TWI583006B - Capacitor having a graphene structure, semiconductor device including the capacitor and method of forming the same - Google Patents

Capacitor having a graphene structure, semiconductor device including the capacitor and method of forming the same Download PDF

Info

Publication number
TWI583006B
TWI583006B TW104122868A TW104122868A TWI583006B TW I583006 B TWI583006 B TW I583006B TW 104122868 A TW104122868 A TW 104122868A TW 104122868 A TW104122868 A TW 104122868A TW I583006 B TWI583006 B TW I583006B
Authority
TW
Taiwan
Prior art keywords
graphene
graphene structure
capacitor
layers
dielectric layer
Prior art date
Application number
TW104122868A
Other languages
Chinese (zh)
Other versions
TW201618312A (en
Inventor
周淳朴
柯誌欣
邱博文
鄭兆欽
呂俊頡
黃崎峰
陳煥能
薛福隆
Original Assignee
台灣積體電路製造股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 台灣積體電路製造股份有限公司 filed Critical 台灣積體電路製造股份有限公司
Publication of TW201618312A publication Critical patent/TW201618312A/en
Application granted granted Critical
Publication of TWI583006B publication Critical patent/TWI583006B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • H01L28/60Electrodes
    • H01L28/75Electrodes comprising two or more layers, e.g. comprising a barrier layer and a metal layer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/005Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/005Electrodes
    • H01G4/008Selection of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/5222Capacitive arrangements or effects of, or between wiring layers
    • H01L23/5223Capacitor integral with wiring layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/528Geometry or layout of the interconnection structure
    • H01L23/5283Cross-sectional geometry
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • H01L23/53204Conductive materials
    • H01L23/53276Conductive materials containing carbon, e.g. fullerenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • H01L28/60Electrodes
    • H01L28/82Electrodes with an enlarged surface, e.g. formed by texturisation
    • H01L28/90Electrodes with an enlarged surface, e.g. formed by texturisation having vertical extensions
    • H01L28/91Electrodes with an enlarged surface, e.g. formed by texturisation having vertical extensions made by depositing layers, e.g. by depositing alternating conductive and insulating layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic System
    • H01L29/1606Graphene
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2204/00Structure or properties of graphene
    • C01B2204/04Specific amount of layers or specific thickness
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2204/00Structure or properties of graphene
    • C01B2204/20Graphene characterized by its properties
    • C01B2204/32Size or surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/7685Barrier, adhesion or liner layers the layer covering a conductive structure
    • H01L21/76852Barrier, adhesion or liner layers the layer covering a conductive structure the layer also covering the sidewalls of the conductive structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/5226Via connections in a multilevel interconnection structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • H01L23/53204Conductive materials
    • H01L23/53209Conductive materials based on metals, e.g. alloys, metal silicides
    • H01L23/53214Conductive materials based on metals, e.g. alloys, metal silicides the principal metal being aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • H01L23/53204Conductive materials
    • H01L23/53209Conductive materials based on metals, e.g. alloys, metal silicides
    • H01L23/53228Conductive materials based on metals, e.g. alloys, metal silicides the principal metal being copper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • H01L23/53204Conductive materials
    • H01L23/53209Conductive materials based on metals, e.g. alloys, metal silicides
    • H01L23/53257Conductive materials based on metals, e.g. alloys, metal silicides the principal metal being a refractory metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • H01L23/53204Conductive materials
    • H01L23/53209Conductive materials based on metals, e.g. alloys, metal silicides
    • H01L23/53257Conductive materials based on metals, e.g. alloys, metal silicides the principal metal being a refractory metal
    • H01L23/53266Additional layers associated with refractory-metal layers, e.g. adhesion, barrier, cladding layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Description

具有石墨烯結構之電容器、包括電容器之半導體裝置及其形成方法 Capacitor having graphene structure, semiconductor device including capacitor, and method of forming same

本發明是有關於一種半導體裝置,特別是有關於一種電容器。 This invention relates to a semiconductor device, and more particularly to a capacitor.

含有金屬性電極的電容器,例如金屬氧化金屬(metal oxide metal,MOM)電容器或是金屬絕緣體金屬(metal insulator metal,MIM)電容器,使用金屬元件例如鋁或銅,以形成電容器。MOM電容器有能力儲存少於每平方微米10毫微微法拉(femto)(fF/μm2)。MIM電容器有能力儲存約30fF/μm2至100fF/μm2A capacitor containing a metallic electrode, such as a metal oxide metal (MOM) capacitor or a metal insulator metal (MIM) capacitor, uses a metal member such as aluminum or copper to form a capacitor. MOM capacitors have the ability to store less than 10 femto femto (fF/μm 2 ) per square micron. MIM capacitors have the ability to store from about 30fF/μm 2 to 100fF/μm 2 .

在一些例子中,使用具有高介電常數(即,高-k介電物質,high-k dielectric material)的介電物質來增加每單位面積的儲存能力。在一些例子中,是使用藉由原子層沈積法(atomic layer deposition,ALD)所形成的薄電極來增加每單位面積的儲存能力。 In some examples, a dielectric material having a high dielectric constant (ie, a high-k dielectric material) is used to increase the storage capacity per unit area. In some examples, thin electrodes formed by atomic layer deposition (ALD) are used to increase the storage capacity per unit area.

在本揭露的一些實施例中,一種電容器包括一第一石墨烯結構,具有複數個第一石墨烯層。該電容器更包括一介電 層,在該第一石墨烯結構上方。該電容器更包括一第二石墨烯結構,在該介電層上方,其中該第二石墨烯結構具有複數個第二石墨烯層。 In some embodiments of the present disclosure, a capacitor includes a first graphene structure having a plurality of first graphene layers. The capacitor further includes a dielectric a layer above the first graphene structure. The capacitor further includes a second graphene structure over the dielectric layer, wherein the second graphene structure has a plurality of second graphene layers.

在本揭露的一些實施例中,在該複數個第一石墨烯層中的石墨烯層的數量從2層到20層。 In some embodiments of the present disclosure, the number of graphene layers in the plurality of first graphene layers ranges from 2 to 20 layers.

在本揭露的一些實施例中,在該第二複數個石墨烯中的石墨烯層數量相同於在該第一複數個石墨烯中的石墨烯層。 In some embodiments of the present disclosure, the number of graphene layers in the second plurality of graphenes is the same as the graphene layer in the first plurality of graphenes.

在本揭露的一些實施例中,在該第二複數個石墨烯中的石墨烯層數量不同於在該第一複數個石墨烯中的石墨烯層 In some embodiments of the present disclosure, the number of graphene layers in the second plurality of graphenes is different from the graphene layers in the first plurality of graphenes

在本揭露的一些實施例中,該電容器更包括一第一接點結構,用以將電荷載子轉移進該第一石墨烯結構,或從該第一石墨烯結構轉移出電荷載子。 In some embodiments of the present disclosure, the capacitor further includes a first contact structure for transferring charge carriers into the first graphene structure or transferring charge carriers from the first graphene structure.

在本揭露的一些實施例中,該第一接點結構延伸至該第一石墨烯結構以接觸該複數個第一石墨烯層的多個石墨烯層。 In some embodiments of the present disclosure, the first contact structure extends to the first graphene structure to contact the plurality of graphene layers of the plurality of first graphene layers.

在本揭露的一些實施例中,該第一接點結構延伸穿透該介電層至該第一石墨烯結構。 In some embodiments of the present disclosure, the first contact structure extends through the dielectric layer to the first graphene structure.

在本揭露的一些實施例中,該第一接點結構包括一導電物質。該第一接點結構更包括一阻障層,將該導電物質與該第一石墨烯結構分開。 In some embodiments of the present disclosure, the first contact structure includes a conductive material. The first contact structure further includes a barrier layer separating the conductive material from the first graphene structure.

在本揭露的一些實施例中,該電容器更包括一第二接點結構,用以將電荷載子轉移進該第二石墨烯結構,或從該第二石墨烯結構轉移出電荷載子。 In some embodiments of the present disclosure, the capacitor further includes a second contact structure for transferring charge carriers into the second graphene structure or transferring charge carriers from the second graphene structure.

在本揭露的一些實施例中,該第二接點結構延伸至 該第二石墨烯結構以接觸該複數個第二石墨烯層的多個石墨烯層。 In some embodiments of the present disclosure, the second contact structure extends to The second graphene structure contacts a plurality of graphene layers of the plurality of second graphene layers.

在本揭露的一些實施例中,在該第二石墨烯結構中的該第二接點結構具有本質上垂直的側壁。 In some embodiments of the present disclosure, the second contact structure in the second graphene structure has substantially vertical sidewalls.

在本揭露的一些實施例中,在該第二石墨烯結構中的該第二接點結構具有逐漸變細的側壁。 In some embodiments of the present disclosure, the second contact structure in the second graphene structure has tapered sidewalls.

在本揭露的一些實施例中,該電容器更包括一生長層,在該介電層及該第二石墨烯結構之間。 In some embodiments of the present disclosure, the capacitor further includes a growth layer between the dielectric layer and the second graphene structure.

在本揭露的一些實施例中,該生長層包括銅、鋁、鎢之至少一者。 In some embodiments of the present disclosure, the growth layer comprises at least one of copper, aluminum, and tungsten.

在本揭露的一些實施例中,一種半導體裝置,包括一基板。該半導體裝置更包括一互聯結構,在該基板上方,該互聯結構具有複數個導電特徵。該半導體裝置更包括一電容器,在該互聯結構中,該電容器電性接觸該等導電特徵之至少一導電特徵。該電容器包括一第一石墨烯結構,具有複數個第一石墨烯層。該電容器更包括一介電層,在該第一石墨烯結構上方。該電容器更包括一第二石墨烯結構,在該介電層上方,其中該第二石墨烯結構具有複數個第二石墨烯層。 In some embodiments of the present disclosure, a semiconductor device includes a substrate. The semiconductor device further includes an interconnect structure over which the interconnect structure has a plurality of conductive features. The semiconductor device further includes a capacitor in which the capacitor electrically contacts at least one of the conductive features of the conductive features. The capacitor includes a first graphene structure having a plurality of first graphene layers. The capacitor further includes a dielectric layer over the first graphene structure. The capacitor further includes a second graphene structure over the dielectric layer, wherein the second graphene structure has a plurality of second graphene layers.

在本揭露的一些實施例中,該互聯結構包括一介電物質,在該等導電特徵之相鄰導電特徵之間,以及該介電層包括與該介電物質相同的物質。 In some embodiments of the present disclosure, the interconnect structure includes a dielectric material between adjacent conductive features of the conductive features, and the dielectric layer includes the same material as the dielectric material.

在本揭露的一些實施例中,該互聯結構包括一介電物質,在該等導電特徵之相鄰導電特徵之間,以及該介電層包括與該介電物質不相同的物質。 In some embodiments of the present disclosure, the interconnect structure includes a dielectric material between adjacent conductive features of the conductive features, and the dielectric layer includes a substance that is different from the dielectric material.

在本揭露的一些實施例中,該電容器更包括一生長層,在該介電層及該第二石墨烯層之間。 In some embodiments of the present disclosure, the capacitor further includes a growth layer between the dielectric layer and the second graphene layer.

在本揭露的一些實施例中,該等導電特徵之至少一導電特徵之物質相同於該生長層之物質。 In some embodiments of the present disclosure, the at least one electrically conductive feature of the electrically conductive features is the same material as the growth layer.

在本揭露的一些實施例中,一種製作電容器之方法,包括形成一第一石墨烯結構,具有複數個第一石墨烯層。該方法更包括形成一介電層,在該第一石墨烯結構上方。該方法更包括形成一第二石墨烯結構,在該介電層上方,其中該第二石墨烯結構包括複數個第二石墨烯層。 In some embodiments of the present disclosure, a method of making a capacitor includes forming a first graphene structure having a plurality of first graphene layers. The method further includes forming a dielectric layer over the first graphene structure. The method further includes forming a second graphene structure over the dielectric layer, wherein the second graphene structure comprises a plurality of second graphene layers.

上文已相當廣泛地概述本揭露之技術特徵及優點,俾使下文之本揭露詳細描述得以獲得較佳瞭解。構成本揭露之申請專利範圍標的之其它技術特徵及優點將描述於下文。本揭露所屬技術領域中具有通常知識者應瞭解,可相當容易地利用下文揭示之概念與特定實施例可作為修改或設計其它結構或製程而實現與本揭露相同之目的。本揭露所屬技術領域中具有通常知識者亦應瞭解,這類等效建構無法脫離後附之申請專利範圍所界定之本揭露的精神和範圍。 The technical features and advantages of the present disclosure have been broadly described above, and the detailed description of the present disclosure will be better understood. Other technical features and advantages of the subject matter of the claims of the present disclosure will be described below. It will be appreciated by those skilled in the art that the present invention may be practiced with the same or equivalents. It is also to be understood by those of ordinary skill in the art that this invention is not limited to the spirit and scope of the disclosure as defined by the appended claims.

100‧‧‧半導體裝置 100‧‧‧Semiconductor device

102‧‧‧基板 102‧‧‧Substrate

104‧‧‧互聯結構 104‧‧‧Interconnected structure

110‧‧‧導電元件 110‧‧‧Conducting components

150‧‧‧電容器 150‧‧‧ capacitor

152‧‧‧第一石墨烯結構 152‧‧‧First graphene structure

154‧‧‧介電層 154‧‧‧ dielectric layer

156‧‧‧第二石墨烯結構 156‧‧‧Second graphene structure

158‧‧‧第一接點結構 158‧‧‧First contact structure

160‧‧‧第二接點結構 160‧‧‧second junction structure

100’‧‧‧半導體裝置 100’‧‧‧ semiconductor devices

170‧‧‧生長層 170‧‧‧ growth layer

200‧‧‧接點結構 200‧‧‧contact structure

藉由參照前述說明及下列圖式,本揭露之技術特徵及優點得以獲得完全瞭解。 The technical features and advantages of the present disclosure are fully understood by reference to the foregoing description and the accompanying drawings.

圖1A為根據一些實施例,半導體裝置之剖面示意圖。 1A is a schematic cross-sectional view of a semiconductor device, in accordance with some embodiments.

圖1B為根據一些實施例,半導體裝置之剖面示意圖。 FIG. 1B is a schematic cross-sectional view of a semiconductor device, in accordance with some embodiments.

圖2為根據一些實施例,電容器之接點結構之剖面示意圖。 2 is a cross-sectional view of a contact structure of a capacitor, in accordance with some embodiments.

圖3為根據一些實施例,製作半導體裝置方法之流程圖。 3 is a flow chart of a method of fabricating a semiconductor device, in accordance with some embodiments.

以下發明提供了許多不同的實施例或示例,用於實施所提供主題的不同特徵。以下描述組件和佈置的特定示例以簡 化本發明。當然這些僅僅是示例並不旨在進行限定。例如,以下描述中第一特徵形成在第二特徵上方或之上可以包括第一特徵和第二特徵直接接觸形成的實施例,還可包括在第一特徵和第二特徵之間形成額外特徵,從而使得第一特徵和第二特徵不直接接觸的實施例。此外,本發明可以在各個示例中重複附圖標記和/或字母。該重複是為了簡單和清楚的目的,本身並不規定所討論的各種實施例和/或配置之間的關係。 The following invention provides many different embodiments or examples for implementing different features of the subject matter provided. The following describes specific examples of components and arrangements to simplify The invention is embodied. Of course these are merely examples and are not intended to be limiting. For example, embodiments in which the first feature is formed above or above the second feature may include direct contact formation of the first feature and the second feature, and may include forming additional features between the first feature and the second feature, Thus an embodiment in which the first feature and the second feature are not in direct contact. Furthermore, the present invention may repeat reference numerals and/or letters in the various examples. This repetition is for the purpose of simplicity and clarity and is not intended to define the relationship between the various embodiments and/or configurations discussed.

除此之外,類似「下面」、「之下」、「較低」、「之上」、「上部」等的空間相對用語可以在此用於便於說明,以描述如圖中所述的一個元件或特徵與另一個元件或特徵的關係。除了圖中說明的方向之外,空間相對用語意在包括使用者或操作的元件的不同方位。例如,如果圖中的元件被翻轉,被描述為在其他元件或特徵「之下」或「下面」的元件可以被定向為在其他元件或特徵「之上」。因此,示範性用語「之下」可以包括之上和之下的方位。元件可以被另外的定位(旋轉90度或在其他方位),並且於此使用的空間相對描述形容用語可作類似的解釋。 In addition, spatial relative terms such as "below", "below", "lower", "above", "upper", etc. may be used herein for convenience of description to describe one as illustrated in the figure. The relationship of an element or feature to another element or feature. Spatially relative terms are intended to encompass different orientations of the user or the elements of the operation, in addition to the orientation illustrated. For example, elements in the "a" or "an" or "an" Thus, the exemplary language "below" can encompass the orientations above and below. The elements may be otherwise positioned (rotated 90 degrees or at other orientations) and the spatially used descriptions herein may be interpreted similarly.

圖1A為根據一些實施例,半導體裝置100之剖面示意圖。半導體裝置100包括基板102。一互聯結構104在基板102上方。互聯結構104包括複數個用於電性連接在基板中之主動裝置的導電元件。一導電元件110在互聯結構104之金屬層中。形成與導電元件110電性接觸之一電容器150。電容器150包括第一石墨烯結構152,與導電性元件110電性接觸。第一石墨烯結構152包括複數個石墨烯層。一介電層154在第一石墨烯結構152上。一第二石墨烯結構156在介電層154上。第二石墨烯結構156包括複數個石墨烯層。介電層154位於第一石墨烯結構152及第二石墨烯結構156之間以形成電容器結構。一第一接點結構158電性連接第一石墨烯結構 152。第一接點結構158用以將電荷載子轉移進第一石墨烯結構152,或從第一石墨烯結構152轉移出電荷載子。第二接點結構160電性連接第二石墨烯結構156。第二接點結構160用以將電荷載子轉移進第二石墨烯結構156,或從第二石墨烯結構156轉移出電荷載子。 FIG. 1A is a schematic cross-sectional view of a semiconductor device 100 in accordance with some embodiments. The semiconductor device 100 includes a substrate 102. An interconnect structure 104 is above the substrate 102. The interconnect structure 104 includes a plurality of conductive elements for active devices that are electrically connected in the substrate. A conductive element 110 is in the metal layer of interconnect structure 104. A capacitor 150 is formed in electrical contact with the conductive element 110. Capacitor 150 includes a first graphene structure 152 in electrical contact with conductive element 110. The first graphene structure 152 includes a plurality of graphene layers. A dielectric layer 154 is on the first graphene structure 152. A second graphene structure 156 is on the dielectric layer 154. The second graphene structure 156 includes a plurality of graphene layers. A dielectric layer 154 is positioned between the first graphene structure 152 and the second graphene structure 156 to form a capacitor structure. A first contact structure 158 is electrically connected to the first graphene structure 152. The first contact structure 158 is used to transfer charge carriers into the first graphene structure 152 or to transfer charge carriers from the first graphene structure 152. The second contact structure 160 is electrically connected to the second graphene structure 156. The second contact structure 160 is used to transfer charge carriers into the second graphene structure 156 or to transfer charge carriers from the second graphene structure 156.

基板102包括主動裝置及被動裝置。在一些實施例中,主動裝置包括電晶體、閘流體或其他適合的主動裝置。在一些實施例中,被動裝置包括電阻或其他適合的被動裝置。在一些實施例中,基板102包括記憶體胞或處理電路。 The substrate 102 includes an active device and a passive device. In some embodiments, the active device includes a transistor, a thyristor, or other suitable active device. In some embodiments, the passive device includes a resistor or other suitable passive device. In some embodiments, substrate 102 includes a memory cell or processing circuitry.

互聯結構104包括複數個導電性結構,用以電性連接在基板102中的主動裝置及被動裝置。在一些實施例中,導電結構包括銅、鋁、鎢或其他適合的導電物質。互聯結構也包括被動裝置,例如電容器150、電阻器、或其他合適的被動裝置。互聯結構包括介電物質,環繞該等導電結構以幫助減少相鄰導電結構間的串音干擾。在一些實施例中,介電物質包括氧化矽、氮化矽、氮氧化矽、或其他合適的介電物質。在一些實施例中,互聯結構104包括用於連接至其他基板的接觸焊墊。在一些實施例中,接觸焊墊可用於形成三維積體電路(threedimensional integrated circuit,3DIC)。 The interconnect structure 104 includes a plurality of conductive structures for electrically connecting the active device and the passive device in the substrate 102. In some embodiments, the electrically conductive structure comprises copper, aluminum, tungsten, or other suitable electrically conductive material. The interconnect structure also includes passive devices such as capacitors 150, resistors, or other suitable passive devices. The interconnect structure includes dielectric materials surrounding the conductive structures to help reduce crosstalk interference between adjacent conductive structures. In some embodiments, the dielectric material comprises cerium oxide, cerium nitride, cerium oxynitride, or other suitable dielectric species. In some embodiments, interconnect structure 104 includes contact pads for connecting to other substrates. In some embodiments, the contact pads can be used to form a three dimensional integrated circuit (3DIC).

導電元件110為互聯結構104之該等導電結構中之一者。在一些實施例中,導電元件110包括銅、鋁、鎢或其他適合的導電物質。導電元件110可用於連接在基板102中的主動裝置或被動裝置。導電元件110也可用於轉移電荷至最接近基板102之第一石墨烯結構152之一層。 Conductive element 110 is one of the electrically conductive structures of interconnect structure 104. In some embodiments, conductive element 110 comprises copper, aluminum, tungsten, or other suitable electrically conductive material. Conductive element 110 can be used to connect an active device or a passive device in substrate 102. Conductive element 110 can also be used to transfer charge to one of the first graphene structures 152 that is closest to substrate 102.

電容器150在導電元件110上。電容器150可用於儲存在互聯結構104中的電荷。電容器150也可用於幫助減少穿過互聯 結構104之電壓之波動。電容器150包括第一石墨烯結構152及第二石墨烯結構154。 Capacitor 150 is on conductive element 110. Capacitor 150 can be used to store the charge in interconnect structure 104. Capacitor 150 can also be used to help reduce cross-connections The fluctuation of the voltage of the structure 104. Capacitor 150 includes a first graphene structure 152 and a second graphene structure 154.

石墨烯為排列成二維陣列之碳原子層。碳原子配置成六角形圖案。碳原子層的二維陣列幫助減少在分開的石墨烯層間的電荷轉移。在電容器150中使用石墨烯作為電極能幫助大量的電荷載子增加每單位面積的儲存能力,相較於其他電極物質。 Graphene is a layer of carbon atoms arranged in a two-dimensional array. The carbon atoms are arranged in a hexagonal pattern. A two-dimensional array of carbon atom layers helps reduce charge transfer between separate graphene layers. The use of graphene as an electrode in capacitor 150 can help a large number of charge carriers increase the storage capacity per unit area compared to other electrode materials.

相對的,金屬電極有能力將電荷載子轉移進平行基板102之頂部表面的方向,以及垂直基板102之頂部表面之方向。因此,金屬電極儲存靠近電極之外部表面的電荷載子。儲存主要靠近金屬電極之表面的電荷載子意味著金屬電極的中間部份不是用於儲存電荷載子,其減少每單位面積的電荷載子的儲存。藉由增加每單位電荷載子的儲存能力,能夠減少電極的整體面積,但還能維持電荷儲存能力以幫助減少半導體裝置的整體尺寸。 In contrast, the metal electrode has the ability to transfer charge carriers into the direction of the top surface of the parallel substrate 102, as well as the direction of the top surface of the vertical substrate 102. Therefore, the metal electrode stores charge carriers close to the outer surface of the electrode. The storage of charge carriers near the surface of the metal electrode means that the middle portion of the metal electrode is not used to store charge carriers, which reduces the storage of charge carriers per unit area. By increasing the storage capacity per unit charge carrier, the overall area of the electrode can be reduced, but the charge storage capability can also be maintained to help reduce the overall size of the semiconductor device.

不使用金屬電極,使用石墨烯電極也能夠幫助減少使用昂貴的高-k介電物質,例如氧化鋯(zirconium oxide)或是氧化鉿(hafnium oxide)。對於石墨烯電極來說,有可能也能夠減少使用較慢且昂貴的形成技術,例如原子層沈積法(atomic layer deposition,ALD)。因此,石墨烯電極的使用也能夠幫助增加生產率並且減少在製造過程中的花費,相較於金屬電極。石墨烯的二維陣列結構還幫助藉由調整石墨烯結構中的層數量來調整電容器150之整體電容方式更容易些。 The use of graphene electrodes without the use of metal electrodes can also help reduce the use of expensive high-k dielectric materials such as zirconium oxide or hafnium oxide. For graphene electrodes, it is also possible to reduce the slower and more expensive formation techniques, such as atomic layer deposition (ALD). Therefore, the use of graphene electrodes can also help increase productivity and reduce the cost in the manufacturing process compared to metal electrodes. The two-dimensional array structure of graphene also helps to adjust the overall capacitance of capacitor 150 by adjusting the number of layers in the graphene structure.

第一石墨烯結構152包括複數個石墨烯層。根據電容器150所想要的儲存電容量,選擇在第一石墨烯結構152中之層的數量。在一些實施例中,在第一石墨烯結構152中的石墨烯層的數量的範圍從約2層到約20層。在一些實施例中,層的數量大於20層以更進一部增加電容器150的整體儲存電容量。在第一石墨烯結構 152中的每一層阻礙電荷載子轉移至在第一石墨烯結構152中的相鄰層。即使當有電荷差存在於相鄰層間,在第一石墨烯結構152中的碳原子之二維陣列阻礙層之間的電荷載子轉移。 The first graphene structure 152 includes a plurality of graphene layers. The number of layers in the first graphene structure 152 is selected based on the desired storage capacity of the capacitor 150. In some embodiments, the number of graphene layers in the first graphene structure 152 ranges from about 2 to about 20 layers. In some embodiments, the number of layers is greater than 20 layers to further increase the overall storage capacity of capacitor 150. In the first graphene structure Each of 152 blocks the transfer of charge carriers to adjacent layers in the first graphene structure 152. Even when a charge difference exists between adjacent layers, the two-dimensional array of carbon atoms in the first graphene structure 152 blocks charge carrier transfer between the layers.

介電層154在第一石墨烯結構152上。在一些實施例中,介電層154之面積匹配第一石墨烯結構152的面積。在一些實施例中,第一石墨烯結構152包括被介電層154暴露的部份。在一些實施例中,介電層154包括氧化矽、氮化矽、或其他適合的介電物質。在一些實施例中,介電層154的物質相同於互聯結構154之介電物質。在一些實施例中,介電層的物質不同於互聯結構104之介電物質。在一些實施例中,介電層154之厚度的範圍從約100埃(angstroms,Å)至約500Å。若介電層154的厚度太小,在一些實施例中,介電層無法足夠的將第一石墨烯結構152與第二石墨烯結構156隔絕,以及電荷在第一石墨烯結構及第二石墨烯結構間直接的互換。若介電層154的厚度太大,在一些實施例中,電容器150的漏電將會增加超過至可接受的範圍。 Dielectric layer 154 is on first graphene structure 152. In some embodiments, the area of the dielectric layer 154 matches the area of the first graphene structure 152. In some embodiments, the first graphene structure 152 includes a portion that is exposed by the dielectric layer 154. In some embodiments, dielectric layer 154 includes hafnium oxide, tantalum nitride, or other suitable dielectric species. In some embodiments, the material of the dielectric layer 154 is the same as the dielectric material of the interconnect structure 154. In some embodiments, the material of the dielectric layer is different from the dielectric material of interconnect structure 104. In some embodiments, the thickness of the dielectric layer 154 ranges from about 100 angstroms (Å) to about 500 Å. If the thickness of the dielectric layer 154 is too small, in some embodiments, the dielectric layer is insufficient to insulate the first graphene structure 152 from the second graphene structure 156, and the charge is in the first graphene structure and the second graphite. Direct interchange between olefin structures. If the thickness of the dielectric layer 154 is too large, in some embodiments, the leakage of the capacitor 150 will increase beyond an acceptable range.

第二石墨烯結構156包括複數個石墨烯層。在一些實施例中,第二石墨烯結構156的面積小於第一石墨烯結構152的面積或介電層154的面積。在一些實施例中,第二石墨烯結構156的面積相同或大於第一石墨烯結構的面積或介電層154的面積。根據電容器150所想要的儲存電容量,選擇在第二石墨烯結構156中的石墨烯層的數量的範圍從約2層到約20層。在一些實施例中,層的數量大於20層以更進一部增加電容器150的整體儲存電容量。在一些實施例中,第二石墨烯結構156中的層的數量相同於在第一石墨烯結構152中的層的數量。在一些實施例中,第二石墨烯結構156中的層的數量不相同於在第一石墨烯結構152中的層的數量。在第二石墨烯結構156中的每一層阻礙電荷載子轉移至在第一石墨烯 結構中的相鄰層。即使當有電荷差存在於相鄰層間,在第二石墨烯結構156中的碳原子之二維陣列會阻礙層之間的電荷載子轉移。 The second graphene structure 156 includes a plurality of graphene layers. In some embodiments, the area of the second graphene structure 156 is less than the area of the first graphene structure 152 or the area of the dielectric layer 154. In some embodiments, the area of the second graphene structure 156 is the same or larger than the area of the first graphene structure or the area of the dielectric layer 154. The number of graphene layers in the second graphene structure 156 is selected to range from about 2 to about 20 layers, depending on the desired storage capacity of the capacitor 150. In some embodiments, the number of layers is greater than 20 layers to further increase the overall storage capacity of capacitor 150. In some embodiments, the number of layers in the second graphene structure 156 is the same as the number of layers in the first graphene structure 152. In some embodiments, the number of layers in the second graphene structure 156 is not the same as the number of layers in the first graphene structure 152. Each layer in the second graphene structure 156 blocks charge carrier transfer to the first graphene Adjacent layers in the structure. Even when a charge difference exists between adjacent layers, a two-dimensional array of carbon atoms in the second graphene structure 156 can hinder charge carrier transfer between the layers.

第一接點結構158用以電性連接第一石墨烯結構152。在一些實施例中,第一接點結構158為陰極。在一些實施例中,第一接點結構158為陽極。在一些實施例中,第一接點結構158包括導電物質,例如,銅、鋁、鎢或其他適合的導電物質。在一些實施例中,第一接點結構158更包括一阻障層,例如氮化鉭、氮化鈦、或其合適的阻障層。阻障層幫助避免或最小化從第一接點結構來的導電物質擴散至第一石墨烯結構152。在一些實施例中,第一接點結構158延伸穿過介電層154至第一石墨烯結構152。在一些實施例中,第一接點結構158延伸至被介電層154暴露的第一石墨烯結構152的部份。 The first contact structure 158 is used to electrically connect the first graphene structure 152. In some embodiments, the first contact structure 158 is a cathode. In some embodiments, the first contact structure 158 is an anode. In some embodiments, the first contact structure 158 comprises a conductive material, such as copper, aluminum, tungsten, or other suitable conductive material. In some embodiments, the first contact structure 158 further includes a barrier layer such as tantalum nitride, titanium nitride, or a suitable barrier layer thereof. The barrier layer helps to avoid or minimize diffusion of conductive species from the first contact structure to the first graphene structure 152. In some embodiments, the first contact structure 158 extends through the dielectric layer 154 to the first graphene structure 152. In some embodiments, the first contact structure 158 extends to a portion of the first graphene structure 152 that is exposed by the dielectric layer 154.

由於電荷在第一石墨烯結構152的分隔層之間的轉移受到阻礙,第一接點結構158延伸至第一石墨烯結構以接觸石墨烯結構的多個層,以提昇在第一接點結構及第一石墨烯結構間的轉移。在一些實施例中,第一接點結構158接觸在第一石墨烯結構152中的所有的石墨烯層。在一些實施例中,第一接點結構158接觸在第一石墨烯結構152中的層少於第一石墨烯結構152中全部的石墨烯層。 Since the transfer of charge between the spacer layers of the first graphene structure 152 is hindered, the first contact structure 158 extends to the first graphene structure to contact the plurality of layers of the graphene structure to enhance the first contact structure And transfer between the first graphene structure. In some embodiments, the first contact structure 158 contacts all of the graphene layers in the first graphene structure 152. In some embodiments, the first contact structure 158 contacts less than all of the graphene layers in the first graphene structure 152 in the first graphene structure 152.

第二接點結構160用以電性連接第二石墨烯結構156。在一些實施例中,第二接點結構160為陰極。在一些實施例中,第二接點結構160為陽極。在一些實施例中,第二接點結構160包括導電物質,例如,銅、鋁、鎢或其他適合的導電物質。在一些實施例中,第一接點結構158更包括一阻障層,例如氮化鉭、氮化鈦、或其合適的阻障層。阻障層幫助避免或最小化從第一接點結構來的導電物質擴散至第二石墨烯結構156。 The second contact structure 160 is used to electrically connect the second graphene structure 156. In some embodiments, the second contact structure 160 is a cathode. In some embodiments, the second contact structure 160 is an anode. In some embodiments, the second contact structure 160 comprises a conductive material, such as copper, aluminum, tungsten, or other suitable conductive material. In some embodiments, the first contact structure 158 further includes a barrier layer such as tantalum nitride, titanium nitride, or a suitable barrier layer thereof. The barrier layer helps to avoid or minimize diffusion of conductive species from the first contact structure to the second graphene structure 156.

由於電荷在第二石墨烯結構156的分隔層之間的轉移受到阻礙,第二接點結構160延伸至第二石墨烯結構以接觸石墨烯結構的多個層,以提昇在第二接點結構及第二石墨烯結構間的電荷轉移。在一些實施例中,第二接點結構160接觸在第二石墨烯結構156中的所有的石墨烯層。在一些實施例中,,第二接點結構160接觸在第二石墨烯結構156中少於全部的石墨烯層的層。在一些實施例中,第二接點結構160延伸穿過第二石墨烯結構156至介電層154。 Since the transfer of charge between the spacer layers of the second graphene structure 156 is hindered, the second contact structure 160 extends to the second graphene structure to contact the plurality of layers of the graphene structure to enhance the second contact structure And charge transfer between the second graphene structure. In some embodiments, the second contact structure 160 contacts all of the graphene layers in the second graphene structure 156. In some embodiments, the second contact structure 160 contacts a layer of less than all of the graphene layers in the second graphene structure 156. In some embodiments, the second contact structure 160 extends through the second graphene structure 156 to the dielectric layer 154.

圖1B為根據一些實施例,半導體裝置100’之剖面示意圖。半導體裝置100’相似於半導體裝置100以及相似的元件具有相同的參考號碼。相較於半導體裝置100,半導體裝置100’包括生長層170,在介電層154及第二石墨烯結構之間。 FIG. 1B is a schematic cross-sectional view of a semiconductor device 100', in accordance with some embodiments. The semiconductor device 100' is similar to the semiconductor device 100 and like elements have the same reference numerals. In contrast to semiconductor device 100, semiconductor device 100' includes a growth layer 170 between dielectric layer 154 and a second graphene structure.

生長層170用以提昇在介電層154上形成第二石墨烯結構156的能力。為了在介電層154上形成擁有適當的阻抗力的半導體裝置100的第二石墨烯結構,生成温度約為700℃用於形成第二石墨烯結構。這生成温度會潛在的破壞結構,例如互聯結構104。這生成温度會引起互聯結構104中的導電物質擴散至環繞的介電物質中。這擴散將降低環繞的介電物質減少在相鄰導電元件間串音干擾的能力。 The growth layer 170 serves to enhance the ability to form the second graphene structure 156 on the dielectric layer 154. In order to form a second graphene structure of the semiconductor device 100 having a suitable resistance on the dielectric layer 154, a formation temperature of about 700 ° C is used to form the second graphene structure. This generation of temperatures can potentially damage structures, such as interconnect structure 104. This formation temperature causes the conductive material in the interconnect structure 104 to diffuse into the surrounding dielectric material. This diffusion will reduce the ability of the surrounding dielectric material to reduce crosstalk interference between adjacent conductive elements.

相對的,半導體裝置100’包括生長層170,其在介電層154及第二石墨烯層156之間以減少半導體裝置100’的第二石墨烯結構的生成温度。在一些實施例中,在生長層170上的第二石墨烯結構的生成温度的範圍從約400℃至約600℃。這較低的生成温度幫助減少對後段製程結構,像是互聯結構104,的傷害的風險。 In contrast, the semiconductor device 100' includes a growth layer 170 between the dielectric layer 154 and the second graphene layer 156 to reduce the formation temperature of the second graphene structure of the semiconductor device 100'. In some embodiments, the formation temperature of the second graphene structure on the growth layer 170 ranges from about 400 °C to about 600 °C. This lower generation temperature helps reduce the risk of injury to the back-end process structure, such as interconnect structure 104.

在一些實施例中,生長層170包括銅、鋁、鎢或其他適合的導電物質。在一些實施例中,生長層170具有範圍從約100 奈米(nanometers,nm)至約500nm的厚度。在一些實施例中,若生長層170的厚度太薄,生長層不能夠有效的幫助第二石墨烯結構156的形成。若生長層170的厚度太厚,半導體裝置100’的尺寸增加卻沒有顯著的增加形成第二石墨烯結構156的能力。 In some embodiments, the growth layer 170 comprises copper, aluminum, tungsten, or other suitable electrically conductive material. In some embodiments, the growth layer 170 has a range from about 100 Nanometers (nm) to a thickness of about 500 nm. In some embodiments, if the thickness of the growth layer 170 is too thin, the growth layer is not effective in helping the formation of the second graphene structure 156. If the thickness of the growth layer 170 is too thick, the size of the semiconductor device 100' is increased without significantly increasing the ability to form the second graphene structure 156.

圖2為根據一些實施例,接點結構200之剖面示意圖。接點結構200被指出以作為第二接點結構160(圖1A)之示例。雖然針對接點結構160進行討論,但接點結構200的細節也可以應用至第一接點結構158。接點結構200包括一導電物質162,被阻障層164環繞。接點結構200延伸至在第二石墨烯結構156之開口。在一些實施例中,在第二石墨烯結構156之開口具有本質上垂直的側壁。於此使用之本質上一詞是用來說明可歸因於在製造接點結構200期間之生產變形的垂直的變形。在一些實施例中,在第二石墨烯結構156中的開口具有逐漸變細的側壁。開口之逐漸變細的側壁意味著最靠近介電層154(圖1A)的開口的寬度小於離介電層最遠的開口的寬度。 2 is a schematic cross-sectional view of a contact structure 200, in accordance with some embodiments. Contact structure 200 is indicated as an example of second contact structure 160 (Fig. 1A). Although discussed with respect to the contact structure 160, the details of the contact structure 200 can also be applied to the first contact structure 158. The contact structure 200 includes a conductive material 162 surrounded by a barrier layer 164. Contact structure 200 extends to the opening in second graphene structure 156. In some embodiments, the opening in the second graphene structure 156 has substantially vertical sidewalls. The term essentially used herein is used to describe the vertical deformation attributable to the production deformation during the manufacture of the contact structure 200. In some embodiments, the opening in the second graphene structure 156 has tapered sidewalls. The tapered sidewall of the opening means that the width of the opening closest to dielectric layer 154 (Fig. 1A) is less than the width of the opening furthest from the dielectric layer.

在一些實施例中,接點結構延伸完全穿過第二石墨烯結構156,以接觸在第二石墨烯結構中的所有石墨烯層。在一些實施例中,接點結構200延伸僅部份穿過第二石墨烯結構156。 In some embodiments, the contact structure extends completely through the second graphene structure 156 to contact all of the graphene layers in the second graphene structure. In some embodiments, the contact structure 200 extends only partially through the second graphene structure 156.

導電物質162可用於將電荷載子轉移至第二石墨烯結構156,或從第二石墨烯結構156將電荷載子轉移出。在一些實施例中,導電物質162包括銅、鋁、鎢或其他適合的導電物質。 Conductive material 162 can be used to transfer charge carriers to second graphene structure 156 or to transfer charge carriers from second graphene structure 156. In some embodiments, the electrically conductive material 162 comprises copper, aluminum, tungsten, or other suitable electrically conductive material.

阻障層164幫助避免或最小化從第二石墨烯結構156至導電物質162的碳原子的擴散,並且幫助避免或最小化導電物質162擴散至第二石墨烯結構。在一些實施例中,阻障層164包括氮化鉭、氮化鈦、或其合適的阻障層。 The barrier layer 164 helps to avoid or minimize the diffusion of carbon atoms from the second graphene structure 156 to the conductive species 162 and helps to avoid or minimize diffusion of the conductive species 162 to the second graphene structure. In some embodiments, barrier layer 164 includes tantalum nitride, titanium nitride, or a suitable barrier layer thereof.

圖3為根據一些實施例,製作半導體裝置方法300之 流程圖。方法300開始於操作302,於其中,於基板上形成一互聯結構。在一些實施例中,互聯結構,例如是,互聯結構104(圖1A)藉由形成在基板上的介電物質形成於基板上,例如,基板102。在一些實施例中,介電物質藉由物理氣相沈積法(physical vapor deposition,PVD)、化學氣相沈積法(chemical vapor deposition,CVD)、原子層沈積法(atomic layer deposition,ALD)、旋轉塗布法、或其他適合的形成技術。 FIG. 3 illustrates a method 300 of fabricating a semiconductor device in accordance with some embodiments. flow chart. The method 300 begins at operation 302 where an interconnect structure is formed on a substrate. In some embodiments, the interconnect structure, for example, interconnect structure 104 (FIG. 1A) is formed on the substrate, such as substrate 102, by a dielectric material formed on the substrate. In some embodiments, the dielectric material is subjected to physical vapor deposition (PVD), chemical vapor deposition (CVD), atomic layer deposition (ALD), and rotation. Coating method, or other suitable forming technique.

導電特徵係藉由雙鑲嵌製程(dual damascene process)形成於介電物質中,在一些實施例中。導電特徵電性連接在基板中的主動裝置或被動裝置。在一些實施例中,導電特徵包括銅、鋁、鎢或其他適合的導電物質。 The conductive features are formed in the dielectric material by a dual damascene process, in some embodiments. The conductive features are electrically connected to the active device or the passive device in the substrate. In some embodiments, the electrically conductive features include copper, aluminum, tungsten, or other suitable electrically conductive material.

在操作304中,形成第一石墨烯結構,其接觸互聯結構的導電特性。第一石墨烯結構,例如第一石墨烯結構152(圖1A),包括複數個石墨烯層。在一些實施例中,在第一石墨烯結構中的石墨烯層的數量的範圍從約2層到約20層。在一些實施例中,第一石墨烯結構藉由CVD形成於導電結構上方。在一些實施例中,第一石墨烯結構係藉由使用包括甲烷(CH4)及氫(H2)的前驅物質而形成。在CVD製程期間,選擇氣體流及溫度使得石墨烯有效的生長於導電結構上。在一些實施例中,CVD製程包括多個步驟。在一些實施例中,CVD製程包括四個步驟。第一個步驟僅使用H2氣體並且以第一持續期間加熱半導體裝置至目標沈積溫度。第二步驟使用H2氣體並且以第二持續期間維持半導體裝置在目標沈積溫度。第三步驟在目標沈積溫度下使用H2及CH4以沈積石墨烯。以氣體流比CH4/H2大於一來維持氣體H2及CH4。在第四步驟中,冷卻半導體裝置。在一些實施例中,在第二步驟及第三步驟下在目標沈積溫度下維持半導體裝置包括維持CVD沈積腔室的壓 力,其範圍在約1托(Torr)至約4托之間。在一些實施例中,目標沈積溫度的範圍在400℃至約1000℃之間。 In operation 304, a first graphene structure is formed that contacts the conductive properties of the interconnect structure. The first graphene structure, such as the first graphene structure 152 (FIG. 1A), includes a plurality of graphene layers. In some embodiments, the number of graphene layers in the first graphene structure ranges from about 2 to about 20 layers. In some embodiments, the first graphene structure is formed over the conductive structure by CVD. In some embodiments, the first line by graphene structure formed using precursors include methane (CH 4) and hydrogen (H 2) is. During the CVD process, the gas stream and temperature are selected such that graphene is effectively grown on the conductive structure. In some embodiments, the CVD process includes multiple steps. In some embodiments, the CVD process includes four steps. The first step uses only H 2 gas and heats the semiconductor device to the target deposition temperature for the first duration. The second step uses H 2 gas and maintains the semiconductor device at the target deposition temperature for the second duration. The third step uses H 2 and CH 4 at the target deposition temperature to deposit graphene. The gases H 2 and CH 4 are maintained at a gas flow ratio of CH 4 /H 2 greater than one. In the fourth step, the semiconductor device is cooled. In some embodiments, maintaining the semiconductor device at the target deposition temperature in the second and third steps includes maintaining a pressure of the CVD deposition chamber ranging from about 1 Torr to about 4 Torr. In some embodiments, the target deposition temperature ranges from 400 °C to about 1000 °C.

在操作306中,介電層形成於第一石墨烯結構上。介電層,例如介電層154(圖1A)是藉由PVD、CVD、ALD、旋轉塗布法、或其他適合的形成技術來形成,在一些實施例中。在一些實施例中,介電層包括氧化矽、氮化矽、氮氧化矽、碳化矽或其他合適的介電物質。在一些實施例中,介電層包括與互聯結構之介電質相同的物質。在一些實施例中,介電層包括不同於互聯結構之介電質的物質。 In operation 306, a dielectric layer is formed on the first graphene structure. A dielectric layer, such as dielectric layer 154 (FIG. 1A), is formed by PVD, CVD, ALD, spin coating, or other suitable forming techniques, in some embodiments. In some embodiments, the dielectric layer comprises hafnium oxide, tantalum nitride, hafnium oxynitride, tantalum carbide or other suitable dielectric species. In some embodiments, the dielectric layer comprises the same material as the dielectric of the interconnect structure. In some embodiments, the dielectric layer comprises a substance different from the dielectric of the interconnect structure.

在一些實施例中,介電層形成於整個第一石墨烯結構上。在一些實施例中,形成介電層以暴露出第一石墨烯結構之一部分。在一些實施例中,介電層形成於整個第一石墨烯結構的上方並且介電的一部份被移除以暴露出部份的第一石墨烯結構。 In some embodiments, a dielectric layer is formed over the entire first graphene structure. In some embodiments, a dielectric layer is formed to expose a portion of the first graphene structure. In some embodiments, a dielectric layer is formed over the entire first graphene structure and a portion of the dielectric is removed to expose a portion of the first graphene structure.

在可選的操作308中,生長層形成於介電層上。生長層,例如生長層170(圖1B)用於協助第二石墨烯結構的形成。相較於第二石墨烯結構直接形成於介電層上,使用生長層能降低第二石墨烯結構的生成温度。在一些實施例中,生長層包括導電物質。在一些實施例中,導電物質包括銅、鋁、鎢或其他適合的導電物質。在一些實施中,生長層包括與在互聯結構中之導電物質相同的物質。在一些實施例中,生長層包括與在互聯結構中之導電物質不相同的物質。在一些實施例中,藉由PVD、ALD、濺鍍或其他合適的形成方法形成生長層。在一些實施例中,生長層具有範圍從約100奈米(nanometers,nm)至約500nm的厚度。在一些實施例中,生長層形成於整個介電層之上。在一些實施例中,生長層形成於小於整個介電層之上。在一些實施例中,生長層形成於整個介電層之上並且接著一部分的生長層被移除以暴露出介 電層的一部分。在一些實施例中,生長層被忽略,當半導體裝置的後段製程元件能夠禁得起較高的生成温度。 In an optional operation 308, a growth layer is formed on the dielectric layer. A growth layer, such as growth layer 170 (Fig. IB), is used to assist in the formation of the second graphene structure. Compared to the second graphene structure formed directly on the dielectric layer, the use of the growth layer can lower the formation temperature of the second graphene structure. In some embodiments, the growth layer comprises a conductive material. In some embodiments, the electrically conductive material comprises copper, aluminum, tungsten, or other suitable electrically conductive material. In some implementations, the growth layer includes the same materials as the conductive materials in the interconnect structure. In some embodiments, the growth layer comprises a substance that is different from the conductive material in the interconnect structure. In some embodiments, the growth layer is formed by PVD, ALD, sputtering, or other suitable formation methods. In some embodiments, the growth layer has a thickness ranging from about 100 nanometers (nm) to about 500 nm. In some embodiments, the growth layer is formed over the entire dielectric layer. In some embodiments, the growth layer is formed over less than the entire dielectric layer. In some embodiments, a growth layer is formed over the entire dielectric layer and then a portion of the growth layer is removed to expose the dielectric layer Part of the electrical layer. In some embodiments, the growth layer is ignored when the back-end process elements of the semiconductor device are capable of withstanding higher generation temperatures.

在操作310中,第二石墨烯結構形成於生長層上。第二石墨烯結構,例如第二石墨烯結構156(圖1B)包括複數個石墨烯層。在一些實施例中,在第二石墨烯結構中的石墨烯層的數量的範圍從約2層到約20層。在一些實施例中,第二石墨烯結構中的層的數量相同於在第一石墨烯結構中的層的數量。在一些實施例中,第二石墨烯結構中的層的數量不相同於在第一石墨烯結構中的層的數量。在一些實施例中,第二石墨烯層藉由類似於針對第一石墨烯結構所描述的製程形成於生長層的上方。在一些實施例中,使用相同於第一石墨烯結構的溫度形成第二石墨烯結構。在一些實施例中,使用不相同於第一石墨烯結構的溫度形成第二石墨烯結構。在一些實施例中,第二石墨烯結構形成於整個介電層上。在一些實施例中,第二石墨烯結構形成少於整個介電層上。在一些實施例中,忽略操作308,第二石墨烯結構直接形成於介電層上。 In operation 310, a second graphene structure is formed on the growth layer. The second graphene structure, such as the second graphene structure 156 (FIG. 1B), includes a plurality of graphene layers. In some embodiments, the number of graphene layers in the second graphene structure ranges from about 2 to about 20 layers. In some embodiments, the number of layers in the second graphene structure is the same as the number of layers in the first graphene structure. In some embodiments, the number of layers in the second graphene structure is not the same as the number of layers in the first graphene structure. In some embodiments, the second graphene layer is formed over the growth layer by a process similar to that described for the first graphene structure. In some embodiments, the second graphene structure is formed using a temperature that is the same as the first graphene structure. In some embodiments, the second graphene structure is formed using a temperature that is different from the first graphene structure. In some embodiments, the second graphene structure is formed over the entire dielectric layer. In some embodiments, the second graphene structure is formed less than the entire dielectric layer. In some embodiments, ignoring operation 308, the second graphene structure is formed directly on the dielectric layer.

在操作312中,接點結構形成於該第一石墨烯結構及該第二石墨烯結構之每一者中。接點結構包括在第一石墨烯結構中的第一接點結構,例如第一接點結構158(圖1A)。接點結構更包括在第二石墨烯結構中的第二接點結構,例如第二接點結構160(圖1A)。藉由在第一石墨烯結構及第二石墨烯結構之每一者形成一開口來形成接點結構。在一些實施例中,至少一開口包括本質上垂直的側壁。在一些實施例中,至少一開口包括逐漸變細的側壁。 In operation 312, a contact structure is formed in each of the first graphene structure and the second graphene structure. The contact structure includes a first contact structure in the first graphene structure, such as a first contact structure 158 (Fig. 1A). The contact structure further includes a second contact structure in the second graphene structure, such as a second contact structure 160 (Fig. 1A). The contact structure is formed by forming an opening in each of the first graphene structure and the second graphene structure. In some embodiments, the at least one opening comprises a substantially vertical sidewall. In some embodiments, the at least one opening comprises a tapered sidewall.

接點結構包括導電性物質及阻障層。在一些實施例中,導電物質包括銅、鋁、鎢或其他適合的導電物質。在一些實 施例中,第一接點結構的導電物質相同於第二接點結構的導電物質。在一些實施例中,第一接點結構的導電物質不相同於第二接點結構的導電物質。在一些實施例中,導電物質包括互聯結構之生長層或導電物質之一者相同的物質。在一些實施例中,導電物質包括與互聯結構之生長層及之導電物質不同的物質。 The contact structure includes a conductive material and a barrier layer. In some embodiments, the electrically conductive material comprises copper, aluminum, tungsten, or other suitable electrically conductive material. In some real In the embodiment, the conductive material of the first contact structure is the same as the conductive material of the second contact structure. In some embodiments, the conductive material of the first contact structure is different from the conductive material of the second contact structure. In some embodiments, the electrically conductive material comprises the same material as one of the growth layer or the electrically conductive material of the interconnect structure. In some embodiments, the electrically conductive material comprises a different material than the growth layer of the interconnect structure and the electrically conductive material.

阻障層位於導電物質與第一石墨烯結構或第二石墨烯結構之間。在一些實施例中,阻障層包括氮化鉭、氮化鈦、或其合適的阻障層。在一些實施例中,第一接點結構的阻障層相同於第二接點結構的阻障層。在一些實施例中,第一接點結構的阻障層不相同於第二接點結構的阻障層。 The barrier layer is between the conductive material and the first graphene structure or the second graphene structure. In some embodiments, the barrier layer comprises tantalum nitride, titanium nitride, or a suitable barrier layer thereof. In some embodiments, the barrier layer of the first contact structure is the same as the barrier layer of the second contact structure. In some embodiments, the barrier layer of the first contact structure is not the same as the barrier layer of the second contact structure.

接點結構延伸至少部份穿過第一石墨烯結構及第二石墨烯結構以接觸多個石墨烯層。在一些實施例中,第一接點結構延伸穿過第一石墨烯結構的全部石墨烯層。在一些實施例中,第一接點結構延伸穿過第一石墨烯結構中少於全部石墨烯層的層。在一些實施例中,第二接點結構延伸穿過第二石墨烯結構中的全部石墨烯層。在一些實施例中,第二接點結構延伸穿過第二石墨烯結構中少於全部石墨烯層的層。 The contact structure extends at least partially through the first graphene structure and the second graphene structure to contact the plurality of graphene layers. In some embodiments, the first contact structure extends through all of the graphene layers of the first graphene structure. In some embodiments, the first contact structure extends through a layer of less than all of the graphene layers in the first graphene structure. In some embodiments, the second contact structure extends through all of the graphene layers in the second graphene structure. In some embodiments, the second contact structure extends through a layer of less than all of the graphene layers in the second graphene structure.

在一些實施例中,方法包括額外的操作。在一些實施例中,方法300的操作的順序被改變。 In some embodiments, the method includes additional operations. In some embodiments, the order of operations of method 300 is changed.

這記載的一個觀點有關於電容器。電容器包括一第一石墨烯結構,具有複數個第一石墨烯層。該電容器更包括一介電層,在該第一石墨烯結構上方。該電容器更包括一第二石墨烯結構,在該介電層上方,其中該第二石墨烯結構具有複數個第二石墨烯層。 One of the points described here is about capacitors. The capacitor includes a first graphene structure having a plurality of first graphene layers. The capacitor further includes a dielectric layer over the first graphene structure. The capacitor further includes a second graphene structure over the dielectric layer, wherein the second graphene structure has a plurality of second graphene layers.

本敘述之另一觀點有關於半導體裝置。半導體裝置,包括一基板以及在該基板上方的一互聯結構。該互聯結 構具有複數個導電特徵。該半導體裝置更包括一電容器,在該互聯結構中,該電容器電性接觸該等導電特徵之至少一導電特徵。該電容器包括一第一石墨烯結構,具有複數個第一石墨烯層。該電容器更包括一介電層,在該第一石墨烯結構上方。該電容器更包括一第二石墨烯結構,在該介電層上方,該第二石墨烯結構具有複數個第二石墨烯層。 Another aspect of the description relates to semiconductor devices. A semiconductor device includes a substrate and an interconnect structure over the substrate. Interconnect The structure has a plurality of conductive features. The semiconductor device further includes a capacitor in which the capacitor electrically contacts at least one of the conductive features of the conductive features. The capacitor includes a first graphene structure having a plurality of first graphene layers. The capacitor further includes a dielectric layer over the first graphene structure. The capacitor further includes a second graphene structure having a plurality of second graphene layers over the dielectric layer.

本敘述之又另一觀點有關於一種製作電容器之方法。該方法包括形成一第一石墨烯結構,具有複數個第一石墨烯層。該方法更包括形成一介電層,在該第一石墨烯結構上方。該方法更包括形成一第二石墨烯結構,在該介電層上方,其中該第二石墨烯結構包括複數個第二石墨烯層。 Yet another aspect of the present description relates to a method of making a capacitor. The method includes forming a first graphene structure having a plurality of first graphene layers. The method further includes forming a dielectric layer over the first graphene structure. The method further includes forming a second graphene structure over the dielectric layer, wherein the second graphene structure comprises a plurality of second graphene layers.

以上所述一些實施例的特徵,以使本領域內之技藝人士能更好的理解本發明的各個概念。本領域內之技藝人士他們可以很容易的將本申請公開的內容作為基礎來設計或更改其他的工藝及結構,以實現與本申請介紹的實施例相同的目的和實現同樣的優點。本領域內之技藝人士還應該注意意識到這種等效構造並不背離本發明精神的範疇,以及不在背離本發明精神和範疇的情況下,可作各種改變、替代或更改。 The features of some of the above-described embodiments are provided to enable those skilled in the art to better understand the various aspects of the invention. Those skilled in the art can easily design or modify other processes and structures based on the disclosure of the present application to achieve the same objectives and achieve the same advantages as the embodiments described herein. It should be understood by those skilled in the art that this <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt;

100‧‧‧半導體裝置 100‧‧‧Semiconductor device

102‧‧‧基板 102‧‧‧Substrate

104‧‧‧互聯結構 104‧‧‧Interconnected structure

110‧‧‧導電元件 110‧‧‧Conducting components

150‧‧‧電容器 150‧‧‧ capacitor

152‧‧‧第一石墨烯結構 152‧‧‧First graphene structure

154‧‧‧介電層 154‧‧‧ dielectric layer

156‧‧‧第二石墨烯結構 156‧‧‧Second graphene structure

158‧‧‧第一接點結構 158‧‧‧First contact structure

160‧‧‧第二接點結構 160‧‧‧second junction structure

Claims (10)

一種電容器,包括:一第一石墨烯結構,具有複數個第一石墨烯層;一介電層,在該第一石墨烯結構上方;以及一第二石墨烯結構,在該介電層上方,其中該第二石墨烯結構具有複數個第二石墨烯層,其中該第一石墨烯結構水平地延伸超出該第二石墨烯結構的一側壁。 A capacitor comprising: a first graphene structure having a plurality of first graphene layers; a dielectric layer over the first graphene structure; and a second graphene structure over the dielectric layer Wherein the second graphene structure has a plurality of second graphene layers, wherein the first graphene structure extends horizontally beyond a sidewall of the second graphene structure. 如申請專利範圍第1項所述之電容器,更包括一第一接點結構,用以將電荷載子轉移進該第一石墨烯結構,或從該第一石墨烯結構轉移出電荷載子,其中該第一接點結構係設置相鄰於該第二石墨烯結構。 The capacitor of claim 1, further comprising a first contact structure for transferring charge carriers into the first graphene structure or transferring charge carriers from the first graphene structure, Wherein the first contact structure is disposed adjacent to the second graphene structure. 如申請專利範圍第2項所述之電容器,其中該第一接點結構延伸至該第一石墨烯結構以接觸該複數個第一石墨烯層的多個石墨烯層。 The capacitor of claim 2, wherein the first contact structure extends to the first graphene structure to contact the plurality of graphene layers of the plurality of first graphene layers. 如申請專利範圍第2項所述之電容器,其中該第一接點結構延伸穿透該介電層至該第一石墨烯結構,其中該介電層水平地延伸超出該第二石墨烯結構的該側壁。 The capacitor of claim 2, wherein the first contact structure extends through the dielectric layer to the first graphene structure, wherein the dielectric layer extends horizontally beyond the second graphene structure The side wall. 如申請專利範圍第2項所述之電容器,其中該第一接點結構包括:一導電物質;以及一阻障層,將該導電物質與該第一石墨烯結構分開。 The capacitor of claim 2, wherein the first contact structure comprises: a conductive material; and a barrier layer separating the conductive material from the first graphene structure. 如申請專利範圍第1項所述之電容器,更包括一第二接點結構,用以將電荷載子轉移進該第二石墨烯結構,或從該第二石墨烯結構轉移出電荷載子,其中該第二接點結構延伸至該第二石墨烯結構以接觸該複數個第二石墨烯層的多個石墨烯層。 The capacitor of claim 1, further comprising a second contact structure for transferring charge carriers into the second graphene structure or transferring charge carriers from the second graphene structure, Wherein the second contact structure extends to the second graphene structure to contact the plurality of graphene layers of the plurality of second graphene layers. 如申請專利範圍第1項所述之電容器,更包括一生長層,在該介電層及該第二石墨烯結構之間。 The capacitor of claim 1, further comprising a growth layer between the dielectric layer and the second graphene structure. 一種半導體裝置,包括:一基板;一互聯結構,在該基板上方,該互聯結構具有複數個導電特徵;以及一電容器,在該互聯結構中,該電容器電性接觸該等導電特徵之至少一導電特徵,其中該電容器包括:一第一石墨烯結構,具有複數個第一石墨烯層,該第一石墨烯結構具有一第一水平尺寸,該第一水平尺寸係從該第一石墨烯結構的相對側壁間所量測得到;一介電層,在該第一石墨烯結構上方;以及一第二石墨烯結構,在該介電層上方,其中該第二石墨烯結構具有複數個第二石墨烯層以及一第二水平尺寸,該第二水平尺寸係從該第二石墨烯結構的相對側壁間所量測得到,其中該第一水平尺寸大於該第二水平尺寸。 A semiconductor device comprising: a substrate; an interconnect structure above the substrate, the interconnect structure having a plurality of conductive features; and a capacitor in which the capacitor electrically contacts at least one of the conductive features a feature, wherein the capacitor comprises: a first graphene structure having a plurality of first graphene structures, the first graphene structure having a first horizontal dimension, the first horizontal dimension being from the first graphene structure Measured between opposite sidewalls; a dielectric layer over the first graphene structure; and a second graphene structure over the dielectric layer, wherein the second graphene structure has a plurality of second graphite An olefin layer and a second horizontal dimension, the second horizontal dimension being measured from between opposing sidewalls of the second graphene structure, wherein the first horizontal dimension is greater than the second horizontal dimension. 如申請專利範圍第8項所述之半導體裝置,其中該電容器更包括一生長層,在該介電層及該第二石墨烯層之間。 The semiconductor device of claim 8, wherein the capacitor further comprises a growth layer between the dielectric layer and the second graphene layer. 一種製作電容器之方法,包括:形成一第一石墨烯結構,具有複數個第一石墨烯層,其中形成該第一石墨烯結構包括按照該電容器的一想要電荷儲存量在該等第一石墨烯層中選擇大量的層;形成一介電層,在該第一石墨烯結構上方;形成一第二石墨烯結構,在該介電層上方,其中該第二石墨烯結構包括複數個第二石墨烯層。 A method of fabricating a capacitor, comprising: forming a first graphene structure having a plurality of first graphene layers, wherein forming the first graphene structure comprises a first charge of the capacitor according to a desired charge storage amount of the capacitor Selecting a plurality of layers in the olefin layer; forming a dielectric layer over the first graphene structure; forming a second graphene structure over the dielectric layer, wherein the second graphene structure comprises a plurality of second Graphene layer.
TW104122868A 2014-08-20 2015-07-15 Capacitor having a graphene structure, semiconductor device including the capacitor and method of forming the same TWI583006B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US14/464,497 US10050104B2 (en) 2014-08-20 2014-08-20 Capacitor having a graphene structure, semiconductor device including the capacitor and method of forming the same

Publications (2)

Publication Number Publication Date
TW201618312A TW201618312A (en) 2016-05-16
TWI583006B true TWI583006B (en) 2017-05-11

Family

ID=55273994

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104122868A TWI583006B (en) 2014-08-20 2015-07-15 Capacitor having a graphene structure, semiconductor device including the capacitor and method of forming the same

Country Status (5)

Country Link
US (3) US10050104B2 (en)
KR (2) KR20160022743A (en)
CN (2) CN105679839A (en)
DE (1) DE102015105457B4 (en)
TW (1) TWI583006B (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9607764B2 (en) * 2010-10-20 2017-03-28 Chun-Yen Chang Method of fabricating high energy density and low leakage electronic devices
US10050104B2 (en) * 2014-08-20 2018-08-14 Taiwan Semiconductor Manufacturing Company, Ltd. Capacitor having a graphene structure, semiconductor device including the capacitor and method of forming the same
US9735227B2 (en) * 2015-08-03 2017-08-15 Synopsys, Inc. 2D material super capacitors
US10319632B2 (en) * 2016-12-14 2019-06-11 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor interconnect structure having a graphene barrier layer
US20180254317A1 (en) * 2017-03-02 2018-09-06 William B. Pohlman, III Graphene based in-plane micro-supercapacitors
EP3909082A1 (en) * 2019-02-07 2021-11-17 Huawei Technologies Co., Ltd. Semiconductor package with superconductive interconnections
CN115223985A (en) * 2021-04-21 2022-10-21 联华电子股份有限公司 Method for manufacturing capacitor structure

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201350969A (en) * 2012-06-14 2013-12-16 Sony Corp Optical modulator, imaging device and display apparatus
US20140070425A1 (en) * 2012-09-10 2014-03-13 Kabushiki Kaisha Toshiba Semiconductor device and manufacturing method thereof

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6144546A (en) 1996-12-26 2000-11-07 Kabushiki Kaisha Toshiba Capacitor having electrodes with two-dimensional conductivity
US6037621A (en) 1998-07-29 2000-03-14 Lucent Technologies Inc. On-chip capacitor structure
JP5302644B2 (en) 2008-12-03 2013-10-02 キヤノン株式会社 Imaging apparatus and imaging system
US8193455B2 (en) * 2008-12-30 2012-06-05 Hitachi Global Storage Technologies Netherlands B.V. Graphene electronics fabrication
KR20100124894A (en) * 2009-05-20 2010-11-30 주식회사 하이닉스반도체 Semiconductor device having deep contact structure and method of manufaturing the same
KR101095792B1 (en) * 2009-07-03 2011-12-21 주식회사 하이닉스반도체 Manufacturing method of capacitor in semiconductor
US8237146B2 (en) 2010-02-24 2012-08-07 Sandisk 3D Llc Memory cell with silicon-containing carbon switching layer and methods for forming the same
KR101312454B1 (en) 2010-07-15 2013-09-27 삼성테크윈 주식회사 Low-temperature forming method of graphene, and direct transfer of graphene and graphene sheet using the same
JP5550515B2 (en) 2010-10-05 2014-07-16 株式会社東芝 Graphene wiring and manufacturing method thereof
US8803636B2 (en) * 2010-12-09 2014-08-12 Nokia Corporation Apparatus and associated methods
WO2012145605A1 (en) * 2011-04-22 2012-10-26 The Regents Of The University Of California Graphene based optical modulator
CN102849961B (en) * 2011-07-01 2016-08-03 中央研究院 Growth C film or the method for inorganic material film on substrate
KR101922864B1 (en) * 2011-08-23 2018-11-28 삼성전기 주식회사 Multi-Layered ceramic electronic parts and manufacturing method thereof
EP2602821B1 (en) * 2011-12-07 2014-02-12 Universität Augsburg Graphene-based nanodevices for terahertz electronics
US20150083206A1 (en) * 2012-03-22 2015-03-26 The University Of Manchester Photovoltaic cells
US8519450B1 (en) 2012-08-17 2013-08-27 International Business Machines Corporation Graphene-based non-volatile memory
JP5755618B2 (en) 2012-09-06 2015-07-29 株式会社東芝 Semiconductor device
JP5972735B2 (en) * 2012-09-21 2016-08-17 株式会社東芝 Semiconductor device
US9715247B2 (en) * 2012-10-03 2017-07-25 National University Of Singapore Touch screen devices employing graphene networks with polyvinylidene fluoride films
KR101481919B1 (en) 2012-11-12 2015-01-14 성균관대학교산학협력단 Biomolecular-capacitor using protein and graphene and uses thereof
US8906773B2 (en) 2012-12-12 2014-12-09 Freescale Semiconductor, Inc. Integrated circuits including integrated passive devices and methods of manufacture thereof
US9202743B2 (en) 2012-12-17 2015-12-01 International Business Machines Corporation Graphene and metal interconnects
US9053843B2 (en) * 2013-01-22 2015-06-09 Bluestone Technologies (Cayman) Limited Graphene hybrid structures for energy storage applications
KR102100415B1 (en) * 2013-07-15 2020-04-14 삼성전자주식회사 Tunneling device and method of manufacturing the same
US9716220B2 (en) * 2013-08-21 2017-07-25 National University Of Singapore Graphene-based terahertz devices
JP2015050305A (en) * 2013-08-30 2015-03-16 株式会社東芝 Semiconductor device and manufacturing method of the same
KR20150045043A (en) * 2013-10-17 2015-04-28 한국전자통신연구원 Method of forming a graphene electrode and a capacitor including the same
KR102140148B1 (en) * 2013-11-29 2020-07-31 삼성전자주식회사 Memory device including two-dimensional material and methods of manufacturing and operating the same
WO2015089142A1 (en) * 2013-12-11 2015-06-18 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Sub-micron laser patterning of graphene and 2d materials
JP6129772B2 (en) * 2014-03-14 2017-05-17 株式会社東芝 Semiconductor device and manufacturing method of semiconductor device
US10050104B2 (en) * 2014-08-20 2018-08-14 Taiwan Semiconductor Manufacturing Company, Ltd. Capacitor having a graphene structure, semiconductor device including the capacitor and method of forming the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201350969A (en) * 2012-06-14 2013-12-16 Sony Corp Optical modulator, imaging device and display apparatus
US20140070425A1 (en) * 2012-09-10 2014-03-13 Kabushiki Kaisha Toshiba Semiconductor device and manufacturing method thereof

Also Published As

Publication number Publication date
CN105679839A (en) 2016-06-15
KR20160102143A (en) 2016-08-29
KR20160022743A (en) 2016-03-02
US20160056228A1 (en) 2016-02-25
US20180350898A1 (en) 2018-12-06
DE102015105457A1 (en) 2016-02-25
US10510827B2 (en) 2019-12-17
DE102015105457B4 (en) 2022-11-10
KR101738309B1 (en) 2017-05-19
TW201618312A (en) 2016-05-16
US10050104B2 (en) 2018-08-14
US20200083318A1 (en) 2020-03-12
US10854708B2 (en) 2020-12-01
CN112151676A (en) 2020-12-29

Similar Documents

Publication Publication Date Title
TWI583006B (en) Capacitor having a graphene structure, semiconductor device including the capacitor and method of forming the same
CN104979470B (en) The formation of the hearth electrode of RRAM units
US9966530B2 (en) Resistive random access memory device and method for fabricating the same
US8212299B2 (en) Semiconductor device having a thin film capacitor of a MIM (metal-insulator-metal) structure
TWI460839B (en) Graphene interconnection and method of manufacturing the same
CN110114877A (en) Three-dimensional storage part and preparation method thereof
US10396217B2 (en) Decoupling finFET capacitors
TWI310603B (en) Method for fabricating capacitor in semiconductor device
US20080003768A1 (en) Capacitor of a memory device and method for forming the same
US9595527B2 (en) Coaxial carbon nanotube capacitor for eDRAM
JP2006060230A (en) Three-dimensional semiconductor capacitor and its manufacturing method
US11411071B1 (en) Capacitor array structure and method for manufacturing a capacitor array structure, and semiconductor memory device
TW202304030A (en) Semiconductor integrated circuit device and manufacturing method thereof
TW200425470A (en) Capacitors of semiconductor devices including silicon-germanium and metallic electrodes and methods of fabricating the same
CN103633241B (en) Memristor memorizer and manufacture method thereof
JP2011204852A (en) Capacitor and method of manufacturing the same, and semiconductor device
KR101082097B1 (en) Capacitor of semiconductor device and method for forming the same
US20100181646A1 (en) Semiconductor device and method for fabricating the same
KR20130092001A (en) Capacitor for semiconductor device and method of fabricating the same
KR100646923B1 (en) A method of manufacturing a capacitor in a semiconductor device
KR100631949B1 (en) Method for forming capacitor of semiconductor device
CN116367706A (en) Capacitor and DRAM device including the same
KR20030003328A (en) Method for fabricating capacitor in semiconductor memory device
KR20090083775A (en) Storage node of semiconductor device and method for forming the same