TWI584133B - Static bending deflection and free vibration analytical system of symmetric laminated plates - Google Patents
Static bending deflection and free vibration analytical system of symmetric laminated plates Download PDFInfo
- Publication number
- TWI584133B TWI584133B TW105113854A TW105113854A TWI584133B TW I584133 B TWI584133 B TW I584133B TW 105113854 A TW105113854 A TW 105113854A TW 105113854 A TW105113854 A TW 105113854A TW I584133 B TWI584133 B TW I584133B
- Authority
- TW
- Taiwan
- Prior art keywords
- composite laminate
- dimensional
- free vibration
- vibration analysis
- static bending
- Prior art date
Links
Landscapes
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Description
本發明係有關於一種對稱複合層壓板之靜態彎曲撓度和自由振動分析系統及方法,尤其係指一種藉由非線性優化編程模組提供一個快速且精確之方法,以有效實現複合層壓板之動態行為分析與仿真模擬,而計算出橫向剪應力的最小變化率。The invention relates to a static bending deflection and free vibration analysis system and method for a symmetric composite laminate, in particular to a method for providing a fast and accurate method by a nonlinear optimization programming module to effectively realize the dynamics of the composite laminate. Behavior analysis and simulation, and calculate the minimum rate of change of transverse shear stress.
按,複合材料係由兩種以上的纖維強化材料組合而成,其係較傳統材料之機械性質更好,低比重、高剛性、高強度且使用壽命長,由於複合材料之特性堅韌且不易腐蝕,因此其運用範圍相當廣泛,於工業、建築、民生、醫療以及軍事等領域都能運用,舉凡飛機之機身、導彈外殼、房屋之補強以及運動用品皆能應用複合材料,對於人類文明的進步有極大的幫助,而其中最廣泛使用的複合材料即係層壓板,層壓板係由高密度平行層數所組合而成的強化纖維之複合板材,例如石墨及環氧樹脂或石墨及玻璃纖維堆疊成的複合材料,藉此,複合層壓板的幾何結構會比傳統材料更容易達到力學上最佳化的結構性質,能夠獲取更優異的機械性質。According to the composite material, the composite material is composed of two or more kinds of fiber reinforced materials, which are better than the traditional materials, low in specific gravity, high in rigidity, high in strength and long in service life, because the characteristics of the composite material are tough and not easy to corrode. Therefore, its application range is quite wide, and it can be applied in the fields of industry, construction, people's livelihood, medical care, and military. The fuselage of the aircraft, the missile shell, the reinforcement of the house, and the sporting goods can all use composite materials, and the progress of human civilization. Greatly helpful, and the most widely used composite material is laminate, which is a composite sheet of reinforced fibers composed of high-density parallel layers, such as graphite and epoxy or graphite and glass fiber stacks. The composite material, whereby the geometry of the composite laminate is easier to achieve mechanically optimized structural properties than conventional materials, and can obtain more excellent mechanical properties.
由於複合層壓板係由不同材料所組合而成,於結構及力的分佈都較傳統材料複雜許多,過去已有一些層壓板的分析理論被提出,例如古典複合層壓板理論(classical laminated plate theory),其係建立於位移理論及基爾霍夫假設,以分析複合層壓板的變形。然而,古典複合層壓板理論僅能分析薄的等向層壓板,對於較厚的層壓板無法作有效的分析。在此之後,有更多的層壓板分析理論被提出,例如3D彈性平衡方程式(3D elasticity equilibrium equations)、材料層板理論(layerwise plate theories)、鋸齒理論(zigzag theories)、一階剪切變形理論(first-order shear deformation theory)和高階剪切變形理論(higher-order shear deformation plate theories);其中一階剪切變形理論相較其他分析理論能將層與層之間的剪應力計算簡單化,其僅考慮一個相對於厚度的橫向剪應力常數,藉由加入一個剪切校正因子(shear correction factor)於橫向剪應力中以導出層與層之間的應力變化;然,一階剪切變形理論雖有較高之計算效率,卻有精確度無法優於高階剪切變形理論之缺失,而高階剪切變形理論需要使用到大量的電腦運算資源、因此具有分析方法太過於複雜導致計算效率低及成本過高之缺失。Since composite laminates are composed of different materials, the distribution of structure and force is much more complicated than that of traditional materials. In the past, some analytical theories of laminates have been proposed, such as classical laminated plate theory. It is based on the displacement theory and the Kirchhoff hypothesis to analyze the deformation of composite laminates. However, classical composite laminate theory can only analyze thin isotropic laminates, and cannot be effectively analyzed for thicker laminates. After that, more laminate analysis theories have been proposed, such as 3D elasticity equilibrium equations, layerwise plate theories, zigzag theories, first-order shear deformation theory. (first-order impedance deformation theory) and higher-order training deformation plate theories; the first-order shear deformation theory can simplify the calculation of shear stress between layers compared with other analytical theories. It only considers a transverse shear stress constant with respect to thickness, and introduces a shear correction factor in the transverse shear stress to derive the stress change between the layers; however, the first-order shear deformation theory Although there is a high computational efficiency, the accuracy cannot be better than the lack of high-order shear deformation theory, and the high-order shear deformation theory requires a large amount of computer computing resources, so the analysis method is too complicated and the calculation efficiency is low. The lack of cost is too high.
現今亦發展出以數值近似法結合一階剪切變形理論來分析複合層壓板並求解其動態響應,主要技術係包括:有限差分法、有限元素法、微分值積法、雷利-瑞茲法,如中華民國公告號TW I494783 B「具彈性基礎之複合板材振動分析系統」係為本發明人之先前專利,其藉由一具有平行處理架構的多維波數位濾波網路模型系統提供之快速且準確的偏微分方程式解;然,相較於現今其他數值近似法雖能夠較快速即準確獲得偏微分方程式解,但其尚不具備計算複合層壓板之靜態彎曲撓度的功能,且其網路之結構性、穩定性、收斂性以及精確性仍有待改進。Nowadays, the numerical approximation method combined with the first-order shear deformation theory is used to analyze the composite laminate and solve its dynamic response. The main technical systems include: finite difference method, finite element method, differential value product method, Rayleigh-Ritz method. For example, the Republic of China Bulletin No. TW I494783 B "Composite Plate Vibration Analysis System with Resilient Foundation" is a prior patent of the inventor, which is provided by a multi-dimensional digital digital filtering network model system with parallel processing architecture. Accurate partial differential equation solution; however, compared with other current numerical approximation methods, although the partial differential equation solution can be obtained quickly and accurately, it does not have the function of calculating the static bending deflection of the composite laminate, and its network Structural, stability, convergence and accuracy still need to be improved.
今,發明人即是鑑於上述現有層壓板的分析法(如數值近似法)於實際實施使用時仍具有多處缺失,於是乃一本孜孜不倦之精神,並藉由其豐富專業知識及多年之實務經驗所輔佐,而加以改善,並據此研創出本發明。Nowadays, the inventor is in view of the above-mentioned existing laminate analysis method (such as numerical approximation), which still has many defects in actual implementation, so it is a tireless spirit, and with its rich professional knowledge and many years of practice The experience was assisted and improved, and the present invention was developed based on this.
本發明主要目的為提供一種對稱複合層壓板之靜態彎曲撓度和自由振動分析系統及方法,其係藉由非線性優化編程模組提供一個快速且精確之方法,以有效實現複合層壓板之動態行為分析與仿真模擬,而計算出橫向剪應力的最小變化率The main object of the present invention is to provide a static bending deflection and free vibration analysis system and method for a symmetric composite laminate, which provides a fast and accurate method for realizing the dynamic behavior of the composite laminate by a nonlinear optimization programming module. Analysis and simulation, and calculate the minimum rate of change of transverse shear stress
為了達到上述實施目的,本發明一種對稱複合層壓板之靜態彎曲撓度和自由振動分析系統,其係包含有一輸入模塊,係用以將一複合層壓板系統轉換為三個互動之子系統;一電性連接輸入模塊之多維度數位信號處理單元,係包括一串結電子集總電路、一多維度線性電感、一多維度基爾霍夫電路、一離散模組,一非線性優化編程模組以及一數位濾波器,其中串結電子集總電路係用以表示複合層壓板系統於連續時間之物理行為,多維度線性電感係產生系統變量以維持運行,多維度基爾霍夫電路係轉換串結電子集總電路為複數個被動性數位電路元件,形成 ,共三個系統變量的主循環子電路,以及由二個耦合迴轉器連接之 ,共五個系統變量的主循環子電路與 ,共五個系統變量的主循環子電路,離散模組係使被動性數位電路元件藉由位移域中的梯形法則達到離散近似的目的,非線性優化編程模組係提供最佳化之方法來求取最佳的收斂性,數位濾波器係確保離散的多維度基爾霍夫電路於每一埠具有被動性與演算法強健性;以及一輸出模塊,係電性連接多維度數位信號處理單元,使多維度基爾霍夫電路的每一個埠皆轉換並合成一個完整的多維波數位濾波網路。 In order to achieve the above-mentioned object, the present invention provides a static bending deflection and free vibration analysis system for a symmetric composite laminate, which comprises an input module for converting a composite laminate system into three interactive subsystems; The multi-dimensional digital signal processing unit connected to the input module comprises a series of junction electron lumping circuits, a multi-dimensional linear inductor, a multi-dimensional Kirchhoff circuit, a discrete module, a nonlinear optimization programming module and a Digital filter, in which the tandem electronic lumping circuit is used to represent the physical behavior of the composite laminate system in continuous time, the multi-dimensional linear inductance system generates system variables to maintain operation, and the multi-dimensional Kirchhoff circuit system converts the string-connected electrons The lumped circuit is a plurality of passive digital circuit components formed a main loop subcircuit of three system variables, and connected by two coupled gyrators , a total of five system variables of the main loop subcircuit and The main loop sub-circuit of five system variables, the discrete module system makes the passive digital circuit component achieve the discrete approximation by the trapezoidal rule in the displacement domain, and the nonlinear optimization programming module provides an optimization method. To obtain the best convergence, the digital filter system ensures that the discrete multi-dimensional Kirchhoff circuit has passiveness and algorithm robustness at each turn; and an output module electrically connects the multi-dimensional digital signal processing unit Each of the multi-dimensional Kirchhoff circuits is converted and synthesized into a complete multi-dimensional digital-digital filtering network.
於本發明之另一目的為提供一種對稱複合層壓板之靜態彎曲撓度和自由振動分析方法,其包含:步驟一:取一長厚度比≤ 20之複合層壓板;步驟二:將複合層壓板利用偏微分方程式轉換為三個互動之子系統;步驟三:係接收子系統之輸出,並藉由一串結電子集總電路以及一多維度線性電感以一多維度基爾霍夫電路實現網路操作;步驟四:將多維度基爾霍夫電路以一離散模組、一非線性優化編程模組以及一數位濾波器做運算及濾波;以及步驟五:一輸出模塊接收離散模組、非線性優化編程模組以及數位濾波器之運算結果,使多維度基爾霍夫電路的每一個埠皆轉換並合成一個完整的多維波數位濾波網路。Another object of the present invention is to provide a static bending deflection and free vibration analysis method for a symmetric composite laminate comprising: step one: taking a composite laminate having a long thickness ratio of ≤ 20; and step 2: utilizing the composite laminate The partial differential equation is converted into three interactive subsystems; Step 3: is the output of the receiving subsystem, and the network operation is realized by a multi-dimensional Kirchhoff circuit by a series of junction lumped circuits and a multi-dimensional linear inductor. Step 4: The multi-dimensional Kirchhoff circuit is operated and filtered by a discrete module, a nonlinear optimization programming module and a digital filter; and step 5: an output module receives the discrete module, nonlinear optimization The operation results of the programming module and the digital filter enable each 埠 of the multi-dimensional Kirchhoff circuit to be converted and synthesized into a complete multi-dimensional digital digital filtering network.
於本發明之一實施例中,輸入模塊係為一隨時間變化之偏微分方程式,以使該對稱複合層壓板之靜態彎曲撓度和自由振動分析系統表示為下列三個互動的子系統: 、 及 ;其中,q(x,y)係為外部橫向負載q x(x,y)、q y(x,y)為沿著x軸與y軸方向移動的分佈力, 係為橫向速度, 與 係為x軸和y軸之橫向彎曲旋轉速度,I係為質量慣性,而Z Q、Z M、Z N係分別定義為 ;其中, 係分別為矩陣 的行列式, 與 係橫向剪應力剛度矩陣, 則為彎曲剛度矩陣,而 係代表 三共軛矩陣的輔助因子。 In one embodiment of the invention, the input module is a time-varying partial differential equation such that the static bending deflection and free vibration analysis system of the symmetric composite laminate is represented by the following three interacting subsystems: , and Where q(x, y) is the external lateral load q x (x, y), q y (x, y) is the distributed force moving along the x-axis and the y-axis direction, Is the lateral speed, versus It is the transverse bending rotational speed of the x-axis and the y-axis, I is the mass inertia, and Z Q , Z M and Z N are respectively defined as ;among them, Matrix Determinant, versus a transverse shear stress stiffness matrix, Then the bending stiffness matrix, and Department representative A cofactor for a triple conjugate matrix.
於本發明之一實施例中,將橫向速度 以及 與 視為圖形化電壓,則引入比例變量變數i k,k=1,2,...,13並結合常數r j=1,2,…,5,係以下列關係式定義: 則對稱複合層壓板之靜態彎曲撓度和自由振動分析系統以多維度基爾霍夫電路實現網路操作,係以下列關係式定義: ;藉由上述關係式結合輔助常數 、j=1,2,…,10與 =1,2,…,5,以定義多維度偏導數 : 其中D x、D y與D t係表示為空間座標x、y與時間座標t的偏微導數運算子。 In an embodiment of the invention, the lateral velocity as well as versus As a graphical voltage, the proportional variable variables i k , k = 1, 2, ..., 13 are combined and the constants r j = 1, 2, ..., 5 are defined by the following relationship: The static bending deflection and free vibration analysis system of the symmetric composite laminate realizes the network operation by the multi-dimensional Kirchhoff circuit, which is defined by the following relationship: Combining auxiliary constants by the above relationship , j=1, 2,...,10 with =1, 2,...,5 to define multi-dimensional partial derivatives : Where D x , D y and D t are expressed as the partial derivative derivatives of the space coordinates x, y and the time coordinate t.
