合器。 The transmitter of claim 1, further comprising: a combiner configured to combine the first and second carriers having the adjusted power. 如申請專利範圍第8項之發射機,進一步包含:被配置成將該被組合之至少第一及第二載波升頻之一升頻器;以及被配置成放大該被升頻的被組合之第一及第二載波之一放大器。 The transmitter of claim 8 further comprising: an upconverter configured to upconvert the at least first and second carriers combined; and configured to amplify the upconverted combination One of the first and second carriers. 一種包含申請專利範圍第1項之發射機之無線通訊裝置。 A wireless communication device comprising a transmitter of claim 1 of the patent application. 一種用於發射有至少第一載波及第二載波的通訊信號之方法,該方法包含: 由一比例因數估計器估計該第一載波之一第一功率比例因數以及該第二載波之一第二功率比例因數;以及由一增益控制器根據該第一功率比例因數而調整該第一載波的功率以及根據該第二功率比例因數而調整該第二載波的功率中之至少一者,其中該第一及第二載波的該等被調整的功率之總和小於或等於一最大傳輸功率,且該第一及第二載波的該等被調整的功率間之功率不平衡小於或等於一最大功率不平衡,其中根據下列方程式而估計該第一載波之該第一功率比例因數及該第二載波之該第二功率比例因數:yx.PL/PH+PT,max,以及yx.Pimb,max.PL/PH,其中x是該第一功率比例因數,y是該第二功率比例因數,PL是功率較低的該第一或第二載波之該功率,PH是功率較高的該第一或第二載波之該功率,PT,max是該最大傳輸功率,且Pimb,max是該最大功率不平衡。 A method for transmitting a communication signal having at least a first carrier and a second carrier, the method comprising: estimating, by a scaling factor estimator, a first power scaling factor of the first carrier and a second of the second carrier a power scaling factor; and adjusting, by the gain controller, the power of the first carrier according to the first power scaling factor and adjusting the power of the second carrier according to the second power scaling factor, wherein the The sum of the adjusted powers of the first and second carriers is less than or equal to a maximum transmission power, and the power imbalance between the adjusted powers of the first and second carriers is less than or equal to a maximum power imbalance Estimating the first power scaling factor of the first carrier and the second power scaling factor of the second carrier according to the following equation: y x. P L /P H +P T,max , and y x. P imb,max . P L /P H , where x is the first power scaling factor, y is the second power scaling factor, P L is the power of the first or second carrier with lower power, and P H is higher power The power of the first or second carrier, P T,max is the maximum transmission power, and P imb,max is the maximum power imbalance. 如申請專利範圍第11項之方法,其中在一實體層中執行該估計及調整。 The method of claim 11, wherein the estimating and adjusting are performed in a physical layer. 如申請專利範圍第11項之方法,其中該通訊信號是一雙載波高速上行鏈路封包存取(DC-HSUPA)通訊信號。 The method of claim 11, wherein the communication signal is a dual carrier high speed uplink packet access (DC-HSUPA) communication signal. 如申請專利範圍第13項之方法,其中週期性地執行該估計及調整。 The method of claim 13, wherein the estimating and adjusting are performed periodically. 如申請專利範圍第13項之方法,其中非週期性地 執行該估計及調整。 The method of claim 13, wherein the method is non-periodically Perform this estimation and adjustment. 如申請專利範圍第11項之方法,其中在基頻上執行該調整。 The method of claim 11, wherein the adjusting is performed on a fundamental frequency. 如申請專利範圍第11項之方法,其中在製造用於執行該發射方法的一發射機時決定該最大功率不平衡,且由一授與決定該最大傳輸功率。 The method of claim 11, wherein the maximum power imbalance is determined when a transmitter for performing the transmitting method is manufactured, and the maximum transmission power is determined by a grant. 如申請專利範圍第11項之方法,進一步包含:由一組合器組合具有該被調整的功率之該第一及第二載波。 The method of claim 11, further comprising: combining the first and second carriers having the adjusted power by a combiner. 如申請專利範圍第18項之方法進一步包含:由一升頻器將該被組合之第一及第二載波升頻;以及由一放大器放大該被升頻的被組合之第一及第二載波。 The method of claim 18, further comprising: up-amplifying the combined first and second carriers by an upconverter; and amplifying the upconverted combined first and second carriers by an amplifier . 一種在非暫態電腦可讀取的媒體上實施之電腦程式產品,該電腦程式產品包含程式指令該等程式指令被配置成:當該等程式指令被處理電路執行時,使該處理電路執行如申請專利範圍第11項之方法。 A computer program product embodied on a non-transitory computer readable medium, the computer program product comprising program instructions, the program instructions being configured to: when the program instructions are executed by the processing circuit, causing the processing circuit to perform The method of applying for the scope of patent item 11. 一種用於發射有至少第一載波及第二載波的通訊信號之發射機,該發射機包含:一比例因數估計裝置,用以估計該第一載波之一第一功率比例因數以及該第二載波之一第二功率比例因數;以及一增益控制裝置,用以根據該第一功率比例因數而調整該第一載波的功率以及根據該第二功率比例因數而調整 該第二載波的功率中之至少一者,其中該第一及第二載波的該等被調整的功率之總和小於或等於一最大傳輸功率,且該第一及第二載波的該等被調整的功率間之功率不平衡小於或等於一最大功率不平衡,其中該比例因數估計器被進一步配置成根據下列方程式而估計該第一載波之該第一功率比例因數及該第二載波之該第二功率比例因數:yx.PL/PH+PT,max,以及yx.Pimb,max.PL/PH,其中x是該第一功率比例因數,y是該第二功率比例因數,PL是功率較低的該第一或第二載波之該功率,PH是功率較高的該第一或第二載波之該功率,PT,max是該最大傳輸功率,且Pimb,max是該最大功率不平衡。 A transmitter for transmitting a communication signal having at least a first carrier and a second carrier, the transmitter comprising: a scaling factor estimating means for estimating a first power scaling factor of the first carrier and the second carrier a second power scaling factor; and a gain control device configured to adjust a power of the first carrier according to the first power scaling factor and adjust at least a power of the second carrier according to the second power scaling factor In one case, the sum of the adjusted powers of the first and second carriers is less than or equal to a maximum transmission power, and the power imbalance between the adjusted powers of the first and second carriers is less than or Equal to a maximum power imbalance, wherein the scaling factor estimator is further configured to estimate the first power scaling factor of the first carrier and the second power scaling factor of the second carrier according to the following equation: y x. P L /P H +P T,max , and y x. P imb,max . P L /P H , where x is the first power scaling factor, y is the second power scaling factor, P L is the power of the first or second carrier with lower power, and P H is higher power The power of the first or second carrier, P T,max is the maximum transmission power, and P imb,max is the maximum power imbalance. 如申請專利範圍第21項之發射機,進一步包含:一組合裝置,用以組合具有該被調整的功率之該第一及第二載波。 The transmitter of claim 21, further comprising: a combining device for combining the first and second carriers having the adjusted power. 如申請專利範圍第22項之發射機,進一步包含:一升頻裝置,用以將該被組合之第一及第二載波升頻;以及一放大裝置,用以放大該被升頻的被組合之第一及第二載波。 The transmitter of claim 22, further comprising: an up-converting device for up-converting the combined first and second carriers; and an amplifying device for amplifying the combined of the up-converted The first and second carriers.
TW105105507A 2015-03-27 2016-02-24 Power compensation in multi-carrier transmitters TWI593241B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US14/671,183 US9820236B2 (en) 2015-03-27 2015-03-27 Power compensation in multi-carrier transmitters

Publications (2)

Publication Number Publication Date
TW201642593A TW201642593A (en) 2016-12-01
TWI593241B true TWI593241B (en) 2017-07-21

Family

ID=55521494

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105105507A TWI593241B (en) 2015-03-27 2016-02-24 Power compensation in multi-carrier transmitters

Country Status (4)

Country Link
US (1) US9820236B2 (en)
EP (1) EP3073793A1 (en)
CN (1) CN106028394B (en)
TW (1) TWI593241B (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX358884B (en) * 2013-04-12 2018-08-31 Huawei Tech Co Ltd Method and device for controlling transmission power of user equipment.
US20170086137A1 (en) * 2015-09-18 2017-03-23 Qualcomm Incorporated Enhanced uplink power and data allocation for dual band dual carrier high speed uplink packet access
CN109151892B (en) * 2017-06-16 2021-08-06 中国信息通信研究院 Power control method and device based on uplink multi-carrier simultaneous transmission
US10660044B2 (en) * 2017-11-17 2020-05-19 Lenovo (Singapore) Pte Ltd Power control configuration for uplink transmissions
CN111479317B (en) * 2020-04-13 2023-12-05 Oppo广东移动通信有限公司 Communication control method and device of mobile device, storage medium and mobile device
CN116528189A (en) * 2022-01-21 2023-08-01 西安紫光展锐科技有限公司 Communication method, communication device, storage medium, and program product

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7453945B2 (en) * 2003-09-05 2008-11-18 Lucent Technologies Inc. Methods and devices for controlling RF, multi-carrier amplifier signal power
JP4641513B2 (en) * 2006-06-29 2011-03-02 京セラ株式会社 Wireless communication method and wireless communication terminal
EP3214875B1 (en) * 2011-01-07 2020-10-07 InterDigital Patent Holdings, Inc. Methods, apparatus and systems for handling additional power backoff
US8942750B2 (en) 2011-01-07 2015-01-27 Apple Inc. Power control in a mobile device
US9456422B2 (en) * 2011-04-21 2016-09-27 Qualcomm Incorporated Method and apparatus for calibrating transmit power of a FEMTO node
US8767626B2 (en) * 2011-10-20 2014-07-01 Telefonaktiebolaget L M Ericsson (Publ) Power reduction for correlated carriers in a cellular communication system
US9338751B2 (en) * 2012-10-23 2016-05-10 Intel Deutschland Gmbh Method and device for controlling a transmit power in a user equipment

Also Published As

Publication number Publication date
CN106028394A (en) 2016-10-12
TW201642593A (en) 2016-12-01
CN106028394B (en) 2019-12-13
US20160286496A1 (en) 2016-09-29
US9820236B2 (en) 2017-11-14
EP3073793A1 (en) 2016-09-28

Similar Documents

Publication Publication Date Title
TWI593241B (en) Power compensation in multi-carrier transmitters
JP4059885B2 (en) Method for controlling the output of an access packet transmitted by a mobile station in a wireless communication system, and a wireless communication system implementing the method
US8238959B2 (en) Method and apparatus for controlling transmission power in mobile communication system based on fractional frequency reuse
CN111955032B (en) Additional maximum power reduction for uplink transmissions of wireless networks
JP2011519504A (en) Uplink power control in a TDD communication system
KR20120034781A (en) Method and apparatus for power scaling for multi-carrier wireless terminals
KR20160101558A (en) Appratus and method for uplink power control of satellite and terrestrial integrated communication system
US9241336B2 (en) Communication terminal device and method, base station device, and communication system
US20170019279A1 (en) Wireless communication apparatus
US10098072B2 (en) Signal processing system, digital signal processing device, and method of controlling transmission power in the system
EP1694091B1 (en) Resource control method for enhancing time-based frequency reuse in a mobile communications system
EP3075195B1 (en) A network node and method for determining downlink transmission power for a downlink shared channel
WO2014112380A1 (en) Radio terminal apparatus, base station apparatus, and radio communication control method
JP2001036463A (en) Transmission power controller
JP2004064130A (en) Wireless radio, radio station, and communication method
US11611884B2 (en) Dynamic configuration of overlapping basic service set preamble detect (OBSS PD) parameters for access points
KR102664179B1 (en) Additional maximum power reduction for uplink transmission for wireless networks
JP5569646B2 (en) Reception quality estimation apparatus, reception quality estimation method, reception quality estimation program, and radio communication apparatus
WO2017031995A1 (en) Power control method and device, and computer storage medium
KR20110042754A (en) Apparatus and method for removing dc offset in wireless communication system
CN111918375A (en) Uplink power control method, device, storage medium and base station
CN108307396A (en) A kind of method and apparatus communicated on exempting from licensed band

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees