TWI590138B - In-cell touch screen and a method of driving the same - Google Patents

In-cell touch screen and a method of driving the same Download PDF

Info

Publication number
TWI590138B
TWI590138B TW104120139A TW104120139A TWI590138B TW I590138 B TWI590138 B TW I590138B TW 104120139 A TW104120139 A TW 104120139A TW 104120139 A TW104120139 A TW 104120139A TW I590138 B TWI590138 B TW I590138B
Authority
TW
Taiwan
Prior art keywords
common voltage
touch screen
sensing
voltage
source lines
Prior art date
Application number
TW104120139A
Other languages
Chinese (zh)
Other versions
TW201701138A (en
Inventor
王偉松
張耀光
Original Assignee
奇景光電股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 奇景光電股份有限公司 filed Critical 奇景光電股份有限公司
Priority to TW104120139A priority Critical patent/TWI590138B/en
Publication of TW201701138A publication Critical patent/TW201701138A/en
Application granted granted Critical
Publication of TWI590138B publication Critical patent/TWI590138B/en

Links

Landscapes

  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Position Input By Displaying (AREA)
  • Liquid Crystal (AREA)

Description

內嵌式觸控螢幕及其驅動方法In-cell touch screen and driving method thereof

本發明係有關一種觸控螢幕,特別是關於一種內嵌式(in-cell)觸控螢幕。The present invention relates to a touch screen, and more particularly to an in-cell touch screen.

觸控螢幕為一種結合觸控技術與顯示技術的輸出/輸入裝置,可讓使用者直接與顯示物件進行互動。電容式觸控面板為一種常見觸控面板,其利用電容耦合效應以偵測觸碰位置。當手指觸碰到觸控面板的表面時,相應位置的電容量會改變,因而得以偵測到觸碰位置。The touch screen is an output/input device that combines touch technology and display technology to allow users to interact directly with display objects. A capacitive touch panel is a common touch panel that utilizes a capacitive coupling effect to detect a touch position. When the finger touches the surface of the touch panel, the capacitance of the corresponding position changes, and the touch position is detected.

為了製造更薄的觸控螢幕,因此使用內嵌式技術,將電容製作於顯示器內部,因而得以省略一些層級。然而,傳統內嵌式觸控螢幕具有相當的雜散電容,造成大負載,因而影響觸控螢幕的靈敏度。因此,亟需提出一種驅動內嵌式觸控螢幕的新穎機制,以增強靈敏度。In order to make a thinner touch screen, the built-in technology is used to make the capacitor inside the display, thus omitting some levels. However, the traditional in-cell touch screen has considerable stray capacitance, which causes a large load and thus affects the sensitivity of the touch screen. Therefore, there is a need to propose a novel mechanism for driving an in-cell touch screen to enhance sensitivity.

鑑於上述,本發明實施例的目的之一在於提出一種內嵌式觸控螢幕的驅動方法,使得雜散電容不會對感測結果發生影響。In view of the above, one of the objects of the embodiments of the present invention is to provide a driving method of an in-cell touch screen such that stray capacitance does not affect the sensing result.

根據本發明實施例,觸控螢幕的共電壓層分割為複數共電壓電極,於觸控感測模式,作為感測點。將目前共電壓電極下方的複數源極線平均分為n群,其中n為大於1的整數。於每ㄧ感測週期的轉換階段,對目前共電壓電極施以第一電壓VA 。對於每ㄧ群源極線,於連續n個感測週期,除了一個感測週期外,於轉換週期施以第二電壓VB 。對於每ㄧ感測週期,對於所有群源極線,除了一群源極線外,於轉換週期施以第二電壓VB 。其中第二電壓VB 大約等於(n/(n-1))*VAAccording to an embodiment of the invention, the common voltage layer of the touch screen is divided into a plurality of common voltage electrodes, and is used as a sensing point in the touch sensing mode. The complex source lines below the current common voltage electrode are equally divided into n groups, where n is an integer greater than one. A current voltage V A is applied to the current common voltage electrode during the conversion phase of each sensing period. For each group of source lines, a second voltage V B is applied to the conversion period for a continuous n sensing periods except for one sensing period. For each sense period, for all group source lines, in addition to a group of source lines, a second voltage V B is applied during the conversion period. Wherein the second voltage V B is approximately equal to (n/(n-1))*V A .

第一圖顯示本發明實施例之自電容(self-capacitance)內嵌式觸控螢幕100的透視圖。自電容內嵌式觸控螢幕(以下簡稱觸控螢幕)100主要包含閘極(G)線11、源極(S)線13及共電壓(VCOM)層15,由下而上彼此隔離。為了簡潔起見,觸控螢幕100的一些元件未顯示於圖式中。例如,液晶層可設於共電壓層15之上。The first figure shows a perspective view of a self-capacitance in-cell touch screen 100 in accordance with an embodiment of the present invention. The self-capacitance in-cell touch screen (hereinafter referred to as the touch screen) 100 mainly includes a gate (G) line 11, a source (S) line 13, and a common voltage (VCOM) layer 15, which are isolated from each other from bottom to top. For the sake of brevity, some elements of touch screen 100 are not shown in the drawings. For example, a liquid crystal layer may be disposed over the common voltage layer 15.

閘極線11橫向或列向設置,源極線13則縱向或行向設置。共電壓層15分割為多個共電壓電極151,如第二圖所例示,於觸控感測模式時,作為感測點(或接收(RX)電極);且於顯示模式時,連接至一共電壓(例如直流電壓)。The gate lines 11 are arranged laterally or columnwise, and the source lines 13 are arranged longitudinally or in a row direction. The common voltage layer 15 is divided into a plurality of common voltage electrodes 151, as exemplified in the second figure, as a sensing point (or receiving (RX) electrode) in the touch sensing mode; and in the display mode, connected to a total Voltage (eg DC voltage).

對於小型化觸控螢幕100,共電壓電極151、源極線13與閘極線11彼此非常接近,因此觸控螢幕100具有雜散電容。第三圖顯示共電壓電極151、源極線13與閘極線11的等效電容之電路圖。VCOM1、VCOM2與VCOM3表示三個相鄰共電壓電極151。CC1 與CC2 表示共電壓電極151之間的等效電容。CS1 、CS2 與CS3 表示共電壓電極151(亦即,VCOM1、VCOM2與VCOM3)與位於下方的源極線13之間的等效電容。CG1 、CG2 與CG3 表示共電壓電極151(亦即,VCOM1、VCOM2與VCOM3)與位於下方的閘極線11之間的等效電容。每ㄧ感測點(或共電壓電極151)具有總電容值為(CCX +CSX +CGX )(其中X為1、2或3),其所產生的負載會影響觸控螢幕100的靈敏度。For the miniaturized touch screen 100, the common voltage electrode 151, the source line 13 and the gate line 11 are very close to each other, and thus the touch screen 100 has stray capacitance. The third diagram shows a circuit diagram of the equivalent capacitance of the common voltage electrode 151, the source line 13 and the gate line 11. VCOM1, VCOM2, and VCOM3 represent three adjacent common voltage electrodes 151. C C1 and C C2 represent equivalent capacitances between the common voltage electrodes 151. C S1 , C S2 and C S3 represent equivalent capacitances between the common voltage electrodes 151 (ie, VCOM1, VCOM2, and VCOM3) and the source line 13 located below. C G1 , C G2 and C G3 represent the equivalent capacitance between the common voltage electrode 151 (ie, VCOM1, VCOM2, and VCOM3) and the gate line 11 located below. Each sense point (or common voltage electrode 151) has a total capacitance value (C CX + C SX + C GX ) (where X is 1, 2 or 3), and the resulting load affects the touch screen 100 Sensitivity.

第四圖顯示觸控螢幕100的操作時序圖。每ㄧ感測週期包含轉換階段(conversion phase)41與預充電階段(pre-charge phase)42。在一般的操作中,於轉換階段41,(第二圖之共電壓單元22)對共電壓電極151施以(正)電壓VA ;於預充電階段42,則不施以電壓(或接地)。於整個感測週期,對位於下方的源極線13施以固定電壓VS ,且對位於下方的閘極線11施以固定電壓VG 。令CS 表示共電壓電極151與位於下方的源極線13之間的等效電容,CG 表示共電壓電極151與位於下方的閘極線11之間的等效電容,QS /QG 表示源極線13/閘極線11於轉換階段41對於共電壓電極151所提供的電荷,且QS ’/QG ’表示源極線13/閘極線11於預充電階段42對於共電壓電極151所提供的電荷: 於轉換階段41(例如t0 至t1 ) QS =(VA -VS )*CS QG =(VA -VG )*CG 於預充電階段42(例如t1 至t2 ) QS ’=(0-VS )*CS QG ’=(0-VG )*CG 於感測週期(例如t0 至t2 ) ΔQS =QS -QS ’=VA *CS ΔQG =QG -QG ’=VA *CG The fourth figure shows an operation timing chart of the touch screen 100. Each sensing period includes a conversion phase 41 and a pre-charge phase 42. In a typical operation, in the conversion phase 41, (the common voltage unit 22 of the second figure) applies a (positive) voltage V A to the common voltage electrode 151; in the precharge phase 42, no voltage (or ground) is applied. . The source line 13 located below is applied with a fixed voltage V S and the gate line 11 located below is applied with a fixed voltage V G throughout the sensing period. Let C S denote the equivalent capacitance between the common voltage electrode 151 and the source line 13 located below, and C G denote the equivalent capacitance between the common voltage electrode 151 and the gate line 11 located below, Q S /Q G Indicates the charge provided by the source line 13/gate line 11 for the common voltage electrode 151 during the conversion phase 41, and Q S '/Q G ' indicates the source line 13 / gate line 11 at the precharge stage 42 for the common voltage The charge provided by the electrode 151: in the conversion phase 41 (e.g., t 0 to t 1 ) Q S = (V A - V S ) * C S Q G = (V A - V G ) * C G in the precharge phase 42 (eg t 1 to t 2 ) Q S '=(0-V S )*C S Q G '=(0-V G )*C G in the sensing period (eg t 0 to t 2 ) ΔQ S =Q S -Q S '=V A *C S ΔQ G =Q G -Q G '=V A *C G

於感測週期,由於源極線13與閘極線11分別對共電壓電極151提供電荷,因而會影響觸控感測結果。為了減輕雜散電容對觸控感測結果的影響,因此提出以下的實施例。During the sensing period, since the source line 13 and the gate line 11 respectively supply electric charges to the common voltage electrode 151, the touch sensing result is affected. In order to reduce the influence of stray capacitance on the touch sensing result, the following embodiments are proposed.

第五A圖顯示本發明第一實施例之共電壓電極151(例如VCOM1)與源極線13之間的等效電容之電路圖。第五B圖顯示第五A圖之觸控螢幕100的操作時序圖。Figure 5A is a circuit diagram showing the equivalent capacitance between the common voltage electrode 151 (e.g., VCOM1) and the source line 13 of the first embodiment of the present invention. FIG. 5B shows an operation timing chart of the touch screen 100 of FIG.

在本實施例中,共電壓電極151(例如VCOM1)的下方有多條源極線13,將其平均分為二群:第一群源極線S_A與第二群源極線S_B。共電壓電極151與第一群源極線S_A之間的第一等效電容為C­S_A ,共電壓電極151與第二群源極線S_B之間的第二等效電容為C­S_B 。第一等效電容C­S_A 的值大約是(原始)等效電容CS 的一半,且第二等效電容C­S_B 的值大約是(原始)等效電容CS 的一半,亦即,CS_A =CS_B =(1/2)*CSIn the present embodiment, a plurality of source lines 13 are provided below the common voltage electrode 151 (for example, VCOM1), and are equally divided into two groups: a first group source line S_A and a second group source line S_B. The first equivalent capacitance between the common voltage electrode 151 and the first group source line S_A is C S_A , and the second equivalent capacitance between the common voltage electrode 151 and the second group source line S_B is C S_B . The value of the first equivalent capacitor C S_A is approximately half of the (original) equivalent capacitance C S , and the value of the second equivalent capacitor C S_B is approximately half of the (original) equivalent capacitance C S , that is, C S_A =C S_B =(1/2)*C S .

如第五B圖所示,於轉換階段41,對共電壓電極151施以第一電壓VA ;於預充電階段42,則不施以電壓(或接地)。於第偶數個感測週期的轉換階段41,對第一群源極線S_A施以第二電壓VB ;於其他階段,則不施以電壓(或接地)。於第奇數個感測週期的轉換階段41,對第二群源極線S_B施以第二電壓VB ;於其他階段,則不施以電壓(或接地)。As shown in FIG. 5B, in the conversion phase 41, the common voltage electrode 151 is applied with the first voltage V A ; in the pre-charging phase 42, no voltage (or ground) is applied. In the conversion phase 41 of the even-numbered sensing periods, the first group source line S_A is applied with the second voltage V B ; in other stages, no voltage (or ground) is applied. The second group of source lines S_B is applied with a second voltage V B during the conversion phase 41 of the odd-numbered sensing periods; at other stages, no voltage (or ground) is applied.

令QS_A 表示第一群源極線S_A對於共電壓電極151所提供的電荷,且QS_B 表示第二群源極線S_B對於共電壓電極151所提供的電荷: 於第偶數個感測週期的轉換階段41(例如t0 至t1 ) QS_A =(VA -VB )*CS_A QS_B =(VA -0)*CS_B 於第偶數個感測週期的預充電階段42(例如t1 至t2 ) QS _A =(0-0)*CS_A QS_B =(0-0)*CS_B 於整個第偶數個感測週期(例如t0 至t2 ) ΔQS_A =(VA -V­B )*CS_A ΔQS_B =VA *CS_B ΔQS_A +ΔQS_B =(2VA -VB )*0.5*CS Let Q S_A denote the charge provided by the first group source line S_A for the common voltage electrode 151, and Q S_B denote the charge provided by the second group source line S_B for the common voltage electrode 151: during the even number of sensing periods Conversion phase 41 (eg, t 0 to t 1 ) Q S_A = (V A - V B ) * C S_A Q S_B = (V A - 0) * C S_B in the precharge phase 42 of the even number of sensing cycles (eg t 1 to t 2 ) Q S _ A =(0-0)*C S_A Q S_B =(0-0)*C S_B for the entire even number of sensing periods (eg t 0 to t 2 ) ΔQ S_A =( V A -V B )*C S_A ΔQ S_B =V A *C S_B ΔQ S_A +ΔQ S_B =(2V A -V B )*0.5*C S

如果第二電壓VB 為第一電壓VA 的二倍(亦即,VB =2VA ),則提供給共電壓電極151的淨電荷為零,因此雜散電容對於觸控感測結果沒有影響。第奇數個感測週期也有類似的情形: 於第奇數個感測週期的轉換階段41(例如t2 至t3 ) QS_A =(VA -0)*CS_A QS_B =(VA -VB )*CS_B 於第奇數個感測週期的預充電階段42(例如t3 至t4 ) QS _A =(0-0)*CS_A QS_B =(0-0)*CS_B 於整個第奇數個感測週期(例如t2 至t4 ) ΔQS_A =(VA -V­B )*CS_A ΔQS_B =VA *CS_B ΔQS_A +ΔQS_B =(2VA -VB )*0.5*CS If the second voltage V B is twice the first voltage V A (that is, V B =2V A ), the net charge supplied to the common voltage electrode 151 is zero, so the stray capacitance does not have a touch sensing result. influences. A similar situation occurs for the odd-numbered sensing periods: in the conversion phase 41 of the odd-numbered sensing periods (eg, t 2 to t 3 ) Q S_A =(V A -0)*C S_A Q S_B =(V A -V B )*C S_B in the pre-charging phase 42 of the odd-numbered sensing periods (eg t 3 to t 4 ) Q S _ A =(0-0)*C S_A Q S_B =(0-0)*C S_B The entire odd-numbered sensing periods (eg, t 2 to t 4 ) ΔQ S_A =(V A -V B )*C S_A ΔQ S_B =V A *C S_B ΔQ S_A +ΔQ S_B =(2V A -V B )* 0.5*C S

類似於第偶數個感測週期,如果於第奇數個感測週期當中,第二電壓VB 為第一電壓VA 的二倍(亦即,VB =2VA ),則提供給共電壓電極151的淨電荷為零,因此雜散電容對於觸控感測結果沒有影響。Similar to the even-numbered sensing periods, if the second voltage V B is twice the first voltage V A (ie, V B =2V A ) among the odd-numbered sensing periods, it is supplied to the common voltage electrode. The net charge of 151 is zero, so the stray capacitance has no effect on the touch sensing results.

第六A圖顯示本發明第二實施例之共電壓電極151(例如VCOM1)與源極線13(例如S1)之間的等效電容之電路圖。第六B圖顯示第六A圖之觸控螢幕100的操作時序圖。Figure 6A is a circuit diagram showing the equivalent capacitance between the common voltage electrode 151 (e.g., VCOM1) and the source line 13 (e.g., S1) of the second embodiment of the present invention. FIG. 6B is a timing chart showing the operation of the touch screen 100 of FIG.

在本實施例中,共電壓電極151(例如VCOM1)下方的多條源極線13平均分為三群:第一群源極線S_A、第二群源極線S_B與第三群源極線S_C。共電壓電極151與第一群源極線S_A之間的第一等效電容為C­S_A ,共電壓電極151與第二群源極線S_B之間的第二等效電容為C­S_B ,共電壓電極151與第三群源極線S_C之間的第三等效電容為C­S_C 。第一等效電容C­S_A 的值大約是(原始)等效電容CS 的三分之一,第二等效電容C­S_B 的值大約是(原始)等效電容CS 的三分之一,且第三等效電容C­S_C 的值大約是(原始)等效電容CS 的三分之一,亦即,CS_A =CS_B =CS_C =(1/3)*CSIn this embodiment, the plurality of source lines 13 under the common voltage electrode 151 (for example, VCOM1) are equally divided into three groups: a first group source line S_A, a second group source line S_B, and a third group source line. S_C. The first equivalent capacitance between the common voltage electrode 151 and the first group source line S_A is C S_A , and the second equivalent capacitance between the common voltage electrode 151 and the second group source line S_B is C S_B , common voltage The third equivalent capacitance between the electrode 151 and the third group source line S_C is C S_C . The value of the first equivalent capacitor C S_A is approximately one-third of the (original) equivalent capacitance C S , and the value of the second equivalent capacitor C S_B is approximately one-third of the (original) equivalent capacitance C S . And the value of the third equivalent capacitor C S_C is about one third of the (original) equivalent capacitance C S , that is, C S_A = C S_B = C S_C = (1/3) * C S .

如第六B圖所示,於轉換階段41,對共電壓電極151施以第一電壓VA ;於預充電階段42,則不施以電壓(或接地)。對於每ㄧ群源極線,於連續三個感測週期,除了一個感測週期外,於轉換週期41施以第二電壓VB 。對於每ㄧ感測週期,對於所有群源極線,除了一群源極線外,於轉換週期41施以第二電壓VBAs shown in FIG. 6B, in the conversion phase 41, the common voltage electrode 151 is applied with the first voltage V A ; in the pre-charging phase 42, no voltage (or ground) is applied. For each group of source lines, a second voltage V B is applied to the conversion period 41 in addition to one sensing period for three consecutive sensing periods. For each sense period, a second voltage V B is applied to the conversion period 41 for all group source lines except for a group of source lines.

令QS_A 表示第一群源極線S_A對於共電壓電極151所提供的電荷,QS_B 表示第二群源極線S_B對於共電壓電極151所提供的電荷,且QS_C 表示第三群源極線S_C對於共電壓電極151所提供的電荷: 於第(3m-2)個(m為正整數)感測週期的轉換階段41(例如t0 至t1 ) QS_A =(VA -VB )*CS_A QS_B =(VA -0)*CS_B QS_C =(VA -VB )*CS_C 於第(3m-2)個感測週期的預充電階段42(例如t1 至t2 ) QS _A =(0-0)*CS_A QS_B =(0-0)*CS_B QS_C =(0-0)*CS_C 於整個第(3m-2)個感測週期(例如t0 至t2 ) ΔQS_A =(VA -V­B )*CS_A ΔQS_B =VA *CS_B ΔQS_C =(VA -VB )*CS_C ΔQS_A +ΔQS_B +ΔQS_C =(3VA -2VB )*(1/3)*CS Let Q S_A denote the charge provided by the first group source line S_A for the common voltage electrode 151, Q S_B denote the charge provided by the second group source line S_B for the common voltage electrode 151, and Q S_C denotes the third group source The electric charge provided by the line S_C for the common voltage electrode 151: at the (3m-2)th (m is a positive integer) sensing period conversion phase 41 (for example, t 0 to t 1 ) Q S_A = (V A - V B *C S_A Q S_B =(V A -0)*C S_B Q S_C =(V A -V B )*C S_C in the precharge phase 42 of the (3m-2)th sensing period (eg t 1 to t 2 ) Q S _ A =(0-0)*C S_A Q S_B =(0-0)*C S_B Q S_C =(0-0)*C S_C for the entire (3m-2) sensing period (eg t 0 to t 2 ) ΔQ S_A = (V A - V B ) * C S_A ΔQ S_B = V A * C S_B ΔQ S_C = (V A - V B ) * C S_C ΔQ S_A + ΔQ S_B + ΔQ S_C =(3V A -2V B )*(1/3)*C S

如果第二電壓VB 為第一電壓VA 的一倍半(亦即,VB =1.5VA ),則提供給共電壓電極151的淨電荷為零,因此雜散電容對於觸控感測結果沒有影響。第(3m-1)個感測週期也有類似的情形: 於第(3m-1)個感測週期的轉換階段41(例如t2 至t3 ) QS_A =(VA -VB )*CS_A QS_B =(VA -VB )*CS_B QS_C =(VA -0)*CS_C 於第(3m-1)個感測週期的預充電階段42(例如t3 至t4 ) QS _A =(0-0)*CS_A QS_B =(0-0)*CS_B QS_C =(0-0)*CS_C 於整個第(3m-1)個感測週期(例如t2 至t4 ) ΔQS_A =(VA -V­B )*CS_A ΔQS_B =(VA -VB )*CS_B ΔQS_C =VA *CS_C ΔQS_A +ΔQS_B +ΔQS_C =(3VA -2VB )*(1/3)*CS If the second voltage V B is one and a half times the first voltage V A (that is, V B =1.5V A ), the net charge supplied to the common voltage electrode 151 is zero, so the stray capacitance is sensed for the touch. The result has no effect. A similar situation occurs in the (3m-1)th sensing period: in the conversion phase 41 of the (3m-1)th sensing period (eg, t 2 to t 3 ) Q S_A =(V A -V B )*C S_A Q S_B = (V A - V B ) * C S_B Q S_C = (V A - 0) * C S_C in the precharge phase 42 of the (3m - 1)th sensing period (eg, t 3 to t 4 ) Q S _ A =(0-0)*C S_A Q S_B =(0-0)*C S_B Q S_C =(0-0)*C S_C for the entire (3m-1)th sensing period (eg t 2 to t 4 ) ΔQ S_A = (V A - V B ) * C S_A ΔQ S_B = (V A - V B ) * C S_B ΔQ S_C = V A * C S_C ΔQ S_A + ΔQ S_B + ΔQ S_C = (3V A -2V B )*(1/3)*C S

類似於第(3m-2)個感測週期,如果於第(3m-1)個感測週期當中,第二電壓VB 為第一電壓VA 的一倍半(亦即,VB =1.5VA ),則提供給共電壓電極151的淨電荷為零,因此雜散電容對於觸控感測結果沒有影響。第3m個感測週期也有類似的情形: 於第3m個感測週期的轉換階段41(例如t4 至t5 ) QS_A =(VA -0)*CS_A QS_B =(VA -VB )*CS_B QS_C =(VA -VB )*CS_C 於第3m個感測週期的預充電階段42(例如t5 至t6 ) QS _A =(0-0)*CS_A QS_B =(0-0)*CS_B QS_C =(0-0)*CS_C 於整個第3m個感測週期(例如t4 至t6 ) ΔQS_A =VA *CS_A ΔQS_B =(VA -VB )*CS_B ΔQS_C =(VA -VB )*CS_C ΔQS_A +ΔQS_B +ΔQS_C =(3VA -2VB )*(1/3)*CS Similar to the (3m-2)th sensing period, if in the (3m-1)th sensing period, the second voltage V B is one and a half times the first voltage V A (ie, V B = 1.5) V A ), the net charge supplied to the common voltage electrode 151 is zero, so the stray capacitance has no effect on the touch sensing result. A similar situation occurs in the 3mth sensing period: in the conversion phase 41 of the 3m sensing period (eg, t 4 to t 5 ) Q S_A = (V A -0) * C S_A Q S_B = (V A -V B )*C S_B Q S_C =(V A -V B )*C S_C in the pre-charging phase 42 of the 3mth sensing period (eg t 5 to t 6 ) Q S _ A =(0-0)*C S_A Q S_B = (0-0) * C S_B Q S_C = (0-0) * C S_C over the entire 3m sensing period (eg t 4 to t 6 ) ΔQ S_A = V A * C S_A ΔQ S_B = (V A -V B )*C S_B ΔQ S_C =(V A -V B )*C S_C ΔQ S_A +ΔQ S_B +ΔQ S_C =(3V A -2V B )*(1/3)*C S

類似於第(3m-1)個感測週期,如果於第3m個感測週期當中,第二電壓VB 為第一電壓VA 的一倍半(亦即,VB =1.5VA ),則提供給共電壓電極151的淨電荷為零,因此雜散電容對於觸控感測結果沒有影響。Similar to the (3m-1)th sensing period, if the second voltage V B is one and a half times the first voltage V A (ie, V B =1.5V A ) during the 3m sensing period, Then, the net charge supplied to the common voltage electrode 151 is zero, so the stray capacitance has no effect on the touch sensing result.

一般來說,共電壓電極151下方的多條源極線13平均分為n群(n為大於1的整數)。於轉換階段41,對共電壓電極151施以第一電壓VA ;於預充電階段42,則不施以電壓(或接地)。對於每ㄧ群源極線,於連續n個感測週期,除了一個感測週期外,於轉換週期41施以第二電壓VB 。對於每ㄧ感測週期,對於所有群源極線,除了一群源極線外,於轉換週期41施以第二電壓VB 。如果第二電壓VB 大約等於(n/(n-1))*VA ,則提供給共電壓電極151的淨電荷為零,因此雜散電容對於觸控感測結果沒有影響。In general, the plurality of source lines 13 under the common voltage electrode 151 are equally divided into n groups (n is an integer greater than 1). In the conversion phase 41, the common voltage electrode 151 is applied with a first voltage V A ; in the pre-charging phase 42, no voltage (or ground) is applied. For each group of source lines, a second voltage V B is applied to the conversion period 41 for a continuous n sensing periods except for one sensing period. For each sense period, a second voltage V B is applied to the conversion period 41 for all group source lines except for a group of source lines. If the second voltage V B is approximately equal to (n/(n-1))*V A , the net charge supplied to the common voltage electrode 151 is zero, and thus the stray capacitance has no effect on the touch sensing result.

以上所述僅為本發明之較佳實施例而已,並非用以限定本發明之申請專利範圍;凡其它未脫離發明所揭示之精神下所完成之等效改變或修飾,均應包含在下述之申請專利範圍內。The above description is only the preferred embodiment of the present invention, and is not intended to limit the scope of the present invention; all other equivalent changes or modifications which are not departing from the spirit of the invention should be included in the following Within the scope of the patent application.

100‧‧‧自電容內嵌式觸控螢幕
11‧‧‧閘極線
13‧‧‧源極線
15‧‧‧共電壓層
151‧‧‧共電壓電極
22‧‧‧共電壓單元
41‧‧‧轉換階段
42‧‧‧預充電階段
G‧‧‧閘極
S‧‧‧源極
VCOM‧‧‧共電壓
VCOM1、VCOM2、VCOM3‧‧‧共電壓電極
S1、S2、S3‧‧‧源極
G1、G2、G3‧‧‧閘極
CC1、CC2‧‧‧等效電容
CS1、CS2、CS3‧‧‧等效電容
CG1、CG2、CG3‧‧‧等效電容
VA‧‧‧電壓/第一電壓
VB‧‧‧第二電壓
VS‧‧‧電壓
VG‧‧‧電壓
S_A‧‧‧第一群源極線
S_B‧‧‧第二群源極線
S_C‧‧‧第三群源極線
CS_A‧‧‧第一等效電容
CS_B‧‧‧第二等效電容
CS_C‧‧‧第三等效電容
100‧‧‧Self-capacitor in-cell touch screen
11‧‧‧ gate line
13‧‧‧ source line
15‧‧‧Common voltage layer
151‧‧‧Common voltage electrode
22‧‧‧Common voltage unit
41‧‧‧Conversion phase
42‧‧‧Precharge stage
G‧‧‧ gate
S‧‧‧ source
VCOM‧‧‧ common voltage
VCOM1, VCOM2, VCOM3‧‧‧ common voltage electrode
S1, S2, S3‧‧‧ source
G1, G2, G3‧‧‧ gate
C C1 , C C2 ‧‧‧ equivalent capacitance
C S1 , C S2 , C S3 ‧‧‧ equivalent capacitance
C G1 , C G2 , C G3 ‧‧‧ equivalent capacitance
V A ‧‧‧Voltage / First Voltage
V B ‧‧‧second voltage
V S ‧‧‧ voltage
V G ‧‧‧ voltage
S_A‧‧‧The first group of source lines
S_B‧‧‧Second group source line
S_C‧‧‧ third group source line
C S_A ‧‧‧First equivalent capacitance
C S_B ‧‧‧Second equivalent capacitance
C S_C ‧‧‧ third equivalent capacitance

第一圖顯示本發明實施例之自電容內嵌式觸控螢幕的透視圖。 第二圖顯示第一圖的共電壓層。 第三圖顯示第一圖之共電壓電極、源極線與閘極線的等效電容之電路圖。 第四圖顯示第一圖之觸控螢幕的操作時序圖。 第五A圖顯示本發明第一實施例之共電壓電極與源極線之間的等效電容之電路圖。 第五B圖顯示第五A圖之觸控螢幕的操作時序圖。 第六A圖顯示本發明第二實施例之共電壓電極與源極線之間的等效電容之電路圖。 第六B圖顯示第六A圖之觸控螢幕的操作時序圖。The first figure shows a perspective view of a self-capacitance in-cell touch screen of an embodiment of the present invention. The second figure shows the common voltage layer of the first figure. The third figure shows the circuit diagram of the equivalent capacitance of the common voltage electrode, the source line and the gate line of the first figure. The fourth figure shows the operation timing diagram of the touch screen of the first figure. Figure 5A is a circuit diagram showing the equivalent capacitance between the common voltage electrode and the source line of the first embodiment of the present invention. FIG. 5B shows an operation timing chart of the touch screen of FIG. Figure 6A is a circuit diagram showing the equivalent capacitance between the common voltage electrode and the source line of the second embodiment of the present invention. Figure 6B shows an operational timing diagram of the touch screen of Figure 6A.

VCOM‧‧‧共電壓 VCOM‧‧‧ common voltage

S_A‧‧‧第一群源極線 S_A‧‧‧The first group of source lines

S_B‧‧‧第二群源極線 S_B‧‧‧Second group source line

CS_A‧‧‧第一等效電容 C S_A ‧‧‧First equivalent capacitance

CS_B‧‧‧第二等效電容 C S_B ‧‧‧Second equivalent capacitance

Claims (8)

一種內嵌式觸控螢幕的驅動方法,包含:提供一觸控螢幕,其共電壓層分割為複數共電壓電極,於觸控感測模式,作為感測點;將一目前共電壓電極下方的複數源極線平均分為n群,其中n為大於1的整數;於每一感測週期的轉換階段,對該目前共電壓電極施以第一電壓VA;及對該目前共電壓電極下方的每一群源極線,施以第二電壓VB,使得該些源極線提供給該目前共電壓電極的淨電荷為零,因此該目前共電壓電極相應的雜散電容對於觸控感測結果沒有影響;對於每一群源極線,於連續n個感測週期,除了一個感測週期外,於轉換週期施以該第二電壓VB;對於每一感測週期,對於所有群源極線,除了一群源極線外,於轉換週期施以該第二電壓VB;其中該第二電壓VB等於(n/(n-1))*VAA driving method of an in-cell touch screen includes: providing a touch screen, wherein the common voltage layer is divided into a plurality of common voltage electrodes, in a touch sensing mode, as a sensing point; and a current common voltage electrode The plurality of source lines are equally divided into n groups, wherein n is an integer greater than one; at the conversion phase of each sensing period, the current common voltage electrode is applied with a first voltage V A ; and below the current common voltage electrode Each group of source lines is applied with a second voltage V B such that the net charge provided by the source lines to the current common voltage electrode is zero, so the corresponding stray capacitance of the current common voltage electrode is for touch sensing The result has no effect; for each group of source lines, the second voltage V B is applied to the conversion period except for one sensing period for successive n sensing periods; for each sensing period, for each group source The line, except for a group of source lines, applies the second voltage V B during the conversion period; wherein the second voltage V B is equal to (n/(n-1))*V A . 根據申請專利範圍第1項所述內嵌式觸控螢幕的驅動方法,於每一感測週期的預充電階段,對該目前共電壓電極不施以電壓。 According to the driving method of the in-cell touch screen according to the first aspect of the patent application, no voltage is applied to the current common voltage electrode in the pre-charging phase of each sensing period. 根據申請專利範圍第1項所述內嵌式觸控螢幕的驅動方法,其中該內嵌式觸控螢幕包含自電容內嵌式觸控螢幕。 The driving method of the in-cell touch screen according to the first aspect of the patent application, wherein the in-cell touch screen comprises a self-capacitance in-cell touch screen. 根據申請專利範圍第1項所述內嵌式觸控螢幕的驅動方法,於顯示模式時,該些共電壓電極連接至一共電壓。 According to the driving method of the in-cell touch screen according to the first aspect of the patent application, in the display mode, the common voltage electrodes are connected to a common voltage. 一種內嵌式觸控螢幕,包含:複數閘極線,橫向設置;複數源極線,縱向設置;及一共電壓層,分割為多個共電壓電極,於觸控感測模式時作為感測點,於顯示模式時連接至一共電壓;其中一目前共電壓電極下方的源極線平均分為n群,其中n為大於1的整數;於每一感測週期的轉換階段,對該目前共電壓電極施以第一電壓VA;及對該目前共電壓電極下方的每一群源極線,施以第二電壓VB,使得該些源極線提供給該目前共電壓電極的淨電荷為零,因此該目前共電壓電極相應的雜散電容對於觸控感測結果沒有影響;對於每一群源極線,於連續n個感測週期,除了一個感測週期外,於轉換週期施以該第二電壓VB;對於每一感測週期,對於所有群源極線,除了一群源極線外,於轉換週期施以該第二電壓VB;其中該第二電壓VB等於(n/(n-1))*VAAn in-cell touch screen comprising: a plurality of gate lines, a lateral arrangement; a plurality of source lines, a longitudinal setting; and a common voltage layer divided into a plurality of common voltage electrodes for use as a sensing point in the touch sensing mode Connected to a common voltage in the display mode; one of the source lines below the current common voltage electrode is equally divided into n groups, where n is an integer greater than 1; the current common voltage is converted during each sensing period Applying a first voltage V A to the electrode; and applying a second voltage V B to each of the source lines below the current common voltage electrode such that the net charges provided by the source lines to the current common voltage electrode are zero Therefore, the corresponding stray capacitance of the current common voltage electrode has no influence on the touch sensing result; for each group of source lines, in the continuous n sensing periods, except for one sensing period, the switching period is applied Two voltages V B ; for each sense period, for all group source lines, except for a group of source lines, the second voltage V B is applied during the conversion period; wherein the second voltage V B is equal to (n/( N-1)) *V A . 根據申請專利範圍第5項所述之內嵌式觸控螢幕,其中該些閘極線、該些源極線及該共電壓層依序設置,且彼此互相隔離。 The in-cell touch screen of claim 5, wherein the gate lines, the source lines, and the common voltage layer are sequentially disposed and isolated from each other. 根據申請專利範圍第5項所述之內嵌式觸控螢幕,其中該內嵌式觸控螢幕包含自電容內嵌式觸控螢幕。 The in-cell touch screen of claim 5, wherein the in-cell touch screen comprises a self-capacitance in-cell touch screen. 根據申請專利範圍第5項所述之內嵌式觸控螢幕,於每一感測週期的預充電階段,對該目前共電壓電極不施以電壓。 According to the in-cell touch screen described in claim 5, no voltage is applied to the current common voltage electrode during the pre-charging phase of each sensing cycle.
TW104120139A 2015-06-23 2015-06-23 In-cell touch screen and a method of driving the same TWI590138B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW104120139A TWI590138B (en) 2015-06-23 2015-06-23 In-cell touch screen and a method of driving the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW104120139A TWI590138B (en) 2015-06-23 2015-06-23 In-cell touch screen and a method of driving the same

Publications (2)

Publication Number Publication Date
TW201701138A TW201701138A (en) 2017-01-01
TWI590138B true TWI590138B (en) 2017-07-01

Family

ID=58401089

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104120139A TWI590138B (en) 2015-06-23 2015-06-23 In-cell touch screen and a method of driving the same

Country Status (1)

Country Link
TW (1) TWI590138B (en)

Also Published As

Publication number Publication date
TW201701138A (en) 2017-01-01

Similar Documents

Publication Publication Date Title
KR102213697B1 (en) Touch input sensing method using mutual capacitance with matrix-disposed electrode pads and device for the same
KR101602842B1 (en) Capacitive type touch signal detection apparatus and mentod
US9274653B2 (en) Touch detection device and display device having touch sensor function
US8988385B2 (en) Apparatus for driving touch panel and display apparatus comprising the same
US20180107315A1 (en) Touch Display Device, Method for Driving the Same, Driving Circuit, Data-Driving Circuit, and Gate-Driving Circuit
JP5840510B2 (en) Display panel and display panel driving method
KR101566939B1 (en) Capacitive type touch signal detection apparatus and mentod
KR20180034335A (en) Panel driving apparatus and panel driving method
TWI599927B (en) In-cell touch screen and a method of driving the same
KR102333962B1 (en) Touch Detection Apparatus and Touch Display Device with the same
CN109669568B (en) Active matrix touch panel with narrow bezel
TWI590138B (en) In-cell touch screen and a method of driving the same
KR20130016894A (en) Display having touch sensor
CN106325627B (en) for embedded touch screen and its driving method
US9971462B2 (en) In-cell touch screen and a method of driving the same
KR20160094572A (en) Touch Display Device And Method Of Driving The Same
KR102431778B1 (en) Display apparatus with integrated touch screen comprising the same
JP6010653B2 (en) Display device, driving circuit, driving method, and electronic apparatus