於本發明之一實施例中,多維度線性電感係包含可例如有電阻、線性電感器、理想變壓器以及迴轉器,且為單一埠或複數個埠。In one embodiment of the invention, the multi-dimensional linear inductance system comprises, for example, a resistor, a linear inductor, an ideal transformer, and a gyrator, and is a single turn or a plurality of turns.
於本發明之一實施例中,以CFL(Courant-Friedrichs-Lewy)條件約束多維波數位濾波網路,使網路具有較好的穩定性,乃提供一個初始值 ,令時間-空間比的最小值係受限於 之間,透過非線性優化編程模組採取一種有效集策略(active set strategy)的最佳化方法,進行疊代運算以計算出一個猜測的初始值的最佳解,該非線性約束條件由下列最佳化模組獲得: In an embodiment of the present invention, the multi-dimensional wave digital filtering network is constrained by CFL (Courant-Friedrichs-Lewy) condition, so that the network has good stability and provides an initial value. To make the minimum of the time-to-space ratio limited Between the nonlinear optimization programming module adopts an optimization method of active set strategy, and the iterative operation is performed to calculate the optimal solution of the initial value of a guess. The nonlinear constraint is determined by the following Jiahua module obtained:
於本發明之一實施例中,C g係定義為: 理論推導 之數值,係分別為: 理論推導 之數值,係分別為: In an embodiment of the invention, the C g is defined as: Theoretical derivation The values are as follows: Theoretical derivation The values are as follows:
於本發明之一實施例中,在平面應力狀態最小變化時尋找剪切校正因子(SCF, shear correction factor)的最佳解,以 與 定義無因次化(nondimensionalized)的最大橫向撓度 以及最佳的橫向剪應力 、 ,係分別為: 其中,符號 係為歐氏範數(Euclidean norm),而arg opt則代表最佳(optimum)的自變數(argument),接下來係透過一些歐式距離(Euclidean distance)的計算來觀察橫向剪切能的最小變化, ,意即定義如下: In an embodiment of the invention, the optimal solution of the shear correction factor (SCF) is found when the plane stress state changes minimally, versus Define the maximum lateral deflection of nondimensionalized And the best transverse shear stress , , are: Among them, the symbol The system is Euclidean norm, and arg opt represents the optimum argument. The next step is to observe the minimum change of transverse shear energy through some Euclidean distance calculations. , , meaning is defined as follows:
;其中, 代表著SCF的離散區域,係以評估橫向剪切能的最小變化比率,而函數 係計算並比較目前的變化 與之前的變化 之間的差異。 ;among them, Represents the discrete region of the SCF to evaluate the minimum rate of change of transverse shear energy, and the function Calculate and compare current changes With previous changes difference between.
本發明之目的及其結構功能上的優點,將依據以下圖面所示之結構,配合具體實施例予以說明,俾使審查委員能對本發明有更深入且具體之瞭解。The object of the present invention and its structural and functional advantages will be explained in conjunction with the specific embodiments according to the structure shown in the following drawings, so that the reviewing committee can have a more in-depth and specific understanding of the present invention.
接續請參閱第一~四圖,本發明對稱複合層壓板之靜態彎曲撓度和自由振動分析系統,其係包含有一輸入模塊(1)、一電性連接輸入模塊(1)之多維度數位信號處理單元(2),以及一電性連接多維度數位信號處理單元(2)之輸出模塊(3);其中,多維度數位信號處理單元(2)係包括一串結電子集總電路(21)、一多維度線性電感(22)、一多維度基爾霍夫電路(23)、一離散模組(24),一非線性優化編程模組(25)以及一數位濾波器(26),所述之串結電子集總電路(21)係用以表示複合層壓板系統於連續時間之物理行為,多維度線性電感(22)係產生系統變量以維持運行,多維度基爾霍夫電路(23)係轉換串結電子集總電路(21)為複數個被動性數位電路元件,其複數個被動性數位電路元件和相對應數位濾波網路的定義如第二圖所示,以形成如第三圖所示 三個系統變量的主循環子電路,以及由二個耦合迴轉器連接之 五個系統變量的主循環子電路與 五個系統變量的主循環子電路,離散模組(24)係使被動性數位電路元件藉由位移域中的梯形法則達到離散近似的目的,非線性優化編程模組(25)係提供最佳化方法來求取最佳的收斂性,數位濾波器(26)係確保離散的多維度基爾霍夫電路(23)於每一埠具有被動性與演算法強健性,如第四圖所示,使該多維度基爾霍夫電路(23)的每一個埠皆轉換並合成一個完整的多維波數位濾波網路。 For the continuation, please refer to the first to fourth figures, the static bending deflection and free vibration analysis system of the symmetric composite laminate of the present invention, which comprises an input module (1) and an electrical connection input module (1) for multi-dimensional digital signal processing. a unit (2), and an output module (3) electrically connected to the multi-dimensional digital signal processing unit (2); wherein the multi-dimensional digital signal processing unit (2) comprises a series of junction electronic lumping circuits (21), a multi-dimensional linear inductor (22), a multi-dimensional Kirchhoff circuit (23), a discrete module (24), a nonlinear optimization programming module (25), and a digital filter (26), The tandem electronic lumped circuit (21) is used to indicate the physical behavior of the composite laminate system in continuous time, and the multi-dimensional linear inductor (22) generates system variables to maintain operation, multi-dimensional Kirchhoff circuit (23) The conversion string junction electron lumping circuit (21) is a plurality of passive digital circuit components, and the plurality of passive digital circuit components and the corresponding digital filtering network are defined as shown in the second figure to form a third figure. Shown Main loop subcircuit of three system variables, connected by two coupled gyrators The main loop subcircuit of five system variables The main loop sub-circuit of five system variables, the discrete module (24) makes the passive digital circuit components achieve the discrete approximation by the trapezoidal rule in the displacement domain, and the nonlinear optimization programming module (25) provides the best. The method is used to obtain the best convergence. The digital filter (26) ensures that the discrete multi-dimensional Kirchhoff circuit (23) has passiveness and algorithm robustness at each turn, as shown in the fourth figure. Each of the multi-dimensional Kirchhoff circuits (23) is converted and synthesized into a complete multi-dimensional digital-digital filtering network.
再者,請參閱第五圖,本發明亦提供一種對稱複合層壓板之靜態彎曲撓度和自由振動分析方法,其包含:步驟一(S1):取一長厚度比≤ 20之複合層壓板;步驟二(S2):將複合層壓板利用偏微分方程式轉換為三個互動之子系統;步驟三(S3):係接收子系統之輸出,並藉由一串結電子集總電路(21)以及一多維度線性電感(22)以一多維度基爾霍夫電路(23)實現網路操作;步驟四(S4):將多維度基爾霍夫電路(23)以一離散模組(24)、一非線性優化編程模組(25)以及一數位濾波器(26)做運算及濾波;以及步驟五(S5):一輸出模塊(3)接收離散模組(24)、非線性優化編程模組(25)以及數位濾波器(26)之運算結果,使多維度基爾霍夫電路(23)的每一個埠皆轉換並合成一個完整的多維波數位濾波網路;其中,多維度線性電感(22)可例如為單一埠或複數個埠,並包含有電阻、線性電感器、理想變壓器以及迴轉器,若係為單一埠之多維度線性電感,其電感值係 ,且藉由梯形規則得到單一埠之阻抗值 : Furthermore, referring to the fifth figure, the present invention also provides a static bending deflection and free vibration analysis method for a symmetric composite laminate, comprising: Step 1 (S1): taking a composite laminate having a long thickness ratio ≤ 20; Second (S2): Converting the composite laminate into three interactive subsystems using partial differential equations; Step 3 (S3): receiving the output of the subsystem, and using a series of junction lumped circuits (21) and more The dimensional linear inductance (22) implements network operation by a multi-dimensional Kirchhoff circuit (23); step 4 (S4): the multi-dimensional Kirchhoff circuit (23) is a discrete module (24), a The nonlinear optimization programming module (25) and a digital filter (26) perform operations and filtering; and the fifth step (S5): an output module (3) receives the discrete module (24), and the nonlinear optimization programming module ( 25) and the result of the digital filter (26), each of the multi-dimensional Kirchhoff circuit (23) is converted and synthesized into a complete multi-dimensional digital-digit filtering network; wherein, multi-dimensional linear inductance (22 ) can be, for example, a single turn or a plurality of turns, and includes a resistor, a linear inductor, and an ideal And a rotary pressure filter, if a single-port-based linear dimension as much inductance, the inductance value based And obtain the impedance value of a single 藉 by the trapezoidal rule :
若係為複數個埠之多維度線性電感(22),埠之阻抗值定義為: 。 If the system is a multi-dimensional linear inductor (22), the impedance value of 埠 is defined as: .
本發明所採用的研究方法係為將古典層壓板理論加入一階剪切變形理論,因古典層壓板理論之疊層中忽略橫向剪切和正切應變力,所以不足於預測中厚度層壓複合板或高度非均質的複合層壓板之總響應特性;藉由Hamilton原理結合線性應變位移關係,即可產生歐拉-拉格朗日方程式(Euler-Lagrange equation),其為虛功的動態型態,且包含了虛擬位移 ,此控制方程可利用對位移梯度作分部積分並設一個係數給虛擬位移,即導出位移分量以及合應力的偏微分方程式,如下列方程式所示: ; The research method adopted by the present invention is to add the classical laminate theory to the first-order shear deformation theory, and the transverse shear and tangential strain forces are neglected in the laminate of the classical laminate theory, so it is insufficient to predict the medium-thickness laminated composite board. Or the overall response characteristics of a highly heterogeneous composite laminate; the Hamilton principle combined with the linear strain-displacement relationship produces the Euler-Lagrange equation, which is the dynamic form of the virtual work. And contains virtual displacement This governing equation can be used to integrate the displacement gradient and set a coefficient to the virtual displacement, that is, to derive the displacement component and the partial differential equation of the combined stress, as shown in the following equation: ;
依據上述方程式將一複合層壓板系統轉換為三個互動之子系統,表示為: 、 及 ;其中,q(x,y)係為外部橫向負載q x(x,y)、q y(x,y)為沿著x軸與y軸方向移動的分佈力,𝑣 係為橫向速度, 與 係為x軸和y軸之橫向彎曲旋轉速度,I係為質量慣性,而Z Q、Z M、Z N係分別定義為 ;其中, 係分別為矩陣 的行列式, 與 係橫向剪應力剛度矩陣, 則為彎曲剛度矩陣,而 係代表 三共軛矩陣的輔助因子。 Converting a composite laminate system into three interactive subsystems according to the above equation, expressed as: , and Where q(x, y) is the external lateral load q x (x, y), q y (x, y) is the distributed force moving along the x-axis and the y-axis direction, 𝑣 speed, versus It is the transverse bending rotational speed of the x-axis and the y-axis, I is the mass inertia, and Z Q , Z M and Z N are respectively defined as ;among them, Matrix Determinant, versus a transverse shear stress stiffness matrix, Then the bending stiffness matrix, and Department representative A cofactor for a triple conjugate matrix.
另,將橫向速度 以及 與 視為圖形化電壓,則引入比例變量變數i k,k=1,2,...,13並結合常數r j=1,2,…,5,以下列關係式定義: Also, the lateral speed as well as versus Considering the graphical voltage, the proportional variable variable i k , k = 1, 2, ..., 13 is introduced and combined with the constant r j = 1, 2, ..., 5, defined by the following relationship:
並定義偏導數運算子D x、D y與D t,相對於空間座標x、y與時間座標t,以轉換三個互動之子系統為網路運作方式的基爾霍夫電路方程式,如下列方程式所示: And define the partial derivative operators D x , D y and D t , relative to the space coordinates x, y and the time coordinate t, to convert the three interactive subsystems into the Kirchhoff circuit equation of the network operation, such as the following equation Shown as follows:
其中,藉由上述關係式結合輔助常數 、j=1,2,…,10與 =1,2,…,5,可知 為: Among them, the auxiliary constant is combined by the above relationship , j=1, 2,...,10 with =1, 2,...,5, know for:
此外,藉由下述具體實施例,可進一步證明本發明可實際應用之範圍,但不意欲以任何形式限制本發明之範圍。In addition, the scope of the invention may be further exemplified by the following specific examples, which are not intended to limit the scope of the invention.
首先建立一個對稱複合層壓板之靜態彎曲撓度和自由振動分析系統,其包括有一輸入模塊(1),一電性連接輸入模塊之多維度數位信號處理單元(2),係包括一串結電子集總電路(21)、一多維度線性電感(22)、一多維度基爾霍夫電路(23)、一離散模組(24),一非線性優化編程模組(25)以及一數位濾波器(25);以及一輸出模塊(3),係電性連接多維度數位信號處理單元(2)。Firstly, a static bending deflection and free vibration analysis system of a symmetric composite laminate is constructed, which comprises an input module (1), a multi-dimensional digital signal processing unit (2) electrically connected to the input module, comprising a string of junction electron sets a total circuit (21), a multi-dimensional linear inductor (22), a multi-dimensional Kirchhoff circuit (23), a discrete module (24), a nonlinear optimization programming module (25), and a digital filter (25); and an output module (3) electrically connected to the multi-dimensional digital signal processing unit (2).
輸入模塊(1)即係為隨時間變化之偏微分方程式,以使對稱複合層壓板之靜態彎曲撓度和自由振動分析系統表示為下列三個互動的子系統: 、 及 ;其中,q(x,y) 、q x(x,y)、q y(x,y)係為外部橫向負載, 係為橫向速度, 與 係為x軸和y軸的橫向彎曲旋轉速度,I為質量慣性,而Z Q、Z M、Z N分別定義為 。 The input module (1) is a time-varying partial differential equation to represent the static bending deflection and free vibration analysis system of the symmetric composite laminate as the following three interactive subsystems: , and Where q(x,y) , q x (x,y), q y (x,y) are external lateral loads, Is the lateral speed, versus The transverse bending rotational speed is the x-axis and the y-axis, I is the mass inertia, and Z Q , Z M , Z N are defined as .
取因子 及 與上述之Z Q、Z M、Z N相乘,可得到 與 之方程式,以實現轉換為網路時,能夠使元件作對稱之編排。 Factor and Multiplied by Z Q , Z M , and Z N described above to obtain versus The equations, in order to achieve conversion to the network, enable the components to be symmetrically arranged.
係分別為矩陣 的行列式, 與 係橫向剪應力剛度矩陣, 則為彎曲剛度矩陣,而 係代表 三共軛矩陣的輔助因子,可列為: Matrix Determinant, versus a transverse shear stress stiffness matrix, Then the bending stiffness matrix, and Department representative The cofactors of the three conjugate matrix can be listed as:
另,將橫向速度 以及 與 視為圖形化電壓,則引入比例變量變數i k,k=1,2,...,13並結合常數r j=1,2,…,5,係以下列關係式定義: Also, the lateral speed as well as versus As a graphical voltage, the proportional variable variables i k , k = 1, 2, ..., 13 are combined and the constants r j = 1, 2, ..., 5 are defined by the following relationship:
為了使對稱複合層壓板之靜態彎曲撓度和自由振動分析系統以多維度基爾霍夫電路(23)實現網路操作,係以下列關係式定義: ;藉由上述關係式結合輔助常數 、j=1,2,…,10與 =1,2,…,5,以定義多維度偏導數 : 其中D x、D y與D t係表示為空間座標x、y與時間座標t的偏微導數運算子。 In order to make the static bending deflection and free vibration analysis system of the symmetric composite laminate realize the network operation by the multi-dimensional Kirchhoff circuit (23), the following relationship is defined: Combining auxiliary constants by the above relationship , j=1, 2,...,10 with =1, 2,...,5 to define multi-dimensional partial derivatives : Where D x , D y and D t are expressed as the partial derivative derivatives of the space coordinates x, y and the time coordinate t.
再者,以CFL(Courant-Friedrichs-Levy)條件約束多維波數位濾波網路,使網路具有較好的穩定性。由於數位濾波器(26)係能夠確保離散的多維度基爾霍夫電路(23)於每一埠具有被動性,因此多維度數位濾波網路能確保一定的穩定性。此外,時間-空間比的最小值係受限於CFL的必要條件 ,其中C g係定義為: Furthermore, the CFL (Courant-Friedrichs-Levy) condition is used to constrain the multi-dimensional wave digital filtering network to make the network have better stability. Since the digital filter (26) is capable of ensuring that the discrete multi-dimensional Kirchhoff circuit (23) is passive at each turn, the multi-dimensional digital filtering network ensures a certain stability. In addition, the minimum time-to-space ratio is limited by the necessary conditions of the CFL. , where C g is defined as:
理論推導 之數值,係分別為: Theoretical derivation The values are as follows:
理論推導 之數值,係分別為: Theoretical derivation The values are as follows:
藉由數值模擬後,最小的時間-空間比係受限於CFL值範圍 之間,在此數值區間內亦能保持多維度數位濾波網路之穩定性,且整體的計算速度可得到提升;因此,多維度數位濾波網路的最佳解能透過一個簡單的非線性優化編程模組(25)之非線性約束條件獲得,可例如為: After numerical simulation, the minimum time-space ratio is limited by the CFL value range. The stability of the multi-dimensional digital filtering network can be maintained in this numerical interval, and the overall calculation speed can be improved; therefore, the optimal solution of the multi-dimensional digital filtering network can be optimized by a simple nonlinear optimization. The nonlinear constraints of the programming module (25) are obtained, for example:
根據上述CFL提供一個初始值 ,此被非線性約束的非線性優化編程模組(25)能藉由黃金分割搜尋法(golden section search method)進行疊代運算以計算出一個猜測的初始值,進一步地,非線性優化編程模組(25)採取一種有效集策略(active set strategy)的最佳化方法,此有效集策略係為以疊代計算過程作為基礎的二次規劃(quadratic programming)方法,藉由此非線性優化編程模組(25)能夠確保多維度數位濾波網路的準確預測所需要的資訊,以及網路的穩定性。 Provide an initial value based on the above CFL The nonlinearly constrained nonlinear optimization programming module (25) can perform an iterative operation by a golden section search method to calculate an initial value of the guess. Further, the nonlinear optimization programming mode Group (25) adopts an optimization method of active set strategy, which is a quadratic programming method based on the iterative calculation process. The module (25) ensures the information needed for accurate prediction of the multi-dimensional digital filtering network and the stability of the network.
接續,須找出剪切校正因子(SCF, shear correction factor)的最佳解,以一階剪切變形理論為基礎去找出SCF的最佳解或正確解,其關鍵係提供補償一階剪切變形理論預測之橫向剪應力值以及3D彈性平衡方程式所計算出的值之間的差異,以獲得更精確的最佳解。In the continuation, the best solution of the shear correction factor (SCF) must be found. Based on the first-order shear deformation theory, the optimal solution or correct solution of SCF should be found. The key system provides compensation for the first-order shear. The difference between the transverse shear stress value predicted by the shear deformation theory and the value calculated by the 3D elastic equilibrium equation is obtained to obtain a more accurate optimal solution.
由於不同的SCF係會錯誤預測應力狀態,因此,係需要在平面應力狀態最小變化時尋找SCF,即係當橫向剪切能具有最小變化比率時,藉此能夠降低預測出之橫向剪應力值的誤差,所獲得之最佳解係更精確。Since different SCF systems mispredict the stress state, it is necessary to find the SCF when the plane stress state changes minimally, that is, when the transverse shear energy has the smallest change ratio, thereby reducing the predicted transverse shear stress value. The error, the best solution obtained is more accurate.
首先以 與 定義無因次化(nondimensionalized)的最大橫向撓度 以及最佳的橫向剪應力 、 ,係分別為: First versus Define the maximum lateral deflection of nondimensionalized And the best transverse shear stress , , are:
其中符號 係為歐氏範數(Euclidean norm),而arg opt則代表最佳(optimum)的自變數(argument),接下來係透過一些歐式距離(Euclidean distance)的計算來觀察橫向剪切能的最小變化; Which symbol The system is Euclidean norm, and arg opt represents the optimum argument. The next step is to observe the minimum change of transverse shear energy through some Euclidean distance calculations. ;
,意即定義如下: , meaning is defined as follows:
其中, 代表著SCF的離散區域,係以評估橫向剪切能的最小變化比率,而函數 係計算並比較目前的變化 與之前的變化 之間的差異,顯然地,由上述方程式可知,經過隨時比較計算後,能夠發現最小誤差所對應的SCF,即係為所需的最佳解。 among them, Represents the discrete region of the SCF to evaluate the minimum rate of change of transverse shear energy, and the function Calculate and compare current changes With previous changes The difference between the two, obviously, from the above equation, can be found after the comparison calculation, the SCF corresponding to the minimum error can be found, which is the optimal solution required.
實際時實施時,首先,取兩種不同的材料,材料一、二的機械性質分別為: ;其中 為楊式模數, 為主座標之剪切模量, 則為柏松比。 In actual implementation, first of all, take two different materials, the mechanical properties of materials one and two are: ;among them For the Yang modular, Shear modulus of the main coordinate, It is Baisongbi.
為了使預測更準確,對於測量不同剛度比之材料,以參考值 以及 定義誤差百分比 為: 。 In order to make the prediction more accurate, for the measurement of materials with different stiffness ratios, the reference value as well as Define error percentage for: .
以下藉由上述之對稱複合層壓板之靜態彎曲撓度和自由振動分析系統對不同類型的複合層壓板進行自由振動分析以及靜態彎曲分析,且其中的非線性優化編程模組之最佳化方法能夠實現快速的計算過程。The following is a description of the free vibration analysis and static bending analysis of different types of composite laminates by the static bending deflection and free vibration analysis system of the above symmetric composite laminate, and the optimization method of the nonlinear optimization programming module can be realized. Fast calculation process.
自由振動分析:Free vibration analysis:
為了正確進行自由振動分析,首先定義週期解為:In order to properly perform free vibration analysis, first define the periodic solution as:
, ,
而橫向位移的空間變化 以及自然板振動之徑向頻率 則能寫為: Spatial variation of lateral displacement And the radial frequency of natural plate vibration Can be written as:
。 .
(i)以材料一製作交錯疊放三層的方形複合層壓板和矩形複合層壓板,其疊放角度為[0°/90°/0°],楊式模數比E 1/E 2=40,長厚度比a/h分別為5、10、20,藉由比較五種近似值方法與本發明之多維波數位濾波網路(MDWDF)方法作頻率 誤差,如表一及表二所示,五種近似值方法分別為IRBF(Integrated Radial Basis Function)、RBF-PS(radial basis function pseudospectral)、NS-DSG3、NS-DSG3*以及p-Ritz,其中NS-DSG3以及NS-DSG3*係屬於高階剪切變形理論,而表一及表二係以p-Ritz做為參考值。 (i) A three-layer square composite laminate and a rectangular composite laminate are alternately stacked with the material one, and the stacking angle is [0°/90°/0°], and the Young's modulus ratio E 1 /E 2 =40 The long thickness ratio a/h is 5, 10, 20, respectively, by comparing the five approximation methods with the multidimensional wave digital filtering network (MDWDF) method of the present invention. The error, as shown in Table 1 and Table 2, the five approximation methods are IRBF (Integrated Radial Basis Function), RBF-PS (radial basis function pseudospectral), NS-DSG3, NS-DSG3*, and p-Ritz, where NS -DSG3 and NS-DSG3* are high-order shear deformation theory, while Tables 1 and 2 are based on p-Ritz.
表一: Table I:
表二:Table II:
從表一及表二能夠發現,本發明之結果與其他近似值方法係相當接近,產生的誤差係相當小。It can be seen from Tables 1 and 2 that the results of the present invention are quite close to other approximation methodologies, and the resulting errors are quite small.
(ii) 以材料一製作交錯疊放四層的簡支方形複合層壓板,其疊放角度為[0°/90°/0°/90°],楊式模數比E 1/E 2分別為3、10、20、30以及40,長厚度比a/h為5、10,藉由比較以四種近似值方法與本發明之多維波數位濾波網路方法作頻率 之誤差,如表三所示,四種近似值方法分別為3D ELS(3D elasticity solution)、HSDT-FEM(higher-order shear deformation plate theories and finite element method)、FSDT-FEM(first-order shear deformation and theory finite element method)以及CLPT(classical laminated plate theory),而表三係以3D ELS作為參考值。 (ii) A four-layer, simply-supported square composite laminate with a stack of materials at a stacking angle of [0°/90°/0°/90°] and a poplar modulus ratio E 1 /E 2 of 3, 10, 20, 30, and 40, the length-to-thickness ratio a/h is 5, 10, by comparing the four approximation methods with the multi-dimensional digital-digital filtering network method of the present invention. The error is shown in Table 3. The four approximation methods are 3D ELS (3D elasticity solution), HSDT-FEM (higher-order salad forming plate theories and finite element method), FSDT-FEM (first-order The theory finite element method) and CLPT (classical laminated plate theory), while the third table uses 3D ELS as a reference value.
表三: Table 3:
依表三之結果可知,本發明顯然地優於CLPT,與HSDT-FEM與FSDT-FEM比較下,其數值相當接近,且誤差相當小。According to the results of Table 3, the present invention is obviously superior to CLPT. Compared with HSDT-FEM and FSDT-FEM, the values are quite close and the error is quite small.
以最佳Best SCFsSCFs 進行靜態彎曲分析:Perform static bending analysis:
本發明更以找出最佳剪切校正因子(SCF, shear correction factor)為一重要目標,所以此測試係以材料二製作之複合層壓板進行分析,並從眾多不同的SCF找出最佳解;首先,定義複合層壓板之最大彎曲撓度為:The invention further finds the optimal shear correction factor (SCF) as an important target, so the test is analyzed by the composite laminate made of material 2, and the best solution is found from many different SCFs. First, define the maximum bending deflection of the composite laminate as:
, 其中 ,其係根據複合層壓板最上層之SDL(Sinusoidally Distributed Load)的數值大小,即 ,且複合層壓板之分佈力可對應 並表示為 。 , among them According to the numerical value of the SDL (Sinusoidally Distributed Load) of the uppermost layer of the composite laminate, that is, And the distribution force of the composite laminate can correspond And expressed as .
以下實施例請參閱表四。See Table 4 for the following examples.
(i) 以材料二製作交錯疊放三層的方形複合層壓板,其疊放角度為[0°/90°/0°],長厚度比a/h分別為4、10,首先,將一組SCFs以範圍 至 平均分配成13個SCF並互相比較,由表中可以清楚得知,a/h = 4之複合層壓板的 時,橫向位移的空間變化誤差 係為最小值, 亦為最小變化率;a/h = 4之複合層壓板的 時,橫向位移的空間變化誤差 係為最小值, 亦為最小變化率。故可得知a/h = 4、10之複合層壓板最佳SCF分別為1及8/12。 (i) A two-layer square composite laminate with a stack of three layers is made of material 2, the stacking angle is [0°/90°/0°], and the long-thickness ratio a/h is 4, 10 respectively. First, one will be Group SCFs to range to The average is divided into 13 SCFs and compared with each other. It can be clearly seen from the table that the composite laminate of a/h = 4 Spatial variation error of lateral displacement Is the minimum value, Also the minimum rate of change; a/h = 4 composite laminate Spatial variation error of lateral displacement Is the minimum value, Also the minimum rate of change. Therefore, it can be known that the optimum SCF of composite laminates with a/h = 4 and 10 is 1 and 8/12, respectively.
(ii) 以材料二製作交錯疊放四層的方形複合層壓板,其疊放角度為[0°/90°/90°/0°],長厚度比a/h分別為4、10,首先,將一組SCFs以範圍 至 平均分配成13個SCF並互相比較,由表中可以清楚得知,a/h = 4之複合層壓板的 時,橫向位移的空間變化誤差 係為最小值, 亦為最小變化率;a/h = 4之複合層壓板的 時,橫向位移的空間變化誤差 係為最小值, 亦為最小變化率。故可得知a/h = 4、10之複合層壓板最佳SCF分別為1及8/12。 (ii) Two-layer square composite laminates are alternately stacked with material 2, the stacking angle is [0°/90°/90°/0°], and the long-thickness ratio a/h is 4, 10, respectively. , will set a range of SCFs to The average is divided into 13 SCFs and compared with each other. It can be clearly seen from the table that the composite laminate of a/h = 4 Spatial variation error of lateral displacement Is the minimum value, Also the minimum rate of change; a/h = 4 composite laminate Spatial variation error of lateral displacement Is the minimum value, Also the minimum rate of change. Therefore, it can be known that the optimum SCF of composite laminates with a/h = 4 and 10 is 1 and 8/12, respectively.
(iii) 以材料二製作交錯疊放五層的方形複合層壓板,其疊放角度為[0°/90°/0°/90°/0°],長厚度比a/h分別為4、10,首先,將一組SCFs以範圍 至 平均分配成13個SCF並互相比較,由表中可以清楚得知,a/h = 4之複合層壓板的 時,橫向位移的空間變化誤差 係為最小值, 亦為最小變化率;a/h = 4之複合層壓板的 時,橫向位移的空間變化誤差 係為最小值, 亦為最小變化率。故可得知a/h = 4、10之複合層壓板最佳SCF分別為14/12及11/12。 (iii) Prepare a five-layer square composite laminate with material stacking at a material angle of [0°/90°/0°/90°/0°] and a length-to-thickness ratio of a/h of 4, respectively. 10, first, set a range of SCFs to The average is divided into 13 SCFs and compared with each other. It can be clearly seen from the table that the composite laminate of a/h = 4 Spatial variation error of lateral displacement Is the minimum value, Also the minimum rate of change; a/h = 4 composite laminate Spatial variation error of lateral displacement Is the minimum value, Also the minimum rate of change. Therefore, it can be known that the optimum SCF of composite laminates with a/h = 4 and 10 is 14/12 and 11/12, respectively.
表 四:其中 為橫向剪應力能量之變化量, 為最小變化率。 Table 4: Among them Is the amount of change in transverse shear stress energy, For the minimum rate of change.
本發明藉此不斷測試不同的SCF,以順利預測交錯疊放三~五層的方形複合層壓板之最大彎曲撓度,且亦能發現當 時, 之變化係越小,即係 越大時,橫向撓度w則越小。 The invention continuously tests different SCFs to smoothly predict the maximum bending deflection of the three-to-five-layer square composite laminates, and can also be found Time, The smaller the change, the system The larger the lateral deflection w, the smaller.
以下實施例請參閱表五。See Table 5 for the following examples.
(iv) 以材料二製作交錯疊放三層的方形複合層壓板,其疊放角度為[0°/90°/0°],長厚度比a/h為20,首先,將一組SCFs以範圍 至 平均分配成25個SCF並互相比較,由表中可以清楚得知,複合層壓板的 時,橫向位移的空間變化誤差 係為最小值, 亦為最小變化率,而其中 且 ,此數據係藉由HSDT-zigzag所得到,故能證明本案之計算方法係較HSDT-zigzag誤差更小且更精確。 (iv) Prepare a three-layer square composite laminate with two layers of material, with a stacking angle of [0°/90°/0°] and a length-to-thickness ratio of a/h of 20. First, a set of SCFs is range to Averaged into 25 SCFs and compared with each other, as can be clearly seen from the table, composite laminates Spatial variation error of lateral displacement Is the minimum value, Also the minimum rate of change, and And This data was obtained by HSDT-zigzag, so it can be proved that the calculation method of this case is smaller and more accurate than HSDT-zigzag.
(v) 以材料二製作交錯疊放四層的方形複合層壓板,其疊放角度為[0°/90°/90°/0°],長厚度比a/h為20,首先,將一組SCFs以範圍 至 平均分配成25個SCF並互相比較,由表中可以清楚得知,複合層壓板的 時,橫向位移的空間變化誤差 係為最小值,而其中 且 ,此數據係藉由3D-ELS所得到,故能證明本案之計算方法係較3D-ELS誤差更小且更精確。 (v) Two-layer square composite laminates are alternately stacked with material 2, the stacking angle is [0°/90°/90°/0°], and the long thickness ratio a/h is 20. First, one will be Group SCFs to range to Averaged into 25 SCFs and compared with each other, as can be clearly seen from the table, composite laminates Spatial variation error of lateral displacement Is the minimum value, and And This data is obtained by 3D-ELS, so it can be proved that the calculation method of this case is smaller and more accurate than the 3D-ELS error.
表五:Table 5:
由上述之實施說明可知,本發明與現有技術相較之下,本發明具有以下優點:It can be seen from the above description that the present invention has the following advantages compared with the prior art:
1. 本發明之自由振動分析,其分析交錯疊放三層與四層之複合層壓板,計算誤差係與目前的近似值方法相當接近,且明顯優於古典層壓板理論。1. The free vibration analysis of the present invention, which analyzes a stack of three-layer and four-layer composite laminates, and the calculation error is quite close to the current approximation method, and is significantly superior to the classical laminate theory.
2. 本發明相較於目前的層壓板分析理論(一階剪切變形理論(FSDT)、高階變形理論(HSDT)等),所預測之最大彎曲撓度係更加精確,誤差更小。2. Compared with the current theory of laminate analysis (first-order shear deformation theory (FSDT), high-order deformation theory (HSDT), etc.), the predicted maximum bending deflection is more accurate and the error is smaller.
3. 本發明解決目前一階剪切變形理論之最佳SCF難以獲得的缺失,於層壓板分析領域係為突破性的進步。3. The present invention solves the problem that the best SCF of the current first-order shear deformation theory is difficult to obtain, and is a breakthrough in the field of laminate analysis.
綜上所述,本發明之對稱複合層壓板之靜態彎曲撓度和自由振動分析系統及方法,的確能藉由上述所揭露之實施例,達到所預期之使用功效,且本發明亦未曾公開於申請前,誠已完全符合專利法之規定與要求。爰依法提出發明專利之申請,懇請惠予審查,並賜准專利,則實感德便。In summary, the static bending deflection and free vibration analysis system and method of the symmetric composite laminate of the present invention can achieve the intended use efficiency by the above disclosed embodiments, and the present invention has not been disclosed in the application. Before, Cheng has fully complied with the requirements and requirements of the Patent Law.爰Issuing an application for a patent for invention in accordance with the law, and asking for a review, and granting a patent, is truly sensible.
惟,上述所揭之圖示及說明,僅為本發明之較佳實施例,非為限定本發明之保護範圍;大凡熟悉該項技藝之人士,其所依本發明之特徵範疇,所作之其它等效變化或修飾,皆應視為不脫離本發明之設計範疇。The illustrations and descriptions of the present invention are merely preferred embodiments of the present invention, and are not intended to limit the scope of the present invention; those skilled in the art, which are characterized by the scope of the present invention, Equivalent variations or modifications are considered to be within the scope of the design of the invention.
(1)‧‧‧輸入模塊(1)‧‧‧ Input Module
(2)‧‧‧多維度數位信號處理單元(2) ‧‧‧Multi-dimensional digital signal processing unit
(21)‧‧‧串結電子集總電路(21)‧‧‧Segmented electron lumping circuit
(22)‧‧‧多維度線性電感(22)‧‧‧Multidimensional linear inductance
(23)‧‧‧多維度基爾霍夫電路(23) ‧‧‧Multidimensional Kirchhoff circuit
(24)‧‧‧離散模組(24)‧‧‧Discrete modules
(25)‧‧‧非線性優化編程模組(25)‧‧‧Nonlinear optimization programming module
(26)‧‧‧數位濾波器(26)‧‧‧Digital Filter
(3)‧‧‧輸出模塊(3)‧‧‧Output module
(S1)‧‧‧步驟一(S1)‧‧‧Step one
(S2)‧‧‧步驟二(S2)‧‧‧Step 2
(S3)‧‧‧步驟三(S3) ‧ ‧ Step 3
(S4)‧‧‧步驟四(S4)‧‧‧Step four
(S5)‧‧‧步驟五(S5) ‧ ‧ step five
第一圖:本發明較佳實施例之建模流程示意圖。First Figure: Schematic diagram of the modeling process of the preferred embodiment of the present invention.
第二圖:本發明較佳實施例之基於被動性數位電路元件和相對應數位濾波網路的定義示意圖。Second: A schematic diagram of the definition of a passive digital circuit component and a corresponding digital filtering network in accordance with a preferred embodiment of the present invention.
第三圖:本發明較佳實施例之基爾霍夫電路圖。Third Figure: Kirchhoff circuit diagram of a preferred embodiment of the invention.
第四圖:本發明較佳實施例之多維度數位濾波網路圖。Fourth Figure: A multi-dimensional digital filtering network diagram of a preferred embodiment of the present invention.
第五圖:本發明較佳實施例之步驟流程圖。Figure 5 is a flow chart showing the steps of a preferred embodiment of the present invention.
(1)‧‧‧輸入模塊 (1)‧‧‧ Input Module
(2)‧‧‧多維度數位信號處理單元 (2) ‧‧‧Multi-dimensional digital signal processing unit
(21)‧‧‧串結電子集總電路 (21)‧‧‧Segmented electron lumping circuit
(22)‧‧‧多維度線性電感 (22)‧‧‧Multidimensional linear inductance
(23)‧‧‧多維度基爾霍夫電路 (23) ‧‧‧Multidimensional Kirchhoff circuit
(24)‧‧‧離散模組 (24)‧‧‧Discrete modules
(25)‧‧‧非線性優化編程模組 (25)‧‧‧Nonlinear optimization programming module
(26)‧‧‧數位濾波器 (26)‧‧‧Digital Filter
(3)‧‧‧輸出模塊 (3)‧‧‧Output module
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW105113854A TWI584133B (en) | 2016-05-04 | 2016-05-04 | Static bending deflection and free vibration analytical system of symmetric laminated plates |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW105113854A TWI584133B (en) | 2016-05-04 | 2016-05-04 | Static bending deflection and free vibration analytical system of symmetric laminated plates |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI584133B true TWI584133B (en) | 2017-05-21 |
TW201810072A TW201810072A (en) | 2018-03-16 |
Family
ID=59367705
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW105113854A TWI584133B (en) | 2016-05-04 | 2016-05-04 | Static bending deflection and free vibration analytical system of symmetric laminated plates |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI584133B (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103292720A (en) * | 2012-06-29 | 2013-09-11 | 上海中航光电子有限公司 | Method and system for testing substrate deflection |
CN103028618B (en) * | 2012-12-05 | 2015-03-25 | 燕山大学 | Strip shape signal error compensation method based on strip shape detection roll deflection change |
TWI494783B (en) * | 2014-03-31 | 2015-08-01 | Univ Kun Shan | Vibration analysis system for composite sheet with flexible foundation |
US20160103939A1 (en) * | 2014-10-10 | 2016-04-14 | Wisconsin Alumni Research Foundation | Analysis of Laminate Structures |
-
2016
- 2016-05-04 TW TW105113854A patent/TWI584133B/en not_active IP Right Cessation
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103292720A (en) * | 2012-06-29 | 2013-09-11 | 上海中航光电子有限公司 | Method and system for testing substrate deflection |
CN103028618B (en) * | 2012-12-05 | 2015-03-25 | 燕山大学 | Strip shape signal error compensation method based on strip shape detection roll deflection change |
TWI494783B (en) * | 2014-03-31 | 2015-08-01 | Univ Kun Shan | Vibration analysis system for composite sheet with flexible foundation |
US20160103939A1 (en) * | 2014-10-10 | 2016-04-14 | Wisconsin Alumni Research Foundation | Analysis of Laminate Structures |
Also Published As
Publication number | Publication date |
---|---|
TW201810072A (en) | 2018-03-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Phung-Van et al. | An efficient computational approach for control of nonlinear transient responses of smart piezoelectric composite plates | |
Mahi et al. | A new hyperbolic shear deformation theory for bending and free vibration analysis of isotropic, functionally graded, sandwich and laminated composite plates | |
Kant et al. | Analytical solutions for the static analysis of laminated composite and sandwich plates based on a higher order refined theory | |
Kant et al. | Analytical solutions for free vibration of laminated composite and sandwich plates based on a higher-order refined theory | |
Wang | Free vibration analysis of skew fibre-reinforced composite laminates based on first-order shear deformation plate theory | |
Belarbi et al. | An efficient eight‐node quadrilateral element for free vibration analysis of multilayer sandwich plates | |
Wang et al. | A Hermite reproducing kernel Galerkin meshfree approach for buckling analysis of thin plates | |
Carrera et al. | Results on best theories for metallic and laminated shells including layer-wise models | |
Awrejcewicz et al. | Linear and nonlinear free vibration analysis of laminated functionally graded shallow shells with complex plan form and different boundary conditions | |
Vosoughi et al. | Thermal postbuckling of laminated composite skew plates with temperature-dependent properties | |
Liu et al. | Free vibration analysis of rotating pretwisted functionally graded sandwich blades | |
Carrera et al. | Who needs refined structural theories? | |
Ye et al. | Three-dimensional vibration analysis of sandwich and multilayered plates with general ply stacking sequences by a spectral-sampling surface method | |
Rouzegar et al. | A refined finite element method for bending of smart functionally graded plates | |
Dillinger et al. | Static aeroelastic stiffness optimization of a forward swept composite wing with CFD-corrected aero loads | |
Dey et al. | An efficient plate element for the vibration of composite plates | |
Onyeka et al. | Application of exact solution approach in the analysis of thick rectangular plate | |
Rahmani et al. | Robust vibration control of laminated rectangular composite plates in hygrothermal and thermal environment | |
Yarasca et al. | Multiobjective Best Theory Diagrams for cross-ply composite plates employing polynomial, zig-zag, trigonometric and exponential thickness expansions | |
Ojo et al. | Comparison of weak and strong formulations for 3D stress predictions of composite beam structures | |
TWI584133B (en) | Static bending deflection and free vibration analytical system of symmetric laminated plates | |
Ren et al. | A new general third-order zigzag model for asymmetric and symmetric laminated composite beams | |
Carrera et al. | Comparisons between 1d (beam) and 2d (plate/shell) finite elements to analyze thin walled structures | |
Dey et al. | Finite element analysis of laminated composite paraboloid of revolution shells | |
TWI494783B (en) | Vibration analysis system for composite sheet with flexible foundation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |