TWI592975B - Method for treating a substrate using a charged particle beam - Google Patents

Method for treating a substrate using a charged particle beam Download PDF

Info

Publication number
TWI592975B
TWI592975B TW103140652A TW103140652A TWI592975B TW I592975 B TWI592975 B TW I592975B TW 103140652 A TW103140652 A TW 103140652A TW 103140652 A TW103140652 A TW 103140652A TW I592975 B TWI592975 B TW I592975B
Authority
TW
Taiwan
Prior art keywords
workpiece
ion beam
substrate
gas cluster
cluster ion
Prior art date
Application number
TW103140652A
Other languages
Chinese (zh)
Other versions
TW201537607A (en
Inventor
紅宇H 岳
諾埃爾 羅素
文生 吉佐
約書亞 拉羅斯
史蒂芬P 卡蘭多
Original Assignee
東京威力科創艾派恩股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京威力科創艾派恩股份有限公司 filed Critical 東京威力科創艾派恩股份有限公司
Publication of TW201537607A publication Critical patent/TW201537607A/en
Application granted granted Critical
Publication of TWI592975B publication Critical patent/TWI592975B/en

Links

Landscapes

  • Drying Of Semiconductors (AREA)

Description

使用帶電粒子束處理基板的方法 Method for processing substrate using charged particle beam 〔相關申請案之交互參照〕 [Reciprocal Reference of Related Applications]

依據37 C.F.R § 1.78(a)(4),本申請案主張在2013年11月20日所提申之共同申請中之臨時申請案第61/906,610號、及在2013年12月13日所提申之臨時申請案第61/915,894號的優先權。 In accordance with 37 CFR § 1.78(a)(4), this application claims the provisional application No. 61/906,610 in the joint application filed on November 20, 2013, and on December 13, 2013. Priority of Application No. 61/915,894 of the application.

本發明係關於一種用於使用氣體團簇離子束(GCIB)來照射基板的系統及方法,且更具體而言,係關於一種用於通過GCIB來掃描基板的改進之裝置、系統、及方法。 The present invention relates to a system and method for illuminating a substrate using a gas cluster ion beam (GCIB), and more particularly to an improved apparatus, system, and method for scanning a substrate by GCIB.

氣體團簇離子束(GCIBs)係用以在基板上摻雜、蝕刻、清潔、平坦化、及成長或沉積層。為了本討論之目的,氣體團簇為奈米尺寸的材料聚集體,其在標準溫度及壓力的條件下為氣態。此種氣體團簇可由鬆散地結合在一起的包含數個至數千個分子或更多的聚集體所組成。氣體團簇可藉由電子轟擊而離子化,這允許氣體團簇形成為具有可控制能量的定向射束。此種團簇離子通常各帶有正電荷,此正電荷係由以下兩者之乘積所給定:電子電荷量與代表團簇離子之電荷狀態的大於或等於1之整數。較大尺寸的團簇離子通常是最有用的,因為其每團簇離子能夠帶有大量的能量,同時每單個分子又僅具有適度的能量。離子團簇在與基板撞擊時會崩解。在特定的崩解之 離子團簇中的各單個分子僅帶有總團簇能量的一小部分。因此,大的離子團簇之撞擊效應相當大,但僅限於極淺的表面區域。這使得氣體團簇離子可有效用於許多表面變型製程,而沒有產生較深之次表面損傷(此為傳統離子束處理的特性)的傾向。 Gas cluster ion beams (GCIBs) are used to dope, etch, clean, planarize, and grow or deposit layers on a substrate. For the purposes of this discussion, gas clusters are nanometer sized material aggregates that are gaseous under standard temperature and pressure conditions. Such a gas cluster may be composed of agglomerates containing several to several thousand molecules or more loosely bonded together. The gas clusters can be ionized by electron bombardment, which allows the gas clusters to form a directional beam with controllable energy. Such cluster ions typically each have a positive charge, which is given by the product of the electron charge and the charge state of the cluster ion being greater than or equal to one. Larger size cluster ions are generally most useful because they can carry a large amount of energy per cluster ion while having only modest energy per individual molecule. The ion clusters disintegrate upon impact with the substrate. In a specific disintegration Each individual molecule in the ion cluster carries only a small fraction of the total cluster energy. Therefore, the impact of large ion clusters is quite large, but limited to extremely shallow surface areas. This allows gas cluster ions to be effectively used in many surface modification processes without the tendency to produce deeper subsurface damage, which is characteristic of conventional ion beam processing.

名為「METHOD AND APPARATUS FOR SCANNING A WORKPIECE THROUGH AN ION BEAM」的相關美國專利申請案第11/565,267號於2006年11月30日所提申、2009年10月27日公告為美國專利第7,608,843號、並藉由參照其整體內容而併入於本文中,該件專利描述了一種用以通過氣體團簇離子束(GCIB)來掃描工作件(例如晶圓、基板等等)的工作件掃描機構。於其中所描述的掃描儀具有兩種運動,其結合時可允許GCIB到達工作件的每一點。第一運動係為通過GCIB的工作件之快速往復運動(即,快速掃描運動),其中工作件係附接於類似倒單擺的臂;橫過工作件的所得之GCIB路徑具有弧形形狀。第二運動係為該臂之旋轉中心的慢速直線運動(即,慢速掃描運動),其會導致橫過工作件之GCIB所依循的不同的平行弧形路徑,從而允許對工作件的整個區域進行處理。其中所描述之實施例的快速掃描運動馬達及固持工作件的該臂之旋轉中心係裝設於垂直之梭驅動組件的梭上,其中,其向上的運動係藉著慢速掃描伺服馬達經由滑輪及傳動帶將梭向上拉動而致動。然而,向下的運動係依靠重力來完成,亦即,慢速掃描伺服馬達使傳動帶從滑輪退繞,從而允許梭、快速掃描馬達、及臂一起向下移動。 U.S. Patent Application Serial No. 11/565, 843, entitled "METHOD AND APPARATUS FOR SCANNING A WORKPIECE THROUGH AN ION BEAM", issued on November 30, 2006, and issued on October 27, 2009, is U.S. Patent No. 7,608,843 And incorporated herein by reference to its entirety, this patent describes a workpiece scanning mechanism for scanning workpieces (eg, wafers, substrates, etc.) by gas cluster ion beam (GCIB). . The scanner described therein has two movements that, when combined, allow the GCIB to reach every point of the workpiece. The first motion is a rapid reciprocating motion (ie, a fast scanning motion) of the workpiece through the GCIB, wherein the workpiece is attached to an arm that resembles an inverted pendulum; the resulting GCIB path across the workpiece has an arcuate shape. The second motion is a slow linear motion of the center of rotation of the arm (ie, a slow scan motion) that results in a different parallel arc path that traverses the GCIB of the workpiece, allowing the entire work piece to be The area is processed. The fast scanning motion motor of the described embodiment and the center of rotation of the arm of the holding workpiece are mounted on the shuttle of the vertical shuttle drive assembly, wherein the upward movement is via a pulley through a slow scanning servo motor. And the drive belt pulls the shuttle up and actuates. However, the downward motion is accomplished by gravity, that is, the slow scan servo motor unwinds the belt from the pulley, allowing the shuttle, the fast scan motor, and the arm to move down together.

此種工作件掃描機構有許多缺點。例如,由於慢速掃描運動之至少一方向係依靠重力,因此慢速掃描運動只能是在垂直或接近垂直的方向上。其次,污染物或梭驅動組件的故障可能會使慢速掃描運動卡在沿著梭驅動組件之軌道的梭的某些位置,重力在某些情況下會無法依製程配方之需求 將梭、快速掃描馬達、及臂向下拉動,而導致工作件未正確地受到處理。甚至更糟的是,若重力在某些點克服了卡住的梭,且若已先將足夠的傳動帶之長度從滑輪退繞,則整個梭、快速掃描馬達、及攜帶工作件的臂會突然發生自由落體,導致過大的力施加至傳動帶、滑輪、及慢速掃描伺服馬達,而通常會導致慢速掃描伺服馬達故障。 Such a workpiece scanning mechanism has a number of disadvantages. For example, since at least one direction of the slow scan motion relies on gravity, the slow scan motion can only be in a vertical or near vertical direction. Second, failure of the contaminant or shuttle drive assembly may cause the slow scan motion to be stuck in certain positions of the shuttle along the track of the shuttle drive assembly. Gravity may not be able to meet the requirements of the process recipe under certain circumstances. The shuttle, the fast scanning motor, and the arm are pulled down, causing the workpiece to be not properly handled. Even worse, if gravity overcomes the stuck shuttle at some point, and if the length of the sufficient drive belt is first unwound from the pulley, the entire shuttle, the fast scan motor, and the arm carrying the work piece will suddenly Free fall occurs, causing excessive force to be applied to the belt, pulley, and slow-scan servo motor, which often results in a slow scan servo motor failure.

本發明係試圖改正重力輔助之工作件掃描機構的上述缺點。 The present invention seeks to correct the aforementioned shortcomings of the gravity assisted workpiece scanning mechanism.

本發明之一實施態樣係為一種用於通過GCIB來掃描工作件的裝置,包含:一細長構件,適用於裝設一工作件;一旋轉機構,將該細長構件裝設於旋轉點,並配置為沿著弧形路徑通過GCIB來反覆掃描該工作件;一慢速掃描機構,將該細長構件及該旋轉機構懸吊,並配置為造成該旋轉機構及該細長構件的直線運動,以使該工作件之不同部分通過GCIB,該慢速掃描機構包含具有軌道及梭的梭驅動組件,該旋轉機構係附接於梭並由梭所懸吊;一第一滑輪;一第二滑輪;一傳動帶,裝設於該等滑輪上並附接於梭;及一驅動機構,用以致動該傳動帶。 An embodiment of the present invention is a device for scanning a workpiece by GCIB, comprising: an elongated member adapted to be provided with a workpiece; a rotating mechanism for mounting the elongated member at a rotation point, and Configuring to repeatedly scan the workpiece through the GCIB along an arcuate path; a slow scanning mechanism suspending the elongate member and the rotating mechanism and configured to cause linear motion of the rotating mechanism and the elongate member such that The different parts of the working piece pass through the GCIB, and the slow scanning mechanism comprises a shuttle drive assembly having a track and a shuttle attached to the shuttle and suspended by the shuttle; a first pulley; a second pulley; a drive belt mounted on the pulleys and attached to the shuttle; and a drive mechanism for actuating the drive belt.

本發明之另一實施態樣係為一種裝置,其中該驅動機構包含:一伺服馬達,具有一驅動軸;一第一鏈輪,附接於該驅動軸;一真空旋轉饋通;一第二鏈輪,附接於該真空旋轉饋通;及一齒輪式傳動帶,裝設於該第一及第二鏈輪上。 Another embodiment of the present invention is a device, wherein the driving mechanism comprises: a servo motor having a driving shaft; a first sprocket attached to the driving shaft; a vacuum rotary feedthrough; and a second a sprocket attached to the vacuum rotary feedthrough; and a geared transmission belt mounted on the first and second sprocket wheels.

本發明之另一實施態樣係為用於使用GCIB來處理工作件的系統,包含:一噴嘴,用以由氣體形成氣體團簇射束;一分離器,用以將非所欲的氣體團簇由氣體團簇射束移除;一解離器,用以將氣體團簇射束離子化而形成GCIB;一加速器,用以加速GCIB;一工作件掃描機構,封閉於處理 腔室中並配置為通過GCIB來掃描該工作件,該工作件掃描機構包含:一細長構件,適用於裝設一工作件;一旋轉機構,將該細長構件裝設於旋轉點,並配置為沿著弧形路徑通過GCIB來反覆掃描該工作件;一慢速掃描機構,將該細長構件及該旋轉機構懸吊,並配置為造成該旋轉機構及該細長構件的直線運動,以使該工作件之不同部分通過GCIB,該慢速掃描機構包含具有軌道及梭的梭驅動組件,該旋轉機構係附接於梭並由梭所懸吊;一第一滑輪;一第二滑輪;一傳動帶,裝設於該等滑輪上並附接於梭;及一驅動機構,用以致動該傳動帶。 Another embodiment of the present invention is a system for processing a workpiece using GCIB, comprising: a nozzle for forming a gas cluster beam from a gas; and a separator for undesired gas mass The cluster is removed by a gas cluster beam; a dissociator for ionizing the gas cluster beam to form a GCIB; an accelerator for accelerating the GCIB; a workpiece scanning mechanism, closed for processing The working chamber is configured to scan the workpiece by GCIB, the workpiece scanning mechanism comprises: an elongated member adapted to mount a working piece; a rotating mechanism, the elongated member is mounted at the rotating point, and configured Scanning the workpiece over the curved path through the GCIB; a slow scanning mechanism suspending the elongated member and the rotating mechanism and configured to cause linear motion of the rotating mechanism and the elongated member to enable the work The different parts of the piece pass through the GCIB, and the slow scanning mechanism comprises a shuttle drive assembly having a track and a shuttle attached to the shuttle and suspended by the shuttle; a first pulley; a second pulley; a transmission belt, Mounted on the pulleys and attached to the shuttle; and a drive mechanism for actuating the belt.

本發明之又另一實施態樣係為一種用於通過離子束來掃描工作件的方法,包含以下步驟:將一工作件裝設於一細長構件的端部之處並在GCIB路徑內;使用附接於該細長構件上之旋轉點的旋轉機構以部分地反覆旋轉該細長構件,以沿著弧形路徑通過GCIB進行該工作件的反覆掃描;使該細長構件及該旋轉機構沿著慢速掃描機構移動,該旋轉機構係附接於該慢速掃描機構並由該慢速掃描機構所懸吊,此移動步驟使工作件的不同部分在反覆掃描期間通過GCIB路徑,該慢速掃描機構包含:一梭驅動組件,具有軌道及梭,該旋轉機構係附接於梭並由梭所懸吊;一第一滑輪;一第二滑輪;一傳動帶,裝設於該等滑輪上並附接於梭;及一驅動機構,用以致動該傳動帶,其中,此移動步驟包含:致動該驅動機構及該傳動帶,以造成沿著軌道的梭的直線運動。 Yet another embodiment of the present invention is a method for scanning a workpiece by an ion beam, comprising the steps of: mounting a workpiece at an end of an elongated member and in a GCIB path; a rotating mechanism attached to the rotating point on the elongated member to partially rotate the elongated member to perform a reverse scanning of the working member along the curved path through the GCIB; causing the elongated member and the rotating mechanism to follow a slow speed The scanning mechanism moves, the rotating mechanism is attached to and suspended by the slow scanning mechanism, and the moving step causes different parts of the workpiece to pass through the GCIB path during the repeated scanning, the slow scanning mechanism includes a shuttle drive assembly having a track and a shuttle attached to the shuttle and suspended by the shuttle; a first pulley; a second pulley; a drive belt mounted on the pulley and attached to the pulley And a drive mechanism for actuating the drive belt, wherein the moving step comprises: actuating the drive mechanism and the drive belt to cause linear motion of the shuttle along the track.

100、100'、100"‧‧‧GCIB處理系統 100, 100', 100" ‧ ‧ GCIB processing system

102‧‧‧真空容室 102‧‧‧vacuum chamber

104‧‧‧來源腔室 104‧‧‧Source chamber

106‧‧‧離子化/加速腔室 106‧‧‧Ionization/Acceleration Chamber

108‧‧‧處理腔室 108‧‧‧Processing chamber

110、1010‧‧‧噴嘴 110, 1010‧‧‧ nozzle

111、1011‧‧‧第一氣體來源 111, 1011‧‧‧ First gas source

112、1012‧‧‧第二氣體來源 112, 1012‧‧‧Second gas source

113、1013‧‧‧氣體劑量閥 113, 1013‧‧‧ gas dose valve

113A、1013A‧‧‧第一氣體控制閥 113A, 1013A‧‧‧First gas control valve

113B、1013B‧‧‧第二氣體控制閥 113B, 1013B‧‧‧Second gas control valve

114、1014‧‧‧氣體供應管 114, 1014‧‧‧ gas supply pipe

116、1016‧‧‧滯止腔室 116, 1016‧‧‧ stagnation chamber

118‧‧‧氣體團簇射束 118‧‧‧ gas cluster beam

120‧‧‧氣體分離器 120‧‧‧Gas separator

122‧‧‧解離器 122‧‧‧dissociator

124‧‧‧(解離器)燈絲 124‧‧‧(dissociator) filament

126‧‧‧高電壓電極 126‧‧‧High voltage electrode

128‧‧‧GCIB 128‧‧‧GCIB

128A‧‧‧GCIB 128A‧‧‧GCIB

128A'‧‧‧GCIB 128A'‧‧‧GCIB

130‧‧‧射束電子裝置 130‧‧‧beam electronics

134‧‧‧陽極電源供應器 134‧‧‧Anode power supply

136‧‧‧燈絲電源供應器 136‧‧‧ filament power supply

138‧‧‧抽取電源供應器 138‧‧‧Extracting power supply

140‧‧‧加速器電源供應器 140‧‧‧Accelerator power supply

142‧‧‧透鏡電源供應器 142‧‧‧Lens power supply

144‧‧‧透鏡電源供應器 144‧‧‧Lens power supply

146‧‧‧射束過濾器 146‧‧‧beam filter

148‧‧‧射束閘 148‧‧ ‧ beam brake

150‧‧‧基板固持件 150‧‧‧Sheet holding parts

150A‧‧‧交替位置 150A‧‧‧ alternate position

152‧‧‧基板 152‧‧‧Substrate

152A‧‧‧交替位置 152A‧‧‧ alternate position

1521‧‧‧轉動的基板 1521‧‧‧Rotating substrate

1522‧‧‧轉動的基板 1522‧‧‧Rotating substrate

1523‧‧‧轉動的基板 1523‧‧‧Rotating substrate

160‧‧‧X掃描致動器 160‧‧‧X scan actuator

162‧‧‧Y掃描致動器 162‧‧‧Y scan actuator

164‧‧‧Y掃描運動 164‧‧‧Y scanning movement

166‧‧‧射束入射角 166‧‧‧beam incident angle

170A、B、C‧‧‧真空泵抽系統 170A, B, C‧‧‧ vacuum pumping system

180‧‧‧射束電流感測器 180‧‧‧beam current sensor

182‧‧‧電絕緣底座 182‧‧‧Electrically insulated base

190‧‧‧控制系統 190‧‧‧Control system

250‧‧‧基板固持件 250‧‧‧Substrate holder

252‧‧‧基板 252‧‧‧Substrate

253‧‧‧(X-Y)定位平台 253‧‧‧(X-Y) positioning platform

254‧‧‧基板固持表面 254‧‧‧ substrate holding surface

255‧‧‧電絕緣層 255‧‧‧Electrical insulation

260‧‧‧基座部 260‧‧‧Base section

262‧‧‧X-Y控制器 262‧‧‧X-Y controller

264‧‧‧方向 264‧‧‧ Direction

266‧‧‧射束入射角 266‧‧‧beam incident angle

280‧‧‧光發送器 280‧‧‧ optical transmitter

282‧‧‧光接收器 282‧‧‧Optical Receiver

284‧‧‧入射光學信號 284‧‧‧Infrared optical signal

286‧‧‧投射撞擊區域 286‧‧‧projection impact zone

288‧‧‧散射光學信號 288‧‧‧scatter optical signal

300‧‧‧剖面 300‧‧‧ section

302a~302c‧‧‧線狀熱離子燈絲 302a~302c‧‧‧Linear Thermal Ion Filament

304a~304c‧‧‧(射束形成)電極 304a~304c‧‧‧(beam forming) electrode

306a~306c‧‧‧(電子推斥極)電極 306a~306c‧‧‧ (electron repeller) electrode

308a~308f‧‧‧絕緣體 308a~308f‧‧‧Insulator

310‧‧‧熱電子 310‧‧‧Hot Electronics

312、314、316‧‧‧二次電子 312, 314, 316‧‧‧ secondary electrons

350‧‧‧壓力單元腔室 350‧‧‧ Pressure cell chamber

352‧‧‧惰性氣體來源 352‧‧‧Inert gas source

354‧‧‧壓力感測器 354‧‧‧pressure sensor

450‧‧‧射束輪廓 450‧‧·beam profile

452‧‧‧半峰全寬 452‧‧‧full width at half maximum

454‧‧‧最大寬度 454‧‧‧Maximum width

456‧‧‧橫剖面尺寸 456‧‧‧ cross section size

500‧‧‧工作件掃描機構 500‧‧‧Working parts scanning mechanism

505‧‧‧GCIB 505‧‧‧GCIB

510‧‧‧處理腔室 510‧‧‧Processing chamber

520‧‧‧工作件 520‧‧‧Workpieces

530‧‧‧夾盤 530‧‧‧ chuck

540‧‧‧掃描臂 540‧‧‧ scanning arm

545‧‧‧關節 545‧‧‧ joint

550‧‧‧快速掃描馬達 550‧‧‧ fast scanning motor

560‧‧‧慢速掃描機構 560‧‧‧Slow scanning mechanism

570‧‧‧慢速掃描運動方向(直線運動) 570‧‧‧Slow scanning motion direction (linear motion)

575‧‧‧圓周運動(圓形路徑) 575‧‧‧Circular motion (circular path)

580‧‧‧第一掃描運動(弧形路徑) 580‧‧‧First scanning motion (arc path)

590‧‧‧彎曲運動 590‧‧‧Bending movement

595‧‧‧控制器 595‧‧‧ Controller

598‧‧‧通訊線路 598‧‧‧Communication lines

605‧‧‧梭驅動組件 605‧‧‧ shuttle drive assembly

610‧‧‧軌道 610‧‧‧ Track

612A、B‧‧‧止動器 612A, B‧‧‧stop

620‧‧‧梭 620‧‧‧ Shuttle

630‧‧‧滑輪 630‧‧‧ pulley

640‧‧‧滑輪 640‧‧‧ pulley

650A、B‧‧‧傳動帶 650A, B‧‧‧ drive belt

650A‧‧‧傳動帶部分 650A‧‧‧ drive belt section

650B‧‧‧傳動帶部分 650B‧‧‧ drive belt section

652A、B‧‧‧附接點 652A, B‧‧‧ Attachment

653B‧‧‧附接點 653B‧‧‧ Attachment

660‧‧‧附接點 660‧‧‧ Attachment

670‧‧‧驅動機構 670‧‧‧ drive mechanism

680‧‧‧真空旋轉饋通 680‧‧‧Vacuum Rotary Feedthrough

685‧‧‧減速變速器 685‧‧‧Deceleration gearbox

690‧‧‧伺服馬達 690‧‧‧Servo motor

692‧‧‧減速齒輪組 692‧‧‧Reduction gear set

695‧‧‧驅動軸 695‧‧‧ drive shaft

700‧‧‧鏈輪 700‧‧‧Sprocket

710‧‧‧鏈輪 710‧‧‧Sprocket

720‧‧‧齒輪式傳動帶(平坦傳動帶) 720‧‧‧Gear belt (flat belt)

750‧‧‧限制開關擊件 750‧‧‧Restricted switch parts

760A、B‧‧‧限制開關 760A, B‧‧‧ limit switch

770‧‧‧導引件 770‧‧‧Guide

780‧‧‧滑件 780‧‧‧Sliding parts

790‧‧‧對稱性縱向平面 790‧‧‧symmetric longitudinal plane

1100‧‧‧圓形掃描 1100‧‧‧Circular scan

1102‧‧‧掃描半徑 1102‧‧‧ scan radius

1104‧‧‧速度 1104‧‧‧ speed

1106‧‧‧第一掃描運動速度 1106‧‧‧First scan speed

1108‧‧‧第二掃描運動速度 1108‧‧‧second scanning speed

1110‧‧‧角度θ 1110‧‧‧ Angle θ

1112‧‧‧角度δ 1112‧‧‧ Angle δ

1302‧‧‧第一半徑(起始半徑) 1302‧‧‧First radius (starting radius)

1304‧‧‧第二半徑 1304‧‧‧second radius

1306‧‧‧第三半徑(結束半徑) 1306‧‧‧ third radius (end radius)

1400‧‧‧厚度輪廓 1400‧‧‧ thickness profile

1402‧‧‧中心線 1402‧‧‧ center line

1404‧‧‧旋轉 1404‧‧‧Rotate

1406‧‧‧部分 Section 1406‧‧‧

1500‧‧‧GCIB能量分佈(輪廓) 1500‧‧‧GCIB energy distribution (contour)

1502‧‧‧掃描密度 1502‧‧‧ scan density

1504‧‧‧掃描密度(高密度區域) 1504‧‧‧Scan density (high density area)

1602、1604、1606‧‧‧方塊 1602, 1604, 1606‧‧‧ blocks

1702、1704、1706‧‧‧方塊 1702, 1704, 1706‧‧‧ blocks

1802、1804、1806‧‧‧方塊 1802, 1804, 1806‧‧‧ squares

參照以下的詳細說明且尤其是結合隨附圖式思考時,本發明之更完整理解及許多其伴隨之優點將變得更顯而易見,其中:圖1根據本發明之一實施例,係為多噴嘴GCIB系統的示意圖。 A more complete understanding of the present invention and many of its advantages will become more apparent from the Detailed Description of the <RTIgt; Schematic diagram of the GCIB system.

圖2根據本發明之另一實施例,係為多噴嘴GCIB系統的示意圖。 2 is a schematic illustration of a multi-nozzle GCIB system, in accordance with another embodiment of the present invention.

圖3根據本發明之又另一實施例,係為多噴嘴GCIB系統的示意圖。 3 is a schematic illustration of a multi-nozzle GCIB system in accordance with yet another embodiment of the present invention.

圖4係為GCIB系統中所使用的解離器之一實施例的示意圖。 Figure 4 is a schematic illustration of one embodiment of a dissociator used in a GCIB system.

圖5A及5B係為GCIB系統中所使用的工作件掃描機構之一實施例的示意圖。 5A and 5B are schematic illustrations of one embodiment of a workpiece scanning mechanism used in a GCIB system.

圖6根據本發明之一實施例,係為慢速掃描機構的詳細且部分切除示意圖。 Figure 6 is a detailed and partially cut away schematic view of a slow scanning mechanism, in accordance with an embodiment of the present invention.

圖7根據本發明之一實施例,係為慢速掃描機構的詳細示意圖。 Figure 7 is a detailed schematic diagram of a slow scanning mechanism, in accordance with an embodiment of the present invention.

圖8根據本發明之一實施例,係為用於慢速掃描機構的驅動機構之一部分的詳細示意圖。 Figure 8 is a detailed schematic view of a portion of a drive mechanism for a slow scanning mechanism, in accordance with an embodiment of the present invention.

圖9A及9B根據本發明之一實施例,係為梭驅動組件的詳細示意圖。 9A and 9B are detailed schematic views of a shuttle drive assembly, in accordance with an embodiment of the present invention.

圖10係顯示整個GCIB的射束強度之示例性輪廓。 Figure 10 is an exemplary outline showing the beam intensity of the entire GCIB.

圖11係顯示圍繞GCIB的基板之示例性圓形掃描。 Figure 11 shows an exemplary circular scan of a substrate surrounding a GCIB.

圖12係顯示在圓形掃描期間基板與GCIB間之角度、距離、及速度關係的圖。 Figure 12 is a graph showing the relationship between the angle, distance, and velocity between the substrate and the GCIB during a circular scan.

圖13係顯示圓形掃描之起始半徑及結束半徑的範例。 Figure 13 is an example showing the starting radius and ending radius of a circular scan.

圖14A係顯示在具有示例性厚度輪廓的基板上實施圓形掃描的簡化之示例性實施例。 Figure 14A shows a simplified exemplary embodiment of performing a circular scan on a substrate having an exemplary thickness profile.

圖14B係顯示在基板之厚度輪廓上使用圓形掃描的示例性結果。 Figure 14B shows an exemplary result of using a circular scan on the thickness profile of the substrate.

圖15係顯示在起始半徑及結束半徑間之基板區域上的GCIB能量分佈。 Figure 15 shows the GCIB energy distribution over the substrate area between the starting radius and the ending radius.

圖16係顯示使用GCIB系統來實施基板之圓形掃描的示例性方法。 Figure 16 is an illustration of an exemplary method of performing a circular scan of a substrate using a GCIB system.

圖17係顯示使用GCIB系統來實施基板之圓形掃描的另一示例性方法。 Figure 17 is a diagram showing another exemplary method of performing a circular scan of a substrate using a GCIB system.

圖18係顯示使用GCIB系統來實施基板之圓形掃描的另一示例性方法。 Figure 18 is a diagram showing another exemplary method of performing a circular scan of a substrate using a GCIB system.

在以下的描述中,為了有助於本發明之透徹理解且為了解釋而非限制之目的,係提出特定細節,例如微影、塗佈器/顯影器、及間隙填充處理系統的特定幾何結構、及各種元件及製程的描述。然而,應理解的是,本發明可在悖離這些特定細節的其他實施例中實施。 In the following description, specific details are set forth, such as lithography, applicator/developer, and the specific geometry of the gap fill processing system, for the purpose of facilitating a thorough understanding of the present invention and for purposes of explanation and not limitation. And description of various components and processes. However, it is to be understood that the invention may be practiced in other embodiments that depart from these specific details.

在以下的描述中,用語離子束及氣體團簇離子束(GCIB)將可互換使用,因為本文中所描述的工作件掃描機構可用於使用普通的(即,單體)離子束及氣體團簇離子束(GCIB)來處理工作件。 In the following description, the term ion beam and gas cluster ion beam (GCIB) will be used interchangeably because the workpiece scanning mechanism described herein can be used to use common (ie, monomer) ion beams and gas clusters. An ion beam (GCIB) is used to process the workpiece.

在以下的描述中,用語工作件、基板、及晶圓將可互換使用,以表示由離子束或氣體團簇離子束(GCIB)所處理的工作件。工作件可包含導體、半導體、或介電質基板,其具有或不具有形成其上之各種經圖案化或未經圖案化的膜。再者,工作件可具有任何形狀(例如圓形、矩形等等)及尺寸(例如6英吋、8英吋、12英吋、或更大直徑的圓形晶圓)。範例工作件包含晶圓或半導體晶圓、平板顯示器(FPD)、液晶顯示器(LCD)等等。 In the following description, the terms work, substrate, and wafer will be used interchangeably to refer to a workpiece that is processed by an ion beam or gas cluster ion beam (GCIB). The workpiece can comprise a conductor, a semiconductor, or a dielectric substrate with or without various patterned or unpatterned films formed thereon. Further, the workpiece can have any shape (eg, circular, rectangular, etc.) and size (eg, a 6 inch, 8 inch, 12 inch, or larger diameter circular wafer). Example work pieces include wafer or semiconductor wafers, flat panel displays (FPDs), liquid crystal displays (LCDs), and the like.

現參照圖1,用以修改、沉積、生長、或摻雜層的GCIB處理系統100係根據一實施例加以描繪。GCIB處理系統100包含真空容室102、供待處理之基板152固定於其上的基板固持件150、及真空泵抽系統170A、170B、及170C。基板152可以是半導體基板、晶圓、平板顯示器(FPD)、液晶顯示器(LCD)、或任何其他工作件。GCIB處理系統100係配置為產生用以處理基板152的GCIB。 Referring now to Figure 1, a GCIB processing system 100 for modifying, depositing, growing, or doping layers is depicted in accordance with an embodiment. The GCIB processing system 100 includes a vacuum chamber 102, a substrate holder 150 to which the substrate 152 to be processed is affixed, and vacuum pumping systems 170A, 170B, and 170C. The substrate 152 can be a semiconductor substrate, a wafer, a flat panel display (FPD), a liquid crystal display (LCD), or any other work piece. The GCIB processing system 100 is configured to generate a GCIB for processing the substrate 152.

仍參照圖1中的GCIB處理系統100。真空容室102包含三個連通的腔室,即,來源腔室104、離子化/加速腔室106、及處理腔室108,以提供減壓的封閉空間。藉由真空泵抽系統170A、170B、及170C將此三個腔室分別抽空至適當的操作壓力。在此三個連通的腔室104、106、108中,氣體團簇射束可在第一腔室(來源腔室104)中形成,而GCIB可在第二腔室(離子化/加速腔室106)中形成,於其中係使氣體團簇射束離子化並加速。接著,在第三腔室(處理腔室108)中,可使用加速的GCIB對基板152進行處理。 Still referring to the GCIB processing system 100 of FIG. The vacuum chamber 102 includes three communicating chambers, namely a source chamber 104, an ionization/acceleration chamber 106, and a processing chamber 108 to provide a reduced pressure enclosed space. The three chambers are evacuated to the appropriate operating pressure by vacuum pumping systems 170A, 170B, and 170C, respectively. In the three communicating chambers 104, 106, 108, a gas cluster beam can be formed in the first chamber (source chamber 104) and the GCIB can be in the second chamber (ionization/acceleration chamber) Formed in 106) in which the gas cluster beam is ionized and accelerated. Next, in the third chamber (processing chamber 108), the substrate 152 can be processed using accelerated GCIB.

在圖1的示例性實施例中,GCIB處理系統100包含兩個氣體供應器及兩個噴嘴110、1010。具有數個(非兩個)噴嘴及數個(非兩個)氣體供應器的額外實施例將於之後討論,所有這些情況均落入本發明的範疇內。兩個氣體供應器之各者係分別連接於兩個滯止腔室116及1016以及噴嘴110及1010之一者。第一氣體供應器包含第一氣體來源111、第二氣體來源112、第一氣體控制閥113A、第二氣體控制閥113B、及氣體計量閥113。例如,儲存於第一氣體來源111中的第一氣體組成分在加壓下係允許通過第一氣體控制閥113A而到一或多個氣體計量閥113。此外,例如,儲存於第二氣體來源112中的第二氣體組成分在加壓下係允許通過第二氣體控制閥113B而到一或多個氣體計量閥113。進一步地,例如,第一氣體供應器的第一氣體組成分、或第二氣體組成分、或此兩者,可包含可壓縮的惰性氣體、載體氣體、或稀釋氣 體。舉例來說,惰性氣體、載體氣體、或稀釋氣體可包含稀有氣體,亦即,He、Ne、Ar、Kr、Xe、或Rn。 In the exemplary embodiment of FIG. 1, GCIB processing system 100 includes two gas supplies and two nozzles 110, 1010. Additional embodiments having a plurality (not two) of nozzles and a plurality (not two) of gas supplies will be discussed later, all of which fall within the scope of the present invention. Each of the two gas supplies is coupled to one of the two stagnation chambers 116 and 1016 and one of the nozzles 110 and 1010, respectively. The first gas supply includes a first gas source 111, a second gas source 112, a first gas control valve 113A, a second gas control valve 113B, and a gas metering valve 113. For example, the first gas component stored in the first gas source 111 is allowed to pass through the first gas control valve 113A to one or more gas metering valves 113 under pressure. Further, for example, the second gas component stored in the second gas source 112 is allowed to pass through the second gas control valve 113B to one or more gas metering valves 113 under pressure. Further, for example, the first gas component, or the second gas component of the first gas supply, or both, may comprise a compressible inert gas, a carrier gas, or a diluent gas body. For example, the inert gas, carrier gas, or diluent gas may comprise a noble gas, that is, He, Ne, Ar, Kr, Xe, or Rn.

類似地,第二氣體供應器包含第一氣體來源1011、第二氣體來源1012、第一氣體控制閥1013A、第二氣體控制閥1013B、及氣體計量閥1013。例如,儲存於第一氣體來源1011中的第一氣體組成分在加壓下係允許通過第一氣體控制閥1013A而到一或多個氣體計量閥1013。此外,例如,儲存於第二氣體來源1012中的第二氣體組成分在加壓下係允許通過第二氣體控制閥1013B而到一或多個氣體計量閥1013。進一步地,例如,第二氣體供應器的第一氣體組成分、或第二氣體組成分、或此兩者,可包含可壓縮的惰性氣體、載體氣體、或稀釋氣體。舉例來說,惰性氣體、載體氣體、或稀釋氣體可包含稀有氣體,亦即,He、Ne、Ar、Kr、Xe、或Rn。 Similarly, the second gas supply includes a first gas source 1011, a second gas source 1012, a first gas control valve 1013A, a second gas control valve 1013B, and a gas metering valve 1013. For example, the first gas component stored in the first gas source 1011 is allowed to pass through the first gas control valve 1013A to one or more gas metering valves 1013 under pressure. Further, for example, the second gas component stored in the second gas source 1012 is allowed to pass through the second gas control valve 1013B to one or more gas metering valves 1013 under pressure. Further, for example, the first gas component, or the second gas component of the second gas supply, or both, may comprise a compressible inert gas, a carrier gas, or a diluent gas. For example, the inert gas, carrier gas, or diluent gas may comprise a noble gas, that is, He, Ne, Ar, Kr, Xe, or Rn.

此外,可各使用第一氣體來源111及1011、以及第二氣體來源112及1012以產生離子化團簇。第一氣體來源111、1011及第二氣體來源112、1012的材料組成分包含主要原子(或分子)物種,亦即,欲引入以用於摻雜、沉積、修改、或成長層的第一及第二原子組成。 Additionally, first gas sources 111 and 1011 and second gas sources 112 and 1012 can be used each to produce ionized clusters. The material composition of the first gas source 111, 1011 and the second gas source 112, 1012 comprises a primary atomic (or molecular) species, that is, a first to be introduced for doping, depositing, modifying, or growing layers. The second atom consists of.

包含第一氣體組成分及/或第二氣體組成分的高壓、可壓縮氣體係通過氣體供應管114而由第一氣體供應器引入至滯止腔室116中,並通過經適當成形的噴嘴110而噴射至實質上較低壓力之真空中。由於高壓、可壓縮氣體從滯止腔室116至來源腔室104之較低壓力區域的膨脹所致,氣體速度係加速至超音速,且氣體團簇射束係從噴嘴110射出。 A high pressure, compressible gas system comprising a first gas component and/or a second gas component is introduced into the stagnation chamber 116 by the first gas supply through the gas supply pipe 114 and through the appropriately shaped nozzle 110 It is sprayed into a vacuum of substantially lower pressure. Due to the expansion of the high pressure, compressible gas from the stagnation chamber 116 to the lower pressure region of the source chamber 104, the gas velocity is accelerated to supersonic speed and the gas cluster beam is ejected from the nozzle 110.

類似地,包含第一氣體組成分及/或第二氣體組成分的高壓、可壓縮氣體係通過氣體供應管1014而由第二氣體供應器引入至滯止腔室1016中,並通過經適當成形的噴嘴1010而噴射至實質上較低壓力之真空中。由於 高壓、可壓縮氣體從滯止腔室1016至來源腔室104之較低壓力區域的膨脹所致,氣體速度係加速至超音速,且氣體團簇射束係從噴嘴1010射出。 Similarly, a high pressure, compressible gas system comprising a first gas component and/or a second gas component is introduced into the stagnation chamber 1016 by a second gas supply through a gas supply pipe 1014 and is suitably shaped The nozzle 1010 is injected into a vacuum of substantially lower pressure. due to The expansion of the high pressure, compressible gas from the stagnation chamber 1016 to the lower pressure region of the source chamber 104 causes the gas velocity to accelerate to supersonic speed and the gas cluster beam is ejected from the nozzle 1010.

噴嘴110及1010係裝設得相當靠近,以至於由噴嘴110、1010所產生的個別之氣體團簇射束在到達氣體分離器120之前,係在來源腔室104的真空環境中實質上合併成單一個氣體團簇射束118。氣體團簇射束118的化學組成代表了由第一氣體供應器及第二氣體供應器所提供、並經由噴嘴110及1010所注入的組成分之混合物。 The nozzles 110 and 1010 are mounted so close that the individual gas cluster jets produced by the nozzles 110, 1010 are substantially merged into the vacuum environment of the source chamber 104 before reaching the gas separator 120. A single gas cluster beam 118. The chemical composition of the gas cluster beam 118 represents a mixture of components provided by the first gas supply and the second gas supply and injected through the nozzles 110 and 1010.

當靜焓與由噴射流中之膨脹所引起的動能互換時,噴射流的固有冷卻效應會使氣體噴射流之一部分壓縮並形成具有團簇的氣體團簇射束118,各團簇係由數個至數千個弱接合的原子或分子所組成。位於噴嘴110及1010的出口之下游處且在來源腔室104與離子化/加速腔室106之間的氣體分離器120,係部分地使氣體團簇射束118之周圍邊緣上的氣體分子(其可能不會被壓縮成團簇)與氣體團簇射束118之核心中的氣體分子(其可能已形成團簇)分離。除了其他原因之外,此氣體團簇射束118之一部分的選擇可使下游區域中的壓力降低,在下游區域(例如解離器122及處理腔室108)中較高的壓力可能是不利的。此外,氣體分離器120定義了進入離子化/加速腔室106之氣體團簇射束的初始尺寸。 When the static energy is exchanged with the kinetic energy caused by the expansion in the jet, the intrinsic cooling effect of the jet causes a portion of the gas jet to be partially compressed and form a clustered gas cluster beam 118, each cluster being numbered It consists of thousands or thousands of weakly bonded atoms or molecules. The gas separator 120 located downstream of the outlets of the nozzles 110 and 1010 and between the source chamber 104 and the ionization/acceleration chamber 106 partially partially occludes gas molecules on the peripheral edge of the gas cluster beam 118 ( It may not be compressed into clusters) separated from gas molecules in the core of the gas cluster beam 118 (which may have formed clusters). The selection of a portion of this gas cluster beam 118 may reduce the pressure in the downstream region, among other reasons, and higher pressures in the downstream regions (e.g., dissociator 122 and processing chamber 108) may be disadvantageous. In addition, gas separator 120 defines the initial size of the gas cluster beam entering ionization/acceleration chamber 106.

