TWI590862B - System for capturing carbon dioxide - Google Patents

System for capturing carbon dioxide Download PDF

Info

Publication number
TWI590862B
TWI590862B TW105134616A TW105134616A TWI590862B TW I590862 B TWI590862 B TW I590862B TW 105134616 A TW105134616 A TW 105134616A TW 105134616 A TW105134616 A TW 105134616A TW I590862 B TWI590862 B TW I590862B
Authority
TW
Taiwan
Prior art keywords
carbon dioxide
ammonia
stripping
section
gas stream
Prior art date
Application number
TW105134616A
Other languages
Chinese (zh)
Other versions
TW201815456A (en
Inventor
劉佳霖
Original Assignee
東海大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東海大學 filed Critical 東海大學
Priority to TW105134616A priority Critical patent/TWI590862B/en
Application granted granted Critical
Publication of TWI590862B publication Critical patent/TWI590862B/en
Publication of TW201815456A publication Critical patent/TW201815456A/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/10Reduction of greenhouse gas [GHG] emissions
    • Y02P10/122Reduction of greenhouse gas [GHG] emissions by capturing or storing CO2

Landscapes

  • Gas Separation By Absorption (AREA)
  • Treating Waste Gases (AREA)

Description

二氧化碳捕獲系統Carbon dioxide capture system

本發明為一種氣體淨化系統,尤指一種節能的二氧化碳捕獲系統。The invention is a gas purification system, especially an energy-saving carbon dioxide capture system.

工業發展帶來文明,但也因為大量使用石化能源而導致全球平均溫度明顯上升,這種現象稱為溫室效應。Industrial development brings civilization, but also because of the large use of petrochemical energy, the global average temperature has risen significantly. This phenomenon is called the greenhouse effect.

近年來,因環保意識抬頭,各國政府擬訂法規以管理各種造成溫室效應的氣體的排放量。我國也訂有「溫室氣體減量及管理法」,特別對於佔總溫室氣體排放量最大宗的二氧化碳,投入許多心力宣導節能減碳的重要,而譬如鋼鐵、石化、水泥等能源密集工業亦致力於減少所排廢氣中的二氧化碳的含量以配合政府的相關政策。In recent years, due to the rise of environmental awareness, governments have drawn up regulations to manage the emissions of various greenhouse gases. China also has a “Greenhouse Gas Reduction and Management Law”, especially for carbon dioxide, which accounts for the largest greenhouse gas emissions, and puts a lot of effort into promoting energy conservation and carbon reduction. Energy-intensive industries such as steel, petrochemicals and cement are also committed to To reduce the amount of carbon dioxide in the exhaust gas to meet the relevant government policies.

利用化學吸收法進行二氧化碳捕捉為處理廢氣中的二氧化碳的方法之一,目前工業用化學吸收劑多採用醇胺類(Monoethanolamine, MEA)吸收劑,但在吸收二氧化碳的放熱反應過程中,醇胺熱降解化合物逸散至大氣中對於生態造成傷害。因此,目前已有提出利用稀釋氨水製程捕獲二氧化碳的技術,譬如”M. Zhang and Y. Guo, "Process simulations of NH 3abatement system for large-scale CO 2capture using aqueous ammonia solution," International Journal of Greenhouse Gas Control, vol. 18, pp. 114-127, 2013”的二氧化碳捕捉系統,該系統包含有一二氧化碳吸收塔、一氨吸收塔、一二氧化碳氣提塔以及一氨氣提塔。主要透過化學吸收的方式,利用氨為吸收劑以捕捉廢氣中的二氧化碳,具有高吸收負載量的優點。 The use of chemical absorption method for carbon dioxide capture is one of the methods for treating carbon dioxide in exhaust gas. At present, industrial chemical absorbents mostly use Monoethanolamine (MEA) absorbent, but in the exothermic reaction of carbon dioxide absorption, alcohol amine heat Degradation of compounds to the atmosphere causes damage to the environment. Therefore, techniques for capturing carbon dioxide by a dilute ammonia process have been proposed, such as "M. Zhang and Y. Guo, "Process simulations of NH 3 abatement system for large-scale CO 2 capture using aqueous ammonia solution," International Journal of Greenhouse Gas Control, vol. 18, pp. 114-127, 2013" carbon dioxide capture system, which comprises a carbon dioxide absorption tower, an ammonia absorption tower, a carbon dioxide stripper and an ammonia stripper. Mainly through the chemical absorption method, ammonia is used as an absorbent to capture carbon dioxide in the exhaust gas, which has the advantage of high absorption load.

不過,相較於使用醇胺類吸收劑的二氧化碳捕捉系統運作過程中約4.0 GJ/ton-CO 2的再生能耗,上述使用氨水的二氧化碳捕捉系統的再生能耗高達約8.5 GJ/ton-CO 2,使得能源的耗費成為該類使用氨水的二氧化碳捕捉系統亟需改善的缺點。 However, compared to the regeneration energy consumption of about 4.0 GJ/ton-CO 2 during the operation of the carbon dioxide capture system using an alcohol amine absorbent, the above-mentioned carbon dioxide capture system using ammonia water can regenerate energy up to about 8.5 GJ/ton-CO. 2 , making energy consumption a shortcoming that needs to be improved in this type of carbon dioxide capture system using ammonia.

本發明的主要目的,在於解決習知的二氧化碳捕捉系統能耗偏高的問題。The main object of the present invention is to solve the problem of high energy consumption of the conventional carbon dioxide capture system.

為達上述目的,本發明提供一種二氧化碳捕獲系統,包含:一接收一煙道氣流的二氧化碳吸收部,該二氧化碳吸收部具有一第一底段以及一第一頂段;In order to achieve the above object, the present invention provides a carbon dioxide capture system comprising: a carbon dioxide absorbing portion that receives a flue gas stream, the carbon dioxide absorbing portion having a first bottom portion and a first top portion;

一與該二氧化碳吸收部連通的氨吸收部,該氨吸收部具有一第二底段以及一第二頂段;An ammonia absorbing portion communicating with the carbon dioxide absorbing portion, the ammonia absorbing portion having a second bottom portion and a second top portion;

一與該二氧化碳吸收部連通的二氧化碳汽提部,該二氧化碳汽提部具有一第三底段以及一第三頂段;a carbon dioxide stripping portion communicating with the carbon dioxide absorbing portion, the carbon dioxide stripping portion having a third bottom portion and a third top portion;

一與該氨吸收部及該二氧化碳汽提部連通的氨汽提部,該氨汽提部具有一第四底段以及一第四頂段;以及An ammonia stripping portion communicating with the ammonia absorbing portion and the carbon dioxide stripping portion, the ammonia stripping portion having a fourth bottom portion and a fourth top portion;

一與該二氧化碳汽提部及該氨汽提部連通的主熱交換器。a main heat exchanger in communication with the carbon dioxide stripping section and the ammonia stripping section.

於本發明的該二氧化碳捕獲系統中,由該二氧化碳汽提部中輸出一第一再生吸收劑,經該主熱交換器後汽化形成一第一吸收劑並由該第一頂段輸入該二氧化碳吸收部,令輸入該二氧化碳吸收部的該煙道氣流與該第一吸收劑反應後,形成一由該第一頂段輸出的貧二氧化碳氣流以及一由該第一底段輸出的富二氧化碳流體,該貧二氧化碳氣流輸入該氨吸收部,形成一由該第二頂段輸出的淨化氣流以及一由該第二底段輸出的富氨循環水;該富二氧化碳流體經該第三頂段輸入該二氧化碳汽提部,形成一由該二氧化碳汽提部輸出的二氧化碳氣流。In the carbon dioxide capture system of the present invention, a first regenerated absorbent is output from the carbon dioxide stripping section, vaporized by the main heat exchanger to form a first absorbent, and the carbon dioxide is absorbed by the first top section. a portion, the flue gas stream input to the carbon dioxide absorbing portion is reacted with the first absorbent to form a carbon dioxide-lean gas stream output from the first top portion and a carbon dioxide-rich fluid output from the first bottom portion. a carbon dioxide-lean gas stream is input to the ammonia absorption portion to form a purified gas stream outputted by the second top portion and an ammonia-rich circulating water outputted from the second bottom portion; the carbon dioxide-rich fluid is input to the carbon dioxide vapor through the third top portion The handle forms a carbon dioxide gas stream output by the carbon dioxide stripping section.

本發明藉由上述系統,特別是分別與該二氧化碳汽提部及該氨汽提部連通的該主熱交換器的配置。透過該主熱交換器汽化一分別來自該二氧化碳汽提部以及來自該氨汽提部的流體並回收該流體所釋放的潛熱,可提升本發明系統對於熱能的使用效率,降低整體系統耗能,進而達到節能減碳的目標。The present invention is achieved by the above system, particularly the arrangement of the main heat exchanger in communication with the carbon dioxide stripping section and the ammonia stripping section, respectively. Vaporizing a fluid from the carbon dioxide stripping section and the ammonia stripping section through the main heat exchanger and recovering the latent heat released by the fluid, thereby improving the efficiency of the system of the present invention for heat energy and reducing the overall system energy consumption, In turn, the goal of energy saving and carbon reduction is achieved.

有關本發明的詳細說明及技術內容,現就配合圖式說明如下:The detailed description and technical content of the present invention will now be described as follows:

『圖1』為本發明一實施例的二氧化碳捕獲系統配置示意圖,包含一二氧化碳吸收部10、一氨吸收部20、一二氧化碳汽提部30、一氨汽提部40以及一主熱交換器50。1 is a schematic view showing the configuration of a carbon dioxide capture system according to an embodiment of the present invention, comprising a carbon dioxide absorbing portion 10, an ammonia absorbing portion 20, a carbon dioxide stripping portion 30, an ammonia stripping portion 40, and a main heat exchanger 50. .

該二氧化碳吸收部10係用來接收一含有二氧化碳成份的煙道氣流1,譬如高爐煤氣(Blast Furnace Gas,簡稱BFG),且該二氧化碳吸收部10具有一第一底段11以及一第一頂段12。為了促進反應效率,可選擇性地在該第一底段11與該第一頂段12之間填充複數個第一填充物。The carbon dioxide absorbing portion 10 is configured to receive a flue gas stream 1 containing a carbon dioxide component, such as Blast Furnace Gas (BFG), and the carbon dioxide absorbing portion 10 has a first bottom portion 11 and a first top portion. 12. In order to promote the efficiency of the reaction, a plurality of first fillers may be selectively filled between the first bottom section 11 and the first top section 12.

該氨吸收部20與該二氧化碳吸收部10連通,並具有一第二底段21以及一第二頂段22。同樣地,為了增加反應效率,該氨吸收部20亦可選擇性地在該第二底段21與該第二頂段22之間填充複數個第二填充物。The ammonia absorbing portion 20 is in communication with the carbon dioxide absorbing portion 10 and has a second bottom portion 21 and a second top portion 22. Similarly, in order to increase the reaction efficiency, the ammonia absorbing portion 20 may also selectively fill a plurality of second fillers between the second bottom portion 21 and the second top portion 22.

該第一填充物與該第二填充物可彼此相同或彼此不同,舉例可為拉西環(Raschig ring)或是鮑爾環(Pall ring)等,本發明對此並無特別限制。The first filler and the second filler may be identical to each other or different from each other, and may be, for example, a Raschig ring or a Pall ring. The present invention is not particularly limited.

該二氧化碳汽提部30與該二氧化碳吸收部10連通,並具有一第三底段31以及一第三頂段32,且該二氧化碳汽提部30中含有一第一再生吸收劑4。於本發明一實施例中,該二氧化碳汽提部30更連接一冷凝部70,該冷凝部70例如可為一冷凝器。The carbon dioxide stripping section 30 is in communication with the carbon dioxide absorbing section 10 and has a third bottom section 31 and a third top section 32, and the carbon dioxide stripping section 30 contains a first regenerative absorbent 4. In an embodiment of the invention, the carbon dioxide stripping unit 30 is further connected to a condensation portion 70, which may be, for example, a condenser.

該氨汽提部40與該氨吸收部20及該二氧化碳汽提部30連通,該氨汽提部40具有一第四底段41以及一第四頂段42。本發明一實施例中,該氨汽提部40連接一加熱部60,該加熱部60舉例可為一加熱器。The ammonia stripping section 40 is in communication with the ammonia absorbing section 20 and the carbon dioxide stripping section 30. The ammonia stripping section 40 has a fourth bottom section 41 and a fourth top section 42. In an embodiment of the invention, the ammonia stripping unit 40 is connected to a heating unit 60. The heating unit 60 can be, for example, a heater.

為了使系統間之一流體的熱傳導更具效率以達到節能目標,本發明設置該主熱交換器50以連通該二氧化碳汽提部30及該氨汽提部40。流經該主熱交換器50的該流體可在此進行一熱傳導,因而有效提升系統對於熱能的使用效率。In order to make the heat transfer of a fluid between systems more efficient to achieve energy saving goals, the present invention provides the main heat exchanger 50 to communicate the carbon dioxide stripping section 30 and the ammonia stripping section 40. The fluid flowing through the main heat exchanger 50 can conduct a heat transfer there, thereby effectively increasing the efficiency of use of the system for thermal energy.

除了該主熱交換器50外,在本實施例中,該二氧化碳捕獲系統更包括一第一熱交換器80以及一第二熱交換器90,該第一熱交換器80連通於該二氧化碳吸收部10與該二氧化碳汽提部30之間;而該第二熱交換器90則是連通該氨吸收部20與該氨汽提部40之間。In addition to the main heat exchanger 50, in the present embodiment, the carbon dioxide capture system further includes a first heat exchanger 80 and a second heat exchanger 90, the first heat exchanger 80 being in communication with the carbon dioxide absorbing portion. 10 is between the carbon dioxide stripping section 30; and the second heat exchanger 90 is in communication with the ammonia absorbing section 20 and the ammonia stripping section 40.

於下文的實施例中,將以500 MW燃煤火力電廠機組的該煙道氣流1為例,具體說明本發明該二氧化碳捕獲系統的運作。In the following embodiments, the operation of the carbon dioxide capture system of the present invention will be specifically described by taking the flue gas stream 1 of a 500 MW coal-fired power plant unit as an example.

請繼續參考『圖1』。每小時2125公噸的該煙道氣流1中含有400公噸的二氧化碳流量,在一大氣壓且溫度50°C的條件下,由該二氧化碳吸收部10的該第一底段11輸入。Please continue to refer to Figure 1. The flue gas stream 1 of 2125 metric tons per hour contains a flow rate of carbon dioxide of 400 metric tons, which is input from the first bottom section 11 of the carbon dioxide absorbing section 10 at an atmospheric pressure and a temperature of 50 °C.

此時,一由該第一頂段12輸入該二氧化碳吸收部10的第一吸收劑4b與該煙道氣流1中的二氧化碳反應,使該煙道氣流1形成一由該第一頂段12輸出的貧二氧化碳氣流2以及一由該第一底段11輸出的富二氧化碳流體3。於本發明一實施例中,該第一吸收劑4b的成分包含水約90.7 mol%、氨約7.7 mol%以及二氧化碳約1.6 mol%,且該第一吸收劑4b具有約為82℃的沸點,此外,該二氧化碳吸收部10中較佳含有大量的該第一填充物,據此增加該煙道氣流1與該第一吸收劑4b進行反應的反應面積。At this time, a first absorbent 4b input from the first top section 12 to the carbon dioxide absorbing section 10 reacts with carbon dioxide in the flue gas stream 1, so that the flue gas stream 1 is formed by the first top section 12 The carbon dioxide-lean gas stream 2 and a carbon dioxide-rich fluid 3 output from the first bottom section 11. In an embodiment of the present invention, the composition of the first absorbent 4b comprises about 90.7 mol% of water, about 7.7 mol% of ammonia, and about 1.6 mol% of carbon dioxide, and the first absorbent 4b has a boiling point of about 82 °C. Further, the carbon dioxide absorbing portion 10 preferably contains a large amount of the first filler, thereby increasing the reaction area in which the flue gas stream 1 reacts with the first absorbent 4b.

接下來將分別就該貧二氧化碳氣流2以及該富二氧化碳流體3的流動加以討論。Next, the flow of the carbon dioxide lean gas stream 2 and the carbon dioxide rich stream 3 will be discussed separately.

貧二氧化碳氣流的流動Flow of carbon dioxide-lean gas stream

該貧二氧化碳氣流2由該第一頂段12輸出並輸入該氨吸收部20,此時,該貧二氧化碳氣流2與一由該第二頂段22輸入該氨吸收部20的第二吸收劑5反應,形成一由該第二頂段22輸出的淨化氣流6以及一由該第二底段21輸出的富氨循環水7。The carbon dioxide-lean gas stream 2 is output from the first top section 12 and is input to the ammonia absorbing portion 20, and at this time, the carbon dioxide-lean gas stream 2 and a second absorbent 5 input from the second top portion 22 to the ammonia absorbing portion 20 The reaction forms a purified gas stream 6 outputted from the second top section 22 and an ammonia-rich circulating water 7 outputted from the second bottom section 21.

此時,該淨化氣流6的氨濃度低於50ppmv,符合環保法規,且該淨化氣流6中二氧化碳的流量每小時不高於40公噸,達到二氧化碳捕獲率90%的設計規格。At this time, the ammonia concentration of the purified gas stream 6 is less than 50 ppmv, which complies with environmental regulations, and the flow rate of carbon dioxide in the purified gas stream 6 is not higher than 40 metric tons per hour, reaching a design specification of 90% carbon dioxide capture rate.

該富氨循環水7則是流經該第二熱交換器90再由該第四頂段42進入該氨汽提部40。此時,該加熱部60加熱該富氨循環水7,令該富氨循環水7的氨氣受熱汽化產生一流向該第四頂段42並於該處輸出的富氨氣流8;而去除氨氣的該富氨循環水7則形成該第二吸收劑5。The ammonia-rich circulating water 7 flows through the second heat exchanger 90 and enters the ammonia stripping section 40 from the fourth top section 42. At this time, the heating portion 60 heats the ammonia-rich circulating water 7, and the ammonia gas of the ammonia-rich circulating water 7 is heated and vaporized to generate an ammonia-rich gas stream 8 that is firstly output to the fourth top portion 42 and output there; The ammonia-rich circulating water 7 of the gas forms the second absorbent 5.

該第二吸收劑5由該氨汽提部40的該第四底段41輸出並流入該第二熱交換器90,此時,該富氨循環水7與來自該氨汽提部40的該第二吸收劑5進行熱傳導而回收顯熱,隨後該富氨循環水7進入該第四頂段42;而該第二吸收劑5將熱傳導給該富氨循環水7後降溫,由該第二頂段22輸入該氨吸收部20來吸收該貧二氧化碳汽流2中的氨氣,於此實施例中,輸入該氨吸收部20中用以與氨產生反應的該第二吸收劑5的主要成分包含水約99.9 mol%、氨約0.05 mol%以及二氧化碳約0.05 mol%。The second absorbent 5 is output from the fourth bottom section 41 of the ammonia stripping section 40 and flows into the second heat exchanger 90. At this time, the ammonia-rich circulating water 7 and the ammonia stripping section 40 are The second absorbent 5 performs heat conduction to recover sensible heat, and then the ammonia-rich circulating water 7 enters the fourth top section 42; and the second absorbent 5 cools heat to the ammonia-rich circulating water 7 and then cools, by the second The top section 22 is input to the ammonia absorbing portion 20 to absorb the ammonia gas in the carbon dioxide-depleted vapor stream 2, and in this embodiment, is mainly input to the second absorbent 5 in the ammonia absorbing portion 20 for reacting with ammonia. The composition comprises about 99.9 mol% of water, about 0.05 mol% of ammonia, and about 0.05 mol% of carbon dioxide.

而該富氨氣流8的成分包括:水約61.5 mol%、氨約33.4 mol%以及二氧化碳約5.1 mol%,溫度為90℃。該富氨氣流8輸入該主熱交換器50而液化,該富氨氣流8的一第一部分8a輸入該二氧化碳汽提部30作為熱源而加熱該二氧化碳汽提部30;該富氨氣流8的一第二部分8b則在流經該主熱交換器50後,由該主熱交換器50回收其潛熱而形成冷凝迴流,並由該第四頂段42輸入該氨氣提部40。The composition of the ammonia-rich gas stream 8 comprises: water of about 61.5 mol%, ammonia of about 33.4 mol%, and carbon dioxide of about 5.1 mol%, and a temperature of 90 °C. The ammonia-rich gas stream 8 is introduced into the main heat exchanger 50 to be liquefied, and a first portion 8a of the ammonia-rich gas stream 8 is fed to the carbon dioxide stripping portion 30 as a heat source to heat the carbon dioxide stripping portion 30; one of the ammonia-rich gas streams 8 The second portion 8b, after flowing through the main heat exchanger 50, recovers its latent heat from the main heat exchanger 50 to form a condensed reflux, and the ammonia stripping portion 40 is input from the fourth top portion 42.

富二氧化碳氣流的流動Flow of carbon-rich gas stream

請參考『圖1』,繼續說明該富二氧化碳流體3的流動。Please refer to FIG. 1 to continue the flow of the carbon dioxide-rich fluid 3.

該富二氧化碳流體3由該第一底段11輸出並流經該第一熱交換器80進行一熱交換回收該第一吸收劑4b的顯熱後,由該第三頂段32輸入該二氧化碳氣提部30。隨後,該富二氧化碳流體3受到汽化及該冷凝部70的冷凝,形成一由該第三頂段32輸出的二氧化碳氣流9,該二氧化碳氣流9此時具有高濃度的二氧化碳,例如可為98%的二氧化碳,以及低濃度的氨,例如可為1000 ppm的氨。The carbon dioxide-rich fluid 3 is output from the first bottom section 11 and flows through the first heat exchanger 80 for heat exchange to recover the sensible heat of the first absorbent 4b, and the carbon dioxide gas is input from the third top section 32. Lift 30. Subsequently, the carbon dioxide-rich fluid 3 is vaporized and condensed by the condensation portion 70 to form a carbon dioxide gas stream 9 output by the third top section 32. The carbon dioxide gas stream 9 has a high concentration of carbon dioxide at this time, for example, 98%. Carbon dioxide, as well as low concentrations of ammonia, can be, for example, 1000 ppm ammonia.

該二氧化碳氣提部30中含有該第一再生吸收劑4,該第一再生吸收劑4自該第三底段31輸入至該主熱交換器50後,將產生以下情況:The carbon dioxide stripping unit 30 includes the first regenerative absorbent 4, and after the first regenerative absorbent 4 is input from the third bottom section 31 to the main heat exchanger 50, the following occurs:

該第一再生吸收劑4的一第三部分4a由該第三底段31輸出至該主熱交換器50,得到來自該富氨氣流8的該第二部分8b所釋放的潛熱後,回到該二氧化碳汽提部30作為該二氧化碳汽提部30的熱源。A third portion 4a of the first regenerative absorbent 4 is output from the third bottom section 31 to the main heat exchanger 50, and the latent heat released from the second portion 8b of the ammonia-rich gas stream 8 is obtained, and then returned. The carbon dioxide stripping section 30 serves as a heat source for the carbon dioxide stripping section 30.

該第一再生吸收劑4的該第三部分4a經該主熱交換器50汽化後,剩餘的一流體分為一第四部分4b與一第五部分4c。為了達到二氧化碳捕獲率為90%的設計目標,事先計算該第四部分4b需要的流量,分流該第四部分4b所需流量至該第一熱交換器80,將本身的熱能供予流經該第一熱交換器80的該富二氧化碳流體3後,據此降低自身的溫度,再由該第一頂端12進入該二氧化碳吸收部10,作為該第一吸收劑4b用以吸收二氧化碳,據此滿足該第一吸收劑4b依情況而以不同濃度存在於該二氧化碳吸收部10的操作條件。而該第五部分4c則迴流至該第四頂段42,作為冷凝迴流協助冷卻該富氨氣流8,並且達到系統的質量平衡。After the third portion 4a of the first regenerative absorbent 4 is vaporized by the main heat exchanger 50, the remaining fluid is divided into a fourth portion 4b and a fifth portion 4c. In order to achieve the design goal of a carbon dioxide capture rate of 90%, the flow required by the fourth portion 4b is calculated in advance, and the flow required for the fourth portion 4b is split to the first heat exchanger 80, and the thermal energy of its own is supplied through the After the carbon dioxide-rich fluid 3 of the first heat exchanger 80, the temperature of the carbon dioxide-rich fluid 3 is lowered, and then the first top end 12 enters the carbon dioxide absorbing portion 10, and the first absorbent 4b is used to absorb carbon dioxide, thereby satisfying The first absorbent 4b is present in the operating conditions of the carbon dioxide absorbing section 10 at different concentrations depending on the situation. The fifth portion 4c is then returned to the fourth top section 42 to assist in cooling the ammonia-rich gas stream 8 as condensate reflux and to achieve mass balance of the system.

本發明一較佳實施例的該主熱交換器50中,一熱端溫度(即,該富氨氣流8的一第一溫度)必須高於一冷端溫度(即,該第一再生吸收劑4的一第二溫度)至少5℃,方能在該主熱交換器50內使該富氨氣流8的該第一部分8a的液化潛熱傳導給該第三底段31的該第一再生吸收劑4,並經由該主熱交換器50將該第一再生吸收劑4的該第三部分4a汽化成該二氧化碳氣提部30的熱源,該富氨氣流8的該第二部分8b則冷凝成冷凝迴流,迴流至該第四頂段42。該富氨氣流8的該第一溫度與該第三底段31的該第一再生吸收劑4的該第二溫度的差異較佳在5℃以上,譬如,該富氨氣流8的該第一溫度為90℃,而該第三底段31的該第一再生吸收劑4的該第二溫度為81℃至85℃之間。In the main heat exchanger 50 of a preferred embodiment of the present invention, a hot end temperature (i.e., a first temperature of the ammonia-rich gas stream 8) must be higher than a cold end temperature (i.e., the first regenerated absorbent). The second late temperature of 4) is at least 5 ° C to conduct the latent heat of liquefaction of the first portion 8a of the ammonia-rich gas stream 8 to the first regenerated absorbent of the third bottom section 31 in the main heat exchanger 50. 4, and through the main heat exchanger 50, the third portion 4a of the first regenerative absorbent 4 is vaporized into a heat source of the carbon dioxide stripping portion 30, and the second portion 8b of the ammonia-rich gas stream 8 is condensed into condensation Reflux and reflux to the fourth top section 42. The difference between the first temperature of the ammonia-rich gas stream 8 and the second temperature of the first regenerated absorbent 4 of the third bottom section 31 is preferably above 5 ° C, for example, the first of the ammonia-rich gas stream 8 The temperature is 90 ° C, and the second temperature of the first regenerated absorbent 4 of the third bottom section 31 is between 81 ° C and 85 ° C.

此外,本發明中,該主熱交換器50的一操作溫度高於該第一再生吸收劑4的一沸點。譬如在本發明一較佳實施例中,該主熱交換器50的該操作溫度約為88℃,高於該第一再生吸收劑4的該沸點(約82℃)。因此,該主熱交換器50足以加熱汽化該第一再生吸收劑4的該第三部分4a而形成該二氧化碳汽提部30的熱源之一。該主熱交換器50的該操作溫度與該第一再生吸收劑4的該沸點的溫度差異較佳為5℃以上,譬如,該主熱交換器50的該操作溫度為88℃至90℃之間,而該第一再生吸收劑4的該沸點溫度為81℃至85℃之間。Further, in the present invention, an operating temperature of the main heat exchanger 50 is higher than a boiling point of the first regenerated absorbent 4. For example, in a preferred embodiment of the invention, the operating temperature of the main heat exchanger 50 is about 88 ° C, which is higher than the boiling point (about 82 ° C) of the first regenerated absorbent 4 . Therefore, the main heat exchanger 50 is sufficient to heat the third portion 4a of the first regenerated absorbent 4 to form one of the heat sources of the carbon dioxide stripping portion 30. The temperature difference between the operating temperature of the main heat exchanger 50 and the boiling point of the first regenerative absorbent 4 is preferably 5 ° C or higher, for example, the operating temperature of the main heat exchanger 50 is 88 ° C to 90 ° C. The boiling temperature of the first regenerated absorbent 4 is between 81 ° C and 85 ° C.

經測試,當本實施例中二氧化碳負載設計值在最佳的0.21 mol-CO 2/mol-NH 3時,該加熱部60的能耗為4.1 GJ/ton-CO 2,低於先前技術揭示的能耗(8.5 GJ/ton-CO 2),顯見本發明所提出的該二氧化碳捕獲系統的節能設計能有效地降低整體系統能耗,達到減能減碳的目標。 It has been tested that when the carbon dioxide load design value in this embodiment is at an optimum 0.21 mol-CO 2 /mol-NH 3 , the energy consumption of the heating portion 60 is 4.1 GJ/ton-CO 2 , which is lower than that disclosed in the prior art. Energy consumption (8.5 GJ/ton-CO 2 ), it is obvious that the energy-saving design of the carbon dioxide capture system proposed by the present invention can effectively reduce the overall system energy consumption and achieve the goal of energy reduction and carbon reduction.

綜上,本發明該主熱交換器的設置協助提供熱源予該二氧化碳汽提部。詳細來說,本發明該二氧化碳汽提部的熱源來自:(1)該主熱交換器回收該富氨氣流的該第二部分冷凝成冷凝迴流所釋放的潛熱,並以此潛熱來汽化該第一再生吸收劑的該第三部分;以及(2)該富氨氣流的該第一部分的潛熱。因此,對於該二氧化碳汽提部而言,不需外界提供額外的熱源以維持該二氧化碳汽提部的運作,代表在本發明的該二氧化碳捕獲系統僅需設置該加熱部來提供加熱該富氨循環水的熱源即可,進而達到降低整體系統能耗的效果。In summary, the arrangement of the main heat exchanger of the present invention assists in providing a heat source to the carbon dioxide stripping section. In detail, the heat source of the carbon dioxide stripping portion of the present invention is derived from: (1) the main heat exchanger recovers the second portion of the ammonia-rich gas stream condensed into latent heat released by condensing reflux, and vaporizes the first portion by the latent heat. a third portion of the regenerated absorbent; and (2) latent heat of the first portion of the ammonia-rich gas stream. Therefore, for the carbon dioxide stripping portion, there is no need to provide an external heat source to maintain the operation of the carbon dioxide stripping portion, and the carbon dioxide capturing system of the present invention only needs to be provided to provide heating to the ammonia rich cycle. The heat source of the water can be used, thereby achieving the effect of reducing the overall system energy consumption.

以上已將本發明做一詳細說明,惟以上所述者,僅爲本發明的一較佳實施例而已,當不能限定本發明實施的範圍。即凡依本發明申請範圍所作的均等變化與修飾等,皆應仍屬本發明的專利涵蓋範圍內。The present invention has been described in detail above, but the foregoing is only a preferred embodiment of the present invention, and is not intended to limit the scope of the invention. That is, the equivalent changes and modifications made by the scope of the present application should remain within the scope of the patent of the present invention.

1‧‧‧煙道氣流
2‧‧‧貧二氧化碳氣流
3‧‧‧富二氧化碳流體
4‧‧‧第一再生吸收劑
4a‧‧‧第三部分
4b‧‧‧第四部分(第一吸收劑)
4c‧‧‧第五部分
5‧‧‧第二吸收劑
6‧‧‧淨化氣流
7‧‧‧富氨循環水
8‧‧‧富氨氣流
8a‧‧‧第一部分
8b‧‧‧第二部分
9‧‧‧二氧化碳氣流
10‧‧‧二氧化碳吸收部
11‧‧‧第一底段
12‧‧‧第一頂段
20‧‧‧氨吸收部
21‧‧‧第二底段
22‧‧‧第二頂段
30‧‧‧二氧化碳汽提部
31‧‧‧第三底段
32‧‧‧第三頂段
40‧‧‧氨汽提部
41‧‧‧第四底段
42‧‧‧第四頂段
50‧‧‧主熱交換器
60‧‧‧加熱部
70‧‧‧冷凝部
80‧‧‧第一熱交換器
90‧‧‧第二熱交換器
1‧‧‧ flue gas flow
2‧‧‧Poor carbon dioxide gas flow
3‧‧‧Enriched carbon dioxide fluid
4‧‧‧First regenerative absorbent
4a‧‧‧Part III
4b‧‧‧Part 4 (first absorbent)
4c‧‧‧Part V
5‧‧‧Second absorbent
6‧‧‧purified airflow
7‧‧‧Ammonia-rich circulating water
8‧‧‧Ammonia-rich airflow
8a‧‧‧Part 1
8b‧‧‧Part II
9‧‧‧Carbon dioxide gas flow
10‧‧‧Carbon Dioxide Absorption Department
11‧‧‧ first bottom section
12‧‧‧First top section
20‧‧‧Ammonia absorption department
21‧‧‧second bottom section
22‧‧‧second top section
30‧‧‧ Carbon Dioxide Stripping Department
31‧‧‧ third stage
32‧‧‧ third top section
40‧‧‧Ammonia stripping department
41‧‧‧ fourth bottom
42‧‧‧fourth paragraph
50‧‧‧Main heat exchanger
60‧‧‧heating department
70‧‧‧ Condensation Department
80‧‧‧First heat exchanger
90‧‧‧second heat exchanger

『圖1』,為本發明一實施例的系統配置示意圖。FIG. 1 is a schematic diagram of a system configuration according to an embodiment of the present invention.

1‧‧‧煙道氣流 1‧‧‧ flue gas flow

2‧‧‧貧二氧化碳氣流 2‧‧‧Poor carbon dioxide gas flow

3‧‧‧富二氧化碳流體 3‧‧‧Enriched carbon dioxide fluid

4‧‧‧第一再生吸收劑 4‧‧‧First regenerative absorbent

4a‧‧‧第三部分 4a‧‧‧Part III

4b‧‧‧第四部分(第一吸收劑) 4b‧‧‧Part 4 (first absorbent)

4c‧‧‧第五部分 4c‧‧‧Part V

5‧‧‧第二吸收劑 5‧‧‧Second absorbent

6‧‧‧淨化氣流 6‧‧‧purified airflow

7‧‧‧富氨循環水 7‧‧‧Ammonia-rich circulating water

8‧‧‧富氨氣流 8‧‧‧Ammonia-rich airflow

8a‧‧‧第一部分 8a‧‧‧Part 1

8b‧‧‧第二部分 8b‧‧‧Part II

9‧‧‧二氧化碳氣流 9‧‧‧Carbon dioxide gas flow

10‧‧‧二氧化碳吸收部 10‧‧‧Carbon Dioxide Absorption Department

11‧‧‧第一底段 11‧‧‧ first bottom section

12‧‧‧第一頂段 12‧‧‧First top section

20‧‧‧氨吸收部 20‧‧‧Ammonia absorption department

21‧‧‧第二底段 21‧‧‧second bottom section

22‧‧‧第二頂段 22‧‧‧second top section

30‧‧‧二氧化碳汽提部 30‧‧‧ Carbon Dioxide Stripping Department

31‧‧‧第三底段 31‧‧‧ third stage

32‧‧‧第三頂段 32‧‧‧ third top section

40‧‧‧氨汽提部 40‧‧‧Ammonia stripping department

41‧‧‧第四底段 41‧‧‧ fourth bottom

42‧‧‧第四頂段 42‧‧‧fourth paragraph

50‧‧‧主熱交換器 50‧‧‧Main heat exchanger

60‧‧‧加熱部 60‧‧‧heating department

70‧‧‧冷凝部 70‧‧‧ Condensation Department

80‧‧‧第一熱交換器 80‧‧‧First heat exchanger

90‧‧‧第二熱交換器 90‧‧‧second heat exchanger

Claims (10)

一種二氧化碳捕獲系統,包括:  一接收一煙道氣流的二氧化碳吸收部,該二氧化碳吸收部具有一第一底段以及一第一頂段; 一與該二氧化碳吸收部連通的氨吸收部,該氨吸收部具有一第二底段以及一第二頂段; 一與該二氧化碳吸收部連通的二氧化碳汽提部,該二氧化碳汽提部具有一第三底段以及一第三頂段; 一與該氨吸收部及該二氧化碳汽提部連通的氨汽提部,該氨汽提部具有一第四底段以及一第四頂段;以及 一與該二氧化碳汽提部及該氨汽提部連通的主熱交換器; 其中,由該二氧化碳汽提部中輸出一第一再生吸收劑,經該主熱交換器後汽化形成一第一吸收劑而由該第一頂段輸入該二氧化碳吸收部,令輸入該二氧化碳吸收部的該煙道氣流與該第一吸收劑反應後,形成一由該第一頂段輸出的貧二氧化碳氣流以及一由該第一底段輸出的富二氧化碳流體,該貧二氧化碳氣流輸入該氨吸收部,形成一由該第二頂段輸出的淨化氣流以及一由該第二底段輸出的富氨循環水;該富二氧化碳流體經該第三頂段輸入該二氧化碳汽提部,形成一由該二氧化碳汽提部輸出的二氧化碳氣流。A carbon dioxide capture system comprising: a carbon dioxide absorbing portion that receives a flue gas stream, the carbon dioxide absorbing portion having a first bottom portion and a first top portion; and an ammonia absorbing portion in communication with the carbon dioxide absorbing portion, the ammonia absorbing portion The portion has a second bottom portion and a second top portion; a carbon dioxide stripping portion in communication with the carbon dioxide absorbing portion, the carbon dioxide stripping portion has a third bottom portion and a third top portion; And an ammonia stripping portion connected to the carbon dioxide stripping portion, the ammonia stripping portion has a fourth bottom portion and a fourth top portion; and a main heat connected to the carbon dioxide stripping portion and the ammonia stripping portion An exchanger for outputting a first regenerated absorbent from the carbon dioxide stripping portion, vaporizing the main heat exchanger to form a first absorbent, and inputting the carbon dioxide absorbing portion from the first top portion, and inputting the The flue gas stream of the carbon dioxide absorbing portion reacts with the first absorbent to form a carbon dioxide-depleted gas stream output from the first top section and a rich dioxide dioxide output from the first bottom section a fluid, the carbon dioxide-lean gas stream is input to the ammonia absorbing portion to form a purified gas stream outputted by the second top section and an ammonia-rich circulating water outputted from the second bottom section; the carbon dioxide-rich fluid is input through the third top section The carbon dioxide stripping section forms a carbon dioxide gas stream output by the carbon dioxide stripping section. 如申請專利範圍第1項所述的二氧化碳捕獲系統,其中該二氧化碳汽提部更包含一與該第三頂段連接的冷凝部。The carbon dioxide capture system of claim 1, wherein the carbon dioxide stripping portion further comprises a condensation portion connected to the third top portion. 如申請專利範圍第1項所述的二氧化碳捕獲系統,其中該氨汽提部更包含一與該第四底段連接的加熱部。The carbon dioxide capture system of claim 1, wherein the ammonia stripping portion further comprises a heating portion coupled to the fourth bottom portion. 如申請專利範圍第1項所述的二氧化碳捕獲系統,其中該二氧化碳吸收部與該二氧化碳汽提部之間經一第一熱交換器而連通。The carbon dioxide capture system of claim 1, wherein the carbon dioxide absorbing portion communicates with the carbon dioxide stripping portion via a first heat exchanger. 如申請專利範圍第1項所述的二氧化碳捕獲系統,其中該氨吸收部與該氨汽提部之間經一第二熱交換器而連通。The carbon dioxide capture system of claim 1, wherein the ammonia absorbing portion and the ammonia stripping portion are in communication via a second heat exchanger. 如申請專利範圍第4項所述的二氧化碳捕獲系統,其中,由該第一底段輸出的該富二氧化碳流體經該第一熱交換器進行一熱傳導後輸入該二氧化碳汽提部。The carbon dioxide capture system of claim 4, wherein the carbon dioxide-rich fluid outputted from the first bottom section is thermally conducted through the first heat exchanger and then input to the carbon dioxide stripping section. 如申請專利範圍第5項所述的二氧化碳捕獲系統,其中,由該第二底段輸出的該富氨循環水經該第二熱交換器進行一熱傳導而輸入該氨汽提部後,形成一由該第四頂段輸出的富氨氣流以及一由該第四底段輸出的第二吸收劑。The carbon dioxide capture system of claim 5, wherein the ammonia-rich circulating water outputted by the second bottom section is subjected to heat conduction through the second heat exchanger to be input to the ammonia stripping section to form a carbon dioxide capture system. An ammonia-rich gas stream output by the fourth top section and a second absorbent outputted by the fourth bottom section. 如申請專利範圍第7項所述的二氧化碳捕獲系統,其中,該主熱交換器係令由該第四頂段輸出的該富氨氣流汽化。The carbon dioxide capture system of claim 7, wherein the main heat exchanger vaporizes the ammonia-rich gas stream output by the fourth top section. 如申請專利範圍第8項所述的二氧化碳捕獲系統,其中,該富氨氣流的一第一溫度高於該第一再生吸收劑的一第二溫度。The carbon dioxide capture system of claim 8, wherein a first temperature of the ammonia-rich gas stream is higher than a second temperature of the first regenerated absorbent. 如申請專利範圍第1項所述的二氧化碳捕獲系統,其中該主熱交換器的一操作溫度高於該第一再生吸收劑的一沸點。The carbon dioxide capture system of claim 1, wherein an operating temperature of the main heat exchanger is higher than a boiling point of the first regenerated absorbent.
TW105134616A 2016-10-26 2016-10-26 System for capturing carbon dioxide TWI590862B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW105134616A TWI590862B (en) 2016-10-26 2016-10-26 System for capturing carbon dioxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW105134616A TWI590862B (en) 2016-10-26 2016-10-26 System for capturing carbon dioxide

Publications (2)

Publication Number Publication Date
TWI590862B true TWI590862B (en) 2017-07-11
TW201815456A TW201815456A (en) 2018-05-01

Family

ID=60048579

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105134616A TWI590862B (en) 2016-10-26 2016-10-26 System for capturing carbon dioxide

Country Status (1)

Country Link
TW (1) TWI590862B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI695734B (en) * 2019-05-08 2020-06-11 國立清華大學 Method for regenerating aqueous ammonia after capturing carbon dioxide with aqueous ammonia and method for capturing carbon dioxide with aqueous ammonia

Also Published As

Publication number Publication date
TW201815456A (en) 2018-05-01

Similar Documents

Publication Publication Date Title
AU2014200271B2 (en) Integrated carbon dioxide removal and ammonia-soda process
EP2561921B1 (en) Process for removal of NOx and SO2 in flue gas boilers
JP2010538821A (en) Improved method for regeneration of absorbents
CN104399356A (en) Carbon dioxide capture system
WO2021008242A1 (en) Method for constructing thermodynamic cycle of carbon capture technology using chemical absorption method
CN104154548B (en) A kind of technique of gas fired-boiler exhaust heat-energy recovery and purification of nitrogen oxides
WO2018188375A1 (en) Process for recovering dichloromethane in waste gas
JP5738137B2 (en) CO2 recovery apparatus and CO2 recovery method
CN105233689B (en) Organic amine wet flue gas desulphurization and desorption system with high-efficiency and low-energy consumption
US9579599B2 (en) Energy-saving system and method of capturing acidic gas by using separated water
WO2012070304A1 (en) System and method for recovering gas containing c02 and h2s
CN106310881A (en) Regenerable cyclic absorption flue gas desulfurization technology
CN109794137A (en) A kind of method and system of adsorption cleaning and enriching and recovering flue gas nitrogen oxide
TWI590862B (en) System for capturing carbon dioxide
US7964168B2 (en) CO2 capture method with thermal integration of regenerator
US9757680B2 (en) System and method for separation and recovery of acid gas
WO2012073552A1 (en) Co2 recovery system
Cui et al. Waste heat recovery and cascade utilization of CO2 chemical absorption system based on organic amine method in heating season
US9757681B2 (en) Low energy-type acid gas capture system and method using recirculation of absorbent
CN106586972A (en) Energy-saving, environmental-protection and low-emission sulfur recovery process
Dong et al. Recovery of waste heat in cement plants for the capture of CO 2
JP2016112482A (en) Carbon dioxide collection method and device
KR101491521B1 (en) Acidic gas Capture System and Method for Energy Saving Using Condensed Water
TWI546118B (en) Carbon dioxide capture system
US9962655B2 (en) Acid gas capture system and method saving energy by cooling absorbent, which has passed reboiler, by means of steam condensate

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees