TWI587624B - Front-end amplifier circuit - Google Patents

Front-end amplifier circuit Download PDF

Info

Publication number
TWI587624B
TWI587624B TW105108046A TW105108046A TWI587624B TW I587624 B TWI587624 B TW I587624B TW 105108046 A TW105108046 A TW 105108046A TW 105108046 A TW105108046 A TW 105108046A TW I587624 B TWI587624 B TW I587624B
Authority
TW
Taiwan
Prior art keywords
current
terminal
type transistor
coupled
amplifier
Prior art date
Application number
TW105108046A
Other languages
Chinese (zh)
Other versions
TW201735527A (en
Inventor
吳重雨
宋亞軒
Original Assignee
華邦電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 華邦電子股份有限公司 filed Critical 華邦電子股份有限公司
Priority to TW105108046A priority Critical patent/TWI587624B/en
Application granted granted Critical
Publication of TWI587624B publication Critical patent/TWI587624B/en
Publication of TW201735527A publication Critical patent/TW201735527A/en

Links

Description

前端放大器電路 Front end amplifier circuit

本發明係有關於一種適用於生醫電子領域之前端放大器電路,特別係一種適用於生醫電子領域之電流模式前端放大器電路。 The present invention relates to a front-end amplifier circuit suitable for use in the field of biomedical electronics, and more particularly to a current mode front-end amplifier circuit suitable for use in the field of biomedical electronics.

在生醫電子領域中偵測腦電訊號時,前端放大電路具有舉足輕重的腳色,由於生理訊號具有低頻、低振幅等特性,一個適當放大生理訊號的前端電路必須要有低雜訊和高的放大倍率。除此之外,功率的消耗需要越小越好,以應用在穿戴式裝置上做長時間的測量。 When detecting EEG signals in the field of biomedical electronics, the front-end amplifier circuit has a pivotal role. Because of the low frequency and low amplitude of the physiological signal, a front-end circuit that properly amplifies the physiological signal must have low noise and high frequency. Magnification. In addition to this, the power consumption needs to be as small as possible for long-term measurement on a wearable device.

有鑑於此,本發明提出一種前端放大器電路,用以接收一生物信號,包括:一信號通道。上述信號通道放大上述生物信號而產生一偵測電流。上述信號通道包括一電容耦合轉導放大器。上述電容耦合轉導放大器將上述生物信號放大一轉導增益,而輸出一第一電流。 In view of this, the present invention provides a front end amplifier circuit for receiving a biosignal, including: a signal path. The signal channel amplifies the biosignal to generate a detection current. The signal path includes a capacitively coupled transconductance amplifier. The capacitive coupling transduction amplifier amplifies the biological signal by a transduction gain and outputs a first current.

根據本發明之一實施例,上述電容耦合轉導放大器包括:一第一輸入電容、一第二輸入電容、一第一共模P型電晶體、一第二共模P型電晶體、一第一電流源、一第二電流源、一第一轉導P型電晶體、一第二轉導P型電晶體、一線性電阻、一第三轉導P型電晶體、一第四轉導P型電晶體、一第一轉 導N型電晶體、一第二轉導N型電晶體、一第三轉導N型電晶體以及一第四轉導N型電晶體。上述第一輸入電容耦接於一輸入負極端以及一第一節點之間。上述第二輸入電容耦接於一輸入正極端以及一第二節點之間,其中上述第一輸入電容以及上述第二輸入電容以一差動模式,交流耦合上述生物信號。上述第一共模P型電晶體用以將一共模電壓提供至上述第一節點。上述第二共模P型電晶體用以將上述共模電壓提供至上述第二節點。上述第一電流源用以提供一第一轉導偏壓電流。上述第二電流源用以提供一第二轉導偏壓電流。上述第一轉導P型電晶體之源極端接收上述第一轉導偏壓電流,閘極端耦接至上述第二節點。上述第二轉導P型電晶體之源極端接收上述第二轉導偏壓電流,閘極端耦接至上述第一節點,其中上述第一轉導P型電晶體以及上述第二轉導P型電晶體用以產生上述轉導增益。上述線性電阻耦接於上述第一轉導P型電晶體之源極端以及上述第二轉導P型電晶體之源極端之間,其中上述線性電阻用以提升上述轉導增益之一線性度。上述第三轉導P型電晶體之源極端耦接至上述第一轉導P型電晶體之汲極端,閘極端耦接至一轉導偏壓電壓。上述第四轉導P型電晶體之源極端耦接至上述第二轉導P型電晶體之汲極端,閘極端耦接至上述轉導偏壓電壓,汲極端耦接至一轉導輸出端,其中上述轉導輸出端輸出上述第一電流。上述第一轉導N型電晶體之汲極端以及閘極端皆耦接至上述第三轉導P型電晶體之汲極端。上述第二轉導N型電晶體之汲極端耦接至上述轉導輸出端,閘極端耦接至上述第一轉導N型電晶體之閘極端。上述第三轉導N型電晶體 之汲極端以及閘極端皆耦接至第一轉導N型電晶體之源極端,源極端耦接至一接地端。上述第四轉導N型電晶體之汲極端耦接至上述第二轉導N型電晶體之源極端,閘極端耦接至上述第三轉導N型電晶體之閘極端,源極端耦接至上述接地端。 According to an embodiment of the invention, the capacitive coupling transduction amplifier comprises: a first input capacitor, a second input capacitor, a first common mode P-type transistor, a second common mode P-type transistor, and a first a current source, a second current source, a first transmissive P-type transistor, a second transmissive P-type transistor, a linear resistor, a third transconductance P-type transistor, and a fourth transconductance P Type transistor, a first turn An N-type transistor, a second transmissive N-type transistor, a third transconductance N-type transistor, and a fourth transconductance N-type transistor. The first input capacitor is coupled between an input negative terminal and a first node. The second input capacitor is coupled between an input positive terminal and a second node, wherein the first input capacitor and the second input capacitor ac-couple the biosignal in a differential mode. The first common mode P-type transistor is configured to provide a common mode voltage to the first node. The second common mode P-type transistor is configured to provide the common mode voltage to the second node. The first current source is configured to provide a first transducing bias current. The second current source is configured to provide a second transducing bias current. The source terminal of the first transducing P-type transistor receives the first transducing bias current, and the gate terminal is coupled to the second node. The source terminal of the second transducing P-type transistor receives the second transducing bias current, and the gate terminal is coupled to the first node, wherein the first transducing P-type transistor and the second transducing P-type A transistor is used to generate the above-described transduction gain. The linear resistor is coupled between the source terminal of the first transducing P-type transistor and the source terminal of the second transducing P-type transistor, wherein the linear resistor is used to increase linearity of the transduction gain. The source terminal of the third transduction P-type transistor is coupled to the first terminal of the first transmissive P-type transistor, and the gate terminal is coupled to a transconductance bias voltage. The source terminal of the fourth transducing P-type transistor is coupled to the 汲 terminal of the second transmissive P-type transistor, the gate terminal is coupled to the transimpedance bias voltage, and the 汲 terminal is coupled to a transconductance output terminal. The transduction output terminal outputs the first current. The 汲 terminal and the gate terminal of the first transducing N-type transistor are coupled to the 汲 terminal of the third transducing P-type transistor. The second transducing N-type transistor is coupled to the transduction output terminal, and the gate terminal is coupled to the gate terminal of the first transducing N-type transistor. The third transduction N-type transistor The extreme terminal and the gate terminal are all coupled to the source terminal of the first transduction N-type transistor, and the source terminal is coupled to a ground terminal. The 转 terminal of the fourth transduction N-type transistor is extremely coupled to the source terminal of the second transduction N-type transistor, and the gate terminal is coupled to the gate terminal of the third transduction N-type transistor, and the source terminal is coupled To the above ground terminal.

根據本發明之一實施例,中上述信號通道更包括:一帶通濾波放大器、一可調整增益放大器以及一偏移消除電路。上述帶通濾波放大器將上述第一電流濾除於一頻帶寬之外的雜訊且放大一第一電流增益,而輸出一第二電流。上述可調整增益放大器將上述第二電流放大一第二電流增益而於一調整增益輸出端輸出上述偵測電流,其中上述第二電流增益係為可調整。上述偏移消除電路用以消除上述電容耦合轉導放大器、上述帶通濾波放大器以及上述可調整增益放大器之輸出偏移電流。 According to an embodiment of the invention, the signal channel further includes: a band pass filter amplifier, an adjustable gain amplifier, and an offset cancellation circuit. The band pass filter amplifier filters the first current out of noise outside the frequency band and amplifies a first current gain, and outputs a second current. The adjustable gain amplifier amplifies the second current to a second current gain and outputs the detected current at an adjusted gain output, wherein the second current gain is adjustable. The offset cancellation circuit is configured to eliminate the output offset current of the capacitive coupling transduction amplifier, the band pass filter amplifier, and the adjustable gain amplifier.

根據本發明之一實施例,前端放大器電路更包括一轉阻放大器。上述轉阻放大器用以將上述偵測電流經由一轉阻增益轉換為一電壓信號,且提供一驅動能力至耦接之一量測系統,其中上述生物信號至上述電壓信號放大之倍率係為上述轉導增益、上述第一電流增益、上述第二電流增益以及上述轉阻增益之乘積。 According to an embodiment of the invention, the front end amplifier circuit further includes a transimpedance amplifier. The transimpedance amplifier is configured to convert the detection current into a voltage signal via a resistance gain, and provide a driving capability to the coupling measurement system, wherein the magnification of the biological signal to the voltage signal is The product of the transconductance gain, the first current gain, the second current gain, and the transimpedance gain.

根據本發明之一實施例,上述帶通濾波放大器包括:一帶通主電流路徑、一帶通濾波器以及一帶通副電流路徑。上述帶通主電流路徑具有一帶通主偏壓電流且用以接收上述第一電流。上述帶通濾波器交流耦合至上述帶通主電流路徑,將上述第一電流濾除上述頻帶寬之外的雜訊而產生一濾波 信號。上述帶通副電流路徑具有一帶通副偏壓電流且根據上述濾波信號而產生上述第二電流,其中上述第一電流增益係為上述帶通副偏壓電流與上述帶通主偏壓電流之比例。 According to an embodiment of the invention, the band pass filter amplifier includes a band pass main current path, a band pass filter, and a band pass sub current path. The bandpass main current path has a bandpass main bias current and is configured to receive the first current. The band pass filter is AC coupled to the band pass main current path, and the first current is filtered to remove noise outside the frequency band to generate a filter. signal. The band pass sub current path has a band pass sub-bias current and generates the second current according to the filtered signal, wherein the first current gain is a ratio of the band pass sub-bias current to the band pass main bias current .

根據本發明之一實施例,上述帶通主電流路徑包括:一第一主P型電晶體、一第二主P型電晶體、一第一主N型電晶體以及一第二主N型電晶體。上述第一主P型電晶體之源極端耦接至一供應電壓,閘極端耦接至汲極端。上述第二主P型電晶體之源極端耦接至上述第一主P型電晶體之汲極端,閘極端以及汲極端接收上述第一電流。上述第一主N型電晶體之閘極端以及汲極端耦接至上述第一主P型電晶體之汲極端。上述第二主N型電晶體之閘極端以及汲極端耦接至上述第一主N型電晶體之源極端,源極端耦接至上述接地端。 According to an embodiment of the invention, the band pass main current path includes: a first main P type transistor, a second main P type transistor, a first main N type transistor, and a second main N type electric Crystal. The source terminal of the first main P-type transistor is coupled to a supply voltage, and the gate terminal is coupled to the 汲 terminal. The source terminal of the second main P-type transistor is coupled to the 汲 terminal of the first main P-type transistor, and the gate terminal and the 汲 terminal receive the first current. The gate terminal and the 汲 terminal of the first main N-type transistor are coupled to the 汲 terminal of the first main P-type transistor. The gate terminal and the drain terminal of the second main N-type transistor are coupled to the source terminal of the first main N-type transistor, and the source terminal is coupled to the ground terminal.

根據本發明之一實施例,上述第一主P型電晶體、上述第二主P型電晶體、上述第一主N型電晶體以及上述第二主N型電晶體係皆操作於次臨界(sub-threshold)區,以降低功率損耗。 According to an embodiment of the invention, the first main P-type transistor, the second main P-type transistor, the first main N-type transistor, and the second main N-type electro-crystal system are all operated in a sub-critical ( Sub-threshold) area to reduce power loss.

根據本發明之一實施例,上述帶通副電流路徑包括:一第一副P型電晶體、一第二副P型電晶體、一第一副N型電晶體以及一第二副N型電晶體。上述第一副P型電晶體之源極端耦接至上述供應電壓,閘極端耦接至汲極端。上述第二副P型電晶體之源極端耦接至上述第一副P型電晶體之汲極端,汲極端耦接至一帶通輸出端。上述第一副N型電晶體之閘極端耦接至上述第二副P型電晶體之閘極端,汲極端耦接至上述帶通輸出端,其中上述第一副N型電晶體之閘極端接收上述濾波信 號,上述帶通輸出端輸出上述第二電流。上述第二副N型電晶體之閘極端以及汲極端耦接至上述第一副N型電晶體之源極端,源極端耦接至上述接地端,其中上述帶通副電流路徑之電晶體的尺寸與上述帶通主電流路徑之電晶體尺寸之比例係為上述第一電流增益。 According to an embodiment of the invention, the band pass sub current path includes: a first sub P type transistor, a second sub P type transistor, a first sub N type transistor, and a second sub N type electric Crystal. The source terminal of the first sub-P-type transistor is coupled to the supply voltage, and the gate terminal is coupled to the 汲 terminal. The source terminal of the second sub-P-type transistor is coupled to the 汲 terminal of the first sub-P-type transistor, and the 汲 terminal is coupled to a band-pass output terminal. The gate terminal of the first sub-N-type transistor is coupled to the gate terminal of the second sub-P-type transistor, and the 汲 terminal is coupled to the band-pass output terminal, wherein the gate terminal of the first sub-N-type transistor receives Filter letter No. The above band pass output terminal outputs the second current. The gate terminal of the second sub-N-type transistor and the 汲 terminal are coupled to the source terminal of the first sub-N-type transistor, and the source terminal is coupled to the ground terminal, wherein the size of the transistor of the band-pass sub-current path The ratio of the size of the transistor to the bandpass main current path is the first current gain described above.

根據本發明之一實施例,上述第一副P型電晶體、上述第二副P型電晶體、上述第一副N型電晶體以及上述第二副N型電晶體係皆操作於次臨界區,以降低功率損耗。 According to an embodiment of the present invention, the first sub-P-type transistor, the second sub-P-type transistor, the first sub-N-type transistor, and the second sub-N-type electro-crystal system are all operated in a subcritical region To reduce power loss.

根據本發明之一實施例,上述帶通濾波器包括:一第一差動輸入放大器、一第一耦合電容、一第一偏壓P型電晶體、一低通電容、一第二差動輸入放大器、一第三差動輸入放大器、一第二耦合電容以及一第二偏壓P型電晶體。上述第一差動輸入放大器用以產生一轉移電導,且包括一第一負輸入端、一第一正輸入端以及一第一輸出端,其中上述第一負輸入端耦接至上述第一輸出端。上述第一耦合電容耦接於上述第二主P型電晶體之閘極端以及上述第一正輸入端之間。上述第一偏壓P型電晶體具有一通道電阻,源極端耦接至上述共模電壓,汲極端耦接至上述第一正輸入端,閘極端耦接至一第一帶通偏壓電壓。上述低通電容耦接於上述第一輸出端以及上述接地端之間。上述第二差動輸入放大器包括一第二負輸入端、一第二正輸入端以及一第二輸出端,其中上述第二負輸入端耦接至上述第二輸出端,上述第二正輸入端耦接至上述第一輸出端。上述第三差動輸入放大器包括一第三負輸入端、一第三正輸入端以及一第三輸出端,其中上述第三負輸入端耦接至上述 第三輸出端,上述第三輸出端輸出上述濾波信號。上述第二耦合電容耦接於上述第二輸出端以及上述第三正輸入端之間,用以隔絕上述第二差動輸入放大器以及上述第三差動輸入放大器。上述第二偏壓P型電晶體用以將一直流偏壓提供至上述第三正輸入端,使得上述第二副P型電晶體之閘極端以及上述第一副N型電晶體之閘極端偏壓至上述直流偏壓。 According to an embodiment of the invention, the band pass filter includes: a first differential input amplifier, a first coupling capacitor, a first bias P-type transistor, a low-pass capacitor, and a second differential input. An amplifier, a third differential input amplifier, a second coupling capacitor, and a second bias P-type transistor. The first differential input amplifier is configured to generate a transfer conductance, and includes a first negative input terminal, a first positive input terminal, and a first output terminal, wherein the first negative input terminal is coupled to the first output terminal end. The first coupling capacitor is coupled between the gate terminal of the second main P-type transistor and the first positive input terminal. The first bias P-type transistor has a channel resistance, the source terminal is coupled to the common mode voltage, and the drain terminal is coupled to the first positive input terminal, and the gate terminal is coupled to a first band pass bias voltage. The low-pass capacitor is coupled between the first output end and the ground end. The second differential input amplifier includes a second negative input terminal, a second positive input terminal, and a second output terminal, wherein the second negative input terminal is coupled to the second output terminal, and the second positive input terminal The first output end is coupled to the first output end. The third differential input amplifier includes a third negative input terminal, a third positive input terminal, and a third output terminal, wherein the third negative input terminal is coupled to the above The third output end outputs the filtered signal. The second coupling capacitor is coupled between the second output terminal and the third positive input terminal for isolating the second differential input amplifier and the third differential input amplifier. The second bias P-type transistor is configured to provide a DC bias voltage to the third positive input terminal, such that the gate terminal of the second sub-P-type transistor and the gate of the first sub-N-type transistor are extremely biased Pressed to the above DC bias.

根據本發明之一實施例,上述頻帶寬包括一低通截止頻率以及一高通截止頻率,其中上述轉移電導以及上述低通電容決定上述低通截止頻率,其中上述第一耦合電容以及上述通道電阻決定上述高通截止頻率。 According to an embodiment of the invention, the frequency bandwidth includes a low pass cutoff frequency and a high pass cutoff frequency, wherein the transfer conductance and the low pass capacitance determine the low pass cutoff frequency, wherein the first coupling capacitor and the channel resistance determine The above high pass cutoff frequency.

根據本發明之另一實施例,上述第一偏壓P型電晶體係操作於截止區,使得上述通道電阻係為高阻抗。 According to another embodiment of the present invention, the first bias P-type electro-emissive system operates in a cut-off region such that the channel resistance is high impedance.

根據本發明之一實施例,上述偏移消除電路包括:一數位控制器、一虛擬電阻重置模組、一偏移偵測電路、一第一電流數位類比轉換器、一第二電流數位類比轉換器、一第三電流數位類比轉換器以及一暫存器。上述數位控制器產生一第一重置信號、一第二重置信號以及一選擇信號。上述虛擬電阻重置模組根據上述第一重置信號將上述第一節點以及上述第二節點短路至上述共模電壓,以及根據上述第二重置信號將上述第一正輸入端短路至上述共模電壓且將上述第三正輸入端短路至上述直流偏壓。上述偏移偵測電路根據上述選擇信號,依序偵測上述第一電流、上述第二電流以及上述偵測電流,而產生一第一補償電流碼、一第二補償電流碼以及一第三補償電流碼。上述第一電流數位類比轉換器根據上述第一補償 電流碼,對上述轉導輸出端抽取或提供一第一補償電流。上述第二電流數位類比轉換器根據上述第二補償電流碼,對上述帶通輸出端抽取或提供一第二補償電流。上述第三電流數位類比轉換,根據上述第三補償電流碼,對上述調整增益輸出端抽取或提供一第三補償電流。上述暫存器用以儲存上述第一補償電流碼、上述第二補償電流碼以及上述第三補償電流碼。 According to an embodiment of the invention, the offset cancellation circuit includes: a digital controller, a virtual resistance reset module, an offset detection circuit, a first current digital analog converter, and a second current digital analogy. A converter, a third current digital analog converter, and a register. The digital controller generates a first reset signal, a second reset signal, and a selection signal. The virtual resistance reset module shorts the first node and the second node to the common mode voltage according to the first reset signal, and shorts the first positive input terminal to the total according to the second reset signal The mode voltage and shorting the third positive input terminal to the DC bias voltage. The offset detecting circuit sequentially detects the first current, the second current, and the detecting current according to the selection signal, and generates a first compensation current code, a second compensation current code, and a third compensation. Current code. The first current digital analog converter is configured according to the first compensation described above The current code extracts or provides a first compensation current to the transduction output. The second current digital analog converter extracts or supplies a second compensation current to the band pass output according to the second compensation current code. The third current digital analog conversion, according to the third compensation current code, extracts or provides a third compensation current to the adjusted gain output. The register is configured to store the first compensation current code, the second compensation current code, and the third compensation current code.

根據本發明之一實施例,上述信號通道更包括:一第一開關以及一第二開關。上述第一開關耦接於上述電容耦合轉導放大器以及上述帶通濾波放大器之間,且根據上述數位控制器之一第一斷路信號而不導通。上述第二開關耦接於上述帶通濾波放大器以及上述可調整增益放大器之間,且根據上述數位控制器之一第二斷路信號而不導通。 According to an embodiment of the invention, the signal channel further includes: a first switch and a second switch. The first switch is coupled between the capacitive coupling transduction amplifier and the band pass filter amplifier, and is not turned on according to the first open circuit signal of one of the digital controllers. The second switch is coupled between the band pass filter amplifier and the adjustable gain amplifier, and is not turned on according to the second open signal of one of the digital controllers.

根據本發明之一實施例,當上述第一開關以及上述第二開關皆不導通時,上述偏移偵測電路根據上述選擇信號偵測上述第一電流而產生上述第一補償電流碼;當上述第一開關導通而上述第二開關不導通時,上述第一電流數位類比轉換器對上述轉導輸出端抽取或提供上述第一補償電流,且上述偏移偵測電路根據上述選擇信號偵測上述第二電流而產生上述第二補償電流碼;當上述第一開關以及上述第二開關皆導通時,上述第一電流數位類比轉換器對上述轉導輸出端抽取或提供上述第一補償電流、上述第二電流數位類比轉換器對上述帶通輸出端抽取或提供上述第二補償電流以及上述偏移偵測電路根據上述選擇信號偵測上述偵測電流而產生上述第三補償電流碼。 According to an embodiment of the present invention, when the first switch and the second switch are not turned on, the offset detecting circuit generates the first compensation current code according to the selection signal to detect the first current; When the first switch is turned on and the second switch is not turned on, the first current digital analog converter extracts or supplies the first compensation current to the transduction output end, and the offset detecting circuit detects the above according to the selection signal. The second current generates the second compensation current code; when the first switch and the second switch are both turned on, the first current digital analog converter extracts or supplies the first compensation current to the transduction output end, The second current digital analog converter extracts or supplies the second compensation current to the band-pass output terminal, and the offset detecting circuit detects the detection current according to the selection signal to generate the third compensation current code.

根據本發明之一實施例,上述偏移偵測電路更包括:一取樣放大器、一選擇開關以及一比較器。上述取樣放大器用以將一輸入電流轉換為一比較電壓。上述選擇開關根據上述選擇信號,依序選擇上述第一電流、上述第二電流以及上述偵測電流之一者作為上述輸入電流。上述比較器比較上述比較電壓以及一參考電壓而產生一輸出信號,其中上述數位控制器根據上述輸出信號,而決定上述第一補償電流碼、上述第二補償電流碼以及上述第三補償電流碼。 According to an embodiment of the invention, the offset detecting circuit further includes: a sampling amplifier, a selection switch, and a comparator. The sampling amplifier is used to convert an input current into a comparison voltage. The selection switch sequentially selects one of the first current, the second current, and the detected current as the input current according to the selection signal. The comparator compares the comparison voltage and a reference voltage to generate an output signal, wherein the digital controller determines the first compensation current code, the second compensation current code, and the third compensation current code according to the output signal.

根據本發明之一實施例,前端放大器電路更包括:另一信號通道以及一多工器。上述另一信號通道接收且放大另一生物信號而產生另一偵測電流。上述多工器將上述偵測電流以及上述另一偵測電流之一者提供至上述轉阻放大器。 According to an embodiment of the invention, the front end amplifier circuit further includes: another signal path and a multiplexer. The other signal channel receives and amplifies another biosignal to generate another detected current. The multiplexer supplies one of the detected current and the other detected current to the transimpedance amplifier.

100、200‧‧‧前端放大器電路 100, 200‧‧‧ front-end amplifier circuit

110、210_1~210_N‧‧‧信號通道 110, 210_1~210_N‧‧‧ signal channel

111‧‧‧電容耦合轉導放大器 111‧‧‧Capacitively Coupled Transduction Amplifier

112、400‧‧‧帶通濾波放大器 112,400‧‧‧Bandpass Filter Amplifier

113、600‧‧‧可調整增益放大器 113, 600‧‧‧ adjustable gain amplifier

114、800‧‧‧偏移消除電路 114,800‧‧‧Offset elimination circuit

120、220、700‧‧‧轉阻放大器 120, 220, 700‧‧‧transistor amplifier

230‧‧‧多工器 230‧‧‧Multiplexer

410‧‧‧帶通主電流路徑 410‧‧‧Bandpass main current path

411‧‧‧第一主P型電晶體 411‧‧‧First main P-type transistor

412‧‧‧第二主P型電晶體 412‧‧‧Second main P-type transistor

413‧‧‧第一主N型電晶體 413‧‧‧First main N-type transistor

414‧‧‧第二主N型電晶體 414‧‧‧Second main N-type transistor

420‧‧‧帶通濾波器 420‧‧‧ bandpass filter

430‧‧‧帶通副電流路徑 430‧‧‧Bandpass secondary current path

431‧‧‧第一副P型電晶體 431‧‧‧First P-type transistor

432‧‧‧第二副P型電晶體 432‧‧‧Second pair of P-type transistors

433‧‧‧第一副N型電晶體 433‧‧‧First N-type transistor

434‧‧‧第二副N型電晶體 434‧‧‧Second pair of N-type transistors

610‧‧‧可調整增益主電流路徑 610‧‧‧Adjustable gain main current path

630‧‧‧可調整增益副電流路徑 630‧‧‧Adjustable gain secondary current path

701‧‧‧第四差動輸入放大器 701‧‧‧fourth differential input amplifier

810‧‧‧數位控制器 810‧‧‧Digital Controller

820‧‧‧虛擬電阻重置模組 820‧‧‧Virtual Resistance Reset Module

830、900‧‧‧偏移偵測電路 830, 900‧‧‧ offset detection circuit

840‧‧‧第一電流數位類比轉換器 840‧‧‧First current digital analog converter

850‧‧‧第二電流數位類比轉換器 850‧‧‧Second current digital analog converter

860‧‧‧第三電流數位類比轉換器 860‧‧‧ Third current digital analog converter

910‧‧‧選擇器 910‧‧‧Selector

920‧‧‧信號轉換電路 920‧‧‧Signal Conversion Circuit

921‧‧‧放大器 921‧‧Amplifier

922‧‧‧負回授電阻 922‧‧‧negative feedback resistor

930‧‧‧比較器 930‧‧‧ Comparator

10‧‧‧第一開關 10‧‧‧First switch

20‧‧‧第二開關 20‧‧‧second switch

30‧‧‧第三開關 30‧‧‧third switch

SB、SB1~SBN‧‧‧生物信號 SB, SB1~SBN‧‧‧ biosignal

VOUT‧‧‧電壓信號 VOUT‧‧‧ voltage signal

ID、ID1~IDN‧‧‧偵測電流 ID, ID1~IDN‧‧‧Detection current

I1‧‧‧第一電流 I1‧‧‧First current

I2‧‧‧第二電流 I2‧‧‧second current

IS‧‧‧選擇電流 IS‧‧‧Select current

NIP‧‧‧輸入正極端 NIP‧‧‧ input positive terminal

NIN‧‧‧輸入負極端 NIN‧‧‧ input negative terminal

NOGM‧‧‧轉導輸出端 NOGM‧‧‧Transfer output

NOBP‧‧‧帶通輸出端 NOBP‧‧‧ bandpass output

NOPG‧‧‧可調整增益輸出端 NOPG‧‧‧ adjustable gain output

GM‧‧‧轉導增益 GM‧‧‧transduction gain

GI1‧‧‧第一電流增益 GI1‧‧‧First current gain

GI2‧‧‧第二電流增益 GI2‧‧‧second current gain

GTI‧‧‧轉阻增益 GTI‧‧‧ resistance gain

N1‧‧‧第一節點 N1‧‧‧ first node

N2‧‧‧第二節點 N2‧‧‧ second node

VCM‧‧‧共模電壓 VCM‧‧‧ Common mode voltage

VCMC‧‧‧共模控制電壓 VCMC‧‧‧ Common Mode Control Voltage

CI1‧‧‧第一輸入電容 CI1‧‧‧first input capacitor

CI2‧‧‧第二輸入電容 CI2‧‧‧Second input capacitor

MPCM1‧‧‧第一共模P型電晶體 MPCM1‧‧‧First Common Mode P-type transistor

MPCM2‧‧‧第二共模P型電晶體 MPCM2‧‧‧Second common mode P-type transistor

IS1‧‧‧第一電流源 IS1‧‧‧ first current source

IS2‧‧‧第二電流源 IS2‧‧‧second current source

MPGM1‧‧‧第一轉導P型電晶體 MPGM1‧‧‧First Transduction P-type transistor

MPGM2‧‧‧第二轉導P型電晶體 MPGM2‧‧‧Second Transduction P-type transistor

RG‧‧‧線性電阻 RG‧‧‧linear resistance

MPGM3‧‧‧第三轉導P型電晶體 MPGM3‧‧‧ third transduction P-type transistor

MPGM4‧‧‧第四轉導P型電晶體 MPGM4‧‧‧fourth transduction P-type transistor

MNGM1‧‧‧第一轉導N型電晶體 MNGM1‧‧‧First Transduction N-Type Transistor

MNGM2‧‧‧第二轉導N型電晶體 MNGM2‧‧‧Second transduction N-type transistor

MNGM3‧‧‧第三轉導N型電晶體 MNGM3‧‧‧ third transduction N-type transistor

MNGM4‧‧‧第四轉導N型電晶體 MNGM4‧‧‧fourth transduction N-type transistor

VBGM‧‧‧轉導偏壓電壓 VBGM‧‧‧Transfer bias voltage

GND‧‧‧接地端 GND‧‧‧ ground terminal

OP1‧‧‧第一差動輸入放大器 OP1‧‧‧First Differential Input Amplifier

OP2‧‧‧第二差動輸入放大器 OP2‧‧‧Second Differential Input Amplifier

OP3‧‧‧第三差動輸入放大器 OP3‧‧‧ third differential input amplifier

CC1‧‧‧第一耦合電容 CC1‧‧‧First Coupling Capacitor

CC2‧‧‧第二耦合電容 CC2‧‧‧Second coupling capacitor

CLP‧‧‧低通電容 CLP‧‧‧ low-pass capacitor

MPB1‧‧‧第一偏壓P型電晶體 MPB1‧‧‧First bias P-type transistor

MPB2‧‧‧第二偏壓P型電晶體 MPB2‧‧‧Second bias P-type transistor

gm‧‧‧轉移電導 g m ‧‧‧Transfer conductance

INN1‧‧‧第一負輸入端 INN1‧‧‧ first negative input

INP1‧‧‧第一正輸入端 INP1‧‧‧ first positive input

NO1‧‧‧第一輸出端 NO1‧‧‧ first output

INN2‧‧‧第二負輸入端 INN2‧‧‧ second negative input

INP2‧‧‧第二正輸入端 INP2‧‧‧ second positive input

NO2‧‧‧第二輸出端 NO2‧‧‧ second output

INN3‧‧‧第三負輸入端 INN3‧‧‧ third negative input

INP3‧‧‧第三正輸入端 INP3‧‧‧ third positive input

NO3‧‧‧第三輸出端 NO3‧‧‧ third output

VDC‧‧‧直流偏壓 VDC‧‧‧ DC bias

VBPB1‧‧‧第一帶通偏壓電壓 VBPB1‧‧‧First Bandpass Bias Voltage

VBPB2‧‧‧第二帶通偏壓電壓 VBPB2‧‧‧Second bandpass bias voltage

IBPBM‧‧‧帶通主偏壓電流 IBPBM‧‧‧Bandpass main bias current

IBPBS‧‧‧帶通副偏壓電流 IBPBS‧‧‧Banding Sub-Bias Current

SF‧‧‧濾波信號 SF‧‧‧ filtered signal

VS‧‧‧供應電壓 VS‧‧‧ supply voltage

MPB3‧‧‧第三偏壓P型電晶體 MPB3‧‧‧third bias P-type transistor

MPB4‧‧‧第四偏壓P型電晶體 MPB4‧‧‧4th Bias P-type transistor

MNB1‧‧‧第一偏壓N型電晶體 MNB1‧‧‧First bias N-type transistor

MNB2‧‧‧第二偏壓N型電晶體 MNB2‧‧‧Second bias N-type transistor

S1‧‧‧第一調整開關 S1‧‧‧First adjustment switch

S2‧‧‧第二調整開關 S2‧‧‧Second adjustment switch

S3‧‧‧第三調整開關 S3‧‧‧ third adjustment switch

S4‧‧‧第四調整開關 S4‧‧‧fourth adjustment switch

IPGABM‧‧‧可調整增益主偏壓電流 IPGABM‧‧‧Adjustable Gain Main Bias Current

IPGABS‧‧‧可調整增益副偏壓電流 IPGABS‧‧‧Adjustable gain secondary bias current

RT‧‧‧回授電阻 RT‧‧‧Restoring resistor

IIN‧‧‧輸入電流 IIN‧‧‧Input current

SR1‧‧‧第一重置信號 SR1‧‧‧First reset signal

SR2‧‧‧第二重置信號 SR2‧‧‧Second reset signal

SS‧‧‧選擇信號 SS‧‧‧Selection signal

SDC‧‧‧數位補償信號 SDC‧‧‧ digital compensation signal

S1~S11‧‧‧步驟流程 S1~S11‧‧‧Step process

第1圖係顯示根據本發明之一實施例所述之前端放大器電路之方塊圖;第2圖係顯示根據本發明之另一實施例所述之前端放大器電路之方塊圖;第3圖係顯示根據本發明之一實施例所述之電容耦合轉導放大器之電路圖;第4圖係顯示根據本發明之一實施例所述之帶通濾波器之電路圖;第5圖係顯示根據本發明之一實施例所述之直流偏壓產生電路之電路圖; 第6圖係顯示根據本發明之一實施例所述之可調整增益放大器之電路圖;第7圖係顯示根據本發明之一實施例所述之轉阻放大器之電路圖;第8圖係顯示根據本發明之一實施例所述之偏移消除電路之電路圖;第9圖係顯示根據本發明之一實施例所述之第8圖之偏移偵測電路之電路圖;以及第10圖係顯示根據本發明之一實施例所述之偏移偵測流程之流程圖。 1 is a block diagram showing a front-end amplifier circuit according to an embodiment of the present invention; FIG. 2 is a block diagram showing a front-end amplifier circuit according to another embodiment of the present invention; A circuit diagram of a capacitively coupled transconductance amplifier according to an embodiment of the present invention; FIG. 4 is a circuit diagram showing a bandpass filter according to an embodiment of the present invention; and FIG. 5 is a diagram showing one of the present invention. A circuit diagram of a DC bias generating circuit according to an embodiment; 6 is a circuit diagram showing an adjustable gain amplifier according to an embodiment of the present invention; FIG. 7 is a circuit diagram showing a transimpedance amplifier according to an embodiment of the present invention; and FIG. 8 is a diagram showing Circuit diagram of an offset cancellation circuit according to an embodiment of the invention; FIG. 9 is a circuit diagram showing an offset detection circuit of FIG. 8 according to an embodiment of the present invention; and FIG. 10 is a diagram showing A flow chart of the offset detection process described in one embodiment of the invention.

為使本發明之上述目的、特徵和優點能更明顯易懂,下文特例舉一較佳實施例,並配合所附圖式,來作詳細說明如下:以下將介紹係根據本發明所述之較佳實施例。必須要說明的是,本發明提供了許多可應用之發明概念,在此所揭露之特定實施例,僅是用於說明達成與運用本發明之特定方式,而不可用以侷限本發明之範圍。 The above described objects, features, and advantages of the present invention will become more apparent from the description of the appended claims appended claims A good example. It is to be understood that the invention is not limited to the scope of the invention.

第1圖係顯示根據本發明之一實施例所述之前端放大器電路之方塊圖。如第1圖所示,前端放大器電路100用以將輸入正極端NIP以及輸入負極端NIN所接收之生物信號SB放大而產生放大之電壓信號VOUT,經由數位類比轉換器變成數位資料後,可再由數位訊號處理器分析,即時得知身體狀態,可用於做即時的監控或者治療。 1 is a block diagram showing a front end amplifier circuit according to an embodiment of the present invention. As shown in FIG. 1, the front-end amplifier circuit 100 is configured to amplify the input positive terminal NIP and the biological signal SB received by the input negative terminal NIN to generate an amplified voltage signal VOUT, which can be converted into digital data by a digital analog converter. Analyzed by a digital signal processor to instantly know the state of the body, it can be used for immediate monitoring or treatment.

根據本發明之一實施例,生物信號SB係為一腦電波(Electroencephalography,EEG)信號。根據本發明之另一實施例,生物信號SB係為一大腦皮質腦電(Electrocorticography,ECoG)信號。根據本發明之另一實施例,生物信號SB係為一局部場電位(local field potential,LFP)信號。根據本發明之另一實施例,生物信號SB係為一心臟(Electrocardiography,ECG)信號。根據本發明之另一實施例,生物信號SB係為一肌肉(Electromyography,EMG)信號。根據本發明之其他實施例,生物信號SB可為任何已知或未知的生物電性信號。 According to an embodiment of the invention, the biosignal SB is an Electroencephalography (EEG) signal. According to another embodiment of the invention, the biosignal SB is a cerebral cortical electroencephalography (ECoG) signal. According to another embodiment of the invention, the biosignal SB is a local field potential (LFP) signal. According to another embodiment of the invention, the biosignal SB is an Electrocardiography (ECG) signal. According to another embodiment of the invention, the biosignal SB is an Electromymography (EMG) signal. According to other embodiments of the invention, the biosignal SB can be any known or unknown bioelectrical signal.

前端放大器電路100包括信號通道110以及轉阻放大器120,信號通道110將經由輸入正極端NIP以及輸入負極端NIN接收生物信號SB放大而產生偵測電流ID,轉阻放大器120則將偵測電流ID經由轉阻增益GTI而產生電壓信號VOUT。 The front-end amplifier circuit 100 includes a signal channel 110 and a transimpedance amplifier 120. The signal channel 110 generates a detection current ID by receiving the biosignal SB through the input positive terminal NIP and the input negative terminal NIN, and the transimpedance amplifier 120 detects the current ID. The voltage signal VOUT is generated via the resistance gain GTI.

信號通道110包括電容耦合轉導放大器111、帶通濾波放大器112、可調整增益放大器113以及偏移消除電路114,其中電容耦合轉導放大器111將接收之生物信號SB經由轉導增益GM而於轉導輸出端NOGM產生第一電流I1。帶通濾波放大器112將第一電流I1濾除頻帶寬BW之外的雜訊且放大第一電流增益GI1,於帶通輸出端NOBP產生第二電流I2。 The signal path 110 includes a capacitively coupled transconductance amplifier 111, a bandpass filter amplifier 112, an adjustable gain amplifier 113, and an offset cancellation circuit 114, wherein the capacitively coupled transconductance amplifier 111 converts the received biosignal SB via the transduction gain GM The output terminal NOGM generates a first current I1. The band pass filter amplifier 112 filters the first current I1 from noise outside the frequency bandwidth BW and amplifies the first current gain GI1, and generates a second current I2 at the band pass output terminal NOBP.

可調整增益放大器113將第二電流I2放大第二電流增益GI2後而於可調整增益輸出端NOPG產生偵測電流ID,其中第二電流增益GI2係可調整。偏移消除電路114係用以消除電容耦合轉導放大器111、帶通濾波放大器112以及可調整增益放大 器113之輸出偏移電流,詳細動作將於下文中敘述。 The adjustable gain amplifier 113 amplifies the second current I2 by the second current gain GI2 and generates a detection current ID at the adjustable gain output terminal NOPG, wherein the second current gain GI2 is adjustable. The offset cancellation circuit 114 is configured to eliminate the capacitively coupled transconductance amplifier 111, the bandpass filter amplifier 112, and the adjustable gain amplification The output current of the device 113 is offset current, and the detailed operation will be described later.

第2圖係顯示根據本發明之另一實施例所述之前端放大器電路之方塊圖。如第2圖所示,前端放大器電路200包括複數信號通道210_1~210_N、轉阻放大器220以及多工器230。複數信號通道210_1~210_N分別接收複數生物信號SB1~SBN,而產生複數偵測電流ID1~IDN。多工器230選擇複數偵測電流ID1~IDN之一者作為選擇電流IS,轉阻放大器220利用轉阻增益GTI將選擇電流IS轉換成電壓信號VOUT。 Fig. 2 is a block diagram showing a front end amplifier circuit according to another embodiment of the present invention. As shown in FIG. 2, the front end amplifier circuit 200 includes a plurality of signal channels 210_1 210 210_N, a transimpedance amplifier 220, and a multiplexer 230. The complex signal channels 210_1~210_N receive the complex biosignals SB1~SBN, respectively, and generate complex detection currents ID1~IDN. The multiplexer 230 selects one of the complex detection currents ID1 to IDN as the selection current IS, and the transimpedance amplifier 220 converts the selection current IS into the voltage signal VOUT by using the resistance gain GTI.

根據本發明之一實施例,複數信號通道210_1~210_N係皆為第1圖之信號通道110。根據本發明之另一實施例,部份之複數信號通道210_1~210_N之電路係為第1圖之信號通道110,部份之複數信號通道210_1~210_N亦可與第1圖之信號通道110不相同。 According to an embodiment of the invention, the plurality of signal channels 210_1~210_N are all signal channels 110 of FIG. According to another embodiment of the present invention, the circuit of the plurality of signal channels 210_1~210_N is the signal channel 110 of FIG. 1, and the plurality of signal channels 210_1~210_N may also be different from the signal channel 110 of FIG. the same.

第3圖係顯示根據本發明之一實施例所述之電容耦合轉導放大器之電路圖。如第3圖所示,電容耦合轉導放大器300包括第一輸入電容CI1、第二輸入電容CI2、第一共模P型電晶體MPCM1、第二共模P型電晶體MPCM2、第一電流源IS1、第二電流源IS2、第一轉導P型電晶體MPGM1、第二轉導P型電晶體MPGM2、線性電阻RG、第三轉導P型電晶體MPGM3、第四轉導P型電晶體MPGM4、第一轉導N型電晶體MNGM1、第二轉導N型電晶體MNGM2、第三轉導N型電晶體MNGM3以及第四轉導N型電晶體MNGM4。 Figure 3 is a circuit diagram showing a capacitively coupled transconductance amplifier according to an embodiment of the present invention. As shown in FIG. 3, the capacitive coupling transduction amplifier 300 includes a first input capacitor CI1, a second input capacitor CI2, a first common mode P-type transistor MPCM1, a second common mode P-type transistor MPCM2, and a first current source. IS1, second current source IS2, first transmissive P-type transistor MPGM1, second transmissive P-type transistor MPGM2, linear resistor RG, third transmissive P-type transistor MPGM3, fourth transduced P-type transistor The MPGM4, the first transducing N-type transistor MNGM1, the second transducing N-type transistor MNGM2, the third transducing N-type transistor MNGM3, and the fourth transducing N-type transistor MNGM4.

第一輸入電容CI1耦接於輸入負極端NIN以及第一節點N1之間,第二輸入電容CI2耦接於輸入正極端NIP以及第二 節點N2之間,其中第一輸入電容CI1以及第二輸入電容CI2以差動模式,以交流耦合之方式接收生物信號SB。第一共模P型電晶體MPCM1用以根據共模控制電壓VCMC,將共模電壓VCM提供至第一節點N1;第二共模P型電晶體MPCM2用以根據共模控制電壓VCMC,將共模電壓VCM提供至第二節點N2。 The first input capacitor CI1 is coupled between the input negative terminal NIN and the first node N1, and the second input capacitor CI2 is coupled to the input positive terminal NIP and the second Between the nodes N2, the first input capacitor CI1 and the second input capacitor CI2 receive the biosignal SB in an alternating current mode in a differential mode. The first common mode P-type transistor MPCM1 is used to supply the common mode voltage VCM to the first node N1 according to the common mode control voltage VCMC; the second common mode P type transistor MPCM2 is used to control the voltage VCMC according to the common mode. The mode voltage VCM is supplied to the second node N2.

根據本發明之一實施例,第一共模P型電晶體MPCM1以及第二共模P型電晶體MPCM2係皆操作於截止區,用以產生高阻抗之通道電阻。根據本發明之另一實施例,第一共模P型電晶體MPCM1以及第二共模P型電晶體MPCM2可操作於三極體(triode)區。 According to an embodiment of the invention, the first common mode P-type transistor MPCM1 and the second common mode P-type transistor MPCM2 are both operated in a cut-off region for generating a high impedance channel resistance. According to another embodiment of the present invention, the first common mode P-type transistor MPCM1 and the second common mode P-type transistor MPCM2 are operable in a triode region.

第一轉導P型電晶體MPGM1之源極端接收第一電流源IS1所提供之第一轉導偏壓電流,閘極端耦接至第二節點N2;第二轉導P型電晶體MPGM2之源極端接收第二電流源IS2之第二轉導偏壓電流,閘極端耦接至第一節點N1,其中第一轉導P型電晶體MPGM1以及第二轉導P型電晶體MPGM2用以產生轉導增益GM。線性電阻RG耦接於第一轉導P型電晶體MPGM1之源極端以及第二轉導P型電晶體MPGM2之源極端之間,其中線性電阻RG用以提升轉導增益GM之線性度。 The source terminal of the first transducing P-type transistor MPGM1 receives the first transconductance bias current provided by the first current source IS1, the gate terminal is coupled to the second node N2; and the source of the second transducing P-type transistor MPGM2 Extremely receiving the second transducing bias current of the second current source IS2, the gate terminal is coupled to the first node N1, wherein the first transducing P-type transistor MPGM1 and the second transducing P-type transistor MPGM2 are used to generate the revolving The gain is GM. The linear resistor RG is coupled between the source terminal of the first transducing P-type transistor MPGM1 and the source terminal of the second transducing P-type transistor MPGM2, wherein the linear resistor RG is used to increase the linearity of the transduction gain GM.

第三轉導P型電晶體MPGM3之源極端耦接至第一轉導P型電晶體MPGM1之汲極端,第三轉導P型電晶體MPGM3之閘極端耦接至轉導偏壓電壓VBGM;第四轉導P型電晶體MPGM4之源極端耦接至第二轉導P型電晶體MPGM2之汲極端,第四轉導P型電晶體MPGM4之閘極端耦接至轉導偏壓電壓VBGM,第四轉導P型電晶體MPGM4之汲極端耦接至轉導輸出 端NOGM,其中轉導輸出端NOGM輸出第一電流I1。 The source of the third transducing P-type transistor MPGM3 is coupled to the 汲 terminal of the first transducing P-type transistor MPGM1, and the gate terminal of the third transducing P-type transistor MPGM3 is coupled to the transconductance bias voltage VBGM; The source of the fourth transducing P-type transistor MPGM4 is coupled to the 汲 terminal of the second transmissive P-type transistor MPGM2, and the gate of the fourth transducing P-type transistor MPGM4 is coupled to the transimpedance bias voltage VBGM. The fourth transconductance P-type transistor MPGM4 is extremely coupled to the transconductance output The terminal NOGM, wherein the transconductance output terminal NOGM outputs the first current I1.

第一轉導N型電晶體MNGM1之汲極端以及閘極端,係皆耦接至第三轉導P型電晶體MPGM3之汲極端;第二轉導N型電晶體MNGM2之汲極端耦接至轉導輸出端NOGM,第二轉導N型電晶體MNGM2之閘極端耦接至第一轉導N型電晶體MNGM1之閘極端。 The 汲 extreme and the gate terminal of the first transduction N-type transistor MNGM1 are coupled to the 汲 terminal of the third transconductance P-type transistor MPGM3; the second transduction N-type transistor MNGM2 is coupled to the 汲 terminal The gate terminal of the second transducing N-type transistor MNGM2 is coupled to the gate terminal of the first transmissive N-type transistor MNGM1.

第三轉導N型電晶體MNGM3之汲極端以及閘極端係皆耦接至第一轉導N型電晶體MNGM1之源極端,第三轉導N型電晶體MNGM3之源極端耦接至接地端GND;第四轉導N型電晶體MNGM4之汲極端耦接至第二轉導N型電晶體MNGM2之源極端,第四轉導N型電晶體MNGM4之閘極端耦接至第三轉導N型電晶體MNGM3之閘極端,第四轉導N型電晶體MNGM4之源極端耦接至接地端GND。 The 汲 terminal of the third transduction N-type transistor MNGM3 and the gate extremity are all coupled to the source terminal of the first transconductance N-type transistor MNGM1, and the source terminal of the third transduction N-type transistor MNGM3 is coupled to the ground terminal. GND; the fourth transconductance N-type transistor MNGM4 is extremely coupled to the source terminal of the second transduction N-type transistor MNGM2, and the gate terminal of the fourth transduction N-type transistor MNGM4 is coupled to the third transduction N The gate terminal of the type transistor MNGM3, the source terminal of the fourth transconductance N-type transistor MNGM4 is coupled to the ground terminal GND.

第4圖係顯示根據本發明之一實施例所述之帶通濾波器之電路圖。如第4圖所示,帶通濾波放大器400包括帶通主電流路徑410、帶通濾波器420以及帶通副電流路徑430。帶通主電流路徑410具有帶通主偏壓電流IBPBM,且用以接收第一電流I1;帶通副電流路徑430具有帶通副偏壓電流IBPBS,且根據濾波信號SF而產生第二電流I2,其中第一電流增益GI1係為帶通副偏壓電流IBPBS與帶通主偏壓電流IBPBM之比例。 Fig. 4 is a circuit diagram showing a band pass filter according to an embodiment of the present invention. As shown in FIG. 4, the bandpass filter amplifier 400 includes a bandpass main current path 410, a bandpass filter 420, and a bandpass secondary current path 430. The band pass main current path 410 has a band pass main bias current IBPBM for receiving the first current I1; the band pass sub current path 430 has a band pass sub buck current IBPBS, and the second current I2 is generated according to the filtered signal SF The first current gain GI1 is a ratio of the band pass sub-bias current IBPBS to the band pass main bias current IBPBM.

帶通濾波器420交流耦合至帶通主電流路徑410,用以將第一電流I1濾除掉頻帶寬BW之外的雜訊而產生濾波信號SF至帶通副電流路徑430。以下將詳細說明帶通主電流路徑410、帶通濾波器420以及帶通副電流路徑430之功能。 The bandpass filter 420 is AC coupled to the bandpass main current path 410 for filtering the noise outside the frequency bandwidth BW by the first current I1 to produce the filtered signal SF to the bandpass secondary current path 430. The functions of the band pass main current path 410, the band pass filter 420, and the band pass sub current path 430 will be described in detail below.

根據本發明之一實施例,帶通主電流路徑410包括第一主P型電晶體411、第二主P型電晶體412、第一主N型電晶體413以及第二主N型電晶體414。第一主P型電晶體411之源極端耦接至供應電壓VS,第一主P型電晶體411之閘極端耦接至汲極端。第二主P型電晶體412之源極端耦接至第一主P型電晶體411之汲極端,第二主P型電晶體412之閘極端以及汲極端接收第1圖所示之電容耦合轉導放大器111以及第3圖所示之電容耦合轉導放大器300第一電流I1。 According to an embodiment of the invention, the bandpass main current path 410 includes a first main P-type transistor 411, a second main P-type transistor 412, a first main N-type transistor 413, and a second main N-type transistor 414. . The source terminal of the first main P-type transistor 411 is coupled to the supply voltage VS, and the gate terminal of the first main P-type transistor 411 is coupled to the 汲 terminal. The source terminal of the second main P-type transistor 412 is coupled to the 汲 terminal of the first main P-type transistor 411, and the gate terminal and the 汲 terminal of the second main P-type transistor 412 receive the capacitive coupling transfer shown in FIG. The pilot amplifier 111 and the capacitively coupled transconductance amplifier 300 shown in FIG. 3 have a first current I1.

第一主N型電晶體413之閘極端以及汲極端耦接至第一主P型電晶體412之汲極端以及閘極端。第二主N型電晶體414之閘極端以及汲極端耦接至第一主N型電晶體413之源極端,第二主N型電晶體414之源極端耦接至接地端GND。 The gate terminal and the 汲 terminal of the first main N-type transistor 413 are coupled to the 汲 terminal of the first main P-type transistor 412 and the gate terminal. The gate terminal of the second main N-type transistor 414 and the drain terminal are coupled to the source terminal of the first main N-type transistor 413, and the source terminal of the second main N-type transistor 414 is coupled to the ground GND.

根據本發明之一實施例,第一主P型電晶體411、第二主P型電晶體412、第一主N型電晶體413以及第二主N型電晶體414係皆操作於次臨界區,用以降低功率損耗。根據本發明之另一實施例,帶通主電流路徑410亦可由第二主P型電晶體412以及第一主N型電晶體413所組成,然而卻造成第二主P型電晶體412以及第一主N型電晶體413之閘極端至源極端跨壓增加而提高帶通主偏壓電流IBPBM,使得功率損耗增加。 According to an embodiment of the present invention, the first main P-type transistor 411, the second main P-type transistor 412, the first main N-type transistor 413, and the second main N-type transistor 414 are all operated in the subcritical region. To reduce power loss. According to another embodiment of the present invention, the band pass main current path 410 may also be composed of the second main P-type transistor 412 and the first main N-type transistor 413, but cause the second main P-type transistor 412 and the The gate-to-source voltage across the main N-type transistor 413 increases to increase the bandpass main bias current IBPBM, resulting in increased power loss.

同樣的,帶通副電流路徑430包括第一副P型電晶體431、第二副P型電晶體432、第一副N型電晶體433以及第二副N型電晶體434。第一副P型電晶體431之源極端耦接至供應電壓VS,第一副P型電晶體431之閘極端以及汲極端耦接在一起。第二副P型電晶體432之源極端耦接至第一副P型電晶體431之 汲極端,第二副P型電晶體432之汲極端耦接至帶通輸出端NOBP。 Similarly, the band pass secondary current path 430 includes a first secondary P-type transistor 431, a second secondary P-type transistor 432, a first secondary N-type transistor 433, and a second secondary N-type transistor 434. The source terminal of the first sub-P-type transistor 431 is coupled to the supply voltage VS, and the gate terminal and the 汲 terminal of the first sub-P-type transistor 431 are coupled together. The source of the second sub-P transistor 432 is coupled to the first sub-P-type transistor 431 At the 汲 extreme, the second sub-P-type transistor 432 is coupled to the band-pass output terminal NOBP.

第一副N型電晶體433之閘極端耦接至第二副P型電晶體432之閘極端,第一副N型電晶體433之汲極端耦接至帶通輸出端NOBP而輸出第二電流I2,第一副N型電晶體之閘極端接收濾波信號SF。第二副N型電晶體434之閘極端以及汲極端耦接至第一副N型電晶體433之源極端,第二副N型電晶體434之源極端耦接至接地端GND。 The gate of the first sub-N-type transistor 433 is coupled to the gate terminal of the second sub-P transistor 432. The first sub-N-type transistor 433 is coupled to the band-pass output terminal NOBP to output a second current. I2, the gate terminal of the first sub N-type transistor receives the filtered signal SF. The gate terminal of the second sub-N-type transistor 434 and the NMOS terminal are coupled to the source terminal of the first sub-N-type transistor 433, and the source terminal of the second sub-N-type transistor 434 is coupled to the ground GND.

根據本發明之一實施例,第一副P型電晶體431、第二副P型電晶體432、第一副N型電晶體433以及第二副N型電晶體434係皆操作於次臨界區,以降低功率損耗。根據本發明之另一實施例,帶通副電流路徑430係與帶通主電流路徑410相同,亦可由第二副P型電晶體432以及第一副N型電晶體433所組成,然而卻造成第二副P型電晶體432以及第一副N型電晶體433之閘極端至源極端跨壓增加而提高帶通副偏壓電流IBPBS,使得功率損耗增加。 According to an embodiment of the present invention, the first sub-P-type transistor 431, the second sub-P-type transistor 432, the first sub-N-type transistor 433, and the second sub-N-type transistor 434 are all operating in the subcritical region. To reduce power loss. According to another embodiment of the present invention, the band pass sub current path 430 is the same as the band pass main current path 410, and may also be composed of the second sub P type transistor 432 and the first sub N type transistor 433, but The second sub-P transistor 432 and the first sub N-type transistor 433 increase the gate-to-source terminal voltage increase to increase the band-pass sub-bias current IBPBS, so that the power loss increases.

根據本發明之一實施例,帶通副電流路徑430之電晶體的尺寸與帶通主電流路徑410之電晶體的尺寸之比例,即為帶通副偏壓電流IBPBS與帶通主偏壓電流IBPBM之比例,亦為第一電流增益GI1。 According to an embodiment of the invention, the ratio of the size of the transistor of the band pass sub-current path 430 to the size of the transistor of the band pass main current path 410 is the band pass sub-bias current IBPBS and the band pass main bias current The ratio of IBPBM is also the first current gain GI1.

根據本發明之一實施例,帶通濾波器420包括第一差動輸入放大器OP1、第一耦合電容CC1、第一偏壓P型電晶體MPB1、低通電容CLP、第二差動輸入放大器OP2、第三差動輸入放大器OP3、第二耦合電容CC2以及第二偏壓P型電晶體 MPB2。 According to an embodiment of the present invention, the band pass filter 420 includes a first differential input amplifier OP1, a first coupling capacitor CC1, a first bias P-type transistor MPB1, a low-pass capacitor CLP, and a second differential input amplifier OP2. a third differential input amplifier OP3, a second coupling capacitor CC2, and a second bias P-type transistor MPB2.

第一差動輸入放大器OP1用以產生轉移電導gm,且包括第一負輸入端INN1、第一正輸入端INP1以及第一輸出端NO1,其中第一負輸入端INN1耦接至第一輸出端NO1。第一耦合電容CC1耦接於第二主P型電晶體412之閘極端以及第一正輸入端INP1之間;第一偏壓P型電晶體MPB1具有一通道電阻,源極端耦接至共模電壓VCM,汲極端耦接至第一正輸入端INP1,閘極端耦接至第一帶通偏壓電壓VBPB1。 The first differential input amplifier OP1 is configured to generate a transfer conductance g m and includes a first negative input terminal INN1, a first positive input terminal INP1, and a first output terminal NO1, wherein the first negative input terminal INN1 is coupled to the first output terminal End NO1. The first coupling capacitor CC1 is coupled between the gate terminal of the second main P-type transistor 412 and the first positive input terminal INP1; the first bias P-type transistor MPB1 has a channel resistance, and the source terminal is coupled to the common mode. The voltage VCM, 汲 is extremely coupled to the first positive input terminal INP1, and the gate terminal is coupled to the first bandpass bias voltage VBPB1.

低通電容CLP耦接於第一輸出端NO1以及接地端GND之間;第二差動輸入放大器OP2包括第二負輸入端INN2、第二正輸入端INP2以及第二輸出端NO2,其中第二負輸入端INN2耦接至第二輸出端NO2,第二正輸入端INP2耦接至第一輸出端NO1。第三差動輸入放大器OP3包括第三負輸入端INN3、第三正輸入端INP3以及第三輸出端NO3,其中第三負輸入端INN3耦接至第三輸出端NO3,第三輸出端NO3輸出濾波信號SF。 The low-pass capacitor CLP is coupled between the first output terminal NO1 and the ground GND; the second differential input amplifier OP2 includes a second negative input terminal INN2, a second positive input terminal INP2, and a second output terminal NO2, wherein the second The negative input terminal INN2 is coupled to the second output terminal NO2, and the second positive input terminal INP2 is coupled to the first output terminal NO1. The third differential input amplifier OP3 includes a third negative input terminal INN3, a third positive input terminal INP3, and a third output terminal NO3, wherein the third negative input terminal INN3 is coupled to the third output terminal NO3, and the third output terminal NO3 is output. Filter signal SF.

第二耦合電容CC2耦接於第二輸出端NO2以及第三正輸入端INP3之間,用以隔絕第二差動輸入放大器OP2以及第三差動輸入放大器OP3。第二偏壓P型電晶體MPB2根據第二帶通偏壓電壓VBPB2之控制,用以將直流偏壓VDC提供至第三正輸入端INP3,使得第二副P型電晶體432之閘極端以及第一副N型電晶體433之閘極端之偏壓係與第二主型電晶體412之閘極端以及第一主N型電晶體413之閘極端相同。 The second coupling capacitor CC2 is coupled between the second output terminal NO2 and the third positive input terminal INP3 for isolating the second differential input amplifier OP2 and the third differential input amplifier OP3. The second bias P-type transistor MPB2 is controlled according to the second band-pass bias voltage VBPB2 for supplying the DC bias voltage VDC to the third positive input terminal INP3 such that the gate terminal of the second sub-P-type transistor 432 and The bias of the gate terminal of the first sub-type N-type transistor 433 is the same as the gate terminal of the second main-type transistor 412 and the gate terminal of the first main N-type transistor 413.

第5圖係顯示根據本發明之一實施例所述之直流 偏壓產生電路之電路圖。如第5圖所示,直流偏壓產生電路500包括第三偏壓P型電晶體MPB3、第四偏壓P型電晶體MPB4、第一偏壓N型電晶體MNB1以及第二偏壓N型電晶體MNB2。 Figure 5 is a diagram showing a direct current according to an embodiment of the present invention. A circuit diagram of a bias generating circuit. As shown in FIG. 5, the DC bias generating circuit 500 includes a third bias P-type transistor MPB3, a fourth bias P-type transistor MPB4, a first bias N-type transistor MNB1, and a second bias N-type. Transistor MNB2.

根據本發明之一實施例,第三偏壓P型電晶體MPB3、第四偏壓P型電晶體MPB4、第一偏壓N型電晶體MNB1以及第二偏壓N型電晶體MNB2之尺寸,係為第一主P型電晶體411、第二主P型電晶體412、第一主N型電晶體413以及第二主N型電晶體414之尺寸縮小一既定比例,因此所產生之直流偏壓VDC係與第二主P型電晶體412之閘極端的電壓值非常接近。 According to an embodiment of the present invention, the size of the third bias P-type transistor MPB3, the fourth bias P-type transistor MPB4, the first bias N-type transistor MNB1, and the second bias N-type transistor MNB2, The size of the first main P-type transistor 411, the second main P-type transistor 412, the first main N-type transistor 413, and the second main N-type transistor 414 is reduced by a predetermined ratio, so that the generated DC bias The voltage values of the gate terminals of the voltage VDC system and the second main P-type transistor 412 are very close.

參考第4圖,根據本發明之一實施例,第一偏壓P型電晶體MPB1以及第二偏壓P型電晶體MPB2係操作於截止區,使得其通道電阻係為高阻抗。根據本發明之一實施例,帶通濾波器420之頻帶寬BW包括低通截止頻率以及高通截止頻率,其中第一差動輸入放大器OP1所產生之轉移電導gm以及低通電容CLP用以決定低通截止頻率,第一耦合電容CC1以及第一偏壓P型電晶體MPB1之通道電阻用以決定高通截止頻率。 Referring to FIG. 4, according to an embodiment of the present invention, the first bias P-type transistor MPB1 and the second bias P-type transistor MPB2 are operated in the cut-off region such that their channel resistance is high impedance. According to an embodiment of the present invention, the frequency bandwidth BW of the band pass filter 420 includes a low pass cutoff frequency and a high pass cutoff frequency, wherein the transfer conductance g m and the low pass capacitance CLP generated by the first differential input amplifier OP1 are used to determine The low-pass cutoff frequency, the first coupling capacitor CC1 and the channel resistance of the first bias P-type transistor MPB1 are used to determine the high-pass cutoff frequency.

第6圖係顯示根據本發明之一實施例所述之可調整增益放大器之電路圖。可調整增益放大器600包括可調整增益主電流路徑610以及可調整增益副電流路徑630,用以放大第二電流I2而於調整增益輸出端NOPG產生偵測電流ID。 Figure 6 is a circuit diagram showing an adjustable gain amplifier in accordance with an embodiment of the present invention. The adjustable gain amplifier 600 includes an adjustable gain main current path 610 and an adjustable gain sub current path 630 for amplifying the second current I2 and generating a detection current ID at the adjustment gain output terminal NOPG.

如第6圖所示,可調整增益主電流路徑610係與帶通主電流路徑410相似,可調整增益副電流路徑630係與帶通副電流路徑430相似,因此,可調整增益主電流路徑610以及可調整增益副電流路徑630之動作原理係與帶通主電流路徑410以 及帶通副電流路徑430之動作原理相同,在此不再贅述。 As shown in FIG. 6, the adjustable gain main current path 610 is similar to the band pass main current path 410, and the adjustable gain sub current path 630 is similar to the band pass sub current path 430. Therefore, the gain main current path 610 can be adjusted. And the operating principle of the adjustable gain secondary current path 630 is coupled to the bandpass main current path 410. The operation principle of the band pass sub current path 430 is the same, and will not be described herein.

由於可調整增益副電流路徑630可利用第一調整開關S1、第二調整開關S2、第三調整開關S3以及第四調整開關S4來增加可調整增益副偏壓電流IPGABS,造成可調整增益副偏壓電流IPGABS與可調整增益主偏壓電流IPGABM之比例增加或減少,進而調整第二電流增益GI2。 The adjustable gain secondary current path 630 can increase the adjustable gain secondary bias current IPGABS by using the first adjustment switch S1, the second adjustment switch S2, the third adjustment switch S3, and the fourth adjustment switch S4, resulting in an adjustable gain secondary bias The ratio of the voltage current IPGABS to the adjustable gain main bias current IPGABM is increased or decreased, and the second current gain GI2 is adjusted.

第7圖係顯示根據本發明之一實施例所述之轉阻放大器之電路圖。如第7圖所示,轉阻放大器700包括第四差動輸入放大器701以及回授電阻RT,用以將輸入電流IIN轉換為電壓信號VOUT。第四差動輸入放大器701包括正輸入端、負輸入端以及輸出端,回授電阻RT耦接於第四差動輸入放大器701之負輸入端以及輸出端之間。 Figure 7 is a circuit diagram showing a transimpedance amplifier according to an embodiment of the present invention. As shown in FIG. 7, the transimpedance amplifier 700 includes a fourth differential input amplifier 701 and a feedback resistor RT for converting the input current IIN into a voltage signal VOUT. The fourth differential input amplifier 701 includes a positive input terminal, a negative input terminal, and an output terminal. The feedback resistor RT is coupled between the negative input terminal and the output terminal of the fourth differential input amplifier 701.

第四差動輸入放大器701之正輸入端耦接至共模電壓VCM,負輸入端接收輸入電流IIN。根據本發明之一實施例,輸入電流IIN係為第1圖之偵測電流ID或是第2圖之選擇電流IS,轉阻增益GTI係由回授電阻RT所決定。 The positive input terminal of the fourth differential input amplifier 701 is coupled to the common mode voltage VCM, and the negative input terminal receives the input current IIN. According to an embodiment of the invention, the input current IIN is the detection current ID of FIG. 1 or the selection current IS of FIG. 2, and the resistance gain GTI is determined by the feedback resistor RT.

第8圖係顯示根據本發明之一實施例所述之偏移消除電路之電路圖。如第8圖所示,偏移消除電路800包括數位控制器810、虛擬電阻重置模組820、偏移偵測電路830、第一電流數位類比轉換器840、第二電流數位類比轉換器850、第三電流數位類比轉換器860、第一開關10、第二開關20以及第三開關30,其中偏移消除電路800係為第1圖之偏移消除電路114之一實施例。根據本發明之一實施例,虛擬電阻重置模組820係利用將共模控制電壓VCMC耦接至接地端GND之電壓位準, 而將第一節點N1以及第二節點N2短路至共模電壓VCM。 Figure 8 is a circuit diagram showing an offset cancellation circuit in accordance with an embodiment of the present invention. As shown in FIG. 8 , the offset cancellation circuit 800 includes a digital controller 810 , a virtual resistance reset module 820 , an offset detection circuit 830 , a first current digital analog converter 840 , and a second current digital analog converter 850 . The third current digital analog converter 860, the first switch 10, the second switch 20, and the third switch 30, wherein the offset cancel circuit 800 is an embodiment of the offset cancel circuit 114 of FIG. According to an embodiment of the invention, the virtual resistance reset module 820 utilizes a voltage level that couples the common mode control voltage VCMC to the ground GND. The first node N1 and the second node N2 are short-circuited to the common mode voltage VCM.

數位控制器810利用第一重置信號SR1控制虛擬電阻重置模組820將第3圖之第一節點N1以及第二節點N2短路至共模電壓VCM,以便測試電容耦合轉導放大器300之輸出偏移電流。此外,數位控制器810更利用第二重置信號SR2控制虛擬電阻重置模組820,將第4圖之第一正輸入端INP1短路至共模電壓VCM以及將第三正輸入端INP3短路至直流偏壓VDC,以便測試帶通濾波放大器400之輸出偏移電流。 The digital controller 810 controls the virtual resistance reset module 820 to short the first node N1 and the second node N2 of FIG. 3 to the common mode voltage VCM by using the first reset signal SR1 to test the output of the capacitive coupling transduction amplifier 300. Offset current. In addition, the digital controller 810 further controls the virtual resistance reset module 820 by using the second reset signal SR2, short-circuiting the first positive input terminal INP1 of FIG. 4 to the common mode voltage VCM and short-circuiting the third positive input terminal INP3 to The DC bias is VDC to test the output offset current of the bandpass filter amplifier 400.

根據本發明之一實施例,虛擬電阻重置模組820利用將第一帶通偏壓電壓VBPB1以及第二帶通偏壓電壓VBPB2耦接至接地端GND之電壓位準,而將第一正輸入端INP1短路至共模電壓VCM以及將第三正輸入端INP3短路至直流偏壓VDC。 According to an embodiment of the invention, the virtual resistance reset module 820 is coupled to the voltage level of the ground GND by the first band-pass bias voltage VBPB1 and the second band-pass bias voltage VBPB2, and the first positive The input terminal INP1 is shorted to the common mode voltage VCM and the third positive input terminal INP3 is shorted to the DC bias voltage VDC.

偏移偵測電路830根據數位控制器810所發出之選擇信號SS,依序選擇第一電流I1、第二電流I2以及偵測電流ID之一者而產生數位補償信號SDC,其中數位補償信號SDC包括分別對應第一電流I1、第二電流I2以及偵測電流ID之第一補償碼、第二補償碼以及第三補償碼,用以分別控制第一電流數位類比轉換器840、第二電流數位類比轉換器850以及第三電流數位類比轉換器860,並且數位控制器810將數位補償信號SDC儲存於暫存器870中。 The offset detecting circuit 830 sequentially selects one of the first current I1, the second current I2, and the detected current ID according to the selection signal SS sent by the digital controller 810 to generate a digital compensation signal SDC, wherein the digital compensation signal SDC The first compensation code, the second compensation code, and the third compensation code respectively corresponding to the first current I1, the second current I2, and the detection current ID are respectively used to respectively control the first current digital analog converter 840 and the second current digital position. The analog converter 850 and the third current digital analog converter 860, and the digital controller 810 stores the digital compensation signal SDC in the register 870.

第9圖係顯示根據本發明之一實施例所述之第8圖之偏移偵測電路之電路圖。如第9圖所示,偏移偵測電路900包括選擇器910、信號轉換電路920以及比較器930,用以依序選擇第一電流I1、第二電流I2以及偵測電流ID而產生數位補償信 號SDC之第一補償碼、第二補償碼以及第三補償碼。 Figure 9 is a circuit diagram showing an offset detecting circuit of Figure 8 according to an embodiment of the present invention. As shown in FIG. 9, the offset detection circuit 900 includes a selector 910, a signal conversion circuit 920, and a comparator 930 for sequentially selecting the first current I1, the second current I2, and the detection current ID to generate digital compensation. letter The first compensation code, the second compensation code, and the third compensation code of the SDC.

選擇器910用以根據選擇信號SS,依序選擇第一電流I1、第二電流I2以及偵測電流ID,並提供至信號轉換電路920。信號轉換電路920包括放大器921以及負回授電阻922,用以將選擇器910所選擇之第一電流I1、第二電流I2以及偵測電流ID之一者,轉換為偏移電壓VOS。比較器930比較共模電壓VCM以及偏移電壓VOS後,產生數位補償信號SDC。 The selector 910 is configured to sequentially select the first current I1, the second current I2, and the detection current ID according to the selection signal SS, and provide the signal to the signal conversion circuit 920. The signal conversion circuit 920 includes an amplifier 921 and a negative feedback resistor 922 for converting one of the first current I1, the second current I2 and the detection current ID selected by the selector 910 into an offset voltage VOS. The comparator 930 compares the common mode voltage VCM and the offset voltage VOS to generate a digital compensation signal SDC.

第8圖之數位控制器810根據序列產生之數位補償信號SDC決定第一補償碼、第二補償碼以及第三補償碼,控制提供至轉導輸出端NOGM、帶通輸出端NOBP以及可調整增益輸出端NOPG之補償電流。 The digital controller 810 of FIG. 8 determines the first compensation code, the second compensation code, and the third compensation code according to the digital compensation signal SDC generated by the sequence, and the control is provided to the transduction output terminal NOGM, the band-pass output terminal NOBP, and the adjustable gain. The compensation current of the output NOPG.

參考第8圖,根據本發明之一實施例,數位控制器810控制第一開關10、第二開關20以及第三開關30導通以及不導通,用以個別測試電容耦合轉導放大器111、帶通濾波放大器112以及可調整增益放大器113之輸出偏移電流,詳細動作將於下文中描述。根據本發明之另一實施例,在第2圖之前端放大器電路200中,第三開關30可利用多工器230取代。 Referring to FIG. 8, according to an embodiment of the present invention, the digital controller 810 controls the first switch 10, the second switch 20, and the third switch 30 to be turned on and off, for individually testing the capacitive coupling transduction amplifier 111 and the band pass. The filter amplifier 112 and the output offset current of the adjustable gain amplifier 113, the detailed actions will be described below. According to another embodiment of the present invention, in the front-end amplifier circuit 200 of FIG. 2, the third switch 30 can be replaced with the multiplexer 230.

第10圖係顯示根據本發明之一實施例所述之偏移偵測流程之流程圖。以下說明第10圖所示之流程圖時,將搭配第1、3、4、8圖以利詳細說明。 Figure 10 is a flow chart showing the offset detection process according to an embodiment of the present invention. The flow chart shown in Fig. 10 will be described below in conjunction with the first, third, fourth, and eighth drawings.

首先,第8圖之數位控制器810將第一開關10、第二開關20以及第三開關30不導通,用以隔絕電容耦合轉導放大器111、帶通濾波放大器112以及可調整增益放大器113之間的耦接關係(步驟S1)。並且利用第一重置信號SR1控制虛擬電阻 重置模組820而將第3圖之電容耦合轉導放大器300之第一節點N1以及第二節點N2短路至共模電壓VCM,用以歸零第8圖之電容耦合轉導放大器111之輸入信號,以偵測電容耦合轉導放大器111之輸出偏移電流(步驟S2)。 First, the digital controller 810 of FIG. 8 disables the first switch 10, the second switch 20, and the third switch 30 for isolating the capacitive coupling transduction amplifier 111, the band pass filter amplifier 112, and the adjustable gain amplifier 113. The coupling relationship between the steps (step S1). And using the first reset signal SR1 to control the virtual resistor The first node N1 and the second node N2 of the capacitively coupled transconductance amplifier 300 of FIG. 3 are short-circuited to the common mode voltage VCM for resetting the input of the capacitively coupled transconductance amplifier 111 of FIG. A signal is detected to detect an output offset current of the capacitively coupled transconductance amplifier 111 (step S2).

偏移偵測電路830根據選擇信號SS,偵測第一電流I1而產生數位補償信號SDC之第一補償碼並儲存於暫存器870中(步驟S3)。數位控制器810更根據第一補償碼,控制第一電流數位類比轉換器840輸出補償電流至轉導輸出端NOGM(步驟S4)。 The offset detecting circuit 830 detects the first current I1 according to the selection signal SS to generate a first compensation code of the digital compensation signal SDC and stores it in the temporary register 870 (step S3). The digital controller 810 further controls the first current digital analog converter 840 to output a compensation current to the transconductance output terminal NOGM according to the first compensation code (step S4).

接著,數位控制器810將第一開關10導通,用以將電容耦合轉導放大器111耦接至帶通濾波放大器112(步驟S5),並利用第二重置信號SR2控制虛擬電阻重置模組820而將第4圖之帶通濾波放大器400之第一正輸入端INP1短路至共模電壓VCM以及將第三正輸入端INP3短路至直流偏壓VDC,用以歸零第8圖之帶通濾波放大器112之輸入信號,以偵測帶通濾波放大器112之輸出偏移電流(步驟S6)。偏移偵測電路830根據選擇信號SS,偵測第二電流I2而產生數位補償信號SDC之第二補償碼並儲存於暫存器870中(步驟S7)。數位控制器810更根據第二補償碼,控制第二電流數位類比轉換器850輸出補償電流至帶通輸出端NOBP(步驟S8)。 Next, the digital controller 810 turns on the first switch 10 to couple the capacitive coupling transduction amplifier 111 to the band pass filter amplifier 112 (step S5), and controls the virtual resistance reset module by using the second reset signal SR2. 820, shorting the first positive input terminal INP1 of the band pass filter amplifier 400 of FIG. 4 to the common mode voltage VCM and shorting the third positive input terminal INP3 to the DC bias voltage VDC for returning the band pass of FIG. The input signal of the amplifier 112 is filtered to detect the output offset current of the band pass filter amplifier 112 (step S6). The offset detecting circuit 830 detects the second current I2 according to the selection signal SS to generate a second compensation code of the digital compensation signal SDC and stores it in the register 870 (step S7). The digital controller 810 further controls the second current digital analog converter 850 to output a compensation current to the band pass output terminal NOBP according to the second compensation code (step S8).

隨後,數位控制器810再將第二開關20導通,再將帶通濾波放大器112耦接至可調整增益放大器113(步驟S9);偏移偵測電路830根據選擇信號SS,偵測偵測電流ID而產生數位補償信號SDC之第三補償碼並儲存於暫存器870中(步驟 S10)。數位控制器810更根據第三補償碼,控制第三電流數位類比轉換器860輸出補償電流至可調整增益輸出端NOPG(步驟S11)。 Then, the digital controller 810 turns on the second switch 20, and then couples the band pass filter amplifier 112 to the adjustable gain amplifier 113 (step S9); the offset detecting circuit 830 detects the detected current according to the selection signal SS. The third compensation code of the digital compensation signal SDC is generated by the ID and stored in the register 870 (step S10). The digital controller 810 further controls the third current digital analog converter 860 to output a compensation current to the adjustable gain output terminal NOPG according to the third compensation code (step S11).

以上敘述許多實施例的特徵,使所屬技術領域中具有通常知識者能夠清楚理解本說明書的形態。所屬技術領域中具有通常知識者能夠理解其可利用本發明揭示內容為基礎以設計或更動其他製程及結構而完成相同於上述實施例的目的及/或達到相同於上述實施例的優點。所屬技術領域中具有通常知識者亦能夠理解不脫離本發明之精神和範圍的等效構造可在不脫離本發明之精神和範圍內作任意之更動、替代與潤飾。 The features of many embodiments are described above to enable those of ordinary skill in the art to clearly understand the form of the specification. Those having ordinary skill in the art will appreciate that the objectives of the above-described embodiments and/or advantages consistent with the above-described embodiments can be accomplished by designing or modifying other processes and structures based on the present disclosure. It is also to be understood by those skilled in the art that <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt;

100‧‧‧前端放大器電路 100‧‧‧ front-end amplifier circuit

110‧‧‧信號通道 110‧‧‧Signal channel

111‧‧‧電容耦合轉導放大器 111‧‧‧Capacitively Coupled Transduction Amplifier

112‧‧‧帶通濾波放大器 112‧‧‧Bandpass Filter Amplifier

113‧‧‧可調整增益放大器 113‧‧‧Adjustable Gain Amplifier

114‧‧‧偏移消除電路 114‧‧‧Offset elimination circuit

120‧‧‧轉阻放大器 120‧‧‧Transistor Amplifier

GM‧‧‧轉導增益 GM‧‧‧transduction gain

GI1‧‧‧第一電流增益 GI1‧‧‧First current gain

GI2‧‧‧第二電流增益 GI2‧‧‧second current gain

GTI‧‧‧轉阻增益 GTI‧‧‧ resistance gain

NIP‧‧‧輸入正極端 NIP‧‧‧ input positive terminal

NIN‧‧‧輸入負極端 NIN‧‧‧ input negative terminal

NOGM‧‧‧轉導輸出端 NOGM‧‧‧Transfer output

NOBP‧‧‧帶通輸出端 NOBP‧‧‧ bandpass output

NOPG‧‧‧可調整增益輸出端 NOPG‧‧‧ adjustable gain output

I1‧‧‧第一電流 I1‧‧‧First current

I2‧‧‧第二電流 I2‧‧‧second current

ID‧‧‧偵測電流 ID‧‧‧Detecting current

SB‧‧‧生物信號 SB‧‧ biosignal

VOUT‧‧‧電壓信號 VOUT‧‧‧ voltage signal

Claims (17)

一種前端放大器電路,用以接收一生物信號,包括:一信號通道,放大上述生物信號而產生一偵測電流,其中上述信號通道包括:一電容耦合轉導放大器,將上述生物信號放大一轉導增益,而輸出一第一電流;以及一帶通濾波放大器,將上述第一電流濾除於一頻帶寬之外的雜訊且放大一第一電流增益,而輸出一第二電流。 A front-end amplifier circuit for receiving a biological signal, comprising: a signal channel for amplifying the biological signal to generate a detection current, wherein the signal channel comprises: a capacitive coupling transduction amplifier, the biological signal is amplified and transduced Gain, and outputting a first current; and a bandpass filter amplifier, filtering the first current to noise outside the frequency band and amplifying a first current gain, and outputting a second current. 如申請專利範圍第1項所述之前端放大器電路,其中上述電容耦合轉導放大器包括:一第一輸入電容,耦接於一輸入負極端以及一第一節點之間;一第二輸入電容,耦接於一輸入正極端以及一第二節點之間,其中上述第一輸入電容以及上述第二輸入電容以一差動模式,交流耦合上述生物信號;一第一共模P型電晶體,用以將一共模電壓提供至上述第一節點;一第二共模P型電晶體,用以將上述共模電壓提供至上述第二節點;一第一電流源,用以提供一第一轉導偏壓電流;一第二電流源,用以提供一第二轉導偏壓電流;一第一轉導P型電晶體,源極端接收上述第一轉導偏壓電流,閘極端耦接至上述第二節點;一第二轉導P型電晶體,源極端接收上述第二轉導偏壓電 流,閘極端耦接至上述第一節點,其中上述第一轉導P型電晶體以及上述第二轉導P型電晶體用以產生上述轉導增益;一線性電阻,耦接於上述第一轉導P型電晶體之源極端以及上述第二轉導P型電晶體之源極端之間,其中上述線性電阻用以提升上述轉導增益之一線性度;一第三轉導P型電晶體,源極端耦接至上述第一轉導P型電晶體之汲極端,閘極端耦接至一轉導偏壓電壓;一第四轉導P型電晶體,源極端耦接至上述第二轉導P型電晶體之汲極端,閘極端耦接至上述轉導偏壓電壓,汲極端耦接至一轉導輸出端,其中上述轉導輸出端輸出上述第一電流;一第一轉導N型電晶體,汲極端以及閘極端皆耦接至上述第三轉導P型電晶體之汲極端;一第二轉導N型電晶體,汲極端耦接至上述轉導輸出端,閘極端耦接至上述第一轉導N型電晶體之閘極端;一第三轉導N型電晶體,汲極端以及閘極端皆耦接至第一轉導N型電晶體之源極端,源極端耦接至一接地端;以及一第四轉導N型電晶體,汲極端耦接至上述第二轉導N型電晶體之源極端,閘極端耦接至上述第三轉導N型電晶體之閘極端,源極端耦接至上述接地端。 The front-end amplifier circuit of claim 1, wherein the capacitive coupling transduction amplifier comprises: a first input capacitor coupled between an input negative terminal and a first node; and a second input capacitor, The first input capacitor and the second input capacitor are in a differential mode to AC-couple the biosignal; and the first common mode P-type transistor is coupled to the first input capacitor and the second node. Providing a common mode voltage to the first node; a second common mode P-type transistor for supplying the common mode voltage to the second node; and a first current source for providing a first transducing a bias current; a second current source for providing a second transducing bias current; a first transducing P-type transistor, the source terminal receiving the first transducing bias current, and the gate terminal coupled to the a second node; a second transducing P-type transistor, the source terminal receiving the second transducing bias voltage And the first terminal is coupled to the first node, wherein the first transducing P-type transistor and the second transmissive P-type transistor are used to generate the transduction gain; a linear resistor coupled to the first Transducing a source terminal of the P-type transistor and a source terminal of the second transducing P-type transistor, wherein the linear resistor is used to increase linearity of the transduction gain; and a third transducing P-type transistor The source terminal is coupled to the first terminal of the first transmissive P-type transistor, the gate terminal is coupled to a transconductance bias voltage, and the fourth transconductance P-type transistor is coupled to the second transistor. The first terminal is coupled to the transconductance bias voltage, and the transconductance output terminal outputs the first current; the first transduction N The transistor, the 汲 terminal and the gate terminal are all coupled to the 汲 terminal of the third transducing P-type transistor; a second transducing N-type transistor, the 汲 is extremely coupled to the transconductance output terminal, and the gate is extremely coupled Connected to the gate terminal of the first transduction N-type transistor; a third transduction N-type transistor The 汲 extreme and the gate terminal are all coupled to the source terminal of the first transduction N-type transistor, the source terminal is coupled to a ground terminal, and a fourth transconductance N-type transistor, the 汲 terminal is coupled to the second Transducing the source terminal of the N-type transistor, the gate terminal is coupled to the gate terminal of the third transducing N-type transistor, and the source terminal is coupled to the ground terminal. 如申請專利範圍第2項所述之前端放大器電路,其中上述信號通道更包括:一可調整增益放大器,將上述第二電流放大一第二電流增 益而於一調整增益輸出端輸出上述偵測電流,其中上述第二電流增益係為可調整;以及一偏移消除電路,用以消除上述電容耦合轉導放大器、上述帶通濾波放大器以及上述可調整增益放大器之輸出偏移電流。 The front-end amplifier circuit of claim 2, wherein the signal channel further comprises: an adjustable gain amplifier, wherein the second current is amplified by a second current Advantageously, the output current is outputted by an adjustment gain output, wherein the second current gain is adjustable; and an offset cancellation circuit for eliminating the capacitive coupling transduction amplifier, the band pass filter amplifier, and the Adjust the output offset current of the gain amplifier. 如申請專利範圍第3項所述之前端放大器電路,更包括:一轉阻放大器,用以將上述偵測電流經由一轉阻增益轉換為一電壓信號,且提供一驅動能力至耦接之一量測系統,其中上述生物信號至上述電壓信號放大之倍率係為上述轉導增益、上述第一電流增益、上述第二電流增益以及上述轉阻增益之乘積。 The front-end amplifier circuit as described in claim 3, further comprising: a transimpedance amplifier for converting the detected current into a voltage signal via a resistance gain, and providing a driving capability to the coupling The measurement system, wherein the magnification of the biosignal to the voltage signal is a product of the transduction gain, the first current gain, the second current gain, and the transimpedance gain. 如申請專利範圍第3項所述之前端放大器電路,其中上述帶通濾波放大器包括:一帶通主電流路徑,具有一帶通主偏壓電流且用以接收上述第一電流;一帶通濾波器,交流耦合至上述帶通主電流路徑,將上述第一電流濾除上述頻帶寬之外的雜訊而產生一濾波信號:以及一帶通副電流路徑,具有一帶通副偏壓電流且根據上述濾波信號而產生上述第二電流,其中上述第一電流增益係為上述帶通副偏壓電流與上述帶通主偏壓電流之比例。 The front-end amplifier circuit as described in claim 3, wherein the band-pass filter amplifier comprises: a band-pass main current path having a band-pass main bias current for receiving the first current; a band pass filter, alternating current Coupling to the band pass main current path, filtering the noise from the first current to generate a filtered signal: and a band pass sub current path having a band pass sub-bias current and according to the filtered signal The second current is generated, wherein the first current gain is a ratio of the band pass sub-bias current to the band pass main bias current. 如申請專利範圍第5項所述之前端放大器電路,其中上述帶通主電流路徑包括:一第一主P型電晶體,源極端耦接至一供應電壓,閘極端 耦接至汲極端;一第二主P型電晶體,源極端耦接至上述第一主P型電晶體之汲極端,閘極端以及汲極端接收上述第一電流;一第一主N型電晶體,閘極端以及汲極端耦接至上述第一主P型電晶體之汲極端;以及一第二主N型電晶體,閘極端以及汲極端耦接至上述第一主N型電晶體之源極端,源極端耦接至上述接地端。 The front-end amplifier circuit as described in claim 5, wherein the band-pass main current path comprises: a first main P-type transistor, the source terminal is coupled to a supply voltage, and the gate terminal Coupling to the 汲 terminal; a second main P-type transistor, the source terminal is coupled to the 汲 terminal of the first main P-type transistor, the gate terminal and the 汲 terminal receiving the first current; and a first main N-type battery a crystal, a gate terminal and a 汲 terminal are coupled to the 汲 terminal of the first main P-type transistor; and a second main N-type transistor, the gate terminal and the 汲 terminal are coupled to the source of the first main N-type transistor Extremely, the source is extremely coupled to the ground terminal. 如申請專利範圍第6項所述之前端放大器電路,其中上述第一主P型電晶體、上述第二主P型電晶體、上述第一主N型電晶體以及上述第二主N型電晶體係皆操作於次臨界區,以降低功率損耗。 The front-end amplifier circuit according to claim 6, wherein the first main P-type transistor, the second main P-type transistor, the first main N-type transistor, and the second main N-type transistor The system operates in the subcritical region to reduce power loss. 如申請專利範圍第6項所述之前端放大器電路,其中上述帶通副電流路徑包括:一第一副P型電晶體,源極端耦接至上述供應電壓,閘極端耦接至汲極端;一第二副P型電晶體,源極端耦接至上述第一副P型電晶體之汲極端,汲極端耦接至一帶通輸出端;一第一副N型電晶體,閘極端耦接至上述第二副P型電晶體之閘極端,汲極端耦接至上述帶通輸出端,其中上述第一副N型電晶體之閘極端接收上述濾波信號,上述帶通輸出端輸出上述第二電流;以及一第二副N型電晶體,閘極端以及汲極端耦接至上述第一副N型電晶體之源極端,源極端耦接至上述接地端,其中上述帶通副電流路徑之電晶體的尺寸與上述帶通主電流路 徑之電晶體尺寸之比例係為上述第一電流增益。 The front-end amplifier circuit of claim 6, wherein the band-pass sub-current path comprises: a first sub-P-type transistor, the source terminal is coupled to the supply voltage, and the gate terminal is coupled to the 汲 terminal; a second sub-P transistor, the source terminal is coupled to the first terminal of the first sub-P-type transistor, and the 汲 terminal is coupled to a band-pass output terminal; a first sub-N-type transistor, the gate terminal is coupled to the above a gate terminal of the second sub-P transistor, the 汲 terminal is coupled to the band-pass output terminal, wherein the gate terminal of the first sub-N-type transistor receives the filtered signal, and the band-pass output terminal outputs the second current; And a second sub-N-type transistor, the gate terminal and the 汲 terminal are coupled to the source terminal of the first sub-N-type transistor, and the source terminal is coupled to the ground terminal, wherein the transistor of the band-pass sub-current path is Dimensions and the above-mentioned bandpass main current path The ratio of the size of the transistor to the diameter is the first current gain described above. 如申請專利範圍第8項所述之前端放大器電路,其中上述第一副P型電晶體、上述第二副P型電晶體、上述第一副N型電晶體以及上述第二副N型電晶體係皆操作於次臨界區,以降低功率損耗。 The front-end amplifier circuit according to claim 8, wherein the first sub-P-type transistor, the second sub-P-type transistor, the first sub-N-type transistor, and the second sub-N-type transistor The system operates in the subcritical region to reduce power loss. 如申請專利範圍第8項所述之前端放大器電路,其中上述帶通濾波器包括:一第一差動輸入放大器,用以產生一轉移電導,包括一第一負輸入端、一第一正輸入端以及一第一輸出端,其中上述第一負輸入端耦接至上述第一輸出端;一第一耦合電容,耦接於上述第二主P型電晶體之閘極端以及上述第一正輸入端之間;一第一偏壓P型電晶體,具有一通道電阻,源極端耦接至上述共模電壓,汲極端耦接至上述第一正輸入端,閘極端耦接至一第一帶通偏壓電壓;一低通電容,耦接於上述第一輸出端以及上述接地端之間;一第二差動輸入放大器,包括一第二負輸入端、一第二正輸入端以及一第二輸出端,其中上述第二負輸入端耦接至上述第二輸出端,上述第二正輸入端耦接至上述第一輸出端;一第三差動輸入放大器,包括一第三負輸入端、一第三正輸入端以及一第三輸出端,其中上述第三負輸入端耦接至上述第三輸出端,上述第三輸出端輸出上述濾波信號;一第二耦合電容,耦接於上述第二輸出端以及上述第三正 輸入端之間,用以隔絕上述第二差動輸入放大器以及上述第三差動輸入放大器;以及一第二偏壓P型電晶體,用以將一直流偏壓提供至上述第三正輸入端,使得上述第二副P型電晶體之閘極端以及上述第一副N型電晶體之閘極端偏壓至上述直流偏壓。 The front-end amplifier circuit of claim 8, wherein the band-pass filter comprises: a first differential input amplifier for generating a transfer conductance, comprising a first negative input terminal and a first positive input terminal; And a first output terminal, wherein the first negative input terminal is coupled to the first output terminal; a first coupling capacitor coupled to the gate terminal of the second main P-type transistor and the first positive input Between the terminals; a first bias P-type transistor having a channel resistance, the source terminal is coupled to the common mode voltage, the 汲 terminal is coupled to the first positive input terminal, and the gate terminal is coupled to a first band a bias voltage; a low-pass capacitor coupled between the first output terminal and the ground terminal; a second differential input amplifier comprising a second negative input terminal, a second positive input terminal, and a first a second output terminal, wherein the second negative input terminal is coupled to the second output terminal, the second positive input terminal is coupled to the first output terminal; and a third differential input amplifier includes a third negative input terminal a third positive input and A third output terminal, wherein said third negative input terminal coupled to the third output terminal, the third signal output terminal of said filter; a second coupling capacitor coupled to the second output terminal and said third n Between the input terminals for isolating the second differential input amplifier and the third differential input amplifier; and a second bias P-type transistor for providing a DC bias voltage to the third positive input terminal The gate terminal of the second sub-P transistor and the gate terminal of the first sub N-type transistor are biased to the DC bias. 如申請專利範圍第10項所述之前端放大器電路,其中上述頻帶寬包括一低通截止頻率以及一高通截止頻率,其中上述轉移電導以及上述低通電容決定上述低通截止頻率,其中上述第一耦合電容以及上述通道電阻決定上述高通截止頻率。 The front-end amplifier circuit of claim 10, wherein the frequency bandwidth comprises a low-pass cutoff frequency and a high-pass cutoff frequency, wherein the transfer conductance and the low-pass capacitance determine the low-pass cutoff frequency, wherein the first The coupling capacitor and the above-mentioned channel resistance determine the above-mentioned high-pass cutoff frequency. 如申請專利範圍第10項所述之前端放大器電路,其中上述第一偏壓P型電晶體係操作於截止區,使得上述通道電阻係為高阻抗。 The front-end amplifier circuit of claim 10, wherein the first bias P-type electro-emissive system operates in a cut-off region such that the channel resistance is high impedance. 如申請專利範圍第10項所述之前端放大器電路,其中上述偏移消除電路包括:一數位控制器,產生一第一重置信號、一第二重置信號以及一選擇信號;一虛擬電阻重置模組,根據上述第一重置信號將上述第一節點以及上述第二節點短路至上述共模電壓,以及根據上述第二重置信號將上述第一正輸入端短路至上述共模電壓且將上述第三正輸入端短路至上述直流偏壓;一偏移偵測電路,根據上述選擇信號,依序偵測上述第一電流、上述第二電流以及上述偵測電流,而產生一第一補償電流碼、一第二補償電流碼以及一第三補償電流碼; 一第一電流數位類比轉換器,根據上述第一補償電流碼,對上述轉導輸出端抽取或提供一第一補償電流;一第二電流數位類比轉換器,根據上述第二補償電流碼,對上述帶通輸出端抽取或提供一第二補償電流;一第三電流數位類比轉換器,根據上述第三補償電流碼,對上述調整增益輸出端抽取或提供一第三補償電流;以及一暫存器,用以儲存上述第一補償電流碼、上述第二補償電流碼以及上述第三補償電流碼。 The front end amplifier circuit of claim 10, wherein the offset cancellation circuit comprises: a digital controller, generating a first reset signal, a second reset signal, and a selection signal; And setting a module, shorting the first node and the second node to the common mode voltage according to the first reset signal, and shorting the first positive input terminal to the common mode voltage according to the second reset signal and Shorting the third positive input terminal to the DC bias voltage; an offset detecting circuit sequentially detecting the first current, the second current, and the detecting current according to the selection signal to generate a first a compensation current code, a second compensation current code, and a third compensation current code; a first current digital analog converter, according to the first compensation current code, extracting or providing a first compensation current to the transduction output end; a second current digital analog converter, according to the second compensation current code, The band pass output terminal extracts or provides a second compensation current; a third current digital analog converter, extracts or supplies a third compensation current to the adjusted gain output terminal according to the third compensation current code; and temporarily stores And storing the first compensation current code, the second compensation current code, and the third compensation current code. 如申請專利範圍第13項所述之前端放大器電路,其中上述信號通道更包括:一第一開關,耦接於上述電容耦合轉導放大器以及上述帶通濾波放大器之間,且根據上述數位控制器之一第一斷路信號而不導通;以及一第二開關,耦接於上述帶通濾波放大器以及上述可調整增益放大器之間,且根據上述數位控制器之一第二斷路信號而不導通。 The front-end amplifier circuit of claim 13, wherein the signal path further comprises: a first switch coupled between the capacitive coupling transduction amplifier and the band-pass filter amplifier, and according to the digital controller One of the first open circuit signals is not turned on; and a second switch is coupled between the band pass filter amplifier and the adjustable gain amplifier, and is not turned on according to the second open circuit signal of one of the digital controllers. 如申請專利範圍第14項所述之前端放大器電路,其中當上述第一開關以及上述第二開關皆不導通時,上述偏移偵測電路根據上述選擇信號偵測上述第一電流而產生上述第一補償電流碼,其中當上述第一開關導通而上述第二開關不導通時,上述第一電流數位類比轉換器對上述轉導輸出端抽取或提供上述第一補償電流,且上述偏移偵測電路根據上述選擇信號偵測上述第二電流而產生上述第二補償電流碼,其中 當上述第一開關以及上述第二開關皆導通時,上述第一電流數位類比轉換器對上述轉導輸出端抽取或提供上述第一補償電流、上述第二電流數位類比轉換器對上述帶通輸出端抽取或提供上述第二補償電流以及上述偏移偵測電路根據上述選擇信號偵測上述偵測電流而產生上述第三補償電流碼。 The front-end amplifier circuit of claim 14, wherein when the first switch and the second switch are not turned on, the offset detecting circuit generates the first current according to the selection signal to generate the first a compensation current code, wherein when the first switch is turned on and the second switch is not turned on, the first current digital analog converter extracts or supplies the first compensation current to the transduction output, and the offset detection The circuit detects the second current according to the selection signal to generate the second compensation current code, wherein When the first switch and the second switch are both turned on, the first current digital analog converter extracts or supplies the first compensation current to the transduction output end, and the second current digital analog converter outputs the band pass output. And extracting or providing the second compensation current, and the offset detecting circuit detects the detection current according to the selection signal to generate the third compensation current code. 如申請專利範圍第14項所述之前端放大器電路,其中上述偏移偵測電路更包括:一取樣放大器,用以將一輸入電流轉換為一比較電壓;一選擇開關,根據上述選擇信號,依序選擇上述第一電流、上述第二電流以及上述偵測電流之一者作為上述輸入電流;以及一比較器,比較上述比較電壓以及一參考電壓而產生一輸出信號,其中上述數位控制器根據上述輸出信號,而決定上述第一補償電流碼、上述第二補償電流碼以及上述第三補償電流碼。 The front end amplifier circuit of claim 14, wherein the offset detecting circuit further comprises: a sampling amplifier for converting an input current into a comparison voltage; and a selection switch according to the selection signal And selecting, as the input current, one of the first current, the second current, and the detecting current; and a comparator, comparing the comparison voltage and a reference voltage to generate an output signal, wherein the digital controller is configured according to the foregoing And outputting the signal to determine the first compensation current code, the second compensation current code, and the third compensation current code. 如申請專利範圍第4項所述之前端放大器電路,更包括:另一信號通道,接收且放大另一生物信號而產生另一偵測電流;以及一多工器,將上述偵測電流以及上述另一偵測電流之一者提供至上述轉阻放大器。 The front-end amplifier circuit as described in claim 4, further comprising: another signal channel, receiving and amplifying another bio-signal to generate another detecting current; and a multiplexer for detecting the current and the above One of the other detection currents is supplied to the above-described transimpedance amplifier.
TW105108046A 2016-03-16 2016-03-16 Front-end amplifier circuit TWI587624B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW105108046A TWI587624B (en) 2016-03-16 2016-03-16 Front-end amplifier circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW105108046A TWI587624B (en) 2016-03-16 2016-03-16 Front-end amplifier circuit

Publications (2)

Publication Number Publication Date
TWI587624B true TWI587624B (en) 2017-06-11
TW201735527A TW201735527A (en) 2017-10-01

Family

ID=59688280

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105108046A TWI587624B (en) 2016-03-16 2016-03-16 Front-end amplifier circuit

Country Status (1)

Country Link
TW (1) TWI587624B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI799125B (en) * 2021-11-22 2023-04-11 智原科技股份有限公司 Method for removing offset in integrated circuit and integgrated circuit

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006073463A2 (en) * 2004-05-13 2006-07-13 University Of Florida Research Foundation, Inc. Amplifier with pulse coded output and remote signal reconstruction from the pulse output
WO2010048017A1 (en) * 2008-10-21 2010-04-29 Merck Sharp & Dohme Corp. Disubstituted azepan orexin receptor antagonists

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006073463A2 (en) * 2004-05-13 2006-07-13 University Of Florida Research Foundation, Inc. Amplifier with pulse coded output and remote signal reconstruction from the pulse output
WO2010048017A1 (en) * 2008-10-21 2010-04-29 Merck Sharp & Dohme Corp. Disubstituted azepan orexin receptor antagonists

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI799125B (en) * 2021-11-22 2023-04-11 智原科技股份有限公司 Method for removing offset in integrated circuit and integgrated circuit
US11831287B2 (en) 2021-11-22 2023-11-28 Faraday Technology Corp. Common mode correction using ADC in analog probe based receiver

Also Published As

Publication number Publication date
TW201735527A (en) 2017-10-01

Similar Documents

Publication Publication Date Title
CN107204747B (en) Front-end amplifier circuit
TWI408377B (en) Differential sensing system and method for using the same
EP2819306B1 (en) Instrumentation amplifier and signal amplification method
CN110138346B (en) Capacitive coupling type chopper instrument amplifier capable of improving noise performance
US10117591B2 (en) Impedance bootstrap circuit for an interface of a monitoring device
JP2017200221A (en) Neural amplifier
CN108494370A (en) Chopper-stabilized instrumentation amplifier
KR101832734B1 (en) Improved bio-potential measurement system
TWI587624B (en) Front-end amplifier circuit
TW200932194A (en) A feed-forward automatic-gain control amplifier (FFAGCA) for biomedical application
KR101948651B1 (en) Low power cmos front-end amplifier with high input impedance
Bhargava et al. A 262nW analog front end with a digitally-assisted low noise amplifier for batteryless EEG acquisition
Magri et al. Design of CMOS front-end circuitry for the acquisition of biopotential signals
KR101764603B1 (en) Bio signal Read-out Circuit
Huang et al. Design of a low electrode offset and high CMRR instrumentation amplifier for ECG acquisition systems
Saurabh et al. Design and implementation of tunable bandpass filter for biomedical applications
Udupa et al. ECG analog front-end in 180 nm CMOS technology
US20210333233A1 (en) Semiconductor device, biological signal sensor and biological signal sensor system
Feng et al. A low-power low-noise amplifier for EEG/ECG signal recording applications
Lee et al. CMRR enhancement technique for IA using three IAs for bio-medical sensor applications
Cota et al. In-vivo characterization of a 0.8–3 µV RMS input-noise versatile CMOS pre-amplifier
CN110338783A (en) A kind of ECG signal Acquisition Circuit of super low-power consumption
CN117017308B (en) Slow wave neural signal amplifying circuit
KR101904431B1 (en) Digital biopotential sensor system
Joshi et al. Design and implementation of low power compact amplifier circuitry for wearable biosignal device