第一氣體供應器及第二氣體供應器可配置為獨立地控制引入至滯止腔室116及1016的氣體混合物之滯止壓力及溫度。可藉由在各氣體供應器中使用適當的溫度控制系統(例如,加熱器及/或冷卻器)(未顯示)來實現溫度控制。此外,操縱器可例如經由滯止腔室116而機械式地耦接於噴嘴110,操縱器係配置為將耦接之噴嘴110獨立於噴嘴1010相對於氣體分離器120定位。同樣地,操縱器可例如經由滯止腔室1016而機械式地耦接於噴嘴1010,操縱器係配置為將耦接之噴嘴1010獨立於噴嘴110相對於氣體分離器120定 位。因此,可獨立地操縱多噴嘴組件中之各噴嘴,以相對於單一個氣體分離器120適當定位。 The first gas supply and the second gas supply may be configured to independently control the stagnation pressure and temperature of the gas mixture introduced to the stagnation chambers 116 and 1016. Temperature control can be achieved by using an appropriate temperature control system (e.g., heater and/or cooler) (not shown) in each gas supply. Moreover, the manipulator can be mechanically coupled to the nozzle 110, for example, via a stagnation chamber 116 that is configured to position the coupled nozzle 110 relative to the gas separator 120 independently of the nozzle 1010. Likewise, the manipulator can be mechanically coupled to the nozzle 1010, for example, via a stagnation chamber 1016 configured to separate the coupled nozzle 1010 from the gas separator 120 independently of the nozzle 110. Bit. Thus, each of the multiple nozzle assemblies can be independently manipulated for proper positioning relative to a single gas separator 120.

在氣體團簇射束118已於來源腔室104中形成之後,可藉由解離器122將氣體團簇射束118中的組分氣體團簇離子化以形成GCIB 128。解離器122可包含從一或更多燈絲124產生電子的電子撞擊解離器,電子會被加速且引導,以與離子化/加速腔室106內部之氣體團簇射束118中的氣體團簇碰撞。在與氣體團簇發生碰撞撞擊時,具有足夠能量的電子會使電子從氣體團簇中的分子射出以產生離子化的分子。氣體團簇的離子化可導致帶電氣體團簇離子的群體,其通常具有淨正電荷。 After the gas cluster beam 118 has been formed in the source chamber 104, the component gas clusters in the gas cluster beam 118 can be ionized by the dissociater 122 to form the GCIB 128. The dissociator 122 can include an electron impact dissipator that generates electrons from one or more filaments 124 that are accelerated and directed to collide with gas clusters in the gas cluster beam 118 inside the ionization/acceleration chamber 106. . When colliding with a gas cluster, electrons with sufficient energy cause electrons to be ejected from molecules in the gas cluster to produce ionized molecules. Ionization of gas clusters can result in a population of charged gas cluster ions, which typically have a net positive charge.

如圖1中所示,射束電子裝置130係用以使GCIB 128離子化並抽取、加速、及聚集GCIB 128。射束電子裝置130包含燈絲電源供應器136,燈絲電源供應器136可提供電壓VF以加熱解離器燈絲124。 As shown in FIG. 1, beam electronics 130 is used to ionize and extract, accelerate, and aggregate GCIB 128. Beam electronics 130 includes a filament power supply 136 that can provide a voltage V F to heat the dissolver filament 124.

此外,射束電子裝置130包含在離子化/加速腔室106中的一組經適當偏壓的高電壓電極126,高電壓電極126可將團簇離子由解離器122抽取出。高電壓電極126接著可將抽取出的團簇離子加速至所期望之能量,並將其聚集以定義GCIB 128。GCIB 128中之團簇離子的動能其範圍通常從約1000電子伏特(1keV)至數十keV。例如,可將GCIB 128加速到1至100keV。 In addition, beam electronics 130 includes a set of suitably biased high voltage electrodes 126 in ionization/acceleration chamber 106 that can extract cluster ions from dissociator 122. The high voltage electrode 126 can then accelerate the extracted cluster ions to the desired energy and concentrate them to define the GCIB 128. The kinetic energy of the cluster ions in GCIB 128 typically ranges from about 1000 electron volts (1 keV) to tens of keV. For example, GCIB 128 can be accelerated to 1 to 100 keV.

如圖1中所示,射束電子裝置130更包含陽極電源供應器134,陽極電源供應器134可將電壓VA提供至解離器122的陽極,以使從解離器燈絲124射出的電子加速、並使電子轟擊氣體團簇射束118中的氣體團簇,而這將產生團簇離子。 As shown in FIG. 1, beam electronics 130 further includes an anode power supply 134 that provides a voltage V A to the anode of dissociator 122 to accelerate electrons emitted from dissociator filament 124, The electrons are bombarded with gas clusters in the gas cluster beam 118, which will produce cluster ions.

此外,如圖1中所示,射束電子裝置130包含抽取電源供應器138,抽取電源供應器138可提供電壓VE以將高電壓電極126之至少一者偏壓,俾從解離器122的離子化區域抽取離子並且形成GCIB 128。例如,抽取 電源供應器138可將一電壓提供至高電壓電極126的第一電極,此電壓係小於或等於解離器122的陽極電壓。 In addition, as shown in FIG. 1, beam electronics 130 includes an extraction power supply 138 that can provide a voltage V E to bias at least one of the high voltage electrodes 126 from the dissociater 122. The ionized regions extract ions and form GCIB 128. For example, the extraction power supply 138 can provide a voltage to the first electrode of the high voltage electrode 126 that is less than or equal to the anode voltage of the dissociator 122.

再者,射束電子裝置130可包含加速器電源供應器140,加速器電源供應器140可提供電壓VACC以將高電壓電極126之一者相對於解離器122偏壓,從而使總GCIB加速能量等於約VACC電子伏特(eV)。例如,加速器電源供應器140可將一電壓提供至高電壓電極126的第二電極,此電壓係小於或等於解離器122的陽極電壓及第一電極的抽取電壓。 Further, the beam electronics 130 can include an accelerator power supply 140 that can provide a voltage V ACC to bias one of the high voltage electrodes 126 relative to the dissociater 122 such that the total GCIB acceleration energy is equal to About V ACC electron volts (eV). For example, the accelerator power supply 140 can provide a voltage to the second electrode of the high voltage electrode 126 that is less than or equal to the anode voltage of the dissociator 122 and the extracted voltage of the first electrode.

又,進一步地,射束電子裝置130可包含透鏡電源供應器142、144,可設置透鏡電源供應器142、144俾以電位(例如VL1及VL2)將某些高電壓電極126偏壓以聚集GCIB 128。舉例來說,透鏡電源供應器142可將一電壓提供至高電壓電極126的第三電極,此電壓係小於或等於解離器122的陽極電壓、第一電極的抽取電壓、及第二電極的加速器電壓;而透鏡電源供應器144可將一電壓提供至高電壓電極126的第四電極,此電壓係小於或等於解離器122的陽極電壓、第一電極的抽取電壓、第二電極的加速器電壓、及第三電極的第一透鏡電壓。 Still further, the beam electronics 130 can include lens power supplies 142, 144 that can be placed to bias certain high voltage electrodes 126 at potentials (eg, V L1 and V L2 ) to Gather GCIB 128. For example, the lens power supply 142 can provide a voltage to the third electrode of the high voltage electrode 126, which is less than or equal to the anode voltage of the dissociator 122, the extracted voltage of the first electrode, and the accelerator voltage of the second electrode. And the lens power supply 144 can supply a voltage to the fourth electrode of the high voltage electrode 126, the voltage is less than or equal to the anode voltage of the dissociater 122, the decimation voltage of the first electrode, the accelerator voltage of the second electrode, and the The first lens voltage of the three electrodes.

應注意的是,可使用離子化方案及抽取方案二者的許多變型。儘管在此所描述的方案係有助於教示之目的,但另一抽取方案可涉及將解離器及抽取電極(或抽取光學裝置)之第一元件設定在VACC。這通常需要對解離器電源供應器的控制電壓進行光纖程式化,但可建立較簡單的整體光學裝置系列。無論解離器及抽取透鏡之偏壓的細節如何,本文中所描述之本發明皆是有用的。 It should be noted that many variations of both the ionization scheme and the extraction scheme can be used. Although the approaches described herein are helpful for teaching purposes, another extraction scheme may involve setting the first component of the dissociator and extraction electrode (or extraction optics) at V ACC . This usually requires fiber staging of the control voltage of the dissociator power supply, but a relatively simple series of monolithic devices can be built. The invention described herein is useful regardless of the details of the bias of the dissociator and the extraction lens.

可使用位於高電壓電極126下游並在離子化/加速腔室106中的射束過濾器146來消除來自GCIB 128的單體、或單體與輕團簇離子,以定義進入處理腔室108的經過濾的處理之GCIB 128A。在一實施例中,射束過濾器 146實質上使具有100個或更少之原子或分子或此二者的團簇之數量減少。射束過濾器146可包含磁體組件,該磁體組件係用以對整個GCIB 128施加磁場以幫助濾波處理。 The beam filter 146 located downstream of the high voltage electrode 126 and in the ionization/acceleration chamber 106 can be used to eliminate monomer, or monomer and light cluster ions from the GCIB 128 to define entry into the processing chamber 108. Filtered GCIB 128A. In an embodiment, the beam filter 146 substantially reduces the number of clusters having 100 or fewer atoms or molecules or both. The beam filter 146 can include a magnet assembly that is used to apply a magnetic field to the entire GCIB 128 to aid in the filtering process.

仍參照圖1,射束閘148係設置於離子化/加速腔室106中並在GCIB 128之路徑上。射束閘148具有開啟狀態及關閉狀態,在開啟狀態下,係允許GCIB 128從離子化/加速腔室106通往處理腔室108以定義處理之GCIB 128A;在關閉狀態下,係阻擋GCIB 128進入處理腔室108。一控制電纜可將控制信號由控制系統190傳遞至射束閘148。該控制信號係可控制地使射束閘148在開啟狀態或關閉狀態之間切換。 Still referring to FIG. 1, beam gate 148 is disposed in ionization/acceleration chamber 106 and on the path of GCIB 128. The beam brake 148 has an open state and a closed state. In the open state, the GCIB 128 is allowed to pass from the ionization/acceleration chamber 106 to the processing chamber 108 to define the processed GCIB 128A; in the off state, the GCIB 128 is blocked. Entering the processing chamber 108. A control cable can pass control signals from control system 190 to beam gate 148. The control signal controllably switches the beam gate 148 between an open state or a closed state.

基板152(可為晶圓或半導體晶圓、平板顯示器(FPD)、液晶顯示器(LCD)、或其他待受GCIB處理所處理的基板)係設置在處理腔室108中並在處理之GCIB 128A的路徑上。由於大部分的應用係考慮到在具有空間上均勻結果的情況下處理大型基板,故可能需要掃描系統以處理之GCIB 128A均勻地掃描整個大區域,以產生空間上同質之結果。 Substrate 152 (which may be a wafer or semiconductor wafer, flat panel display (FPD), liquid crystal display (LCD), or other substrate to be processed by GCIB processing) is disposed in processing chamber 108 and is processed by GCIB 128A On the path. Since most applications allow for the processing of large substrates with spatially uniform results, it may be desirable for the scanning system to process the GCIB 128A to uniformly scan the entire large area to produce spatially homogeneous results.

X掃描致動器160提供基板固持件150在X掃描運動之方向(進出紙面)上的直線運動。Y掃描致動器162提供基板固持件150在Y掃描運動164(其通常正交於X掃描運動)之方向上的直線運動。X掃描與Y掃描運動的組合以類似光柵的掃描運動將基板固持件150所固持的基板152轉移過處理之GCIB 128A,俾藉由用以處理基板152的處理之GCIB 128A對基板152之表面造成均勻(或以其他方式程式化)的照射。 The X-scan actuator 160 provides linear motion of the substrate holder 150 in the direction of the X-scan motion (in and out of the paper). Y-scan actuator 162 provides linear motion of substrate holder 150 in the direction of Y-scan motion 164, which is generally orthogonal to the X-scan motion. The combination of the X-scan and the Y-scan motion transfers the substrate 152 held by the substrate holder 150 through the processed GCIB 128A in a grating-like scanning motion, and causes the surface of the substrate 152 by the GCIB 128A for processing the substrate 152. Uniform (or otherwise stylized) illumination.

基板固持件150將基板152設置為相對於處理之GCIB 128A之軸線呈一角度,俾使處理之GCIB 128A相對於基板152表面具有射束入射角166。射束入射角166可以是90度或一些其他角度,但通常為90度或接近90度。在Y掃描期間,基板152及基板固持件150分別會從所示之位置移動至由標號 152A及150A所指出之交替位置「A」。應注意的是,在此二個位置之間移動時,係通過處理之GCIB 128A來掃描基板152;而在二個端點位置時,係完全移出處理之GCIB 128A的路徑(過掃描)。儘管在圖1中並未明確顯示,但類似的掃描及過掃描係在(通常)正交的X掃描運動方向(進出紙面)上進行。 The substrate holder 150 sets the substrate 152 at an angle relative to the axis of the processed GCIB 128A such that the processed GCIB 128A has a beam incidence angle 166 relative to the surface of the substrate 152. The beam incidence angle 166 can be 90 degrees or some other angle, but is typically 90 degrees or nearly 90 degrees. During the Y-scan, the substrate 152 and the substrate holder 150 are respectively moved from the position shown to the label. The alternate position "A" indicated by 152A and 150A. It should be noted that when moving between the two positions, the substrate 152 is scanned by the processed GCIB 128A; and at the two end positions, the path of the processed GCIB 128A is completely removed (overscan). Although not explicitly shown in Figure 1, similar scans and overscans are performed in the (usually) orthogonal X-scan motion direction (in and out of the paper).

射束電流感測器180可設置於處理之GCIB 128A的路徑上且在基板固持件150後方,以便在基板固持件150掃描超出處理之GCIB 128A的路徑時,截取處理之GCIB 128A的樣本。射束電流感測器180通常是法拉第杯或類似物,其除了射束進入開口之外是密閉的,且通常係藉由電絕緣底座182固定於真空容室102之壁。 The beam current sensor 180 can be disposed on the path of the processed GCIB 128A and behind the substrate holder 150 to intercept the sample of the processed GCIB 128A as the substrate holder 150 scans beyond the path of the processed GCIB 128A. The beam current sensor 180 is typically a Faraday cup or the like that is sealed except for the beam entering the opening and is typically secured to the wall of the vacuum chamber 102 by an electrically insulating base 182.

如圖1中所示,控制系統190係通過電纜而連接於X掃描致動器160及Y掃描致動器162,並控制X掃描致動器160及Y掃描致動器162,以將基板152放置於處理之GCIB 128A之中或之外、並相對於處理之GCIB 128A均勻地掃描基板152,以藉由處理之GCIB 128A來達成基板152的所期望之處理。控制系統190係經由電纜來接收由射束電流感測器180所收集之採樣的射束電流,從而監測GCIB,並在已遞送預定劑量時藉由將基板152從處理之GCIB 128A移開而控制基板152所接收的GCIB劑量。 As shown in FIG. 1, the control system 190 is coupled to the X-scan actuator 160 and the Y-scan actuator 162 by a cable, and controls the X-scan actuator 160 and the Y-scan actuator 162 to transfer the substrate 152. Substrate 152 is placed in or out of the processed GCIB 128A and uniformly scanned relative to the processed GCIB 128A to achieve the desired processing of the substrate 152 by processing the GCIB 128A. Control system 190 receives the sampled beam current collected by beam current sensor 180 via a cable to monitor GCIB and control by removing substrate 152 from processed GCIB 128A when a predetermined dose has been delivered. The dose of GCIB received by substrate 152.

在圖2中所示的實施例中,GCIB處理系統100'可類似於圖1的實施例且更包含X-Y定位平台253,X-Y定位平台253係可操作的以將基板252固持並使其在二個軸上移動,而相對於處理之GCIB 128A有效地掃描基板252。例如,X運動可包含進出紙面的運動,而Y運動可包含沿著方向264的運動。 In the embodiment shown in FIG. 2, the GCIB processing system 100' can be similar to the embodiment of FIG. 1 and further includes an XY positioning platform 253 that is operable to hold the substrate 252 and cause it to The axes move up and the substrate 252 is effectively scanned relative to the processed GCIB 128A. For example, the X motion can include motion into and out of the paper, while the Y motion can include motion along direction 264.

處理之GCIB 128A係在基板252之表面上的投射撞擊區域286處、且相對於基板252之表面呈射束入射角266地撞擊基板252。藉著X-Y運動,X-Y定位平台253可將基板252之表面的各部分定位在處理之GCIB 128A 的路徑上,俾使該表面的每一區域均可與投射撞擊區域286重合,以藉由處理之GCIB 128A進行處理。X-Y控制器262係通過電纜將電信號提供至X-Y定位平台253,以控制在X軸方向及Y軸方向之各者上的位置及速度。X-Y控制器262係通過電纜接收來自控制系統190的控制信號,並可受控制系統190操控。X-Y定位平台253係根據習知的X-Y平台定位技術而以連續運動或以步進運動來移動,俾將基板252的不同區域定位在投射撞擊區域286之內。在一實施例中,X-Y定位平台253可由控制系統190以可程式化方式所操作,俾以可程式化的速度使基板252之任何部分掃描通過投射撞擊區域286,以藉由處理之GCIB 128A進行GCIB處理。 The processed GCIB 128A strikes the substrate 252 at a projected impact region 286 on the surface of the substrate 252 and at a beam incidence angle 266 relative to the surface of the substrate 252. By X-Y motion, the X-Y positioning platform 253 can position portions of the surface of the substrate 252 at the processed GCIB 128A. In the path, each region of the surface can be coincident with the projected impact region 286 for processing by the processed GCIB 128A. The X-Y controller 262 provides an electrical signal to the X-Y positioning stage 253 via a cable to control the position and speed in each of the X-axis direction and the Y-axis direction. The X-Y controller 262 receives control signals from the control system 190 via a cable and is controllable by the control system 190. The X-Y positioning platform 253 is moved in a continuous motion or in a step motion in accordance with conventional X-Y platform positioning techniques to position different regions of the substrate 252 within the projected impact region 286. In one embodiment, the XY positioning platform 253 can be operated in a programmable manner by the control system 190 to scan any portion of the substrate 252 through the projected impact region 286 at a programmable speed for processing by the GCIB 128A. GCIB processing.

定位平台253的基板固持表面254係導電的、且係連接於由控制系統190所操作的劑量測定處理器。定位平台253的電絕緣層255可使基板252及基板固持表面254與定位平台253之基座部260隔離。由撞擊的處理之GCIB 128A在基板252中所引起的電荷係傳導通過基板252及基板固持表面254,且一信號係通過定位平台253而耦合至控制系統190以供劑量測定量測。劑量測定量測具有用以將GCIB電流積分以判定GCIB處理劑量的積分手段。在某些情況下,電子的目標中和來源(未顯示)(有時被稱為電子潮)可用以中和處理之GCIB 128A。在此種情況下,法拉第杯(未顯示,但可類似於圖1中的射束電流感測器180)可用以確保儘管在有額外之電荷來源的情況下仍有準確的劑量測定,其理由在於典型的法拉第杯僅允許高能量正離子進入而被量測。 The substrate holding surface 254 of the positioning platform 253 is electrically conductive and is coupled to a dosimetry processor operated by the control system 190. The electrically insulating layer 255 of the positioning platform 253 can isolate the substrate 252 and the substrate holding surface 254 from the base portion 260 of the positioning platform 253. The charge induced in the substrate 252 by the impacted GCIB 128A is conducted through the substrate 252 and the substrate holding surface 254, and a signal is coupled to the control system 190 via the positioning platform 253 for dosimetry measurements. Dosimetry measurements have an integral means for integrating the GCIB current to determine the GCIB treatment dose. In some cases, the target and source of the electron (not shown) (sometimes referred to as the electron tide) can be used to neutralize the processed GCIB 128A. In this case, a Faraday cup (not shown, but similar to beam current sensor 180 in Figure 1) can be used to ensure that although accurate dosimetry is still possible with additional sources of charge, the rationale The typical Faraday cup is only allowed to be measured by allowing high energy positive ions to enter.

在操作中,控制系統190會發出將射束閘148開啟的信號,以使用處理之GCIB 128A來照射基板252。控制系統190會監測基板252所收集到的GCIB電流之量測結果,以計算基板252所接收到的累積劑量。當基板252所接收到的劑量達到預定劑量時,控制系統190會關閉射束閘148,而基板252的處理即完成。基於基板252之特定區域所接收到的GCIB劑量之量測結果,控制 系統190可調整掃描速度以達成適當的射束駐留時間來處理基板252的不同區域。 In operation, control system 190 will signal the opening of beam gate 148 to illuminate substrate 252 using processed GCIB 128A. Control system 190 monitors the measurement of the GCIB current collected by substrate 252 to calculate the cumulative dose received by substrate 252. When the dose received by the substrate 252 reaches a predetermined dose, the control system 190 turns off the beam gate 148 and the processing of the substrate 252 is complete. Control based on the measurement of the GCIB dose received in a particular region of the substrate 252 System 190 can adjust the scan speed to achieve a suitable beam dwell time to process different regions of substrate 252.

替代地,處理之GCIB 128A可以固定速度且以固定模式掃描基板252的表面各處;然而,GCIB的強度係調變的(可稱為Z軸調變)以將特意不均勻的劑量傳遞至樣本。可藉由許多方法之任一者在GCIB處理系統100'中調變GCIB的強度,這些方法包含:改變來自GCIB來源供應器的氣體流;藉由改變燈絲電壓VF或改變陽極電壓VA而調變解離器122;藉由改變透鏡電壓VL1及/或VL2而調變透鏡焦距;或以可變的射束阻擋件、可調整的擋門、或可變的開孔而機械式地阻擋GCIB之一部分。調變的變化可以是連續的類比變化或可以是時間調控的切換或閘控。 Alternatively, the processed GCIB 128A can scan the surface of the substrate 252 at a fixed speed and in a fixed pattern; however, the intensity of the GCIB is modulated (which can be referred to as Z-axis modulation) to deliver a purposely uneven dose to the sample. . May be any one of many methods by the intensity of the 100 'the modulation of the GCIB GCIB processing system, the method comprising: changing the flow of gas from the supply source GCIB; filament voltage V F changes by changing the anode voltage V A or the Modulating the dissociator 122; modulating the lens focal length by changing the lens voltages V L1 and / or V L2 ; or mechanically using a variable beam stop, an adjustable gate, or a variable opening Block one part of the GCIB. The change in modulation can be a continuous analog change or can be a time-controlled switch or gate.

處理腔室108可更包含原位的量測系統。例如,原位的量測系統可包含具有光發送器280及光接收器282的光學診斷系統,其配置為分別以入射光學信號284照射基板252及接收來自基板252的散射光學信號288。光學診斷系統包含光學窗以允許入射光學信號284及散射光學信號288通過而進出處理腔室108。此外,光發送器280及光接收器282分別可包含發送光學裝置及接收光學裝置。光發送器280會接收並回應來自控制系統190的控制用之電信號。光接收器282會將量測信號送回至控制系統190。 The processing chamber 108 can further include an in situ measurement system. For example, the in situ measurement system can include an optical diagnostic system having an optical transmitter 280 and a light receiver 282 configured to illuminate the substrate 252 with the incident optical signal 284 and receive the scattered optical signal 288 from the substrate 252, respectively. The optical diagnostic system includes an optical window to allow the incident optical signal 284 and the scattered optical signal 288 to pass in and out of the processing chamber 108. In addition, the optical transmitter 280 and the optical receiver 282 may respectively include a transmitting optical device and a receiving optical device. Optical transmitter 280 receives and responds to electrical signals for control from control system 190. The light receiver 282 sends the measurement signal back to the control system 190.

原位的量測系統可包含配置為監測GCIB處理之進行的任何儀器。根據一實施例,原位的量測系統可構成光學散射儀系統。此散射儀系統可包含結合射束輪廓橢圓儀(橢圓偏光計)及射束輪廓反射儀(反射計)的散射計,其可由Therma-Wave,Inc.(1250 Reliance Way,Fremont,CA 94539)或Nanometrics,Inc.(1550 Buckeye Drive,Milpitas,CA 95035)購得。 The in situ measurement system can include any instrument configured to monitor the progress of the GCIB process. According to an embodiment, the in situ measurement system may constitute an optical scatterometer system. The scatterometer system may comprise a scatterometer incorporating a beam profile ellipsometer (elliptical polarimeter) and a beam profile reflectometer (reflectometer), which may be from Therma-Wave, Inc. (1250 Reliance Way, Fremont, CA 94539) or Nanometrics, Inc. (1550 Buckeye Drive, Milpitas, CA 95035) was purchased.

例如,原位的量測系統可包含整合式光學數位輪廓儀(integrated Optical Digital Profilometry,iODP)散射儀模組,其配置為量測 由在GCIB處理系統100'中執行一處理製程所產生的製程性能資料。量測系統可例如量測或監測由處理製程所產生的量測資料。可例如利用此量測資料來決定將此處理製程特徵化的製程性能資料,例如製程速率、相對製程速率、特徵部輪廓角度、關鍵尺寸、特徵部厚度或深度、特徵部形狀等等。舉例來說,在用於將材料方向性地沈積於基板上的製程中,製程性能資料可包含關鍵尺寸(CD)(例如特徵部(即穿孔、線部等等)中的頂部、中間部或底部CD)、特徵部深度、材料厚度、側壁角度、側壁形狀、沈積速率、相對沈積速率、其任何參數的空間上分佈、用以將其任何空間上分佈之均勻性特徵化的參數等等。在透過來自控制系統190之控制信號以操作X-Y定位平台253時,原位的量測系統可標定基板252的一或更多特徵。 For example, an in-situ measurement system can include an integrated optical digital profilometry (iODP) scatterometer module configured to measure Process performance data generated by performing a processing process in the GCIB processing system 100'. The metrology system can, for example, measure or monitor the metrology data produced by the processing process. This measurement data can be used, for example, to determine process performance data characterizing the process, such as process rate, relative process rate, feature profile angle, critical dimensions, feature thickness or depth, feature shape, and the like. For example, in a process for depositing materials directionally on a substrate, process performance data can include critical dimensions (CD) (eg, top, middle, or middle of features (ie, perforations, lines, etc.) Bottom CD), feature depth, material thickness, sidewall angle, sidewall shape, deposition rate, relative deposition rate, spatial distribution of any of its parameters, parameters used to characterize the uniformity of any spatial distribution thereof, and the like. The in-situ measurement system can calibrate one or more features of the substrate 252 as it passes through control signals from the control system 190 to operate the X-Y positioning platform 253.

在圖3中所示的實施例中,GCIB處理系統100"可類似於圖1的實施例且更包含壓力單元腔室350,壓力單元腔室350例如位在離子化/加速腔室106之出口區域或其附近。壓力單元腔室350包含惰性氣體來源352及壓力感測器354,惰性氣體來源352係配置為將背景氣體供應至壓力單元腔室350以提高壓力單元腔室350中的壓力,而壓力感測器354係配置為量測壓力單元腔室350中的提高之壓力。 In the embodiment shown in FIG. 3, the GCIB processing system 100" can be similar to the embodiment of FIG. 1 and further includes a pressure unit chamber 350, such as at the exit of the ionization/acceleration chamber 106. In or near the region, the pressure unit chamber 350 includes an inert gas source 352 and a pressure sensor 354 configured to supply background gas to the pressure unit chamber 350 to increase the pressure in the pressure unit chamber 350, The pressure sensor 354 is configured to measure the increased pressure in the pressure unit chamber 350.

壓力單元腔室350可配置為修改GCIB 128之射束能量分佈,以產生經修改的處理之GCIB 128A'。此種射束能量分佈的修改係藉由以下方式達成:導引GCIB 128沿著GCIB路徑通過壓力單元腔室350內的加壓區,俾使GCIB之至少一部分穿越加壓區。射束能量分佈的修改程度可由沿著GCIB路徑之至少一部分的壓力-距離積分而加以特徵化,其中係以路徑長度(d)表示距離(或壓力單元腔室350的長度)。當壓力-距離積分的值增加(藉由增加壓力及/或路徑長度(d))時,射束能量分佈會變寬且峰值能量會降低。當壓力-距離積分的值減低(藉由減少壓力及/或路徑長度(d))時,射束能 量分佈會變窄且峰值能量會增加。設計壓力單元的進一步細節可由名為「METHOD AND APPARATUS FOR IMPROVED PROCESSING WITH A GAS-CLUSTER ION BEAM」的美國專利第7,060,989號決定,該件專利之內容係藉由參照其整體內容而併入於本文中。 The pressure cell chamber 350 can be configured to modify the beam energy distribution of the GCIB 128 to produce a modified processed GCIB 128A'. This modification of the beam energy distribution is achieved by directing the GCIB 128 through the pressurized zone within the pressure cell chamber 350 along the GCIB path, causing at least a portion of the GCIB to pass through the pressurized zone. The degree of modification of the beam energy distribution can be characterized by pressure-distance integration along at least a portion of the GCIB path, wherein the path length (d) represents the distance (or the length of the pressure cell chamber 350). As the value of the pressure-distance integral increases (by increasing the pressure and/or path length (d)), the beam energy distribution will broaden and the peak energy will decrease. Beam energy when the value of the pressure-distance integral is reduced (by reducing the pressure and/or path length (d)) The amount distribution will be narrower and the peak energy will increase. Further details of the design of the pressure unit can be determined by US Patent No. 7,060,989 entitled "METHOD AND APPARATUS FOR IMPROVED PROCESSING WITH A GAS-CLUSTER ION BEAM", the contents of which are incorporated herein by reference in its entirety. .

控制系統190包含微處理器、記憶體、及數位I/O埠,數位I/O埠能夠產生足以與GCIB處理系統100(或100'、100")通信並對其啟動輸入、以及足以監測來自GCIB處理系統100(或100'、100")之輸出的控制電壓。此外,控制系統190可耦接於真空泵抽系統170A、170B、及170C、第一氣體來源111及1011、第二氣體來源112及1012、第一氣體控制閥113A及1013A、第二氣體控制閥113B及1013B、射束電子裝置130、射束過濾器146、射束閘148、X掃描致動器160、Y掃描致動器162、及射束電流感測器180,並可與其交換資訊。例如,可根據一製程配方,使用儲存於記憶體中的程式來對GCIB處理系統100之上述元件啟動輸入,以在基板152上執行GCIB製程。 Control system 190 includes a microprocessor, memory, and digital I/O ports capable of generating sufficient communication with and input to GCIB processing system 100 (or 100', 100"), and sufficient to monitor The control voltage of the output of the GCIB processing system 100 (or 100', 100"). In addition, the control system 190 can be coupled to the vacuum pumping systems 170A, 170B, and 170C, the first gas sources 111 and 1011, the second gas sources 112 and 1012, the first gas control valves 113A and 1013A, and the second gas control valve 113B. And 1013B, beam electronics 130, beam filter 146, beam gate 148, X-scan actuator 160, Y-scan actuator 162, and beam current sensor 180, and can exchange information therewith. For example, the above-described components of the GCIB processing system 100 can be enabled to perform a GCIB process on the substrate 152 using a program stored in memory in accordance with a recipe recipe.

然而,控制系統190可被實施成一般用途的電腦系統,其回應於執行記憶體中所含有的一或更多連串之一或更多指令的處理器,而執行本發明之基於微處理器的處理步驟之一部分或全部。此種指令可從另一電腦可讀取媒體(例如硬碟或可卸除式媒體驅動器)讀入至控制器記憶體中。亦可採用多處理裝置中之一或更多處理器作為控制器微處理器,以執行主記憶體中所含有的一連串指令。在替代實施例中,可使用硬佈線電路來取代軟體指令、或與軟體指令結合。因此,這些實施例並不限於硬體電路及軟體的任何特定組合。 However, control system 190 can be implemented as a general purpose computer system that executes a microprocessor based microprocessor of the present invention in response to a processor executing one or more sequences of one or more instructions contained in the memory. Part or all of the processing steps. Such instructions can be read into the controller memory from another computer readable medium, such as a hard drive or a removable media drive. One or more processors of the multi-processing device may also be employed as the controller microprocessor to execute a series of instructions contained in the main memory. In alternative embodiments, hard-wired circuitry may be used in place of, or in combination with, software instructions. Thus, these embodiments are not limited to any specific combination of hardware circuitry and software.

如上所述,控制系統190可用以配置任何數量的處理元件,且控制系統190可收集、提供、處理、儲存、及顯示來自處理元件的資料。控制系統190可包含數個應用程式以及數個控制器,以控制處理元件之一或更多 者。例如,控制系統190可包含圖形使用者界面(GUI)元件(未顯示),該GUI元件可提供能讓使用者監測及/或控制一或更多處理元件的界面。 As noted above, control system 190 can be used to configure any number of processing elements, and control system 190 can collect, provide, process, store, and display data from processing elements. Control system 190 can include several applications and a number of controllers to control one or more of the processing elements By. For example, control system 190 can include a graphical user interface (GUI) component (not shown) that can provide an interface that allows a user to monitor and/or control one or more processing elements.

控制系統190可相對於GCIB處理系統100(或100'、100")設置於本地端,或可相對於GCIB處理系統100(或100'、100")設置於遠端。例如,控制系統190可使用直接連線、內部網路、及/或網際網路而與GCIB處理系統100交換資料。控制系統190可耦接至內部網路於例如用戶端(亦即,元件生產者等等)之處;或可耦接至內部網路於例如供應商端(亦即,設備製造者)之處。替代地或額外地,控制系統190可耦接至網際網路。此外,另一電腦(亦即控制器、伺服器等等)可存取控制系統190,以經由直接連線、內部網路、及/或網際網路而與其交換資料。 Control system 190 can be located at the local end relative to GCIB processing system 100 (or 100', 100"), or can be remotely located relative to GCIB processing system 100 (or 100', 100"). For example, control system 190 can exchange data with GCIB processing system 100 using direct connections, internal networks, and/or the Internet. Control system 190 can be coupled to an internal network, such as a user (ie, component producer, etc.); or can be coupled to an internal network, such as a vendor (ie, device manufacturer). . Alternatively or additionally, control system 190 can be coupled to the internet. In addition, another computer (i.e., controller, server, etc.) can access control system 190 to exchange data therethrough via a direct connection, an internal network, and/or the Internet.

可透過夾持系統(未顯示)將基板152(或252)固定於基板固持件150(或基板固持件250),該夾持系統例如為機械夾持系統或電夾持系統(例如靜電夾持系統)。此外,基板固持件150(或250)可包含加熱系統(未顯示)或冷卻系統(未顯示),其係配置為調整及/或控制基板固持件150(或250)及基板152(或252)的溫度。 The substrate 152 (or 252) can be secured to the substrate holder 150 (or the substrate holder 250) by a clamping system (not shown), such as a mechanical clamping system or an electrical clamping system (eg, electrostatic clamping) system). Additionally, the substrate holder 150 (or 250) can include a heating system (not shown) or a cooling system (not shown) configured to adjust and/or control the substrate holder 150 (or 250) and the substrate 152 (or 252). temperature.

真空泵抽系統170A、170B、及170C可包含泵抽速度能高達每秒約5000公升(及更大)的渦輪分子真空幫浦(turbo-molecular vacuum pumps,TMP)、及用以調節腔室壓力的閘閥。在習知的真空處理裝置中,可採用每秒1000至3000公升的TMP。TMPs對於低壓處理(通常係小於約50mTorr)相當有用。雖然未顯示,但可理解的是,壓力單元腔室350亦可包含真空泵抽系統。此外,用以監測腔室壓力的裝置(未顯示)可耦接於真空容室102或三個真空的腔室104、106、108之任一者。壓力量測裝置可例如為電容式壓力計或游離壓力計。 The vacuum pumping systems 170A, 170B, and 170C can include turbo-molecular vacuum pumps (TMP) with pumping speeds up to about 5000 liters per second (and greater), and chamber pressure adjustments. gate. In a conventional vacuum processing apparatus, TMP of 1000 to 3000 liters per second can be employed. TMPs are quite useful for low pressure processing (typically less than about 50 mTorr). Although not shown, it will be appreciated that the pressure unit chamber 350 can also include a vacuum pumping system. Additionally, means (not shown) for monitoring chamber pressure may be coupled to either vacuum chamber 102 or three vacuum chambers 104, 106, 108. The pressure measuring device can be, for example, a capacitive pressure gauge or a free pressure gauge.

圖2及圖3中亦顯示了噴嘴操縱器的替代實施例。並非如圖1中所示各噴嘴110、1010係耦接於可個別操控的操縱器,噴嘴110、1010可彼此耦接,並一起耦接於單一個操縱器。相對於氣體分離器120的噴嘴110、1010之定位於是可作為一組物件而集體操縱,而非個別操縱。 An alternate embodiment of the nozzle manipulator is also shown in Figures 2 and 3. Not as shown in FIG. 1, each of the nozzles 110, 1010 is coupled to an individually controllable manipulator, and the nozzles 110, 1010 can be coupled to each other and coupled together to a single manipulator. The positioning of the nozzles 110, 1010 relative to the gas separator 120 can then be collectively manipulated as a set of objects rather than individually manipulated.

現參照圖4,其係顯示用以將氣體團簇噴射流(圖1、2、及3的氣體團簇射束118)離子化的氣體團簇解離器(圖1、2、及3的122)之剖面300。剖面300係垂直於GCIB 128之軸線。對於典型的氣體團簇尺寸(2000至15000個原子)而言,離開氣體分離器(圖1、2、及3的120)開孔且進入解離器(圖1、2、及3的122)的團簇將以約130至1000電子伏特(eV)的動能行進。在此等低能量的情況下,解離器122內有任何偏離空間電荷中性均將導致噴射流的急速分散而顯著損失射束電流。圖4係顯示一自我中和解離器。如同其他解離器,氣體團簇係藉由電子撞擊而離子化。在此設計中,熱電子(310所表示之七個範例)係從複數個線狀熱離子燈絲302a、302b、及302c(通常是鎢)射出,且係藉由電子推斥極電極306a、306b、及306c以及射束形成電極304a、304b、及304c所提供的適當電場之作用而加以抽取及聚集。熱電子310會通過氣體團簇噴射流及噴射流軸線,並接著撞擊對面的射束形成電極304b以產生低能量的二次電子(例如312、314、及316所表示者)。 Referring now to Figure 4, there is shown a gas cluster dissociator for ionizing a gas cluster jet (gas cluster beam 118 of Figures 1, 2, and 3) (122 of Figures 1, 2, and 3) ) Section 300. Section 300 is perpendicular to the axis of GCIB 128. For a typical gas cluster size (2000 to 15000 atoms), the gas separator (120 of Figures 1, 2, and 3) is opened and enters the dissociator (122 of Figures 1, 2, and 3). The cluster will travel at a kinetic energy of about 130 to 1000 electron volts (eV). In the case of such low energy, any deviation from the space charge neutrality in the dissociator 122 will result in a rapid dispersion of the jet stream and a significant loss of beam current. Figure 4 shows a self-neutralizer dissociator. Like other dissociators, gas clusters are ionized by electron impact. In this design, the hot electrons (seven examples represented by 310) are ejected from a plurality of linear thermionic filaments 302a, 302b, and 302c (typically tungsten) and are electrically repelled by electrodes 306a, 306b. And 306c and the appropriate electric field provided by the beam forming electrodes 304a, 304b, and 304c are extracted and collected. The hot electrons 310 will pass through the gas cluster jet and jet stream axis and then impact the opposite beam forming electrode 304b to produce low energy secondary electrons (e.g., as indicated by 312, 314, and 316).

雖然(為了簡化起見)未顯示,但線狀熱離子燈絲302b及302c亦會產生熱電子,此熱電子之後會產生低能量的二次電子。所有的二次電子有助於藉由下列方式來確保離子化之團簇噴射流保持空間電荷中性:提供可依所需被吸引至正離子化之氣體團簇噴射流中的低能量電子,以維持空間電荷中性。射束形成電極304a、304b、及304c係相對於線狀熱離子燈絲302a、302b、及302c被施加正偏壓,而電子推斥極電極306a、306b、及306c係相對於線狀熱離子燈絲302a、302b、及302c被施加負偏壓。絕緣體308a、308b、 308c、308d、308e、及308f係支撐電極304a、304b、304c、306a、306b、及306c並使其電性絕緣。舉例來說,此自我中和解離器係有效的並可達成超過1000微安培的氬GCIBs。 Although not shown (for the sake of simplicity), the linear thermistor filaments 302b and 302c also generate hot electrons which, in turn, produce low energy secondary electrons. All secondary electrons help to ensure that the ionized cluster jet maintains space charge neutrality by providing low energy electrons that can be attracted to the positive ionized gas cluster jet as desired, To maintain space charge neutrality. The beam forming electrodes 304a, 304b, and 304c are positively biased with respect to the linear thermionic filaments 302a, 302b, and 302c, and the electron repeller electrodes 306a, 306b, and 306c are opposed to the linear thermionic filament. 302a, 302b, and 302c are applied with a negative bias. Insulators 308a, 308b, 308c, 308d, 308e, and 308f support electrodes 304a, 304b, 304c, 306a, 306b, and 306c and electrically insulate them. For example, this self-neutralizing dissociater is effective and can achieve argon GCIBs in excess of 1000 microamperes.

替代地,解離器可利用從電漿抽取電子以將團簇離子化。此等解離器的幾何結構係與本文所描述的三燈絲式解離器十分不同,但操作原理及解離器的控制則相當類似。例如,解離器的設計可類似於名為「IONIZER AND METHOD FOR GAS-CLUSTER ION-BEAM FORMATION」的美國專利第7,173,252號中所描述之解離器,該件專利內容係藉由參照其整體內容而併入於本文中。 Alternatively, the dissociater can utilize electron extraction from the plasma to ionize the cluster. The geometry of these dissociators is quite different from the three-filament dissociator described herein, but the principles of operation and control of the dissociator are quite similar. For example, the design of the dissociator can be similar to the dissociator described in U.S. Patent No. 7,173,252, entitled "IONIZER AND METHOD FOR GAS-CLUSTER ION-BEAM FORMATION", which is incorporated by reference in its entirety. In this article.

氣體團簇解離器(圖1、2、及3的122)可配置為藉由改變GCIB 128的電荷狀態而修改GCIB 128的射束能量分佈。舉例來說,電荷狀態可藉由下列方式加以修改:調整氣體團簇之電子撞擊引發離子化中所使用之電子的電子通量、電子能量、或電子能量分佈。 The gas cluster dissociator (122 of Figures 1, 2, and 3) can be configured to modify the beam energy distribution of the GCIB 128 by changing the state of charge of the GCIB 128. For example, the state of charge can be modified by adjusting the electron impact of the gas cluster to initiate the electron flux, electron energy, or electron energy distribution of the electrons used in the ionization.

現參照圖5A及5B,其係顯示工作件掃描機構500之一實施例。工作件掃描機構500係封閉於處理腔室510中,處理腔室510可例如為圖1、2、及3的處理系統100、100'、或100"之處理腔室108之一者。處理腔室510的用途是,在使用GCIB照射工作件520期間將工作件520封閉於低壓環境中而無汙染物。工作件520係使用夾盤530而附接於掃描臂540的第一端,掃描臂540包含用以使工作件520以弧形路徑580掃描橫過GCIB 505的細長構件,GCIB 505係從例如圖1、2、及3的處理系統100、100'、或100"之離子化/加速腔室106之一者進入處理腔室510。取決於組態,夾盤530可使用機械夾持、真空抽吸、或使用靜電夾持而將工作件520固定於掃描臂540。靜電夾持的夾盤530的一示例性實施例係描述於名為「ELECTROSTATIC CHUCK POWER SUPPLY」的美國專利第7,948,734號、及名為「ELECTROSTATIC CHUCK POWER SUPPLY」的美國專利申請案第12/749,999號中,此兩件專利均藉由參照其整體內容而併入於本文中。 Referring now to Figures 5A and 5B, an embodiment of a workpiece scanning mechanism 500 is shown. The workpiece scanning mechanism 500 is enclosed in a processing chamber 510, which may be, for example, one of the processing chambers 100, 100', or 100" of the processing chambers 108 of Figures 1, 2, and 3. Processing chambers The purpose of the chamber 510 is to enclose the workpiece 520 in a low pressure environment without contamination during the use of the GCIB illumination workpiece 520. The workpiece 520 is attached to the first end of the scanning arm 540 using the chuck 530, the scanning arm 540 includes an elongate member for scanning workpiece 520 across curved path 580 across GCIB 505, and GCIB 505 is ionized/accelerated from processing systems 100, 100', or 100", such as Figures 1, 2, and 3. One of the chambers 106 enters the processing chamber 510. Depending on the configuration, the chuck 530 can secure the workpiece 520 to the scanning arm 540 using mechanical clamping, vacuum suction, or using electrostatic clamping. An exemplary embodiment of an electrostatically held chuck 530 is described in U.S. Patent No. 7,948,734 entitled "ELECTROSTATIC CHUCK POWER SUPPLY" and entitled "ELECTROSTATIC CHUCK POWER" U.S. Patent Application Serial No. 12/749,999, the entire disclosure of which is incorporated herein in

遠離工作件520及夾盤530的掃描臂540之第二端(即,旋轉點)係附接於快速掃描馬達550的旋轉輸出軸,快速掃描馬達550係用作旋轉機構而沿著弧形路徑580在快速掃描運動方向上致動工作件520。快速掃描馬達550的一示例性實施例係描述於名為「METHOD AND APPARATUS FOR SCANNING A WORKPIECE THROUGH AN ION BEAM」的美國專利第7,608,843號中,該件專利亦藉由參照其整體內容而併入於本文中。快速掃描馬達550本身係由慢速掃描機構560所支撐,慢速掃描機構560將於之後進行更詳細的說明。慢速掃描機構560係配置為沿著直線路徑在慢速掃描運動方向570上移動快速掃描馬達550、掃描臂540、夾盤530、及工作件520。 The second end (ie, the point of rotation) of the scanning arm 540 remote from the workpiece 520 and the chuck 530 is attached to the rotary output shaft of the fast scan motor 550, and the fast scan motor 550 is used as a rotating mechanism along the curved path. The 580 actuates the work piece 520 in the direction of the fast scan motion. An exemplary embodiment of the fast scan motor 550 is described in U.S. Patent No. 7,608,843, entitled "METHOD AND APPARATUS FOR SCANNING A WORKPIECE THROUGH AN ION BEAM", which is also incorporated by reference in its entirety. In this article. The fast scan motor 550 itself is supported by a slow scanning mechanism 560, which will be described in more detail later. The slow scanning mechanism 560 is configured to move the fast scan motor 550, the scanning arm 540, the chuck 530, and the workpiece 520 in a slow scanning motion direction 570 along a linear path.

雖然圖5A及5B的實施例顯示出慢速掃描機構560係在垂直方向上排列且因此掃描臂540係用作倒單擺,但慢速掃描機構560亦可以水平方向安裝、或以水平及垂直之間的某些角度安裝,而仍可允許GCIB 505到達工作件520的所有位置。例如,在一實施例中,慢速掃描機構560可沿著處理腔室510的底壁而水平地安裝。在另一示例性實施例中,慢速掃描機構560可沿著處理腔室510的上壁而水平地裝設。 Although the embodiment of FIGS. 5A and 5B shows that the slow scanning mechanism 560 is arranged in the vertical direction and thus the scanning arm 540 is used as an inverted pendulum, the slow scanning mechanism 560 can also be installed horizontally, or horizontally and vertically. The installation is at some angles while still allowing the GCIB 505 to reach all positions of the work piece 520. For example, in an embodiment, the slow scanning mechanism 560 can be mounted horizontally along the bottom wall of the processing chamber 510. In another exemplary embodiment, the slow scanning mechanism 560 can be horizontally mounted along the upper wall of the processing chamber 510.

為了便於裝載及卸載工作件,在一實施例中,掃描臂540可包含選用性的關節545,以允許掃描臂540以彎曲運動590充分向後彎曲,俾使工作件520可在水平位置自夾盤530裝載及卸載,如圖5B中所示。可使用馬達(未顯示)來致動關節545,而關節致動系統的一實施例係描述於名為「METHOD AND APPARATUS FOR SCANNING A WORKPIECE THROUGH AN ION BEAM」的美國專利第7,608,843號中,該件專利係藉由參照其整體內容而併入於本文中。 In order to facilitate loading and unloading of the work piece, in one embodiment, the scanning arm 540 can include an optional joint 545 to allow the scanning arm 540 to be fully bent back in a curved motion 590 so that the workpiece 520 can be self-clamping in a horizontal position. 530 is loaded and unloaded as shown in Figure 5B. A motor (not shown) can be used to actuate the joint 545, and an embodiment of the joint actuation system is described in U.S. Patent No. 7,608,843, entitled "METHOD AND APPARATUS FOR SCANNING A WORKPIECE THROUGH AN ION BEAM", Patents are incorporated herein by reference in their entirety.

透過通訊線路598進行通訊的控制器595係用以控制工作件掃描機構500。可將控制器595實施為單獨的控制器,或者可將其實施為圖1、2、及3的處理系統100、100'、或100"之控制系統190的一部分。控制器595包含微處理器、記憶體、及數位I/O埠,此數位I/O埠能夠產生足以與工作件掃描機構500通訊並對其啟動輸入的電壓。此外,控制器595可耦接於快速掃描馬達550、慢速掃描機構560、夾盤530、關節545等等並可與其交換資訊。例如,可根據一製程配方,利用儲存於記憶體中的程式來對工作件掃描機構500之上述元件啟動輸入,以在工作件520上進行GCIB處理。可將控制器595實施為一般用途的電腦系統,其回應於執行記憶體中所含有的一或更多連串之一或更多指令的處理器,而執行本發明之基於微處理器的處理步驟之一部分或全部。此種指令可從另一電腦可讀取媒體(例如硬碟或可卸除式媒體驅動器)讀入至控制器記憶體中。亦可使用多處理裝置中之一或更多處理器作為控制器微處理器,以執行主記憶體中所含有的一連串指令。在替代實施例中,可使用硬佈線電路來取代軟體指令、或與軟體指令結合。因此,這些實施例並不限於硬體電路及軟體的任何特定組合。 A controller 595 that communicates via communication line 598 is used to control the workpiece scanning mechanism 500. The controller 595 can be implemented as a separate controller or can be implemented as part of the control system 190 of the processing system 100, 100', or 100" of Figures 1, 2, and 3. The controller 595 includes a microprocessor And a digital I/O port capable of generating a voltage sufficient to communicate with the workpiece scanning mechanism 500 and to initiate an input thereto. Further, the controller 595 can be coupled to the fast scanning motor 550, slow. The speed scanning mechanism 560, the chuck 530, the joint 545, and the like can exchange information with each other. For example, the above-mentioned components of the workpiece scanning mechanism 500 can be activated by a program stored in the memory according to a process recipe. The GCIB process is performed on the work piece 520. The controller 595 can be implemented as a general-purpose computer system that executes the present in response to executing a processor of one or more serials of one or more instructions contained in the memory. Part or all of the microprocessor-based processing steps of the invention. Such instructions can be read into the controller memory from another computer readable medium (such as a hard disk or removable media drive). Multi-processing One or more processors are placed as controller microprocessors to execute a series of instructions contained in the main memory. In alternative embodiments, hard-wired circuits may be used in place of, or in combination with, software instructions. Thus, these embodiments are not limited to any specific combination of hardware circuitry and software.

圖6及圖7係顯示工作件掃描機構500之慢速掃描機構560的示例性實施例。圖6及圖7之示例性實施例係顯示安裝為使慢速掃描運動係在垂直方向上,但如先前所提,亦可使用其他的安裝角度。圖6係顯示此組件的部分切除圖(但有周圍結構,例如處理腔室510)。圖7係顯示在沒有周圍結構之情況下的圖。 6 and 7 show an exemplary embodiment of a slow scanning mechanism 560 of the workpiece scanning mechanism 500. The exemplary embodiment of Figures 6 and 7 shows that the slow scan motion is mounted in a vertical orientation, but other mounting angles may be used as previously mentioned. Figure 6 shows a partial cutaway view of this assembly (but with surrounding structures, such as processing chamber 510). Figure 7 shows a diagram in the absence of a surrounding structure.

在慢速掃描機構560的核心係為梭驅動組件605,其包含軌道610及梭620。梭620具有附接點660,快速掃描馬達550可附接於附接點660,軌道610允許梭620(及所有附接於其的結構,即,快速掃描馬達550、掃描臂540、夾盤530、及工作件520)沿著定義慢速掃描運動方向570的直線路徑自 由移動。止動器612A及612B係附接在軌道610的端部處,以防止梭620滑離軌道610。 At the core of the slow scanning mechanism 560 is a shuttle drive assembly 605 that includes a track 610 and a shuttle 620. The shuttle 620 has an attachment point 660, the fast scan motor 550 can be attached to an attachment point 660, and the track 610 allows the shuttle 620 (and all structures attached thereto, ie, the fast scan motor 550, the scan arm 540, the chuck 530 And the work piece 520) along a straight path defining a slow scan motion direction 570 By mobile. Stoppers 612A and 612B are attached at the ends of the track 610 to prevent the shuttle 620 from slipping off the track 610.

滑輪630及640係大致平行於梭驅動組件而安裝,傳動帶650A、B係裝設於滑輪630及640上。傳動帶650A、B包含完整的環,且可以是平坦傳動帶或齒輪式傳動帶。傳動帶650A、B係由與GCIB製程相容的材料所製成,以減少氣體釋放及污染,並且可由金屬或聚合物材料所製成。在一實施例中,傳動帶650A、B可由單一個鏈條或材料環(未顯示)所製成。在另一實施例中,傳動帶650A、B可由兩個部分650A及650B所構成,其各者係分別獨立地在附接點652A、652B、653B等處附接於滑輪630及640。在此後者實施例中,各滑輪630及640包含兩個並排的滑輪,此兩個並排的滑輪係附接在一起或係一體加工的。又,在此後者實施例中,係選擇較大的滑輪630及640之直徑,俾在傳動帶部分650A及650B未由其各自之附接點652A、652B、653B等分離的情況下,使滑輪630及640的角程(angular travel)允許全部範圍的梭620之慢速掃描運動。 The pulleys 630 and 640 are mounted substantially parallel to the shuttle drive assembly, and the drive belts 650A, B are mounted on the pulleys 630 and 640. Drive belts 650A, B contain a complete ring and may be a flat belt or a gear belt. Drive belts 650A, B are made of materials compatible with the GCIB process to reduce gas release and contamination, and may be made of metal or polymeric materials. In an embodiment, the drive belts 650A, B can be made from a single chain or material loop (not shown). In another embodiment, the belts 650A, B can be constructed from two portions 650A and 650B, each of which is independently attached to the pulleys 630 and 640 at attachment points 652A, 652B, 653B, etc., respectively. In this latter embodiment, each of the pulleys 630 and 640 includes two side-by-side pulleys that are attached together or integrally machined. Further, in the latter embodiment, the diameters of the larger pulleys 630 and 640 are selected, and in the case where the belt portions 650A and 650B are not separated by their respective attachment points 652A, 652B, 653B, etc., the pulley 630 is caused. The angular travel of 640 allows for slow scan motion of the full range of shuttles 620.

傳動帶650A、B之一部分650B係在附接點660附近附接於梭620,以幫助在慢速掃描運動方向570上致動梭620。在一實施例中,傳動帶650A、B可以是齒輪式傳動帶,在此種情況下,係使用鏈輪630及640以代替滑輪630及640。 One portion 650B of the drive belt 650A, B is attached to the shuttle 620 near the attachment point 660 to assist in actuating the shuttle 620 in the slow scan motion direction 570. In an embodiment, the belts 650A, B may be geared belts, in which case sprocket wheels 630 and 640 are used in place of pulleys 630 and 640.

仍參照圖5A、5B、6、及7,為了致動傳動帶650A、B並因而達成快速掃描馬達550的慢速掃描運動,係提供掃描臂540、夾盤530、及工作件520、驅動機構670。驅動機構670可附接於滑輪630、640之任一者;而圖7及圖8係顯示附接於裝設在沿著梭驅動組件605之上部位置中的滑輪630的驅動機構670。驅動機構670包含裝設於處理腔室510之壁上的真空旋轉饋通(feedthrough)680,滑輪630係附接於此真空旋轉饋通。真空旋轉饋通680 可在未破壞處理腔室510內所維持之真空的情況下,允許將旋轉運動從處理腔室510外部之伺服馬達690施加於滑輪630上。在真空旋轉饋通680與伺服馬達690之間,可裝設選用性的減速變速器685。在一實施例中,減速變速器685可包含一對鏈輪700及710,齒輪式傳動帶720係裝設於鏈輪700及710上。替代地,減速變速器685可包含一對滑輪700及710,平坦傳動帶720係裝設於滑輪700及710上。在又另一替代實施例中,減速變速器685可包含例如減速齒輪組以取代傳動帶驅動器。減速變速器685之目的係為了至少部分地將伺服馬達690的rpms降低至安全地操作慢速掃描機構560所需之水準。使用選用性的減速齒輪組692可達成將伺服馬達690的rpms額外再降低,減速齒輪組692可以是或可以不是伺服馬達690本身的一部分。 Still referring to Figures 5A, 5B, 6, and 7, in order to actuate the belts 650A, B and thereby achieve a slow scanning motion of the fast scan motor 550, a scanning arm 540, a chuck 530, and a workpiece 520, drive mechanism 670 are provided. . Drive mechanism 670 can be attached to any of pulleys 630, 640; while Figures 7 and 8 show drive mechanism 670 attached to pulley 630 mounted in an upper position along shuttle drive assembly 605. The drive mechanism 670 includes a vacuum rotary feedthrough 680 mounted to the wall of the processing chamber 510 to which the pulley 630 is attached. Vacuum rotary feedthrough 680 The rotary motion can be applied to the pulley 630 from a servo motor 690 external to the processing chamber 510 without damaging the vacuum maintained within the processing chamber 510. Between the vacuum rotary feedthrough 680 and the servo motor 690, an optional reduction transmission 685 can be installed. In one embodiment, the reduced speed transmission 685 can include a pair of sprockets 700 and 710 that are mounted on the sprockets 700 and 710. Alternatively, the reduction transmission 685 can include a pair of pulleys 700 and 710 that are mounted on the pulleys 700 and 710. In yet another alternative embodiment, the reduced speed transmission 685 can include, for example, a reduction gear set in place of the belt drive. The purpose of the reduction transmission 685 is to at least partially reduce the rpms of the servo motor 690 to the level required to safely operate the slow scanning mechanism 560. An additional reduction in the rpms of the servo motor 690 may be achieved using the optional reduction gear set 692, which may or may not be part of the servo motor 690 itself.

為了操作工作件掃描機構500的慢速掃描機構560,係基於來自控制器595的控制信號來致動伺服馬達690。在一實施例中,來自伺服馬達690的旋轉運動係經由鏈輪700及710、及齒輪式傳動帶720而傳送至真空旋轉饋通680。真空旋轉饋通可提供旋轉運動至附接於其的滑輪630,滑輪630可致動傳動帶650A、B以使梭620開始移動。最後,受傳動帶650A、B所拉動,梭620會沿著由梭驅動組件605之軌道610所定義的直線路徑滑動,而引導附接於其的快速掃描馬達550、掃描臂540、夾盤530、及工作件520。 To operate the slow scanning mechanism 560 of the workpiece scanning mechanism 500, the servo motor 690 is actuated based on a control signal from the controller 595. In one embodiment, the rotational motion from the servo motor 690 is transmitted to the vacuum rotary feedthrough 680 via the sprocket wheels 700 and 710 and the geared belt 720. The vacuum rotary feedthrough can provide rotational motion to a pulley 630 attached thereto that can actuate the belts 650A, B to cause the shuttle 620 to begin moving. Finally, driven by the belts 650A, B, the shuttle 620 slides along a linear path defined by the track 610 of the shuttle drive assembly 605 to guide the fast scan motor 550, the scanning arm 540, the chuck 530, And work piece 520.

圖8係顯示利用一對鏈輪700及710、及齒輪式傳動帶720的減速變速器685之一示例性實施例。較大的鏈輪700係附接於真空旋轉饋通680之一端部。較小的鏈輪710係附接於伺服馬達的驅動軸695。前面已提過,需要限制鏈輪700、真空旋轉饋通680、及滑輪630之運動的旋轉範圍,以防止傳動帶650A、B的超程(overtravel),超程可能會導致傳動帶650A、B之部分650A及650B自滑輪630及640分離。為了防止這種情況,係將一組限制開關760A及760B裝設於減速變速器685中,其可提供信號給控制器595以在處於鏈 輪700、真空旋轉饋通680、及滑輪630的行程之允許旋轉範圍的最末端時,切斷伺服馬達690的電源。適當尺寸的限制開關擊件750係用以在處於鏈輪700、真空旋轉饋通680、及滑輪630的行程之允許旋轉範圍的最末端時,觸發限制開關760A及760B之狀態。 FIG. 8 shows an exemplary embodiment of a reduction transmission 685 that utilizes a pair of sprockets 700 and 710, and a geared belt 720. A larger sprocket 700 is attached to one end of the vacuum rotary feedthrough 680. The smaller sprocket 710 is attached to the drive shaft 695 of the servo motor. As mentioned above, it is necessary to limit the range of rotation of the movement of the sprocket 700, the vacuum rotary feedthrough 680, and the pulley 630 to prevent overtravel of the belts 650A, B. Overtravel may result in portions of the belts 650A, B. 650A and 650B are separated from pulleys 630 and 640. To prevent this, a set of limit switches 760A and 760B are installed in the reduction transmission 685, which can provide a signal to the controller 595 to be in the chain. When the wheel 700, the vacuum rotary feedthrough 680, and the end of the allowable rotation range of the stroke of the pulley 630 are turned off, the power of the servo motor 690 is turned off. A properly sized limit switch striker 750 is used to trigger the state of limit switches 760A and 760B at the extreme end of the allowable range of rotation of the sprocket 700, vacuum rotary feedthrough 680, and pulley 630.

相較於例如在名為「METHOD AND APPARATUS FOR SCANNING A WORKPIECE THROUGH AN ION BEAM」之美國專利第7,608,843號(其藉由參照其整體內容而併入於本文中)中所描述的蝸輪組,減速變速器685之設計的優點包含簡易性、較低的成本、及對於由沿著梭驅動組件605之軌道610的梭620之摩擦力變化所引起的衝擊有較高的回復力。伴隨著使用兩個滑輪630及640、及裝設於其上的傳動帶650A、B,本發明減輕了在美國專利第7,608,843號中所描述的及之前所討論的工作件掃描機構的許多故障模式。為了將蝸輪對的自然動作換成「制動」,即,於其中可防止轉矩負載的驟增被傳遞至驅動此蝸輪的伺服馬達,在一實施例中,本發明之伺服馬達690可配備有制動器。 A worm gear set, as described in, for example, U.S. Patent No. 7,608,843, the entire disclosure of which is incorporated herein by reference in its entirety in The advantages of the design of the 685 include simplicity, lower cost, and a higher restoring force for impacts caused by frictional changes in the shuttle 620 along the track 610 of the shuttle drive assembly 605. Along with the use of two pulleys 630 and 640, and the drive belts 650A, B mounted thereon, the present invention alleviates many of the failure modes of the workpiece scanning mechanism described in and discussed in U.S. Patent No. 7,608,843. In order to replace the natural action of the worm gear pair with "braking", that is, a sudden increase in torque load can be prevented from being transmitted to the servo motor that drives the worm wheel, in one embodiment, the servo motor 690 of the present invention can be equipped with Brake.

圖9A及9B係顯示梭驅動組件605的實施例。參照圖9B,梭驅動組件605包含軌道610,軌道610包含裝設於其上的導引件770。滑件780係被允許沿著導引件770滑動,梭620及附接點660係附接於滑件780以供快速掃描馬達550附接。導引件770及滑件780定義了梭驅動組件605的對稱性縱向平面790,而在本實施例中,梭620及附接點660均位於對稱性縱向平面790之外。此種不對稱組態相較於先前技術的對稱梭驅動組件具有許多優點,包含較不易發生由來自GCIB之污染物所致的故障,這是因為如可在圖5A、5B、及6中所看出,例如,圖9A及9B的梭驅動組件可安裝成使得使導引件770及滑件780曝露的開口係定向成遠離GCIB 505進入處理腔室510之方向,從而減少由於污染物及阻塞所致的故障率。 9A and 9B show an embodiment of a shuttle drive assembly 605. Referring to Figure 9B, the shuttle drive assembly 605 includes a track 610 that includes a guide 770 mounted thereon. Slide 780 is allowed to slide along guide 770, and shuttle 620 and attachment point 660 are attached to slider 780 for quick scan motor 550 attachment. The guide 770 and the slider 780 define a symmetrical longitudinal plane 790 of the shuttle drive assembly 605, while in the present embodiment, the shuttle 620 and the attachment point 660 are all located outside of the symmetrical longitudinal plane 790. Such an asymmetric configuration has many advantages over prior art symmetric shuttle drive assemblies, including the less likely failure of contaminants from GCIB, as can be seen in Figures 5A, 5B, and 6. It can be seen that, for example, the shuttle drive assembly of Figures 9A and 9B can be mounted such that the opening system that exposes the guide 770 and slider 780 is oriented away from the GCIB 505 into the processing chamber 510, thereby reducing contamination and obstruction. The resulting failure rate.

在一實施例中,係利用這些參數之任一者或任何組合而在GCIB處理系統中形成GCIB,此GCIB具有實質上接近高斯輪廓的射束輪廓(如圖7中所示)。在其他實施例中,其他的射束輪廓亦是可能的。 In one embodiment, GCIB is formed in the GCIB processing system using any one or any combination of these parameters, the GCIB having a beam profile that is substantially close to the Gaussian profile (as shown in Figure 7). In other embodiments, other beam profiles are also possible.

如圖10中所示,具有實質上高斯輪廓的射束輪廓450形成。在沿著GCIB長度的軸向位置處(例如,基板表面),射束輪廓的特徵在於半峰全寬(FWHM)452及最大寬度454(例如,在5%之峰值強度的全寬)。 As shown in Figure 10, a beam profile 450 having a substantially Gaussian profile is formed. At an axial position along the length of the GCIB (eg, the surface of the substrate), the beam profile is characterized by a full width at half maximum (FWHM) 452 and a maximum width 454 (eg, a full width at a peak intensity of 5%).

在建立GCIB之後,流動係行進至520,在此處係針對一基板獲取量測資料。此量測資料可包含參數資料,例如,與上部層或形成於基板之上部層中或上的一或更多元件相關的幾何、機械、電性、及/或光學參數。例如,量測資料包含但不限於:可由上述量測系統所量測的任何參數。此外,例如,量測數據可包含薄膜厚度、薄膜高度、表面粗糙度、表面污染、特徵部深度、溝槽深度、穿孔深度、特徵部寬度、溝槽寬度、穿孔寬度、關鍵尺寸(CD)、電阻、或其二或更多者之任何組合的量測結果。此外,例如,量測資料可包含一或更多表面聲波(SAW)裝置的一或更多可量測參數,例如SAW頻率。 After establishing the GCIB, the flow system proceeds to 520 where the measurement data is acquired for a substrate. The measurement data can include parameter data, such as geometric, mechanical, electrical, and/or optical parameters associated with the upper layer or one or more elements formed in or on the upper layer of the substrate. For example, the measurement data includes, but is not limited to, any parameter that can be measured by the above measurement system. Further, for example, the measurement data may include film thickness, film height, surface roughness, surface contamination, feature depth, groove depth, perforation depth, feature width, groove width, perforation width, critical dimension (CD), The measurement of the resistance, or any combination of two or more thereof. Further, for example, the measurement data can include one or more measurable parameters of one or more surface acoustic wave (SAW) devices, such as a SAW frequency.

成形開孔的特徵可在於一橫剖面尺寸。該橫剖面尺寸可包含直徑或寬度。另外,此一或更多成形開孔的形狀可包含圓形、橢圓形、方形、矩形、三角形、或具有任意形狀的橫剖面。再度參考圖10,可形成具有實質上接近高斯輪廓之射束輪廓450的GCIB。作為一範例,係選擇此開孔的橫剖面尺寸456以包含小於或等於GCIB之FWHM的直徑。 The shaped aperture can be characterized by a cross-sectional dimension. The cross-sectional dimension can include a diameter or a width. Additionally, the shape of the one or more shaped apertures can comprise a circle, an ellipse, a square, a rectangle, a triangle, or a cross section having any shape. Referring again to Figure 10, a GCIB having a beam profile 450 that is substantially close to a Gaussian profile can be formed. As an example, the cross-sectional dimension 456 of the aperture is selected to include a diameter less than or equal to the FWHM of the GCIB.

圖11係顯示圍繞GCIB 128A'的基板152之示例性圓形掃描,GCIB 128A'係沿著圓形路徑而至少部分地與基板接觸。因此,GCIB 128A'可在基板152的周圍附近蝕刻或沉積薄膜。可如此做以補償基板152的邊緣輪廓,此邊緣輪廓具有比基板152之內部區域還高或還低的厚度。舉例來說,若 基板152的邊緣厚度偏離基板的其餘部分,則藉由GCIB 128A'的基板152之圓形掃描可蝕刻薄膜,以使厚度偏差減至最小。因此,如圖5A-5B中所示,可編程或配置工作件掃描機構500,以能夠在基板152的周圍附近進行蝕刻或沉積。 Figure 11 shows an exemplary circular scan of a substrate 152 surrounding a GCIB 128A' that is at least partially in contact with the substrate along a circular path. Therefore, the GCIB 128A' can etch or deposit a thin film near the periphery of the substrate 152. This can be done to compensate for the edge profile of the substrate 152 that has a thickness that is higher or lower than the interior region of the substrate 152. For example, if The thickness of the edge of the substrate 152 is offset from the remainder of the substrate, and the film can be etched by circular scanning of the substrate 152 of the GCIB 128A' to minimize thickness variations. Thus, as shown in Figures 5A-5B, the workpiece scanning mechanism 500 can be programmed or configured to enable etching or deposition near the periphery of the substrate 152.

在圖11中,可藉由使用如圖5A及5B中所示的工作件掃描機構500而使基板152能夠以旋轉運動來移動。為了易於說明及解釋之目的,在圖11中僅顯示工作件掃描機構500的掃描臂540。在一實施例中,圓形掃描可使GCIB 128A'能沿著基板之周圍接觸,以隨著基板152圍繞GCIB 128A'進行旋轉運動而蝕刻基板或上層薄膜。例如,基板152可經由掃描臂540而耦接於工作件掃描機構500,如在前面圖5A-5B之說明中所描述。工作件掃描機構500可以旋轉方向580而在兩個點之間移動,同時亦以直線運動570移動。旋轉運動580或徑向運動及直線運動570的組合使圓周運動575能夠進行,圓周運動575允許GCIB 128A'以旋轉掃描而掃描橫過基板152的邊緣。如圖11中所示,基板152的掃描可始於在基板152之邊緣處或其附近的一個點。工作件掃描機構500可使基板以旋轉運動575移動,俾使GCIB 128A'係循著圍繞基板152的圓形路徑。例如,圍繞GCIB 128A'的基板152之運動係藉由轉動的基板1521、1522、1523之位置加以說明,其顯示出此圓形掃描可如何完成。為了易於說明及解釋之目的,如圖11中所示,僅有四個轉動的基板1521、1522、1523。實際上,GCIB 128A'可在多於基板152及轉動的基板1521、1522、1523所示之四個點處與基板152有更多接觸。舉例來說,GCIB 128A'可沿著圓形路徑而與基板152接觸,此圓形路徑可起始於及結束於基板152上的相同點。在完成第一圓形掃描後,工作件掃描機構500可將基板定位,以增加或減少圓形掃描半徑(未顯示),並開始另一圓形掃描而沿著圍繞基板152的另一圓形路徑進行蝕刻或沉積。可依所欲持續進行掃描半徑定位,以在基板上GCIB 128A' 與基板152交截之處進行蝕刻或沉積。如此一來,可在未改變或未實質上改變基板152的其餘部分之厚度輪廓的情況下,將基板152的邊緣厚度輪廓最佳化。 In FIG. 11, the substrate 152 can be moved in a rotational motion by using the workpiece scanning mechanism 500 as shown in FIGS. 5A and 5B. For ease of illustration and explanation, only the scanning arm 540 of the workpiece scanning mechanism 500 is shown in FIG. In one embodiment, a circular scan can enable the GCIB 128A' to contact along the perimeter of the substrate to etch the substrate or overlying film as the substrate 152 is rotated about the GCIB 128A'. For example, the substrate 152 can be coupled to the workpiece scanning mechanism 500 via the scanning arm 540, as described in the previous description of Figures 5A-5B. The workpiece scanning mechanism 500 can be moved in a direction 580 to move between two points while also moving in a linear motion 570. The combination of rotational motion 580 or radial motion and linear motion 570 enables circular motion 575 that allows GCIB 128A' to scan across the edge of substrate 152 in a rotational scan. As shown in FIG. 11, scanning of substrate 152 may begin at a point at or near the edge of substrate 152. The workpiece scanning mechanism 500 can move the substrate in a rotational motion 575 such that the GCIB 128A' follows a circular path around the substrate 152. For example, the motion of the substrate 152 surrounding the GCIB 128A' is illustrated by the position of the rotating substrates 1521, 1522, 1523, which shows how this circular scan can be accomplished. For ease of illustration and explanation, as shown in Figure 11, there are only four rotating substrates 1521, 1522, 1523. In fact, the GCIB 128A' can have more contact with the substrate 152 at more than four points shown by the substrate 152 and the rotating substrates 1521, 1522, 1523. For example, the GCIB 128A' can be in contact with the substrate 152 along a circular path that can begin at and end at the same point on the substrate 152. After completing the first circular scan, the workpiece scanning mechanism 500 can position the substrate to increase or decrease the circular scan radius (not shown) and begin another circular scan along another circle around the substrate 152. The path is etched or deposited. Scan radius positioning can be continued as desired to GCIB 128A' on the substrate Etching or deposition is performed at the intersection with the substrate 152. As such, the edge thickness profile of the substrate 152 can be optimized without changing or substantially altering the thickness profile of the remainder of the substrate 152.

圖12係顯示在圓形掃描期間基板152與GCIB 128A'間之角度、距離、及速度關係的圖。可藉由在兩個點之間以旋轉運動振盪的第一掃描運動580(徑向)、及在結合時可形成圍繞基板152之圓形路徑575的第二掃描運動570(直線),而控制圓形掃描的速度及方向。 Figure 12 is a graph showing the relationship between angle, distance, and velocity between substrate 152 and GCIB 128A' during a circular scan. Control can be controlled by a first scanning motion 580 (radial) oscillating with rotational motion between two points, and a second scanning motion 570 (straight line) that can form a circular path 575 around the substrate 152 when combined The speed and direction of the circular scan.

在一實施例中,可藉由以下方式來實施圓形掃描1100:透過可代表介於GCIB 128A'與基板152之中心間之角度的角度δ 1112,得知從基板152之中心起算的掃描半徑1102、角度θ 1110、及GCIB 128A'之相對位置。在一實施例中,基板半徑可以是至少150mm。藉由控制第一掃描運動速度1106及第二掃描運動速度1108,可使圓形掃描的速度1104或停留時間最佳化。速度1104可以是恆定的,並可用以導出第一掃描運動速度1106及第二掃描運動速度1108,如圖12中所示。例如,第一掃描運動速度1106可由以下等式所導出: In one embodiment, the circular scan 1100 can be implemented by transmitting an angle δ 1112 representing the angle between the GCIB 128A' and the center of the substrate 152 to determine the scan radius from the center of the substrate 152. The relative position of the 1102, the angle θ 1110, and the GCIB 128A'. In an embodiment, the substrate radius may be at least 150 mm. By controlling the first scan motion speed 1106 and the second scan motion speed 1108, the speed 1104 or dwell time of the circular scan can be optimized. Speed 1104 can be constant and can be used to derive first scan motion speed 1106 and second scan motion speed 1108, as shown in FIG. For example, the first scan motion speed 1106 can be derived from the following equation:

第二掃描運動速度1108可由以下等式所導出:Vf=vcosθ-vscosδ The second scan motion speed 1108 can be derived from the following equation: Vf = vcosθ - vscosδ

在一實施例中,在掃描製程期間速度1104可以是恆定的,以在基板周圍保持相似的停留時間。然而,考量到厚度輪廓的變化(未顯示),可改變GCIB 128A'的特性以在相同的圓形掃描中增加或減少局部的蝕刻速率或沉積速率。類似地,藉由在圓形掃描期間改變速度1104,可改變蝕刻速率或沉積速率。如此一來,可將GCIB 128A'的停留時間最佳化,以考量到可能沿著由工作件掃描機構500所實施之圓形掃描圖案存在的厚度變化。 In an embodiment, the speed 1104 may be constant during the scanning process to maintain a similar dwell time around the substrate. However, considering the variation in thickness profile (not shown), the characteristics of GCIB 128A' can be varied to increase or decrease the local etch rate or deposition rate in the same circular scan. Similarly, the etch rate or deposition rate can be varied by varying the speed 1104 during a circular scan. As such, the residence time of the GCIB 128A' can be optimized to account for variations in thickness that may exist along the circular scan pattern implemented by the workpiece scanning mechanism 500.

圖13顯示了基板152,其顯示出在GCIB處理系統100中於蝕刻或沉積製程期間可進行的圓形掃描路徑。為了易於說明及解釋,在圖13中僅顯示三個圓形掃描路徑。第一半徑1302可以是位於基板152之邊緣處或其附近的起始或結束半徑。在某些實施例中,第一半徑1302可略大於基板152的半徑,以考量到GCIB 128A'的輪廓及/或強度。在某些情況下,射束輪廓可相當大且相較於其他輪廓可撞擊較大的面積。因此,在第一半徑1302掃描期間,整個GCIB 128A'的射束輪廓可不必全與基板接觸。在某些實施例中,由於有多於一個的圓形掃描1100,故整個GCIB 128A'的射束輪廓可不全部與基板接觸。然而,在其他實施例中,第一半徑1302可小於基板152的半徑。 FIG. 13 shows a substrate 152 showing a circular scan path that can be performed during the etching or deposition process in the GCIB processing system 100. For ease of illustration and explanation, only three circular scan paths are shown in FIG. The first radius 1302 can be a starting or ending radius at or near the edge of the substrate 152. In some embodiments, the first radius 1302 can be slightly larger than the radius of the substrate 152 to account for the contour and/or intensity of the GCIB 128A'. In some cases, the beam profile can be quite large and can impact a larger area than other profiles. Thus, during the first radius 1302 scan, the beam profile of the entire GCIB 128A' may not necessarily be in full contact with the substrate. In some embodiments, the beam profile of the entire GCIB 128A' may not all be in contact with the substrate due to more than one circular scan 1100. However, in other embodiments, the first radius 1302 can be less than the radius of the substrate 152.

在第一半徑1302掃描之後,可進行第二半徑1304掃描。第二半徑1304可小於第一半徑1302,如圖13中所示。然而,在其他實施例中未必要如此。通常,第二半徑1304掃描係代表在蝕刻或沉積製程期間可進行的許多其他圓形掃描。例如,一製程可包含在第一半徑1302與第三半徑1306間之半徑上變化的二或更多圓形掃描。第三半徑1306可以是起始半徑或結束半徑。當從基板152之中心量測起時,第三半徑1306可以是比第一半徑1302及第二半徑1304還短的距離。掃描的數量及半徑可至少部分地基於基板152的厚度輪廓及/或GCIB 128'的特性。在某些實施例中,圓形掃描可在第一半徑1302與第三半徑1306或第二半徑1304之間振盪。例如,第一半徑1302可以是可在第一半徑1302與第三半徑1306之間移動的GCIB掃描用之起始半徑及結束半徑。起始半徑及結束半徑可根據基板152之邊緣處的厚度輪廓而改變。 After the first radius 1302 scan, a second radius 1304 scan can be performed. The second radius 1304 can be less than the first radius 1302, as shown in FIG. However, this is not necessary in other embodiments. Typically, the second radius 1304 scan represents many other circular scans that can be performed during the etching or deposition process. For example, a process may include two or more circular scans that vary in radius between a first radius 1302 and a third radius 1306. The third radius 1306 can be a starting radius or an ending radius. The third radius 1306 may be a shorter distance than the first radius 1302 and the second radius 1304 when measured from the center of the substrate 152. The number and radius of scans can be based, at least in part, on the thickness profile of the substrate 152 and/or the characteristics of the GCIB 128'. In some embodiments, the circular scan can oscillate between the first radius 1302 and the third radius 1306 or the second radius 1304. For example, the first radius 1302 can be a starting radius and an ending radius for a GCIB scan that can be moved between the first radius 1302 and the third radius 1306. The starting radius and ending radius may vary depending on the thickness profile at the edge of the substrate 152.

圖14A係顯示藉由GCIB處理系統100在基板152上實施圓形掃描(例如,第一半徑1302掃描)的簡化之示例性實施例。圖14A顯示了基板152及任何上覆薄膜之厚度輪廓1400的橫剖面。在本實施例中,在起始半徑所示的GCIB 128A'係大於基板152的半徑。然而,即使在起始半徑可能大於基 板152的半徑時,GCIB 128A'的射束輪廓仍可能撞擊厚度輪廓。起始半徑及基板152的半徑可從基板152的中心線1402量測起。 14A shows a simplified exemplary embodiment of performing a circular scan (eg, a first radius 1302 scan) on substrate 152 by GCIB processing system 100. Figure 14A shows a cross section of the thickness profile 1400 of the substrate 152 and any overlying film. In the present embodiment, the GCIB 128A' shown at the starting radius is larger than the radius of the substrate 152. However, even at the starting radius may be larger than the base At the radius of the plate 152, the beam profile of the GCIB 128A' may still strike the thickness profile. The starting radius and the radius of the substrate 152 can be measured from the centerline 1402 of the substrate 152.

圓形掃描1100可藉由以下方式完成:使基板152在起始點(未顯示)與結束點(未顯示)之間以旋轉運動旋轉1404,此起始點與結束點可以是相同的位置。如圖14A中所示,可將基板152定位朝向GCIB 128A'以供涵蓋基板152之另一部分的另一圓形掃描。基於GCIB 128'的射束輪廓,二或更多掃描的撞擊可重疊於基板152或上覆薄膜的相同或類似部分。 The circular scan 1100 can be accomplished by rotating the substrate 152 between the starting point (not shown) and the end point (not shown) by a rotational motion 1404, which can be the same position as the end point. As shown in FIG. 14A, the substrate 152 can be positioned toward the GCIB 128A' for another circular scan covering another portion of the substrate 152. Based on the beam profile of GCIB 128', the impact of two or more scans may overlap the same or similar portions of the substrate 152 or overlying film.

圖14B係顯示在基板152之厚度輪廓1400上使用圓形掃描的示例性結果。在此實施例中,可將下層薄膜之部分1406蝕刻掉,以使厚度輪廓1400的變化減至最小。因此,基板152先前的非均勻性(例如,厚度輪廓1400)可能不會對基板152的額外處理(例如蝕刻、圖案化、沉積...等等)造成影響、或僅造成較小的影響。舉例來說,額外處理可包含但不限於:在整個基板152各處蝕刻上覆薄膜。 FIG. 14B shows an exemplary result of using a circular scan on the thickness profile 1400 of the substrate 152. In this embodiment, the portion 1406 of the underlying film can be etched away to minimize variations in the thickness profile 1400. Thus, the previous non-uniformity (eg, thickness profile 1400) of the substrate 152 may not affect, or only cause, minor effects on the additional processing (eg, etching, patterning, deposition, etc.) of the substrate 152. For example, additional processing may include, but is not limited to, etching the overlying film throughout the substrate 152.

圖15係顯示在起始半徑1302與結束半徑1306間的基板152之區域上的GCIB能量分佈1500。在本實施例中,在基板152之邊緣附近的掃描密度1504係高於較靠近基板152之中心的掃描密度1502。掃描密度係由在圓形掃描期間,GCIB 128A'的射束輪廓、以及其彼此間及與基板152的相對位置所組成。例如,各圓形掃描可由射束輪廓曲線之至少一者來表示。掃描密度曲線圖顯示出最高的掃描密度係發生於從基板152的邊緣(例如,x軸上的0)起算1mm附近。全部射束輪廓的整合可用以產生遍及整個基板的GCIB能量分佈1500。在本實施例中,蝕刻製程係限於從基板的邊緣延伸至由邊緣起算4mm之處的環形區域。然而,在其他實施例中,製程區域可達由基板152的邊緣起算10mm或更多之處。 Figure 15 shows the GCIB energy distribution 1500 over the area of the substrate 152 between the starting radius 1302 and the ending radius 1306. In the present embodiment, the scan density 1504 near the edge of the substrate 152 is higher than the scan density 1502 closer to the center of the substrate 152. The scanning density consists of the beam profiles of the GCIB 128A' during the circular scan, and their relative positions to each other and to the substrate 152. For example, each circular scan can be represented by at least one of the beam profile curves. The scan density plot shows that the highest scan density occurs around 1 mm from the edge of substrate 152 (eg, 0 on the x-axis). The integration of all beam profiles can be used to generate a GCIB energy distribution 1500 throughout the substrate. In the present embodiment, the etching process is limited to an annular region extending from the edge of the substrate to a position of 4 mm from the edge. However, in other embodiments, the process area can be up to 10 mm or more from the edge of the substrate 152.

在一實施例中,GCIB能量分佈1500可對應於基板152的厚度輪廓,其中,高密度區域1504可對應於基板152或上覆薄膜之較高厚度。在本實施例中,可藉由降低圓形掃描之間的距離來形成較高密度區域1504。在另一實施例(未顯示)中,可藉由降低基板的速度以增加GCIB 128A'在基板152之特定部分上的停留時間,而形成高能量區域。在另一實施例中,亦可藉由增加GCIB 128A'的能量或其他特性而形成高能量區域。 In an embodiment, the GCIB energy distribution 1500 can correspond to a thickness profile of the substrate 152, wherein the high density region 1504 can correspond to a higher thickness of the substrate 152 or overlying film. In this embodiment, the higher density region 1504 can be formed by reducing the distance between the circular scans. In another embodiment (not shown), a high energy region can be formed by reducing the speed of the substrate to increase the residence time of the GCIB 128A' over a particular portion of the substrate 152. In another embodiment, a high energy region can also be formed by increasing the energy or other characteristics of the GCIB 128A'.

圖16係顯示使用GCIB處理系統100來實施基板152之圓形掃描的一示例性方法。基板152可具有非均勻的厚度輪廓,其在某種程度上可能會影響後續的製程,這可能會影響元件的良率及/或性能。在一實施例中,比起在基板152的內部部分,厚度輪廓在基板的邊緣附近可能具有較高的厚度。一種方法可以是開發一種蝕刻製程,其在基板152的邊緣處具有比在中心處更高的蝕刻速率。另一種方法可以是選擇性地蝕刻較厚的區域,以降低整個基板152的厚度非均勻性,並接著均勻地蝕刻整個基板152。GCIB處理系統100可用以實施選擇性蝕刻製程及後續的均勻蝕刻製程。 16 is an illustration of an exemplary method of performing a circular scan of substrate 152 using GCIB processing system 100. Substrate 152 may have a non-uniform thickness profile that may affect subsequent processes to some extent, which may affect component yield and/or performance. In an embodiment, the thickness profile may have a higher thickness near the edge of the substrate than in the inner portion of the substrate 152. One method may be to develop an etch process that has a higher etch rate at the edge of the substrate 152 than at the center. Another method may be to selectively etch a thicker region to reduce the thickness non-uniformity of the entire substrate 152 and then uniformly etch the entire substrate 152. The GCIB processing system 100 can be used to implement a selective etch process and a subsequent uniform etch process.

在方塊1602中,GCIB處理系統100可配置為將工作件(例如基板152)定位且固定於工作件掃描機構500。工作件可由矽、矽鍺、或任何其他半導體材料所組成。在一實施例中,工作件可以是圓形的且具有至少100mm的半徑。在一實施例中,工作件可包含在基板之周圍邊緣區域與內部區域之間顯現出空間上變化的表面特性。在一特定實施例中,此表面特性可以是工作件或工作件之表面上薄膜的厚度。例如,此空間上變化可由整個工作件或覆蓋工作件的薄膜之厚度上變化來表示。厚度輪廓1400可以是空間上變化的一種表示。然而,在其他實施例中,表面特性可包含但不限於:表面輪廓、表面粗糙度、表面組成、表面層組成、工作件及/或薄膜的機械性質、工作件 及/或薄膜的電性質、或工作件及/或薄膜的光學性質、或其二或更多者之任何組合。 In block 1602, the GCIB processing system 100 can be configured to position and secure a workpiece (eg, substrate 152) to the workpiece scanning mechanism 500. The workpiece can be composed of tantalum, niobium, or any other semiconductor material. In an embodiment, the workpiece may be circular and have a radius of at least 100 mm. In an embodiment, the workpiece may include spatially varying surface characteristics between the peripheral edge region and the inner region of the substrate. In a particular embodiment, the surface characteristic can be the thickness of the film on the surface of the workpiece or workpiece. For example, this spatial variation can be represented by a change in the thickness of the entire workpiece or film covering the workpiece. The thickness profile 1400 can be a representation of a spatial variation. However, in other embodiments, surface characteristics may include, but are not limited to, surface profile, surface roughness, surface composition, surface layer composition, mechanical properties of the workpiece and/or film, workpiece And/or the electrical properties of the film, or the optical properties of the workpiece and/or film, or any combination of two or more thereof.

如上所述,工作件掃描機構500可配置為將工作件的特定部分放置於GCIB 128A'的軌跡中。 As described above, the workpiece scanning mechanism 500 can be configured to place a particular portion of the workpiece in the trajectory of the GCIB 128A'.

在方塊1604,工作件掃描機構500可沿著實質上圓形路徑通過第一GCIB(例如GCIB 128A')來執行工作件的第一掃描運動(例如圓周運動575),此第一掃描運動係使工作件的周圍邊緣區域曝露於第一GCIB。GCIB的曝照可降低周圍邊緣區域與內部區域間之表面特性的空間上變化或其他特徵。此降低作用之一範例為厚度輪廓1400的變化。圖14A可顯示工作件的進入狀態,而圖14B可顯示工作件的後第一掃描狀態。 At block 1604, the workpiece scanning mechanism 500 can perform a first scanning motion (eg, circular motion 575) of the workpiece through a first GCIB (eg, GCIB 128A') along a substantially circular path, the first scanning motion The peripheral edge region of the workpiece is exposed to the first GCIB. Exposure of the GCIB can reduce spatial variations or other characteristics of the surface characteristics between the peripheral edge region and the inner region. An example of this reduction is the variation of the thickness profile 1400. Figure 14A can show the entry state of the work piece, while Figure 14B can show the post-first scan state of the work piece.

在一實施例中,第一掃描運動可包含:工作件掃描機構500使工作件沿著實質上圓形路徑移動,此實質上圓形路徑係起始於及結束於實質上相同的位置。在其他實施例中,工作件掃描機構500可使工作件以連串的圓周運動移動,其中此等圓周運動之一或更多者係具有不同的半徑。例如,在圖13中,起始半徑(例如第一半徑1302)可以是第一掃描運動的第一圓周運動,而結束半徑(例如第三半徑1306)可以是第一掃描運動的最後圓周運動。簡言之,第一掃描運動可包含:沿著二或更多同心圓形路徑掃描工作件。此同心圓形路徑可包含具有不同半徑的圓。 In an embodiment, the first scanning motion can include the workpiece scanning mechanism 500 moving the workpiece along a substantially circular path that begins and ends at substantially the same location. In other embodiments, the workpiece scanning mechanism 500 can move the workpiece in a series of circular motions, wherein one or more of the circular motions have different radii. For example, in FIG. 13, the starting radius (eg, first radius 1302) may be the first circular motion of the first scanning motion, and the ending radius (eg, the third radius 1306) may be the last circular motion of the first scanning motion. In short, the first scanning motion can include scanning the workpiece along two or more concentric circular paths. This concentric circular path can contain circles with different radii.

在另一實施例中,工作件掃描機構500的第一掃描運動可包含:將工作件裝設於細長構件(例如掃描臂540)的第一端部。可使用附接於旋轉點的旋轉機構(例如快速掃描馬達550)來旋轉此細長構件。在一特定實施例中,旋轉點可遠離此細長構件的端部。 In another embodiment, the first scanning motion of the workpiece scanning mechanism 500 can include mounting the workpiece to a first end of the elongate member (eg, the scanning arm 540). The elongate member can be rotated using a rotating mechanism attached to the point of rotation, such as fast scan motor 550. In a particular embodiment, the point of rotation can be away from the end of the elongate member.

工作件掃描機構500可使細長構件及旋轉機構與慢速掃描機構560一起移動,同時伴隨旋轉。此運動可使工作件之周圍邊緣區域的不同部分 通過第一GCIB,並依循一實質上圓形路徑。除了圓周運動外,第一GCIB 128A'的特性亦可被改變。此特性可包含但不限於:劑量及/或能量。 The workpiece scanning mechanism 500 can move the elongate member and the rotating mechanism together with the slow scanning mechanism 560 while accompanying rotation. This movement allows different parts of the surrounding edge area of the workpiece Pass the first GCIB and follow a substantially circular path. In addition to the circular motion, the characteristics of the first GCIB 128A' can also be changed. This property can include, but is not limited to, dose and/or energy.

完整的第一掃描應沿著工作件的周圍區域改變表面特性。在一情況下,沿著周圍區域的表面特性可更類似於內部工作件的表面特性。因此,後續的處理可應用於整個工作件而不只周圍區域。 The complete first scan should change the surface characteristics along the surrounding area of the workpiece. In one case, the surface characteristics along the surrounding area may be more similar to the surface characteristics of the inner workpiece. Therefore, subsequent processing can be applied to the entire work piece and not only the surrounding area.

在方塊1608,工作件掃描機構500可沿著非圓形路徑通過第二GCIB來執行工作件的第二掃描運動,此第二掃描運動係使工作件的外圍邊緣區域及內部區域曝露於第二GCIB。第二掃描運動可包含:沿著橫過工作件的直線或弧形路徑反覆掃描工作件。 At block 1608, the workpiece scanning mechanism 500 can perform a second scanning motion of the workpiece through the second GCIB along a non-circular path that exposes the peripheral edge region and the interior region of the workpiece to the second GCIB. The second scanning motion can include repeatedly scanning the workpiece along a straight or curved path across the workpiece.

第二掃描運動可包含:將工作件裝設於工作件掃描機構500之細長構件的第一端部。接著,使用附接於細長構件上之旋轉點的旋轉機構以部分地反覆旋轉細長構件。旋轉點可遠離第一端部,這使得工作件的一或更多掃描係依循弧形路徑(例如,未完全形成圓的弧形)。第二掃描運動亦可包含:使細長構件及旋轉機構與慢速掃描機構一起移動,旋轉機構係附接於慢速掃描機構560並自慢速掃描機構560懸吊。因此,在反覆掃描期間,第二掃描運動可使工作件的不同部分通過第二GCIB之路徑。在一特定實施例中,第二GCIB的特性亦可被改變。此特性可包含但不限於:劑量及/或能量,且第一GCIB在至少一GCIB參數上與第二GCIB不同。 The second scanning motion can include: mounting the workpiece to the first end of the elongated member of the workpiece scanning mechanism 500. Next, a rotating mechanism attached to the point of rotation on the elongate member is used to partially rotate the elongate member. The point of rotation may be remote from the first end, which causes one or more scans of the workpiece to follow an arcuate path (eg, an arc that does not fully form a circle). The second scanning motion can also include moving the elongate member and the rotating mechanism with the slow scanning mechanism, the rotating mechanism being attached to the slow scanning mechanism 560 and suspended from the slow scanning mechanism 560. Thus, during a repetitive scan, the second scan motion can cause different portions of the workpiece to pass the path of the second GCIB. In a particular embodiment, the characteristics of the second GCIB can also be changed. This property can include, but is not limited to, dose and/or energy, and the first GCIB is different from the second GCIB in at least one GCIB parameter.

圖17係顯示使用GCIB處理系統100來實施基板152之圓形掃描1100的另一示例性方法。 FIG. 17 illustrates another exemplary method of implementing a circular scan 1100 of substrate 152 using GCIB processing system 100.

在方塊1702,將工作件裝設於掃描系統(例如工作件掃描機構500)上,此掃描系統可配置為通過一帶電粒子束來掃描工作件。在一實施例中,該帶電粒子束可包含但不限於:氣體團簇離子束(GCIB)。 At block 1702, the workpiece is mounted to a scanning system (e.g., workpiece scanning mechanism 500) that is configured to scan the workpiece by a charged particle beam. In an embodiment, the charged particle beam can include, but is not limited to, a gas cluster ion beam (GCIB).

在方塊1704,掃描系統可沿著至少一圓形路徑通過帶電粒子束來執行工作件的第一掃描運動。此圓形路徑可起始於及結束於工作件上實質上相同的位置。然而,圓形路徑可具有不同的曲率半徑。如在前面圖13的說明中所述,圓形路徑可沿著工作件的周圍邊緣區域延伸。在一特定實施例中,周圍區域可包含由工作件之邊緣起算達10mm的區域。如在前面圖11的說明中所述,該帶電粒子束可在未實質上改變工作件之內部區域之表面特性的情況下,改變工作件之周圍區域中的表面特性。因此,當完成第一掃描時,周圍區域及內部區域的表面特性彼此可更相似。 At block 1704, the scanning system can perform a first scanning motion of the workpiece through the charged particle beam along at least one circular path. This circular path can begin and end at substantially the same position on the workpiece. However, circular paths can have different radii of curvature. As described in the previous description of Figure 13, the circular path may extend along the peripheral edge region of the workpiece. In a particular embodiment, the surrounding area may comprise an area up to 10 mm from the edge of the workpiece. As described in the foregoing description of Fig. 11, the charged particle beam can change the surface characteristics in the surrounding area of the workpiece without substantially changing the surface characteristics of the inner region of the workpiece. Therefore, when the first scan is completed, the surface characteristics of the surrounding area and the inner area can be more similar to each other.

在方塊1706,掃描系統可沿著非圓形路徑通過帶電粒子束來執行工作件的第二掃描,此非圓形路徑係起始於及結束於工作件上實質上不同的位置。此非圓形路徑可沿著橫過工作件的直線或弧形路徑延伸。 At block 1706, the scanning system can perform a second scan of the workpiece through the charged particle beam along a non-circular path that begins and ends at a substantially different location on the workpiece. This non-circular path can extend along a straight or curved path across the workpiece.

圖18係顯示使用GCIB處理系統100來實施基板152之圓形掃描1100的另一示例性方法。在一實施例中,可藉由GCIB處理系統100來執行選擇性蝕刻。然而,後續的處理可能是在可能無法實施GCIB製程的其他設備上進行。在此情況下,GCIB處理系統100可為基板152準備額外的處理,此額外的處理可不需要如前面圖16及17之說明中所述的第二掃描。另外,與決定進行圓形掃描有關的參數亦可在GCIB處理系統100上執行。該實施例之一實施方式係顯示於圖18中。 FIG. 18 shows another exemplary method of implementing a circular scan 1100 of substrate 152 using GCIB processing system 100. In an embodiment, selective etching may be performed by the GCIB processing system 100. However, subsequent processing may be performed on other devices that may not be able to implement the GCIB process. In this case, the GCIB processing system 100 can prepare additional processing for the substrate 152, which may not require a second scan as described in the previous Figures 16 and 17. Additionally, parameters related to determining a circular scan can also be performed on the GCIB processing system 100. One embodiment of this embodiment is shown in FIG.

在方塊1802,GCIB處理系統100可將基板152裝設於一轉移系統(例如工作件掃描機構500)上,該轉移系統可將基板放置於與GCIB 128A'相交或靠近GCIB 128A'的位置。 At block 1802, the GCIB processing system 100 can mount the substrate 152 on a transfer system (e.g., workpiece scanning mechanism 500) that can place the substrate at or adjacent to the GCIB 128A'.

在方塊1804,GCIB處理系統100可決定或接收製程參數,其可用以藉由利用基板152之旋轉運動來移除在基板邊緣附近的基板之一部分。此製程參數可包含但不限於:GCIB處理系統100所進行之掃描數量、掃描間隔、 掃描速度、掃描的起始半徑、及掃描的結束半徑。在一實施例中,起始半徑及結束半徑係至少部分基於從基板上之一位置量測起的基板半徑。當基板為圓形時,此位置可以是基板152的中心。舉例來說,起始半徑(例如第一半徑1302)可包含由基板152的中心至GCIB 128A'的距離(當圍繞GCIB 128A'的基板之移動開始時)。結束半徑(例如第三半徑1306)可以是基板152之中心與GCIB 128A'所位於之處(當基板152之移動結束時)之間的距離。 At block 1804, the GCIB processing system 100 can determine or receive process parameters that can be used to remove a portion of the substrate near the edge of the substrate by utilizing rotational motion of the substrate 152. The process parameters may include, but are not limited to, the number of scans performed by the GCIB processing system 100, the scan interval, Scan speed, starting radius of the scan, and the end radius of the scan. In one embodiment, the starting radius and the ending radius are based, at least in part, on the radius of the substrate as measured from a location on the substrate. This position may be the center of the substrate 152 when the substrate is circular. For example, the starting radius (eg, first radius 1302) can include the distance from the center of substrate 152 to GCIB 128A' (when the movement of the substrate surrounding GCIB 128A' begins). The end radius (eg, third radius 1306) may be the distance between the center of the substrate 152 and where the GCIB 128A' is located (when the movement of the substrate 152 ends).

在一實施例中,製程參數可至少部分基於基板152的厚度輪廓及GCIB的特性。可決定製程參數以蝕刻或沉積薄膜,俾使基板152從內部至周圍的表面特性之差異減到最小。如前面圖15之說明中所述,可將製程參數最佳化,以產生可能移除基板152之周圍部分的GCIB能量輪廓1500。除了上述的製程參數外,亦可改變GCIB 128A'的特性以實施GCIB能量輪廓1500。在一實施例中,此特性可包含但不限於:射束輪廓、劑量、能量、化學性質、或其任何組合。在一特定實施例中,射束輪廓可包含在射束中心的實質上恆定或平坦部分、及在GCIB 128A'周圍附近的傾斜部分。如此一來,射束輪廓可包含:第一部分,包括實質上恆定的GCIB條件;及第二部分,包括作為距離之函數並以比第一部分還高之速率改變的GCIB條件。此效果可由圖11中所示的高斯曲線加以說明。 In an embodiment, the process parameters can be based at least in part on the thickness profile of the substrate 152 and the characteristics of the GCIB. Process parameters can be determined to etch or deposit the film to minimize differences in surface characteristics of the substrate 152 from the interior to the periphery. Process parameters may be optimized to produce a GCIB energy profile 1500 that may remove portions of the substrate 152 as described in the previous description of FIG. In addition to the process parameters described above, the characteristics of the GCIB 128A' can also be varied to implement the GCIB energy profile 1500. In an embodiment, this characteristic may include, but is not limited to, beam profile, dose, energy, chemical properties, or any combination thereof. In a particular embodiment, the beam profile can include a substantially constant or flat portion at the center of the beam, and a sloped portion near the periphery of the GCIB 128A'. As such, the beam profile can include a first portion including substantially constant GCIB conditions and a second portion including GCIB conditions that vary as a function of distance and at a higher rate than the first portion. This effect can be illustrated by the Gaussian curve shown in FIG.

在方塊1806,GCIB處理系統100可藉由利用轉移系統及製程參數而使基板以旋轉運動圍繞GCIB 128A'移動。與GCIB 128A'耦合的圓周運動可移除與GCIB 128A'相交的基板152之部分。 At block 1806, the GCIB processing system 100 can move the substrate around the GCIB 128A' in a rotational motion by utilizing the transfer system and process parameters. The circular motion coupled to the GCIB 128A' can remove portions of the substrate 152 that intersect the GCIB 128A'.

在一實施例中,基板的移動可包含:將基板放置於GCIB 128A'附近,俾使GCIB 128A'係位於從基板152之中心起算的起始半徑之處或之內。GCIB處理系統100可改變基板152所進行的圓周運動之半徑,俾使GCIB 128A'可對基板152的周圍區域進行處理。當已完成周圍區域的處理時,GCIB處理 系統會使GCIB 128A'由基板152脫離。此處理可在圓形掃描的半徑與結束半徑相同或類似時完成。 In an embodiment, the movement of the substrate can include placing the substrate adjacent to the GCIB 128A' such that the GCIB 128A' is located within or within a starting radius from the center of the substrate 152. The GCIB processing system 100 can vary the radius of the circular motion performed by the substrate 152 such that the GCIB 128A' can process the surrounding area of the substrate 152. GCIB processing when the processing of the surrounding area has been completed The system will cause the GCIB 128A' to be detached from the substrate 152. This process can be done when the radius of the circular scan is the same or similar to the end radius.

在另一實施例中,GCIB處理系統100可包含可由電腦處理器所執行的電腦可執行指令。例如,電腦可執行指令可用以實施上述方法之任何部分或全部。 In another embodiment, GCIB processing system 100 can include computer executable instructions that are executable by a computer processor. For example, computer executable instructions can be used to implement any or all of the above methods.

在整篇說明書中提及的「一實施例(one embodiment)」或「一實施例(an embodiment)」意謂與該實施例有關而描述之特定的特徵、結構、材料、或特性係包含於本發明之至少一實施例中,但並非代表其存在於每一實施例中。因此,在整篇說明書各處出現的用語「在一實施例中(in one embodiment)」或「在一實施例中(in an embodiment)」未必是指本發明之相同的實施例。此外,在一或更多實施例中可將特定的特徵、結構、材料、或特性以任何適當的方式結合。 The word "one embodiment" or "an embodiment" as used throughout the specification means that a particular feature, structure, material, or characteristic described in connection with the embodiment is included in In at least one embodiment of the invention, it is not intended to be present in every embodiment. The words "in one embodiment" or "in an embodiment" or "an" or "an" Furthermore, the particular features, structures, materials, or characteristics may be combined in any suitable manner in one or more embodiments.

各種操作將以最有助於理解本發明的方式依序描述成複數個獨立操作。然而,描述的順序不應被理解為暗示該等操作必須為順序相依。具體而言,該等操作無須依描述的順序來執行。可以與所述之實施例不同的順序來執行所述之操作。在額外的實施例中,可執行各種額外之操作,及/或可省略所述之操作。 Various operations will be described in sequence as a plurality of independent operations in a manner that is most helpful in understanding the present invention. However, the order of description should not be construed as implying that the operations must be in the order. In particular, such operations are not required to be performed in the order described. The operations described can be performed in a different order than the described embodiments. In additional embodiments, various additional operations may be performed and/or the operations described may be omitted.

熟習相關技藝者可理解到,根據以上教示,許多修改及變化皆有可能。熟習本技藝者應能識出圖中所顯示之各種元件的各種均等之組合及替代物。因此,所意欲為使本發明之範圍並非由此詳細說明所限制,而係由本文所附之申請專利範圍所限制。 It will be appreciated by those skilled in the art that many modifications and variations are possible in light of the above teachings. Those skilled in the art should be able to recognize various combinations and substitutions of the various components shown in the figures. Therefore, it is intended that the scope of the invention not be limited

152‧‧‧基板 152‧‧‧Substrate

540‧‧‧掃描臂 540‧‧‧ scanning arm

570‧‧‧慢速(第二)掃描運動 570‧‧‧Slow (second) scanning motion

575‧‧‧圓周運動(圓形路徑) 575‧‧‧Circular motion (circular path)

580‧‧‧第一掃描運動(弧形路徑) 580‧‧‧First scanning motion (arc path)

1521‧‧‧轉動的基板 1521‧‧‧Rotating substrate

1522‧‧‧轉動的基板 1522‧‧‧Rotating substrate

1523‧‧‧轉動的基板 1523‧‧‧Rotating substrate

128A'‧‧‧GCIB 128A'‧‧‧GCIB

Claims (20)

一種用於利用氣體團簇離子束來處理工作件的方法,包含:一工作件提供步驟,提供一工作件,該工作件之特徵在於一表面特性,該表面特性在一周圍邊緣區域及一內部區域之間顯現出一空間上變化;一第一掃描運動執行步驟,沿著一旋轉路徑通過一第一氣體團簇離子束來執行該工作件之第一掃描運動,該第一掃描運動使該工作件之周圍邊緣區域曝露於該第一氣體團簇離子束,並降低在該周圍邊緣區域及該內部區域間之該表面特性的空間上變化;及一第二掃描運動執行步驟,沿著一非圓形路徑通過一第二氣體團簇離子束來執行該工作件之第二掃描運動,該第二掃描運動使該工作件之周圍邊緣區域及內部區域曝露於該第二氣體團簇離子束。 A method for processing a workpiece using a gas cluster ion beam, comprising: a workpiece providing step of providing a workpiece characterized by a surface characteristic, the surface characteristic being in a peripheral edge region and an interior a spatial change occurs between the regions; a first scanning motion performing step of performing a first scanning motion of the workpiece through a first gas cluster ion beam along a rotational path, the first scanning motion a peripheral edge region of the workpiece is exposed to the first gas cluster ion beam and reduces spatial variation of the surface characteristic between the peripheral edge region and the interior region; and a second scanning motion performing step along a The non-circular path performs a second scanning motion of the workpiece by a second gas cluster ion beam, the second scanning motion exposing the peripheral edge region and the inner region of the workpiece to the second gas cluster ion beam . 如申請專利範圍第1項之用於利用氣體團簇離子束來處理工作件的方法,其中,該表面特性包含:薄膜厚度、表面輪廓、表面粗糙度、表面組成、層組成、該工作件的機械性質、該工作件的電性質、或該工作件的光學性質、或其二或更多者之任何組合。 The method for processing a workpiece by using a gas cluster ion beam according to claim 1, wherein the surface property comprises: film thickness, surface profile, surface roughness, surface composition, layer composition, and the working piece Mechanical properties, electrical properties of the work piece, or optical properties of the work piece, or any combination of two or more thereof. 如申請專利範圍第1項之用於利用氣體團簇離子束來處理工作件的方法,其中,該第一氣體團簇離子束在至少一氣體團簇離子束參數上與該第二氣體團簇離子束不同。 A method for processing a workpiece by using a gas cluster ion beam according to claim 1, wherein the first gas cluster ion beam is on the at least one gas cluster ion beam parameter and the second gas cluster The ion beam is different. 如申請專利範圍第1項之用於利用氣體團簇離子束來處理工作件的方法,其中,該第一掃描運動執行步驟包含:沿著一實質上圓形路徑掃描該工作件,該實質上圓形路徑起始於及結束於相同或類似的位置。 The method for processing a workpiece by using a gas cluster ion beam according to claim 1, wherein the first scanning motion performing step comprises: scanning the workpiece along a substantially circular path, the substantially The circular path starts at and ends at the same or similar position. 如申請專利範圍第1項之用於利用氣體團簇離子束來處理工作件的方法,其中,該第一掃描運動執行步驟包含:沿著二或更多同心圓形路徑掃描該工作件。 A method for processing a workpiece using a gas cluster ion beam according to claim 1, wherein the first scanning motion performing step comprises: scanning the workpiece along two or more concentric circular paths. 如申請專利範圍第1項之用於利用氣體團簇離子束來處理工作件的方法,其中,該第一掃描運動執行步驟包含:沿著一實質上圓形路徑反覆掃描該工作件。 A method for processing a workpiece using a gas cluster ion beam according to claim 1, wherein the first scanning motion performing step comprises: repeatedly scanning the workpiece along a substantially circular path. 如申請專利範圍第1項之用於利用氣體團簇離子束來處理工作件的方法,其中,該第二掃描運動執行步驟包含:沿著橫過該工作件的一直線或弧形路徑反覆掃描該工作件。 The method for processing a workpiece by using a gas cluster ion beam according to claim 1, wherein the second scanning motion performing step comprises: repeatedly scanning the line along a straight line or an arc path across the workpiece Work piece. 如申請專利範圍第1項之用於利用氣體團簇離子束來處理工作件的方法,其中,該第一掃描運動執行步驟包含以下步驟:將該工作件裝設於一細長構件之第一端部;一旋轉步驟,使用附接於該細長構件上之旋轉點的一旋轉機構以旋轉該細長構件,該旋轉點係遠離該第一端部,俾通過該第一氣體團簇離子束進行該工作件之一或更多掃描;一移動步驟,使該細長構件及該旋轉機構沿著一慢速掃描機構移動,並同時進行該旋轉步驟,該旋轉機構附接於該慢速掃描機構並由該慢速掃描機構所懸吊,該移動步驟使該工作件之該周圍邊緣區域的不同部分沿著一旋轉路徑通過該第一氣體團簇離子束。 The method for processing a workpiece by using a gas cluster ion beam according to claim 1, wherein the first scanning motion performing step comprises the step of: mounting the working member at a first end of an elongated member a rotating step of rotating the elongated member using a rotating mechanism attached to a rotating point on the elongated member, the rotating point being away from the first end, and the first gas cluster ion beam is used to perform the rotating member One or more scans of the workpiece; a moving step of moving the elongate member and the rotating mechanism along a slow scanning mechanism and simultaneously performing the rotating step, the rotating mechanism being attached to the slow scanning mechanism and The slow scanning mechanism is suspended, and the moving step passes a different portion of the peripheral edge region of the workpiece through the first gas cluster ion beam along a rotational path. 如申請專利範圍第1項之用於利用氣體團簇離子束來處理工作件的方法,其中,該第二掃描運動執行步驟包含以下步驟:將該工作件裝設於一細長構件之第一端部; 一旋轉步驟,使用附接於該細長構件上之旋轉點的一旋轉機構以部分地反覆旋轉該細長構件,該旋轉點係遠離該第一端部,俾通過該第二氣體團簇離子束沿著一弧形路徑進行該工作件之一或更多掃描;一移動步驟,使該細長構件及該旋轉機構沿著一慢速掃描機構移動,該旋轉機構附接於該慢速掃描機構並由該慢速掃描機構所懸吊,該移動步驟在反覆掃描期間使該工作件之不同部分通過該第二氣體團簇離子束之路徑。 The method for processing a workpiece by using a gas cluster ion beam according to claim 1, wherein the second scanning motion performing step comprises the step of: mounting the workpiece at a first end of an elongated member unit; a rotating step of partially rotating the elongate member by a rotating mechanism attached to a point of rotation of the elongate member, the point of rotation being away from the first end and passing along the ion beam of the second gas cluster An arcuate path for scanning one or more of the workpieces; a moving step of moving the elongate member and the rotating mechanism along a slow scanning mechanism attached to the slow scanning mechanism The slow scanning mechanism is suspended, the moving step passing different portions of the workpiece through the path of the second gas cluster ion beam during the repeated scanning. 如申請專利範圍第1項之用於利用氣體團簇離子束來處理工作件的方法,更包含:一第一氣體團簇離子束劑量改變步驟,在執行該第一掃描運動期間改變一第一氣體團簇離子束劑量。 The method for processing a workpiece by using a gas cluster ion beam according to claim 1, further comprising: a first gas cluster ion beam dose changing step, changing a first during performing the first scanning motion Gas cluster ion beam dose. 如申請專利範圍第1項之用於利用氣體團簇離子束來處理工作件的方法,更包含:一第二氣體團簇離子束劑量改變步驟,在執行該第二掃描運動期間改變一第二氣體團簇離子束劑量。 The method for processing a workpiece by using a gas cluster ion beam according to claim 1, further comprising: a second gas cluster ion beam dose changing step, changing a second during performing the second scanning motion Gas cluster ion beam dose. 一種用於通過帶電粒子束來掃描工作件的方法,包含:一工作件裝設步驟,將一工作件裝設於一掃描系統上,該掃描系統係配置為通過一帶電粒子束來掃描該工作件;一第一掃描運動執行步驟,沿著一圓形路徑通過該帶電粒子束來執行該工作件之第一掃描運動,該圓形路徑起始於及結束於該工作件上實質上相同的位置;及一第二掃描執行步驟,沿著一非圓形路徑通過該帶電粒子束來執行該工作件之第二掃描,該非圓形路徑起始於及結束於該工作件上實質上不同的位置。 A method for scanning a workpiece by a charged particle beam, comprising: a workpiece mounting step of mounting a workpiece on a scanning system configured to scan the work by a charged particle beam a first scanning motion performing step of performing a first scanning motion of the workpiece through the charged particle beam along a circular path, the circular path starting and ending at substantially the same on the workpiece And a second scanning performing step of performing a second scan of the workpiece through the charged particle beam along a non-circular path, the non-circular path starting and ending at the workpiece substantially different position. 如申請專利範圍第12項之用於通過帶電粒子束來掃描工作件的方法,其中,該帶電粒子束包含一氣體團簇離子束。 A method for scanning a workpiece by a charged particle beam according to claim 12, wherein the charged particle beam comprises a gas cluster ion beam. 如申請專利範圍第12項之用於通過帶電粒子束來掃描工作件的方法,其中,該圓形路徑係沿著該工作件之一周圍邊緣區域延伸。 A method for scanning a workpiece by a charged particle beam according to claim 12, wherein the circular path extends along a peripheral edge region of one of the workpieces. 如申請專利範圍第12項之用於通過帶電粒子束來掃描工作件的方法,其中,該非圓形路徑係沿著橫過該工作件的直線或弧形路徑延伸。 A method for scanning a workpiece by a charged particle beam according to claim 12, wherein the non-circular path extends along a straight or curved path across the workpiece. 一種用於利用氣體團簇離子束來處理基板的方法,包含:一基板裝設步驟,將該基板裝設於一轉移系統上,該轉移系統能將該基板放置於與該氣體團簇離子束相交或靠近該氣體團簇離子束的位置中;一製程參數決定步驟,決定多個製程參數以利用該基板之一旋轉運動來移除在該基板之邊緣附近的該基板之一部分;一基板移動步驟,利用該轉移系統及該等製程參數而使該基板以該旋轉運動圍繞該氣體團簇離子束移動,以利用該氣體團簇離子束移除該基板之該部分。 A method for processing a substrate by using a gas cluster ion beam, comprising: a substrate mounting step of mounting the substrate on a transfer system capable of placing the substrate in an ion beam with the gas cluster Intersecting or approaching the position of the gas cluster ion beam; a process parameter determining step of determining a plurality of process parameters to remove a portion of the substrate near the edge of the substrate by one of the substrate rotational motions; The step of using the transfer system and the process parameters to move the substrate around the gas cluster ion beam in the rotational motion to remove the portion of the substrate using the gas cluster ion beam. 如申請專利範圍第16項之用於利用氣體團簇離子束來處理基板的方法,其中,該等製程參數包含下列一或更多者:掃描數量;掃描間隔;掃描速度;掃描的起始半徑;或掃描的結束半徑。 The method for processing a substrate by using a gas cluster ion beam according to claim 16, wherein the process parameters include one or more of the following: a scan quantity; a scan interval; a scan speed; a scan start radius ; or the end radius of the scan. 如申請專利範圍第16項之用於利用氣體團簇離子束來處理基板的方法,其中,該基板移動步驟包含以下步驟:將該基板放置於該氣體團簇離子束附近,俾使該氣體團簇離子束位於一起始半徑之處或之內;至少部分地基於該基板之厚度輪廓而改變該基板的旋轉運動;及當該氣體團簇離子束位於一結束半徑之處時,使該氣體團簇離子束由該基板脫離。 The method for processing a substrate by using a gas cluster ion beam according to claim 16, wherein the substrate moving step comprises the steps of: placing the substrate near the gas cluster ion beam, and causing the gas group The cluster ion beam is located at or within a starting radius; the rotational motion of the substrate is varied based at least in part on the thickness profile of the substrate; and the gas cluster is caused when the gas cluster ion beam is at an end radius The cluster ion beam is detached from the substrate. 如申請專利範圍第16項之用於利用氣體團簇離子束來處理基板的方法,其中,該等製程參數係至少部分地基於該基板的厚度輪廓及該氣體團簇離子束的特性。 A method for processing a substrate using a gas cluster ion beam as in claim 16 wherein the process parameters are based at least in part on a thickness profile of the substrate and a characteristic of the gas cluster ion beam. 如申請專利範圍第19項之用於利用氣體團簇離子束來處理基板的方法,其中,該氣體團簇離子束的特性包含下列一或更多者:該氣體團簇離子束之射束輪廓;該氣體團簇離子束之一或更多能量位準;該氣體團簇離子束之一或更多劑量位準;或該氣體團簇離子束之一或更多化學成分。 A method for treating a substrate using a gas cluster ion beam according to claim 19, wherein the characteristic of the gas cluster ion beam comprises one or more of the following: a beam profile of the gas cluster ion beam One or more energy levels of the gas cluster ion beam; one or more dose levels of the gas cluster ion beam; or one or more chemical components of the gas cluster ion beam.
TW103140652A 2013-12-13 2014-11-24 Method for treating a substrate using a charged particle beam TWI592975B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US201361915894P 2013-12-13 2013-12-13

Publications (2)

Publication Number Publication Date
TW201537607A TW201537607A (en) 2015-10-01
TWI592975B true TWI592975B (en) 2017-07-21

Family

ID=54850963

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103140652A TWI592975B (en) 2013-12-13 2014-11-24 Method for treating a substrate using a charged particle beam

Country Status (1)

Country Link
TW (1) TWI592975B (en)

Also Published As

Publication number Publication date
TW201537607A (en) 2015-10-01

Similar Documents

Publication Publication Date Title
TWI550724B (en) Gcib etching method for adjusting fin height of finfet devices
US7696495B2 (en) Method and device for adjusting a beam property in a gas cluster ion beam system
US7982196B2 (en) Method for modifying a material layer using gas cluster ion beam processing
US8237136B2 (en) Method and system for tilting a substrate during gas cluster ion beam processing
US8048788B2 (en) Method for treating non-planar structures using gas cluster ion beam processing
TWI584332B (en) Molecular beam enhanced gcib treatment
US8877299B2 (en) Method for enhancing a substrate using gas cluster ion beam processing
US7905199B2 (en) Method and system for directional growth using a gas cluster ion beam
US9103031B2 (en) Method and system for growing a thin film using a gas cluster ion beam
US20090084759A1 (en) Method and system for multi-pass correction of substrate defects
US20110084214A1 (en) Gas cluster ion beam processing method for preparing an isolation layer in non-planar gate structures
WO2009018244A1 (en) Method and system for increasing throughput during location specific processing of a plurality of substrates
KR101640266B1 (en) Method for growing a thin film using a gas cluster ion beam
US9029808B2 (en) Low contamination scanner for GCIB system
US8791430B2 (en) Scanner for GCIB system
TWI592975B (en) Method for treating a substrate using a charged particle beam
US9502209B2 (en) Multi-step location specific process for substrate edge profile correction for GCIB system
CN112466739A (en) GCIB-based substrate edge contour correction method
CN112151350A (en) Method for scanning a workpiece by means of a charged particle beam
WO2009117262A2 (en) Method and system for depositing silicon carbide film using a gas cluster ion beam
US10763117B2 (en) Semiconductor manufacturing apparatus and method thereof
CN112176304A (en) Method for growing film by gas cluster ion beam