TWI591365B - Localization method for rotary aerial vehicle - Google Patents

Localization method for rotary aerial vehicle Download PDF

Info

Publication number
TWI591365B
TWI591365B TW105131116A TW105131116A TWI591365B TW I591365 B TWI591365 B TW I591365B TW 105131116 A TW105131116 A TW 105131116A TW 105131116 A TW105131116 A TW 105131116A TW I591365 B TWI591365 B TW I591365B
Authority
TW
Taiwan
Prior art keywords
rotorcraft
positioning
acceleration
world
microcontroller
Prior art date
Application number
TW105131116A
Other languages
Chinese (zh)
Other versions
TW201812338A (en
Inventor
簡忠漢
Original Assignee
聖約翰科技大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 聖約翰科技大學 filed Critical 聖約翰科技大學
Priority to TW105131116A priority Critical patent/TWI591365B/en
Application granted granted Critical
Publication of TWI591365B publication Critical patent/TWI591365B/en
Publication of TW201812338A publication Critical patent/TW201812338A/en

Links

Landscapes

  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Description

旋翼飛行器的定位方法 Rotorcraft positioning method

本發明係與旋翼飛行器有關,特別有關於旋翼飛行器的定位方法。 The invention relates to rotorcraft, and in particular to a method of positioning a rotorcraft.

全球定位系統(GPS)定位技術為當前最普及且成熟的定位技術。使用者僅須於旋翼飛行器上裝設GPS定位裝置,即可獲取旋翼飛行器的當前位置(即經緯度座標),並實現定位相關應用(如軌跡記錄、導航或自動駕駛)。 Global Positioning System (GPS) positioning technology is currently the most popular and mature positioning technology. The user only needs to install a GPS positioning device on the rotorcraft to obtain the current position of the rotorcraft (ie, latitude and longitude coordinates) and to implement positioning related applications (such as track recording, navigation or automatic driving).

雖GPS技術具有前述易用優點,然而,由於GPS定位技術係使用衛星訊號來進行定位,GPS定位裝置與定位衛星間的傳輸路徑不僅距離遙遠且傳輸路徑中存在大量遮蔽物(如雲層或建物),這使得GPS定位技術於定位時會常發生飄移現象,而大幅降低定位穩定度。 Although the GPS technology has the aforementioned advantages of ease of use, however, since the GPS positioning technology uses satellite signals for positioning, the transmission path between the GPS positioning device and the positioning satellite is not only distant but also has a large amount of shielding (such as clouds or structures) in the transmission path. This makes the GPS positioning technology often drift when positioning, and greatly reduces the positioning stability.

請參閱圖1,為使用GPS定位技術造成的位置飄移示意圖,用以示例性說明GPS定位技術的前述缺失。 Please refer to FIG. 1 , which is a schematic diagram of position drift caused by using GPS positioning technology to illustrate the aforementioned lack of GPS positioning technology.

當使用GPS定位技術的旋翼飛行器處於定點狀態時(以旋翼飛行器停懸於位置1為例),由於前述飄移現象,經由GPS定位技術連續獲得的旋翼飛行器的當前位置並不會固定於正確的位置1,而是於正確的位置1及錯誤的位置10-18間飄移,這使得使用者無法得知定點狀態下的旋翼飛行器的正確位置。 When the rotorcraft using GPS positioning technology is in the fixed position state (taking the rotorcraft suspended at position 1 as an example), the current position of the rotorcraft continuously obtained via GPS positioning technology is not fixed at the correct position due to the aforementioned drift phenomenon. 1, but drifting between the correct position 1 and the wrong position 10-18, which makes the user unable to know the correct position of the rotorcraft in the fixed position.

本發明之主要目的,係在於提供一種旋翼飛行器的定位方法,可避免定點狀態下的定位飄移現象。 The main object of the present invention is to provide a positioning method of a rotorcraft that can avoid the phenomenon of positioning drift under a fixed point state.

為達前述目的,本發明係提供一種旋翼飛行器的定位方法,運用於具備一衛星定位裝置及一慣性感測單元的一旋翼飛行器,包括:a)經由該衛星定位裝置接收一定位資料;b)經由該慣性感測單元取得一自體加速度及一姿態角資料,其中該自體加速度是基於該慣性感測單元的一自體三維座標系並對應該旋翼飛行器當前的一三軸加速度,該姿態角資料是對應該旋翼飛行器當前的一三軸傾斜角度;c)使用該姿態角資料將該自體加速度轉換為一世界加速度,其中該世界加速度對應至一世界三維座標系;d)對該世界加速度執行一移除重力效應處理;e)依據處理後的該世界加速度判斷該旋翼飛行器是否移動;及,f)於判定該旋翼飛行器移動時以該定位資料更新該旋翼飛行器的一當前位置。 To achieve the foregoing objective, the present invention provides a method for positioning a rotorcraft for a rotorcraft having a satellite positioning device and an inertial sensing unit, comprising: a) receiving a positioning data via the satellite positioning device; b) Obtaining a self-acceleration and an attitude angle data by the inertial sensing unit, wherein the self-acceleration is based on an auto-three-dimensional coordinate system of the inertial sensing unit and a current triaxial acceleration of the rotorcraft, the attitude The angular data is the current one-three-axis tilt angle of the rotorcraft; c) the self-acceleration is converted into a world acceleration using the attitude angle data, wherein the world acceleration corresponds to a world three-dimensional coordinate system; d) the world The acceleration performs a removal of gravity effect processing; e) determining whether the rotorcraft is moving based on the processed world acceleration; and, f) updating a current position of the rotorcraft with the positioning data when determining that the rotorcraft is moving.

本發明經由僅於旋翼飛行器移動時更新位置,可有效避免於定點狀態下因定位訊號飄移造成定位錯誤,而可有效提升定位準確度及穩定度。 The invention updates the position only when the rotorcraft moves, which can effectively avoid the positioning error caused by the drift of the positioning signal in the fixed point state, and can effectively improve the positioning accuracy and stability.

1、10-18‧‧‧位置 1, 10-18‧‧‧ position

2‧‧‧旋翼飛行器 2‧‧‧Rotorcraft

200‧‧‧微控制器 200‧‧‧Microcontroller

202‧‧‧衛星定位裝置 202‧‧‧Satellite positioning device

204‧‧‧慣性感測單元 204‧‧‧Inertial Sensing Unit

206‧‧‧加速度計 206‧‧‧Accelerometer

208‧‧‧陀螺儀 208‧‧‧Gyro

210‧‧‧記憶體 210‧‧‧ memory

212‧‧‧驅動裝置 212‧‧‧ drive

214‧‧‧計時器 214‧‧‧Timer

216‧‧‧無線收發器 216‧‧‧Wireless transceiver

218‧‧‧電子羅盤 218‧‧‧Electronic compass

3‧‧‧外部電子裝置 3‧‧‧External electronic devices

X、Y、X、X’、Y’、Z’‧‧‧軸 X, Y, X, X', Y', Z'‧‧‧ axes

W‧‧‧世界坐標系 W‧‧‧World Coordinate System

B‧‧‧自體坐標系 B‧‧‧Self coordinate system

ag‧‧‧重力加速度 a g ‧‧‧gravity acceleration

ax’、ay’、az’‧‧‧分量 a x ', a y ', a z '‧‧‧ component

PK‧‧‧世界位移 P K ‧‧‧World Displacement

VK‧‧‧世界速度 V K ‧‧‧World speed

OK‧‧‧姿態角 O K ‧‧‧ attitude angle

S100-S112‧‧‧第一定位步驟 S100-S112‧‧‧First positioning step

S20-S22‧‧‧第一偵測步驟 S20-S22‧‧‧First detection step

S30-S32‧‧‧第二偵測步驟 S30-S32‧‧‧Second detection step

S400-S420‧‧‧第二定位步驟 S400-S420‧‧‧Second positioning steps

S500-S520‧‧‧第三定位步驟 S500-S520‧‧‧ third positioning step

圖1為GPS技術的位置飄移示意圖。 Figure 1 is a schematic diagram of the positional drift of the GPS technology.

圖2為本發明第一實施例的旋翼飛行器架構圖。 2 is a structural view of a rotorcraft according to a first embodiment of the present invention.

圖3為本發明第一實施例的旋翼飛行器的定位方法流程圖。 3 is a flow chart of a positioning method of a rotorcraft according to a first embodiment of the present invention.

圖4為本發明的世界三維座標系與自體三維座標系示意圖。 4 is a schematic view of a three-dimensional coordinate system and an auto-three-dimensional coordinate system of the present invention.

圖5為本發明第一實施例的狀態向量計算流程圖。 FIG. 5 is a flow chart of state vector calculation according to the first embodiment of the present invention.

圖6為本發明第二實施例的旋翼飛行器的定位方法部分流程圖。 6 is a partial flow chart of a positioning method of a rotorcraft according to a second embodiment of the present invention.

圖7為本發明第三實施例的旋翼飛行器的定位方法部分流程圖。 Fig. 7 is a partial flow chart showing a method of positioning a rotorcraft according to a third embodiment of the present invention.

圖8為本發明第四實施例的旋翼飛行器的定位方法流程圖。 FIG. 8 is a flow chart of a positioning method of a rotorcraft according to a fourth embodiment of the present invention.

圖9為本發明第五實施例的旋翼飛行器的定位方法流程圖。 9 is a flow chart of a positioning method of a rotorcraft according to a fifth embodiment of the present invention.

茲就本發明之一較佳實施例,配合圖式,詳細說明如後。 DETAILED DESCRIPTION OF THE INVENTION A preferred embodiment of the present invention will be described in detail with reference to the drawings.

首請參閱圖2,為本發明第一實施例的旋翼飛行器架構圖。本發明揭露了一種旋翼飛行器的定位方法,應用於如圖2所示的旋翼飛行器2。本發明的定位方法主要係依據所感測的加速度來判斷旋翼飛行器2是否移動(即零速偵測),並於判斷旋翼飛行器2移動時才更新當前位置。藉此,本發明可有效避免衛星定位技術於定點狀態下因定位飄移所導致的定位錯誤。 Referring first to FIG. 2, a structural diagram of a rotorcraft according to a first embodiment of the present invention is shown. The present invention discloses a method of positioning a rotorcraft for use in a rotorcraft 2 as shown in FIG. The positioning method of the present invention mainly determines whether the rotorcraft 2 is moving (ie, zero speed detection) according to the sensed acceleration, and updates the current position when determining that the rotorcraft 2 moves. Thereby, the invention can effectively avoid the positioning error caused by the positioning and drifting of the satellite positioning technology in the fixed state.

更進一步地,為避免重力效應影響前述零速偵測的結果,本發明於執行零速偵測前會先將重力效應所造成的加速度自所感測的加速度中排除。藉此,本發明可有效提升零速偵測的正確率。 Furthermore, in order to prevent the gravity effect from affecting the result of the aforementioned zero speed detection, the present invention first excludes the acceleration caused by the gravity effect from the sensed acceleration before performing the zero speed detection. Thereby, the invention can effectively improve the correct rate of zero speed detection.

接著說明本發明的旋翼飛行器2。旋翼飛行器2(如直升機、四旋翼飛行器)主要包括衛星定位裝置202(如GPS定位裝置、北斗(BDS)定位裝置、格洛納斯(GLONASS)定位裝置或伽利略(Galileo)定位裝置)、慣性感測單元(Inertial Measurement Unit,IMU)204、記憶體210、驅動裝置212及電性連接前述元件的微控制器(Microcontroller Unit,MCU)200。 Next, the rotorcraft 2 of the present invention will be described. The rotorcraft 2 (such as a helicopter, quadrotor) mainly includes a satellite positioning device 202 (such as a GPS positioning device, a Beidou (BDS) positioning device, a GLONASS positioning device or a Galileo positioning device), and a sense of inertia. An Inertial Measurement Unit (IMU) 204, a memory 210, a driving device 212, and a Microcontroller Unit (MCU) 200 electrically connected to the aforementioned components.

衛星定位裝置202用來自複數定位衛星接收一組定位資料,所述定位資料係包括衛星定位裝置202的一組絕對位置(如經緯度座標及海拔高度)。慣性感測單元204固定設置於旋翼飛行器2,用來感測旋翼飛行器2當前的姿態(如旋翼飛行器2的加速度及傾斜角)。記憶體210用來儲存資料。驅動裝置212用來 驅動旋翼飛行器2移動及停止移動(如於空中停懸或降落至地面)。微控制器200用來控制旋翼飛行器2。 The satellite positioning device 202 receives a set of positioning data from a plurality of positioning satellites, the positioning data including a set of absolute positions (e.g., latitude and longitude coordinates and altitude) of the satellite positioning device 202. The inertial sensing unit 204 is fixedly disposed on the rotorcraft 2 for sensing the current attitude of the rotorcraft 2 (such as the acceleration and tilt angle of the rotorcraft 2). The memory 210 is used to store data. Drive device 212 is used The rotorcraft 2 is driven to move and stop moving (eg, hanging or landing to the ground in the air). The microcontroller 200 is used to control the rotorcraft 2.

請一併參閱圖3,為本發明第一實施例的旋翼飛行器的定位方法流程圖。本發明各實施例的定位方法主要是運用於圖2所示的旋翼飛行器2。具體而言,旋翼飛行器2的記憶體210儲存有電腦程式(圖未標示),電腦程式內儲存有微控制器200可執行的程式碼。當電腦程式被微控制器200執行後,可實現本發明各實施例的定位方法。本實施例的定位方法包括以下步驟。 Please refer to FIG. 3, which is a flowchart of a positioning method of a rotorcraft according to a first embodiment of the present invention. The positioning method of the various embodiments of the present invention is mainly applied to the rotorcraft 2 shown in FIG. Specifically, the memory 210 of the rotorcraft 2 stores a computer program (not shown) in which the code executable by the microcontroller 200 is stored. When the computer program is executed by the microcontroller 200, the positioning method of various embodiments of the present invention can be implemented. The positioning method of this embodiment includes the following steps.

步驟S100:微控制器200經由衛星定位裝置202自複數定位衛星接收定位資料。 Step S100: The microcontroller 200 receives the positioning data from the plurality of positioning satellites via the satellite positioning device 202.

步驟S102:微控制器200經由慣性感測單元204取得一組自體加速度及一組姿態角資料。 Step S102: The microcontroller 200 acquires a set of self-acceleration and a set of attitude angle data via the inertial sensing unit 204.

較佳地,微控制器200經由慣性感測單元204的加速度計206感測取得自體加速度,並經由慣性感測單元204的陀螺儀208感測取得姿態角資料。 Preferably, the microcontroller 200 senses the self-acceleration via the accelerometer 206 of the inertial sensing unit 204 and senses the acquired attitude angle data via the gyroscope 208 of the inertial sensing unit 204.

較佳地,前述自體加速度是基於慣性感測單元204的自體三維座標系(如圖4所示之自體三維座標系B),並對應旋翼飛行器2當前的三軸加速度。前述姿態角資料對應旋翼飛行器2當前的三軸傾斜角度。 Preferably, the aforementioned self-acceleration is based on the auto-three-dimensional coordinate system of the inertial sensing unit 204 (the auto-three-dimensional coordinate system B shown in FIG. 4), and corresponds to the current triaxial acceleration of the rotorcraft 2. The aforementioned attitude angle data corresponds to the current three-axis tilt angle of the rotorcraft 2.

較佳地,前述姿態角資料係前述自體三維座標系與世界三維座標系間的尤拉角,而可指示兩組座標系之間的角度偏差。 Preferably, the attitude angle data is a Euler angle between the auto-three-dimensional coordinate system and the world three-dimensional coordinate system, and can indicate an angular deviation between the two sets of coordinate systems.

較佳地,前述姿態角資料經換算後可獲得一組旋轉矩陣,所獲得的旋轉矩陣可用來將基於自體三維座標系的向量(如位移、速度或加速度)或座標轉換為基於通用的世界三維座標系(如以正東方為正X軸,以正南方為正Y軸,並以海拔高度為正Z軸的世界三維座標系,或結合經緯度座標及海拔高度的世界三維座標系)的向量或座標。 Preferably, the foregoing attitude angle data is converted to obtain a set of rotation matrices, and the obtained rotation matrix can be used to convert a vector (such as displacement, velocity or acceleration) or coordinates based on the auto-three-dimensional coordinate system into a universal-based world. Three-dimensional coordinate system (such as the world's three-dimensional coordinate system with the positive east as the positive X-axis, the positive south as the positive Y-axis, and the elevation as the positive Z-axis, or the world three-dimensional coordinate system combined with the latitude and longitude coordinates and altitude) Or coordinates.

請同時參閱圖4,為本發明的世界三維座標系與自體三維座標系示意圖。圖4示出了通用的世界三維座標系W及以旋翼飛行器2當前的自體朝向為軸向的自體三維座標系B,其中世界三維座標系W係由X軸、Y軸及Z軸構成,自體三維座標系B係由X’軸、Y’軸及Z’軸構成。並且,地球的重力加速度ag於世界三維座標系W中僅包括Z分量,其向量矩陣[X Y Z]為[0 0 g],其中g為地球的重力加速度的Z分量(垂直分量),其值約為9.8m/s2Please refer to FIG. 4 at the same time, which is a schematic diagram of the world three-dimensional coordinate system and the auto-three-dimensional coordinate system of the present invention. 4 shows a general world three-dimensional coordinate system W and an auto-three-dimensional coordinate system B in which the current self-orientation of the rotorcraft 2 is axial, wherein the world three-dimensional coordinate system W is composed of an X-axis, a Y-axis, and a Z-axis. The autogenous three-dimensional coordinate system B is composed of an X' axis, a Y' axis, and a Z' axis. Moreover, the gravitational acceleration a g of the earth includes only the Z component in the world three-dimensional coordinate system W, and its vector matrix [XYZ] is [0 0 g], where g is the Z component (vertical component) of the earth's gravitational acceleration, and its value It is about 9.8m/s 2 .

如圖所示,當旋翼飛行器2傾斜時,自體三維座標系B的軸向將會改變,而與世界三維座標系W的軸向不同。此時,重力加速度ag於改變軸向後的自體三維座標系B中包括X’、Y’及Z’三種分量,其向量矩陣[X’ Y’ Z’]為[ax’ ay’ az’]。 As shown, when the rotorcraft 2 is tilted, the axial direction of the auto-three-dimensional coordinate system B will change, but be different from the axial direction of the world three-dimensional coordinate system W. At this time, the gravity acceleration ag includes three components of X', Y', and Z' in the auto-three-dimensional coordinate system B after changing the axial direction, and the vector matrix [X'Y'Z'] is [a x ' a y ' a z '].

復請參閱圖3,由於相同的重力加速度ag於不同座標系中的向量矩陣皆不同,為將重力加速度ag自基於不同座標系的自體加速度中減除,本發明更經由執行下述步驟S104來提供座標系轉換功能,可將基於不同座標系的重力加速度及自體加速度轉換至基於相同座標系,而可進行運算。 Referring to FIG. 3, since the same gravitational acceleration a g is different in the vector matrix in different coordinate systems, in order to reduce the gravitational acceleration a g from the self-acceleration based on different coordinate systems, the present invention further performs the following In step S104, a coordinate system conversion function is provided, and the gravity acceleration and the self-body acceleration based on different coordinate systems can be converted to be based on the same coordinate system, and the operation can be performed.

步驟S104:微控制器200使用姿態角資料來將自體加速度轉換為世界加速度。 Step S104: The microcontroller 200 uses the attitude angle data to convert the self-acceleration to the world acceleration.

值得一提的是,由於姿態角資料可指示自體三維座標系及世界三維座標系之間的角度偏差,因此姿態角資料可用來執行座標系轉換。 It is worth mentioning that since the attitude angle data can indicate the angular deviation between the auto-three-dimensional coordinate system and the world three-dimensional coordinate system, the attitude angle data can be used to perform the coordinate system conversion.

步驟S106:微控制器200對世界加速度執行移除重力效應處理。較佳地,前述移除重力效應處理係將世界加速度減去重力加速度。並且,前述世界加速度與重力加速度係對應至相同的世界三維座標系。 Step S106: The microcontroller 200 performs a removal gravity effect process on the world acceleration. Preferably, the aforementioned gravity removal effect subtracts the world acceleration from the gravitational acceleration. Further, the aforementioned world acceleration and gravitational acceleration correspond to the same world three-dimensional coordinate system.

於本發明之另一實施例中,姿態角資料可被換算為一組旋轉矩陣,微控制器200可經由下述式(一)來對自體加速度及旋轉矩陣執行乘法運算,以獲得世界加速度,並完成移除重力效應處理。 In another embodiment of the present invention, the attitude angle data can be converted into a set of rotation matrices, and the microcontroller 200 can perform multiplication on the self-acceleration and the rotation matrix via the following formula (1) to obtain the world acceleration. And complete the removal of the gravity effect processing.

其中,為第k時間點基於世界三維座標系W的經過移除重力效應處理的世界加速度;為第k時間點用來於世界三維座標系W與自體三維座標系B間進行轉換的旋轉矩陣;為第k時間點基於自體三維座標系B的自體加速度;G為[0 0 g]T,代表地球的重力加速度。 among them, The world acceleration processed by the removal of gravity effect based on the world three-dimensional coordinate system W at the kth time point; a rotation matrix for converting between the world three-dimensional coordinate system W and the auto-three-dimensional coordinate system B at the kth time point; The k-th time point is based on the auto-acceleration of the auto-three-dimensional coordinate system B; G is [0 0 g] T , which represents the gravitational acceleration of the earth.

舉例來說,若微控制器200經由加速度計206取得自體加速度=[0.7812-0.3194 9.6588],經由陀螺儀208取得旋轉矩陣 ,則微控制器200可依據上述式(一)計算出移除重力效應後的世界加速度=[0.1191 0.8792-0.1441]T。藉此,微控制器200可依據移除重力效應後的世界加速度來執行零速偵測。 For example, if the microcontroller 200 obtains self-acceleration via the accelerometer 206 =[0.7812-0.3194 9.6588], obtaining the rotation matrix via the gyroscope 208 The microcontroller 200 can calculate the world acceleration after removing the gravity effect according to the above formula (1). =[0.1191 0.8792-0.1441] T . Thereby, the microcontroller 200 can be based on the world acceleration after removing the gravity effect. To perform zero speed detection.

步驟S108:微控制器200依據處理後的世界加速度判斷旋翼飛行器2是否移動。較佳地,微控制器200係於處理後的世界加速度不小於預設的加速度門檻值時,判定旋翼飛行器2移動;於處理後的世界加速度小於預設的加速度門檻值時,判定旋翼飛行器2處於定點狀態。 Step S108: The microcontroller 200 determines whether the rotorcraft 2 is moving according to the processed world acceleration. Preferably, the microcontroller 200 determines that the rotorcraft 2 moves when the processed world acceleration is not less than a preset acceleration threshold; and determines that the rotorcraft 2 is determined when the processed world acceleration is less than a preset acceleration threshold. In a fixed state.

若微控制器200判定旋翼飛行器2移動,則執行步驟S110。否則,微控制器200執行步驟S112。 If the microcontroller 200 determines that the rotorcraft 2 is moving, step S110 is performed. Otherwise, the microcontroller 200 performs step S112.

步驟S110:微控制器200以定位資料(即於步驟S100中接收的定位資料)更新旋翼飛行器2的當前位置。 Step S110: The microcontroller 200 updates the current position of the rotorcraft 2 with the positioning data (ie, the positioning data received in step S100).

若於步驟S108中,微控制器200判定旋翼飛行器2未移動,則執行步驟S112:微控制器200捨棄定位資料(即不更新當前位置)。 If the microcontroller 200 determines in step S108 that the rotorcraft 2 is not moving, then step S112 is performed: the microcontroller 200 discards the location data (ie, does not update the current location).

本發明經由於旋翼飛行器移動時更新位置,並於旋翼飛行器未移動時停止更新位置,可有效避免於定點狀態下因定位訊號飄移造成定位錯誤,而可有效提升定位準確度及穩定度。 The invention updates the position when the rotorcraft moves, and stops updating the position when the rotorcraft is not moving, which can effectively avoid the positioning error caused by the drift of the positioning signal in the fixed point state, and can effectively improve the positioning accuracy and stability.

本發明中更提供旋翼飛行器2的狀態向量取得功能。具體而言,旋翼飛行器2的狀態向量係如下述式(二):狀態向量Xk=(PK VK OK)T=(xK yK zK x’K y’K z’K ψk θk φk)T……式(二) The state vector acquisition function of the rotorcraft 2 is further provided in the present invention. Specifically, the state vector of the rotorcraft 2 is as follows (2): state vector X k = (P K V K O K ) T = (x K y K z K x ' K y ' K z ' K ψ k θ k φ k ) T ...... (2)

其中,PK=(xK yK zK)T為旋翼飛行器2的世界位移;VK=(x’K y’K z’K)T為旋翼飛行器2的世界速度;OK=(ψk θk φk)T為旋翼飛行器2的姿態角。 Where P K =(x K y K z K ) T is the world displacement of the rotorcraft 2; V K =(x' K y' K z' K ) T is the world speed of the rotorcraft 2; O K =(ψ k θ k φ k) T is the attitude of the rotorcraft 2.

續請參閱圖5,為本發明第一實施例的狀態向量計算流程圖,用以說明微控制器200如何取得上述狀態向量XkReferring to FIG. 5, a flow chart of state vector calculation according to the first embodiment of the present invention is used to explain how the microcontroller 200 obtains the state vector X k .

如圖所示,微控制器200先自加速度計206接收旋翼飛行器2的自體加速度,自陀螺儀208取得旋翼飛行器2的傾斜感測參數,並對傾斜感測參數執行積分處理以獲得姿態角OKAs shown, the microcontroller 200 first receives the auto-acceleration of the rotorcraft 2 from the accelerometer 206, obtains the tilt sensing parameters of the rotorcraft 2 from the gyroscope 208, and performs integral processing on the tilt sensing parameters to obtain the attitude angle. O K.

接著,微控制器200對自體加速度及姿態角執行乘法運算以獲得世界加速度,並將世界加速度減去重力加速度,以獲得處理後的世界加速度。 Next, the microcontroller 200 performs a multiplication operation on the auto-acceleration and the attitude angle to obtain the world acceleration, and subtracts the world acceleration from the gravitational acceleration to obtain the processed world acceleration.

最後,微控制器200對處理後的世界加速度執行積分處理以獲得世界速度VK,並對處理後的世界加速度執行雙重積分處理以獲得世界位移PKFinally, the microcontroller 200 performs an integration process on the processed world acceleration to obtain a world velocity V K , and performs a double integration process on the processed world acceleration to obtain a world displacement P K .

藉此,本發明可取得旋翼飛行器2的狀態向量Xk,而可執行更多種類的應用。 Thereby, the present invention can obtain the state vector Xk of the rotorcraft 2, and can perform a wider variety of applications.

續請參閱圖6,為本發明第二實施例的旋翼飛行器的定位方法部分流程圖。相較於圖3所示之第一實施例,本實施例的步驟5108係依據旋翼飛行器2 的速度來進行零速偵測。具體而言,本實施例的定位方法的步驟S108更包括以下步驟。 Continuing to refer to FIG. 6, a partial flow chart of a method for positioning a rotorcraft according to a second embodiment of the present invention is shown. Compared with the first embodiment shown in FIG. 3, the step 5108 of the embodiment is based on the rotorcraft 2 The speed is used for zero speed detection. Specifically, step S108 of the positioning method of this embodiment further includes the following steps.

步驟S20:微控制器200對處理後的世界加速度執行積分處理,以獲得世界速度,其中前述世界速度係對應至世界三維座標系W。 Step S20: The microcontroller 200 performs an integration process on the processed world acceleration to obtain a world speed, wherein the aforementioned world speed corresponds to the world three-dimensional coordinate system W.

步驟S22:依據世界速度判斷旋翼飛行器2是否移動。較佳地,微控制器200係於世界速度不小於預設的速度門檻值時,判定旋翼飛行器2移動;於世界速度小於預設的速度門檻值時,判定旋翼飛行器2處於定點狀態。 Step S22: It is judged whether the rotorcraft 2 is moving according to the world speed. Preferably, the microcontroller 200 determines that the rotorcraft 2 moves when the world speed is not less than the preset speed threshold; and determines that the rotorcraft 2 is in the fixed state when the world speed is less than the preset speed threshold.

若微控制器200判定旋翼飛行器2移動,則執行步驟S110。否則,微控制器200執行步驟S112。 If the microcontroller 200 determines that the rotorcraft 2 is moving, step S110 is performed. Otherwise, the microcontroller 200 performs step S112.

圖7為本發明第三實施例的旋翼飛行器的定位方法部分流程圖。相較於圖3所示之第一實施例,本實施例的步驟S108係依據旋翼飛行器2的位移來進行零速偵測。具體而言,本實施例的定位方法的步驟S108更包括以下步驟。 Fig. 7 is a partial flow chart showing a method of positioning a rotorcraft according to a third embodiment of the present invention. Compared with the first embodiment shown in FIG. 3, step S108 of the present embodiment performs zero speed detection according to the displacement of the rotorcraft 2. Specifically, step S108 of the positioning method of this embodiment further includes the following steps.

步驟S30:微控制器200對處理後的世界加速度執行雙重積分處理,以獲得世界位移,其中前述世界位移係對應至世界三維座標系W。 Step S30: The microcontroller 200 performs a double integration process on the processed world acceleration to obtain a world displacement, wherein the aforementioned world displacement corresponds to the world three-dimensional coordinate system W.

步驟S32:依據世界位移判斷旋翼飛行器2是否移動。較佳地,微控制器200係於世界位移不小於預設的位移門檻值時,判定旋翼飛行器2移動;於世界位移小於預設的位移門檻值時,判定旋翼飛行器2處於定點狀態。 Step S32: Judging whether the rotorcraft 2 is moving according to the world displacement. Preferably, the microcontroller 200 determines that the rotorcraft 2 moves when the world displacement is not less than the preset displacement threshold; and determines that the rotorcraft 2 is in the fixed state when the world displacement is less than the preset displacement threshold.

若微控制器200判定旋翼飛行器2移動,則執行步驟S110。否則,微控制器200執行步驟S112。 If the microcontroller 200 determines that the rotorcraft 2 is moving, step S110 is performed. Otherwise, the microcontroller 200 performs step S112.

值得一提的是,雖於圖3所示之第一實施例、圖6所示之第二實施例及圖7所示之第三實施例中,微控制器200係依據世界加速度、世界速度及世界位移其中之一來判斷旋翼飛行器2是否移動,但不應以此限定。 It is worth mentioning that, in the first embodiment shown in FIG. 3, the second embodiment shown in FIG. 6, and the third embodiment shown in FIG. 7, the microcontroller 200 is based on world acceleration and world speed. And one of the world displacements to determine whether the rotorcraft 2 is moving, but should not be limited by this.

於本發明之另一實施例中,微控制器200可依據世界加速度、世界速度及世界位移的全部或部分來判斷旋翼飛行器2是否移動(如同時依據世界加速度及世界速度進行判斷,或同時依據三者進行判斷)。 In another embodiment of the present invention, the microcontroller 200 can determine whether the rotorcraft 2 is moving according to all or part of the world acceleration, the world speed, and the world displacement (eg, simultaneously determining according to world acceleration and world speed, or simultaneously The three judged).

續請參閱圖8為本發明第四實施例的旋翼飛行器的定位方法流程圖。於本實施例中,旋翼飛行器2更包括電性連接微控制器200的計時器214及無線收發器216(如Wi-Fi收發器、藍牙收發器、紅外線收發器或超音波收發器等等)。計時器214用以計時,無線收發器216用以與外部電子裝置3(如旋翼飛行器2的遙控器、使用者持有的智慧型手機、筆記型電腦、平板電腦、穿戴式裝置等等)進行通訊。 Continuing to refer to FIG. 8 is a flow chart of a method for positioning a rotorcraft according to a fourth embodiment of the present invention. In this embodiment, the rotorcraft 2 further includes a timer 214 electrically connected to the microcontroller 200 and a wireless transceiver 216 (such as a Wi-Fi transceiver, a Bluetooth transceiver, an infrared transceiver or an ultrasonic transceiver, etc.) . The timer 214 is used for timing, and the wireless transceiver 216 is used for external electronic devices 3 (such as a remote controller of the rotorcraft 2, a smart phone held by a user, a notebook computer, a tablet computer, a wearable device, etc.). communication.

值得一提的是,於本實施例中,微控制器200可持續計時預設的定位時間,並於每次計時定位時間經過時,都經由衛星定位裝置202接收一次定位資料(即於步驟S408判斷為是後再次執行步驟S400),以持續對旋翼飛行器2進行定位。 It is worth mentioning that, in this embodiment, the microcontroller 200 can continuously count the preset positioning time, and receive the positioning data once by the satellite positioning device 202 every time the timing positioning time passes (ie, in step S408). If it is determined to be YES, step S400) is performed again to continue positioning of the rotorcraft 2.

並且,微控制器200還可持續計時預設的零速偵測時間,並於每次計時零速偵測時間經過時,都經由慣性感測單元204接收一次自體加速度並進行處理(即於步驟S410判斷為是後再次執行步驟S402-S406)。較佳地,所述定位時間不小於2倍的零速偵測時間。 Moreover, the microcontroller 200 can also continuously count the preset zero-speed detection time, and receive the self-acceleration and process it through the inertial sensing unit 204 every time the timing zero-speed detection time passes (ie, Step S410 determines that it is YES and then performs steps S402-S406 again. Preferably, the positioning time is not less than 2 times the zero speed detection time.

本實施例的定位方法包括以下步驟。 The positioning method of this embodiment includes the following steps.

步驟S400:微控制器200經由衛星定位裝置202接收定位資料。 Step S400: The microcontroller 200 receives the positioning data via the satellite positioning device 202.

步驟S402:微控制器200經由加速度計206取得自體加速度,並經由陀螺儀208取得姿態角資料。 Step S402: The microcontroller 200 obtains the self-acceleration via the accelerometer 206 and acquires the attitude angle data via the gyroscope 208.

步驟S404:微控制器200使用姿態角資料來將自體加速度轉換為世界加速度。 Step S404: The microcontroller 200 uses the attitude angle data to convert the self-acceleration to the world acceleration.

步驟S406:微控制器200對世界加速度執行移除重力效應處理。 Step S406: The microcontroller 200 performs a gravity removal effect process on the world acceleration.

步驟S408:微控制器200判斷定位時間(如1秒)是否經過。 Step S408: The microcontroller 200 determines whether the positioning time (for example, 1 second) has elapsed.

若微控制器200判定定位時間經過,則執行步驟S412。否則,微控制器200執行步驟S410。 If the microcontroller 200 determines that the positioning time has elapsed, step S412 is performed. Otherwise, the microcontroller 200 performs step S410.

步驟S410:微控制器200判斷零速偵測時間(如0.1秒)是否經過。 Step S410: The microcontroller 200 determines whether the zero speed detection time (for example, 0.1 second) has passed.

若微控制器200判定零速偵測時間經過,則再次執行步驟S402至S406以取得下一筆處理過的世界加速度。否則,微控制器200再次執行步驟S408,以持續判斷定位時間或零速偵測時間是否經過。具體地,由於定位時間不小於2倍的零速偵測時間,因此當定位時間經過時,微控制器200已取得複數處理後的世界加速度。 If the microcontroller 200 determines that the zero speed detection time has elapsed, steps S402 to S406 are performed again to obtain the next processed world acceleration. Otherwise, the microcontroller 200 performs step S408 again to continuously determine whether the positioning time or the zero speed detection time has elapsed. Specifically, since the positioning time is not less than 2 times the zero speed detection time, when the positioning time passes, the microcontroller 200 has obtained the complex world acceleration.

若於步驟S408中,微控制器200判定定位時間經過,則執行步驟S412:微控制器200依據複數處理後的世界加速度計算統計加速度。較佳地,微控制器200係計算複數處理後的世界加速度的平均值,並將所計算出的平均值作為統計加速度。 If the microcontroller 200 determines in step S408 that the positioning time has elapsed, step S412 is executed: the microcontroller 200 calculates the statistical acceleration based on the complex world processed acceleration. Preferably, the microcontroller 200 calculates an average of the world accelerations after the complex processing and uses the calculated average as the statistical acceleration.

步驟S414:微控制器200依據統計加速度判斷旋翼飛行器2是否移動。較佳地,微控制器200係於統計加速度不小於加速度門檻值時,判定旋翼飛行器2移動;於統計加速度小於加速度門檻值時,判定旋翼飛行器2處於定點狀態。 Step S414: The microcontroller 200 determines whether the rotorcraft 2 is moving according to the statistical acceleration. Preferably, the microcontroller 200 determines that the rotorcraft 2 moves when the statistical acceleration is not less than the acceleration threshold; and determines that the rotorcraft 2 is in the fixed state when the statistical acceleration is less than the acceleration threshold.

若微控制器200判定旋翼飛行器2移動,則執行步驟S416。否則,微控制器200執行步驟S418。 If the microcontroller 200 determines that the rotorcraft 2 is moving, step S416 is performed. Otherwise, the microcontroller 200 performs step S418.

步驟S416:微控制器200以定位資料更新旋翼飛行器2的當前位置。較佳地,微控制器200還可進一步經由無線收發器216將更新後的當前位置發送至外部電子裝置3。 Step S416: The microcontroller 200 updates the current position of the rotorcraft 2 with the positioning data. Preferably, the microcontroller 200 can further transmit the updated current location to the external electronic device 3 via the wireless transceiver 216.

藉此,使用者可於外部電子裝置3即時查看旋翼飛行器2的當前位置。 Thereby, the user can instantly view the current position of the rotorcraft 2 on the external electronic device 3.

步驟S418:微控制器200捨棄最新的一筆定位資料。 Step S418: The microcontroller 200 discards the latest piece of positioning data.

步驟S420:微控制器200判斷是否結束定位(如使用者關閉定位功能)。 Step S420: The microcontroller 200 determines whether to end the positioning (if the user turns off the positioning function).

若微控制器200判定結束定位,結束本次定位動作。否則,微控制器200再次執行步驟S400以持續進行定位。 If the microcontroller 200 determines to end the positioning, the current positioning operation is ended. Otherwise, the microcontroller 200 performs step S400 again to continue positioning.

續請參閱圖9,為本發明第五實施例的旋翼飛行器的定位方法流程圖。本實施例更提供移動定位功能(步驟S514),而可主動對移動中的旋翼飛行器2的定位資料的正確性進行判斷。 Continuing to refer to FIG. 9, a flow chart of a method for positioning a rotorcraft according to a fifth embodiment of the present invention is shown. The embodiment further provides a mobile positioning function (step S514), and can actively determine the correctness of the positioning data of the rotating rotorcraft 2 in motion.

值得一提的是,於本實施例中,步驟S500與步驟S502-506之間並無順序關係,步驟S500與步驟S502-506可先後執行或平行執行。本實施例的定位方法包括以下步驟。 It should be noted that, in this embodiment, there is no order relationship between step S500 and steps S502-506, and step S500 and step S502-506 may be performed sequentially or in parallel. The positioning method of this embodiment includes the following steps.

步驟S500:微控制器200經由衛星定位裝置202持續接收定位資料,以取得複數定位資料(如兩筆定位資料)。 Step S500: The microcontroller 200 continuously receives the positioning data via the satellite positioning device 202 to obtain a plurality of positioning data (such as two pieces of positioning data).

較佳地,微控制器200係於每次計時預設的定位時間經過時,接收一次定位資料。藉此,微控制器200可依序接收複數定位資料。 Preferably, the microcontroller 200 receives the positioning data once each time the preset positioning time elapses. Thereby, the microcontroller 200 can receive the plurality of positioning data sequentially.

步驟S502:微控制器200經由加速度計206取得自體加速度,並經由陀螺儀208取得姿態角資料。 Step S502: The microcontroller 200 obtains the auto-acceleration via the accelerometer 206 and acquires the attitude angle data via the gyroscope 208.

步驟S504:微控制器200使用姿態角資料來將自體加速度轉換為世界加速度。較佳地,微控制器200是先將姿態角資料換算為旋轉矩陣,再如上述式(一)所示對自體加速度及旋轉矩陣進行乘法運算,以獲得世界加速度。 Step S504: The microcontroller 200 uses the attitude angle data to convert the self-acceleration to the world acceleration. Preferably, the microcontroller 200 first converts the attitude angle data into a rotation matrix, and multiplies the self-body acceleration and the rotation matrix as shown in the above formula (1) to obtain the world acceleration.

步驟S506:微控制器200對世界加速度執行移除重力效應處理。 Step S506: The microcontroller 200 performs a gravity removal effect processing on the world acceleration.

步驟S508:微控制器200依據複數定位資料決定一組定位移動方向。 Step S508: The microcontroller 200 determines a set of positioning movement directions according to the plurality of positioning data.

步驟S510:微控制器200依據處理後的世界加速度決定一組世界移動方向。 Step S510: The microcontroller 200 determines a set of world moving directions according to the processed world acceleration.

步驟S512:微控制器200依據世界加速度判斷旋翼飛行器2是否移動。 Step S512: The microcontroller 200 determines whether the rotorcraft 2 is moving according to the world acceleration.

若微控制器200判定旋翼飛行器2移動,則執行步驟S514。否則,微控制器200執行步驟S518。 If the microcontroller 200 determines that the rotorcraft 2 is moving, step S514 is performed. Otherwise, the microcontroller 200 performs step S518.

步驟S514:微控制器200判斷世界移動方向與定位移動方向是否相符。具體而言,於旋翼飛行器2移動狀態下,定位資料仍有可能發生飄移現象。為解決上述問題,本實施例經由比對世界移動方向與定位移動方向是否一致,以判斷於步驟S500中取得的複數定位資料之一是否發生飄移現象。 Step S514: The microcontroller 200 determines whether the world moving direction coincides with the positioning moving direction. Specifically, in the moving state of the rotorcraft 2, the drift of the positioning data may still occur. In order to solve the above problem, the present embodiment determines whether or not one of the plurality of positioning data acquired in step S500 has a drift phenomenon by comparing whether the world moving direction and the positioning moving direction are identical.

更進一步地,當複數定位資料之一是否發生飄移現象時,依據複數定位資料所決定的定位移動方向會與依據處理後的世界加速度所決定的世界移動方向不相符。藉此,本發明可於旋翼飛行器2移動過程中,即時判斷定位資料是否正確。 Further, when one of the plurality of positioning data has a drift phenomenon, the positioning moving direction determined according to the plurality of positioning data does not match the world moving direction determined according to the processed world acceleration. Thereby, the present invention can instantly determine whether the positioning data is correct during the movement of the rotorcraft 2.

若微控制器200判定世界移動方向與定位移動方向相符,則執行步驟S516。否則,微控制器200執行步驟S518。 If the microcontroller 200 determines that the world moving direction coincides with the positioning moving direction, step S516 is performed. Otherwise, the microcontroller 200 performs step S518.

步驟S516:微控制器200以定位資料更新旋翼飛行器2的當前位置。較佳地,微控制器200係以最新的定位資料來更新旋翼飛行器2的當前位置,或以複數定位資料的統計值(如平均值或中位數)來更新旋翼飛行器2的當前位置。 Step S516: The microcontroller 200 updates the current position of the rotorcraft 2 with the positioning data. Preferably, the microcontroller 200 updates the current position of the rotorcraft 2 with the latest positioning data, or updates the current position of the rotorcraft 2 with statistical values of the plurality of positioning data, such as an average or median.

步驟S518:微控制器200捨棄所接收的(複數)定位資料。 Step S518: The microcontroller 200 discards the received (plural) positioning data.

步驟S520:微控制器200判斷是否結束定位。若微控制器200判定結束定位,則結束本次定位動作。否則,微控制器200再次執行步驟S500,以持續進行定位。 Step S520: The microcontroller 200 determines whether to end the positioning. If the microcontroller 200 determines to end the positioning, the current positioning operation is ended. Otherwise, the microcontroller 200 performs step S500 again to continue positioning.

雖於上述實施例的步驟S514中,係比對定位移動方向與世界移動方向是否相符,但不以此限定。 In step S514 of the above embodiment, it is determined whether or not the positioning movement direction coincides with the world moving direction, but is not limited thereto.

於本發明之另一實施例中,旋翼飛行器2更包括電性連接微控制器200的電子羅盤218。電子羅盤218用以感測旋翼飛行器2的特定面向(如正面)的方位角。 In another embodiment of the invention, rotorcraft 2 further includes an electronic compass 218 that is electrically coupled to microcontroller 200. The electronic compass 218 is used to sense the azimuth of a particular face (e.g., front) of the rotorcraft 2.

於此實施例中,微控制器200係比對定位移動方向與電子羅盤218感測的方位角所指示方向是否相符,以判斷定位資料是否正確。並於比對定位移動方向與方位角所指示方向相符時,才允許更新旋翼飛行器2的當前位置(即執行步驟S516)。 In this embodiment, the microcontroller 200 compares whether the direction of the positioning movement is in accordance with the direction indicated by the azimuth angle sensed by the electronic compass 218 to determine whether the positioning data is correct. And updating the current position of the rotorcraft 2 (ie, performing step S516) when the alignment movement direction matches the direction indicated by the azimuth angle.

藉此,本發明可有效提升旋翼飛行器2的定位穩定度。 Thereby, the present invention can effectively improve the positioning stability of the rotorcraft 2.

以上所述僅為本發明之較佳具體實例,非因此即侷限本發明之專利範圍,故舉凡運用本發明內容所為之等效變化,均同理皆包含於本發明之範圍內,合予陳明。 The above is only a preferred embodiment of the present invention, and is not intended to limit the scope of the present invention. Therefore, equivalent changes to the scope of the present invention are included in the scope of the present invention. Bright.

S100-S112‧‧‧第一定位步驟 S100-S112‧‧‧First positioning step

Claims (9)

一種旋翼飛行器的定位方法,運用於具備一衛星定位裝置及一慣性感測單元的一旋翼飛行器,包括:a)經由該衛星定位裝置接收一定位資料;b)經由該慣性感測單元取得一自體加速度及一姿態角資料,其中該自體加速度是基於該慣性感測單元的一自體三維座標系並對應該旋翼飛行器當前的一三軸加速度,該姿態角資料是對應該旋翼飛行器當前的一三軸傾斜角度;c)使用該姿態角資料將該自體加速度轉換為一世界加速度,其中該世界加速度對應至一世界三維座標系;d)對該世界加速度執行一移除重力效應處理;e)依據處理後的該世界加速度判斷該旋翼飛行器是否移動;f)於判定該旋翼飛行器移動時以該定位資料更新該旋翼飛行器的一當前位置;及g)於判定該旋翼飛行器未移動時捨棄該定位資料。 A method for positioning a rotorcraft for a rotorcraft having a satellite positioning device and an inertial sensing unit, comprising: a) receiving a positioning data via the satellite positioning device; b) obtaining a self through the inertial sensing unit Body acceleration and an attitude angle data, wherein the self-acceleration is based on an auto-three-dimensional coordinate system of the inertial sensing unit and corresponds to a current triaxial acceleration of the rotorcraft, the attitude angle data is corresponding to the current rotorcraft a three-axis tilt angle; c) converting the self-acceleration to a world acceleration using the attitude angle data, wherein the world acceleration corresponds to a world three-dimensional coordinate system; d) performing a removal gravity effect processing on the world acceleration; e) determining whether the rotorcraft is moving according to the processed world acceleration; f) updating a current position of the rotorcraft with the positioning data when determining that the rotorcraft is moving; and g) discarding when determining that the rotorcraft is not moving The positioning data. 如請求項1所述之旋翼飛行器的定位方法,其中該步驟b係經由該慣性感測單元的一加速度計感測該自體加速度,並經由該慣性感測單元的一陀螺儀取得該姿態角資料。 The method for positioning a rotorcraft according to claim 1, wherein the step b senses the self-acceleration via an accelerometer of the inertial sensing unit, and obtains the attitude angle via a gyroscope of the inertial sensing unit. data. 如請求項1所述之旋翼飛行器的定位方法,其中該步驟c係先將該姿態角資料換算為一旋轉矩陣,再對該自體加速度及該旋轉矩陣執行一乘法運算以獲得該世界加速度,該步驟d係將該世界加速度減去一重力加速度。 The method for positioning a rotorcraft according to claim 1, wherein the step c first converts the attitude angle data into a rotation matrix, and performs a multiplication operation on the self acceleration and the rotation matrix to obtain the world acceleration. This step d subtracts the world acceleration from a gravitational acceleration. 如請求項1所述之旋翼飛行器的定位方法,其中該步驟e包括以下步驟:e1)重複執行該步驟b至該步驟d,以取得複數處理後的該世界加速度; e2)依據複數處理後的該世界加速度計算一統計加速度;及e3)依據該統計加速度判斷該旋翼飛行器是否移動。 The method for positioning a rotorcraft according to claim 1, wherein the step e comprises the following steps: e1) repeatedly performing the step b to the step d to obtain the world acceleration after the complex processing; E2) calculating a statistical acceleration according to the world acceleration after the complex processing; and e3) determining whether the rotorcraft is moving according to the statistical acceleration. 如請求項4所述之旋翼飛行器的定位方法,其中該步驟a係於每次計時一定位時間經過時接收該定位資料。 The method for positioning a rotorcraft according to claim 4, wherein the step a is to receive the positioning data each time a positioning time elapses. 如請求項5所述之旋翼飛行器的定位方法,其中該步驟e1係於每次計時一零速偵測時間經過時執行該步驟b至該步驟d,並且該定位時間不小於2倍的該零速偵測時間。 The method for positioning a rotorcraft according to claim 5, wherein the step e1 is performed by performing the step b to the step d every time the timing of the zero-speed detection time elapses, and the positioning time is not less than 2 times the zero. Speed detection time. 如請求項1所述之旋翼飛行器的定位方法,其中該步驟e包括以下步驟:e4)對處理後的該世界加速度執行一積分處理以獲得一世界速度;及e5)於該世界速度不小於一速度門檻值時判定該旋翼飛行器移動。 The method for positioning a rotorcraft according to claim 1, wherein the step e comprises the steps of: e4) performing an integration process on the processed world acceleration to obtain a world speed; and e5) not less than one in the world speed. The rotorcraft is determined to move when the speed threshold is 。. 如請求項1所述之旋翼飛行器的定位方法,其中該步驟e包括以下步驟:e6)對處理後的該世界加速度執行一雙重積分處理以獲得一世界位移;及e7)於該世界位移不小於一位移門檻值時判定該旋翼飛行器移動。 The method for positioning a rotorcraft according to claim 1, wherein the step e comprises the steps of: e6) performing a double integration process on the processed world acceleration to obtain a world displacement; and e7) the world displacement is not less than The rotorcraft is determined to move when a displacement threshold is present. 如請求項1所述之旋翼飛行器的定位方法,其中該步驟a係依序接收複數該定位資料,並且該步驟f包括以下步驟:f1)依據複數該定位資料決定一定位移動方向;f2)依據處理後的該世界加速度決定一世界移動方向;及f3)於判定該旋翼飛行器移動且該定位移動方向與該世界移動方向相同時,以最新的該定位資料更新該旋翼飛行器的該當前位置。 The method for positioning a rotorcraft according to claim 1, wherein the step a receives a plurality of the positioning data in sequence, and the step f comprises the following steps: f1) determining a positioning moving direction according to the plurality of positioning data; f2) The processed world acceleration determines a world moving direction; and f3) updates the current position of the rotorcraft with the latest positioning data when it is determined that the rotorcraft is moving and the positioning moving direction is the same as the world moving direction.
TW105131116A 2016-09-26 2016-09-26 Localization method for rotary aerial vehicle TWI591365B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW105131116A TWI591365B (en) 2016-09-26 2016-09-26 Localization method for rotary aerial vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW105131116A TWI591365B (en) 2016-09-26 2016-09-26 Localization method for rotary aerial vehicle

Publications (2)

Publication Number Publication Date
TWI591365B true TWI591365B (en) 2017-07-11
TW201812338A TW201812338A (en) 2018-04-01

Family

ID=60048356

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105131116A TWI591365B (en) 2016-09-26 2016-09-26 Localization method for rotary aerial vehicle

Country Status (1)

Country Link
TW (1) TWI591365B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI676915B (en) * 2017-09-13 2019-11-11 新普科技股份有限公司 Method of generating control commands for an electronic device based on signal accumulation amount of sensors
TWI731283B (en) * 2018-01-03 2021-06-21 美商高通公司 Aerial robotic vehicle, processing device and method of operating the same
CN113325455A (en) * 2017-10-31 2021-08-31 亚玛芬体育数字服务公司 Method and system for tracking and determining indoor position of object

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI676915B (en) * 2017-09-13 2019-11-11 新普科技股份有限公司 Method of generating control commands for an electronic device based on signal accumulation amount of sensors
CN113325455A (en) * 2017-10-31 2021-08-31 亚玛芬体育数字服务公司 Method and system for tracking and determining indoor position of object
CN113325455B (en) * 2017-10-31 2024-03-12 松拓公司 Method and system for tracking and determining indoor position of object
TWI731283B (en) * 2018-01-03 2021-06-21 美商高通公司 Aerial robotic vehicle, processing device and method of operating the same

Also Published As

Publication number Publication date
TW201812338A (en) 2018-04-01

Similar Documents

Publication Publication Date Title
US10648809B2 (en) Adaptive compass calibration based on local field conditions
JP7133903B2 (en) Method and system for multi-pass smoothing
TW201829978A (en) Systems and methods for using a global positioning system velocity in visual-inertial odometry
Shen et al. Optical Flow Sensor/INS/Magnetometer Integrated Navigation System for MAV in GPS‐Denied Environment
US20160084937A1 (en) Systems and methods for determining position information using acoustic sensing
WO2019071916A1 (en) Antenna beam attitude control method and system
WO2017107434A1 (en) Gnss-ins vehicle attitude determination method based on single antenna
US10228252B2 (en) Method and apparatus for using multiple filters for enhanced portable navigation
WO2016198009A1 (en) Heading checking method and apparatus
CN110325822B (en) Cradle head pose correction method and cradle head pose correction device
US9395187B2 (en) Portable device for determining azimuth
CN107990901B (en) User direction positioning method based on sensor
CN113820735B (en) Determination method of position information, position measurement device, terminal and storage medium
JP2012173190A (en) Positioning system and positioning method
US11408735B2 (en) Positioning system and positioning method
TWI591365B (en) Localization method for rotary aerial vehicle
CN113295174B (en) Lane-level positioning method, related device, equipment and storage medium
CN107631727B (en) Indoor CSS/INS integrated navigation system
CN105466423A (en) Unmanned aerial vehicle navigation system and operation method thereof
US20210116242A1 (en) Information processing apparatus, information processing method, and program
WO2022018964A1 (en) Information processing device, information processing method, and program
CN112649001B (en) Gesture and position resolving method for small unmanned aerial vehicle
JP2016138864A (en) Positioning device, positioning method, computer program and recording medium
CN114812554A (en) Multi-source fusion robot indoor absolute positioning method based on filtering
CN105874352B (en) The method and apparatus of the dislocation between equipment and ship are determined using radius of turn

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees