TWI581750B - Endoscope imaging system and method - Google Patents

Endoscope imaging system and method Download PDF

Info

Publication number
TWI581750B
TWI581750B TW105100128A TW105100128A TWI581750B TW I581750 B TWI581750 B TW I581750B TW 105100128 A TW105100128 A TW 105100128A TW 105100128 A TW105100128 A TW 105100128A TW I581750 B TWI581750 B TW I581750B
Authority
TW
Taiwan
Prior art keywords
image
infrared
visible light
infrared image
generate
Prior art date
Application number
TW105100128A
Other languages
Chinese (zh)
Other versions
TW201808210A (en
Inventor
庫馬 阿兔
黃士維
劉楷哲
汪彥佑
Original Assignee
秀傳醫療社團法人秀傳紀念醫院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 秀傳醫療社團法人秀傳紀念醫院 filed Critical 秀傳醫療社團法人秀傳紀念醫院
Priority to TW105100128A priority Critical patent/TWI581750B/en
Application granted granted Critical
Publication of TWI581750B publication Critical patent/TWI581750B/en
Publication of TW201808210A publication Critical patent/TW201808210A/en

Links

Landscapes

  • Endoscopes (AREA)

Description

內視鏡成像系統及方法 Endoscope imaging system and method

本發明係關於一種內視鏡成像系統及方法,更精確的說,本發明係關於一種藉由分析紅外線影像之重點區域,並將其疊加至可見光影像以顯示疊加影像的內視鏡成像系統及方法。 The present invention relates to an endoscope imaging system and method. More specifically, the present invention relates to an endoscope imaging system for displaying superimposed images by analyzing a key area of an infrared image and superimposing it on a visible light image. method.

內視鏡手術一般常在可見光下進行,其中,可見光可讓使用者在手術過程中看見手術解剖之表面。為了使得臟器的表面以下的影像能被看見,需要使用特殊的光源如紅外光源。為此,患者在手術前會先注射靛藍花青綠(Indocyanine green,ICG)染料,使得施術者在手術過程中,例如淋巴結切除以及膽管手術中,能夠在紅外光影像模式下,見到被紅外光標記的包含淋巴結或膽管的區域。然而,在紅外光影像模式下,無法看見標記區域,且在紅外光影像模式下進行手術是困難的。 Endoscopic surgery is often performed under visible light, where visible light allows the user to see the surface of the surgical anatomy during the procedure. In order to make the image below the surface of the organ visible, a special light source such as an infrared source is required. To this end, the patient will be injected with Indocyanine green (ICG) dye before surgery, so that the operator can see the infrared light in the infrared image mode during the operation, such as lymph node resection and bile duct surgery. Marked areas containing lymph nodes or bile ducts. However, in the infrared image mode, the marked area cannot be seen, and it is difficult to perform surgery in the infrared light image mode.

因此,施術者在手術操作過程中,需要不斷的在紅外光影像模式及可見光影像模式之間切換,不僅造成施術者的不便,同時還會延長手術的時間,使患者受到感染的機會增加。 Therefore, during the operation of the operation, the operator needs to continuously switch between the infrared image mode and the visible image mode, which not only causes inconvenience to the operator, but also prolongs the operation time and increases the chance of the patient being infected.

目前對於上述問題的解決方案,係將紅外線影像直接植入可見光影像,然而,在這樣的影像顯示模式下,對於施術者而言,所顯示的影像將是 難以辨識的,因此提昇了手術的困難度。為此,急需一種能夠自動將紅外線影像疊加至可見光影像以外,還能夠選擇性精確的顯示重點區域,並且自動在後續影像中追蹤重點區域的內視鏡成像技術。 At present, the solution to the above problem is to directly implant the infrared image into the visible light image. However, in such an image display mode, for the operator, the displayed image will be It is difficult to identify, thus improving the difficulty of surgery. For this reason, there is an urgent need for an endoscope imaging technology that can automatically superimpose infrared images onto visible light images, and can selectively and accurately display key areas, and automatically track key areas in subsequent images.

為了解決上述問題,本發明的一個目的在於提供一種內視鏡成像系統,適用於顯示一患者體內之影像,其包含內視鏡攝影模組、影像處理模組、記憶單元、分析模組及顯示模組。內視鏡攝影模組包含光源、紅外線成像儀及影像擷取模組。光源用於照射患者體內。紅外線成像儀經配置以拍攝患者體內之目標區域,並產生紅外線影像訊號。影像擷取模組經配置以拍攝目標區域並產生可見光影像訊號。影像處理模組電性連接於內視鏡攝影模組,其接收紅外線影像訊號及可見光影像訊號並產生紅外線影像及可見光影像,並將紅外線影像與可見光影像產生關聯。記憶單元電性連接影像處理模組,其用於儲存紅外線影像及可見光影像。分析模組電性連接影像處理模組,經配置以分析紅外線影像以產生至少一重點區域,並將重點區域疊加至與紅外線影像關聯之可見光影像以產生一疊加影像。顯示模組電性連接分析模組,經配置於顯示疊加影像。 In order to solve the above problems, an object of the present invention is to provide an endoscope imaging system suitable for displaying images in a patient, including an endoscope photography module, an image processing module, a memory unit, an analysis module, and a display. Module. The endoscope photography module includes a light source, an infrared imager, and an image capturing module. The light source is used to illuminate the patient. The infrared imager is configured to capture a target area within the patient and generate an infrared image signal. The image capture module is configured to capture a target area and generate a visible light image signal. The image processing module is electrically connected to the endoscope photography module, which receives the infrared image signal and the visible light image signal and generates the infrared image and the visible light image, and associates the infrared image with the visible light image. The memory unit is electrically connected to the image processing module for storing infrared images and visible light images. The analysis module is electrically connected to the image processing module and configured to analyze the infrared image to generate at least one key area, and superimpose the key area on the visible light image associated with the infrared image to generate a superimposed image. The display module is electrically connected to the analysis module and configured to display the superimposed image.

較佳者,分析模組可根據紅外線影像之強度分佈將紅外線影像劃分為複數個重點區域,且各重點區域各分別對應於不同之強度範圍。 Preferably, the analysis module divides the infrared image into a plurality of key regions according to the intensity distribution of the infrared image, and each of the key regions respectively corresponds to a different intensity range.

較佳者,分析模組可將複數個重點區域以色塊之方式疊加至與紅外線影像關聯之可見光影像,以產生疊加影像。 Preferably, the analysis module can superimpose the plurality of key regions in a color block to the visible light image associated with the infrared image to generate the superimposed image.

較佳者,分析模組可進一步擷取複數個重點區域之邊緣,並將複數個重點區域之邊緣以色線之方式疊加至與紅外線影像關聯之可見光影像,以產生疊加影像。 Preferably, the analysis module can further capture the edges of the plurality of key regions, and superimpose the edges of the plurality of key regions as color lines to the visible light image associated with the infrared image to generate the superimposed image.

較佳者,分析模組可進一步計算可見光影像中之連續兩畫框之間之匹配點,並根據匹配點產生一轉換矩陣,並將轉換矩陣應用於已產生至少一重點區域並對應於在前之畫框之紅外線影像,並將經轉換之至少一重點區域疊加於對應於在後之畫框之紅外線影像以產生與疊加影像連續之另一疊加影像。 Preferably, the analysis module can further calculate a matching point between two consecutive frames in the visible light image, and generate a conversion matrix according to the matching point, and apply the transformation matrix to the at least one key region and corresponding to the previous The infrared image of the frame is superimposed and the converted at least one focus area is superimposed on the infrared image corresponding to the subsequent frame to generate another superimposed image continuous with the superimposed image.

較佳者,分析模組可計算匹配點之誤差值,若誤差值超過預定範圍,則紅外線成像儀可經配置以重新拍攝目標物體,並產生另一紅外線影像訊號。 Preferably, the analysis module can calculate the error value of the matching point. If the error value exceeds the predetermined range, the infrared imager can be configured to re-shoot the target object and generate another infrared image signal.

根據本發明的另一目的,提供一種內視鏡成像方法,係適用於前述之內視鏡成像系統,其包含下列步驟:以光源照射患者體內之目標區域;以紅外線成像儀及影像擷取模組拍攝患者體內之目標區域,並分別產生紅外線影像訊號及可見光影像訊號;配置影像處理模組接收紅外線影像訊號及可見光影像訊號並產生紅外線影像及可見光影像,並將紅外線影像與可見光影像產生關聯;以記憶單元儲存紅外線影像及可見光影像;配置分析模組以分析紅外線影像以產生至少一重點區域,並將重點區域疊加至與紅外線影像關聯之可見光影像以產生疊加影像;以及以顯示模組顯示疊加影像。 According to another aspect of the present invention, an endoscope imaging method is provided, which is applicable to the aforementioned endoscope imaging system, comprising the steps of: illuminating a target area in a patient with a light source; and using an infrared imager and an image capturing mode The group captures the target area of the patient and generates infrared image signals and visible light image signals respectively; the image processing module receives the infrared image signals and the visible light image signals and generates infrared images and visible light images, and associates the infrared images with the visible light images; Storing the infrared image and the visible light image by using the memory unit; configuring the analysis module to analyze the infrared image to generate at least one key area, and superimposing the key area on the visible light image associated with the infrared image to generate the superimposed image; and displaying the superimposed image by the display module image.

較佳者,在配置分析模組以分析紅外線影像以產生至少一重點區域之步驟中,分析模組係進一步根據紅外線影像之強度分佈將紅外線影像劃分為複數個重點區域,且各重點區域各分別對應於不同之強度範圍。 Preferably, in the step of configuring the analysis module to analyze the infrared image to generate at least one key area, the analysis module further divides the infrared image into a plurality of key areas according to the intensity distribution of the infrared image, and each key area is separately Corresponds to different intensity ranges.

較佳者,分析模組係將複數個重點區域以色塊之方式疊加至與紅外線影像關聯之可見光影像,以產生疊加影像。 Preferably, the analysis module superimposes a plurality of key regions in a color block on the visible light image associated with the infrared image to generate a superimposed image.

較佳者,分析模組係進一步擷取複數個重點區域之邊緣,並將複數個重點區域之邊緣以色線之方式疊加至與紅外線影像關聯之可見光影像,以產生疊加影像。 Preferably, the analysis module further extracts edges of the plurality of key regions, and superimposes the edges of the plurality of key regions by color lines to the visible light images associated with the infrared images to generate the superimposed images.

較佳者,在將重點區域疊加至與紅外線影像關聯之可見光影像以產生一疊加影像之步驟後,分析模組進一步計算可見光影像中之連續兩畫框之間之匹配點,並根據匹配點產生一轉換矩陣,且將轉換矩陣應用於已產生至少一重點區域並對應於在前之畫框之紅外線影像,並將經轉換之至少一重點區域疊加於對應於在後之畫框之紅外線影像以產生與疊加影像連續之另一疊加影像。 Preferably, after the step of superimposing the focus area on the visible light image associated with the infrared image to generate a superimposed image, the analysis module further calculates a matching point between the two consecutive frames in the visible light image, and generates a matching point according to the matching point. Converting a matrix, and applying the transformation matrix to the infrared image that has generated at least one focus area and corresponding to the preceding frame, and superimposing the converted at least one key area on the infrared image corresponding to the subsequent frame Produces another superimposed image that is continuous with the superimposed image.

較佳者,分析模組計算匹配點之誤差值,若誤差值超過預定範圍,則紅外線成像儀經配置以重新拍攝目標物體,並產生另一紅外線影像訊號。 Preferably, the analysis module calculates the error value of the matching point. If the error value exceeds the predetermined range, the infrared imager is configured to re-shoot the target object and generate another infrared image signal.

綜上所述,藉由本發明的內視鏡成像系統及方法,在提供給施術者之疊加影像中,具有清楚的視野以及精確的標記出臟器區域,可省去重複在可見光影像模式以及紅外光影像模式之間切換耗費的時間,進一步提昇手術的安全性、精確性以及速度。此外,在系統中,藉由偵測匹配點及誤差並計算轉換矩陣,可省去重新擷取紅外線影像的時間及系統資源,除了可選擇性精確的顯示重點區域,還可自動在後續影像中追蹤重點區域,可進一步提昇影像處理速度,並節省系統資源。 In summary, with the endoscope imaging system and method of the present invention, in the superimposed image provided to the operator, the clear field of view and the accurate marking of the organ region can be omitted, and the repeated image in visible light mode and infrared can be omitted. Switching between optical image modes takes time to further improve the safety, accuracy and speed of the operation. In addition, in the system, by detecting the matching points and errors and calculating the conversion matrix, the time and system resources for retrieving the infrared image can be omitted, and in addition to selectively displaying the key areas, the images can be automatically displayed in subsequent images. Tracking key areas can further increase image processing speed and save system resources.

1‧‧‧內視鏡成像系統 1‧‧‧Endoscope Imaging System

100‧‧‧光源 100‧‧‧Light source

102‧‧‧內視鏡攝影模組 102‧‧‧Endoscope photography module

104‧‧‧紅外線成像儀 104‧‧‧Infrared imager

106‧‧‧影像擷取模組 106‧‧‧Image capture module

108‧‧‧影像處理模組 108‧‧‧Image Processing Module

110‧‧‧記憶單元 110‧‧‧ memory unit

116‧‧‧分析模組 116‧‧‧Analysis module

118‧‧‧顯示模組 118‧‧‧Display module

120‧‧‧電源模組 120‧‧‧Power Module

A、A’、A”、B、B’、B”、A1、A1’、A2、A2’‧‧‧區域 A, A', A", B, B', B", A1, A1', A2, A2'‧‧‧ areas

CP‧‧‧匹配點 CP‧‧‧match point

本發明之上述及其他特徵及優勢將藉由參照附圖詳細說明其例示性實施例而變得更顯而易知,其中:第1圖係為根據本發明的內視鏡成像系統之實施例繪示之方塊圖。 The above and other features and advantages of the present invention will become more apparent from the detailed description of the exemplary embodiments illustrated in the accompanying drawings in which: FIG. 1 is an embodiment of an endoscope imaging system according to the present invention. The block diagram shown.

第2圖係為根據本發明的內視鏡成像系統之實施例之紅外線影像示例。 Figure 2 is an example of an infrared image of an embodiment of an endoscope imaging system in accordance with the present invention.

第3圖係為根據本發明的內視鏡成像系統之實施例之可見光影像示例。 Figure 3 is an illustration of a visible light image of an embodiment of an endoscope imaging system in accordance with the present invention.

第4圖係為根據本發明的內視鏡成像系統之實施例之經處理之紅外線影像示例。 Figure 4 is an illustration of a processed infrared image of an embodiment of an endoscope imaging system in accordance with the present invention.

第5圖係為根據本發明的內視鏡成像系統之實施例產生之疊加影像示例。 Figure 5 is an example of a superimposed image produced by an embodiment of an endoscope imaging system in accordance with the present invention.

第6圖係為根據本發明的內視鏡成像系統之另一實施例產生之經處理之紅外線影像示例。 Figure 6 is an illustration of a processed infrared image produced by another embodiment of an endoscope imaging system in accordance with the present invention.

第7圖係為根據本發明的內視鏡成像系統之再一實施例產生之經處理之紅外線影像示例。 Figure 7 is an illustration of a processed infrared image produced by a further embodiment of an endoscope imaging system in accordance with the present invention.

第8圖係為根據本發明的內視鏡成像系統計算匹配點示意圖。 Figure 8 is a schematic diagram of the calculation of matching points for an endoscope imaging system in accordance with the present invention.

第9圖係為根據本發明的內視鏡成像之另一實施例產生之疊加影像示例。 Figure 9 is an example of a superimposed image produced by another embodiment of endoscopic imaging in accordance with the present invention.

第10圖係為根據本發明的內視鏡成像之再一實施例產生之疊加影像示例。 Fig. 10 is an example of superimposed images produced by still another embodiment of endoscopic imaging according to the present invention.

第11圖係為根據本發明之內視鏡成像方法之實施例繪示之流程圖。 Figure 11 is a flow chart showing an embodiment of an endoscope imaging method according to the present invention.

第12圖係為根據本發明之內視鏡成像方法之另一實施例繪示之流程圖。 Figure 12 is a flow chart showing another embodiment of an endoscope imaging method according to the present invention.

為利 貴審查員瞭解本發明之技術特徵、內容與優點及其所能達成之功效,茲將本發明配合附圖,並以實施例之表達形式詳細說明如下,而其中所使用之圖式,其主旨僅為示意及輔助說明書之用,未必為本發明實施後之真實比例與精準配置,故不應就所附之圖式的比例與配置關係解讀、侷限本發明於實際實施上的權利範圍,合先敘明。 The technical features, contents, and advantages of the present invention, as well as the advantages thereof, can be understood by the present inventors, and the present invention will be described in detail with reference to the accompanying drawings. The subject matter is only for the purpose of illustration and description. It is not intended to be a true proportion and precise configuration after the implementation of the present invention. Therefore, the scope and configuration relationship of the attached drawings should not be interpreted or limited. First described.

於此使用,詞彙“與/或”包含一或多個相關條列項目之任何或所有組合。當“至少其一”之敘述前綴於一元件清單前時,係修飾整個清單元件而非修飾清單中之個別元件。 As used herein, the term "and/or" includes any and all combinations of one or more of the associated listed items. When the phrase "at least one of" is preceded by a list of elements, the entire list of elements is modified instead of the individual elements in the list.

以下將根據附圖詳細說明本發明的內視鏡成像系統之實施例。請參考第1圖,其為根據本發明的內視鏡成像系統之實施例繪示之方塊圖。本發明之內視鏡成像系統1,適用於顯示一患者體內之影像,其包含內視鏡攝影模組102、影像處理模組108、記憶單元110、分析模組116、顯示模組118及電源模組120。內視鏡攝影模組102包含光源100、紅外線成像儀104及影像擷取模組106。 光源100用於照射患者體內,紅外線成像儀104經配置以拍攝患者體內之目標區域,其中,光源100可包含可見光光源以及紅外線光源,紅外線成像儀104接收目標區域反射光源100所照射之紅外光,並產生紅外線影像訊號。紅外線的取像係使用攝影或照相設備擷取被攝物體經由紅外線光源照射後反射所產生的紅外線光域的光波。 Embodiments of the endoscope imaging system of the present invention will be described in detail below with reference to the accompanying drawings. Please refer to FIG. 1, which is a block diagram of an embodiment of an endoscope imaging system in accordance with the present invention. The endoscope imaging system 1 of the present invention is suitable for displaying images in a patient, and includes an endoscope camera module 102, an image processing module 108, a memory unit 110, an analysis module 116, a display module 118, and a power source. Module 120. The endoscope photography module 102 includes a light source 100, an infrared imager 104, and an image capturing module 106. The light source 100 is configured to illuminate a patient's body, and the infrared imager 104 is configured to capture a target area in the patient's body. The light source 100 may include a visible light source and an infrared light source, and the infrared imager 104 receives the infrared light irradiated by the target area reflected light source 100. And generate infrared image signals. The infrared image capturing system uses a photographing or photographing device to extract light waves of an infrared light field generated by reflection of an object after being irradiated by an infrared light source.

請參考第2圖,其為根據本發明的內視鏡成像系統之實施例之紅外線影像示例。手術前,患者在數小時前會先注射靛藍花青綠(Indocyanine green,ICG)染料,使得施術者在手術過程中,例如淋巴結切除以及膽管手術中,能夠在紅外光影像模式下,見到被染料標記的包含淋巴結或膽管的區域。如圖所示, 其中螢光顯示之區域A即是螢光染料發光之效果,而非臟器區域,如區域B則較為黯淡。 Please refer to FIG. 2, which is an example of an infrared image of an embodiment of an endoscope imaging system in accordance with the present invention. Before the operation, the patient will inject the Indocyanine green (ICG) dye several hours ago, so that the surgeon can see the dye in the infrared image mode during the operation, such as lymph node resection and bile duct surgery. Marked areas containing lymph nodes or bile ducts. as the picture shows, The area A of the fluorescent display is the effect of the fluorescent dye illuminating, but not the organ area, for example, the area B is faint.

續言之,影像擷取模組106經配置以拍攝目標區域並產生可見光影像訊號。影像處理模組108電性連接於內視鏡攝影模組,其接收紅外線影像訊號及可見光影像訊號,並產生紅外線影像112及可見光影像114,並將紅外線影像112與可見光影像114產生關聯。需要注意的是,可見光影像114通常為具有連續畫框之影像,此處產生關聯係指單一畫框之間之關聯,亦即,第一畫框之紅外線影像112與可見光影像114,其方法可參考Juan Wachs等人所著之使用組合相似性測量多模態登記(Multi-modal registration using a combined similarity measure,Applications of Soft Computing,2009),其為本領域具有通常知識者習知之技術,故不在此贅述。可見光影像之範例可參考第3圖,其為根據本發明的內視鏡成像系統之實施例之可見光影像示例。為了能在清楚的影像下進行手術,施術者一般會採用可見光影像來進行,然而卻有無法看清患者體內器官之缺點。 In other words, the image capture module 106 is configured to capture a target area and generate a visible light image signal. The image processing module 108 is electrically connected to the endoscope camera module, and receives the infrared image signal and the visible light image signal, and generates the infrared image 112 and the visible light image 114, and associates the infrared image 112 with the visible light image 114. It should be noted that the visible light image 114 is usually an image with a continuous frame, where the contact relationship refers to the relationship between the single frames, that is, the infrared image 112 and the visible light image 114 of the first frame. Refer to Juan Wachs et al., Multi-modal registration using a combined similarity measure (Applications of Soft Computing, 2009), which is a well-known technique in the field, and is therefore not in use. This statement. An example of a visible light image can be referred to FIG. 3, which is an example of a visible light image of an embodiment of an endoscope imaging system in accordance with the present invention. In order to perform surgery under a clear image, the operator usually uses visible light images, but there are some shortcomings in which the organs in the patient cannot be seen.

記憶單元110電性連接影像處理模組108,其用於儲存紅外線影像112及可見光影像114。分析模組116電性連接影像處理模組108,經配置以分析紅外線影像112以產生至少一重點區域。舉例而言,請參考第4圖,其為根據本發明的內視鏡成像系統之實施例之經處理之紅外線影像示例。如圖所示,紅外線影像112本身即為灰階影像,第4圖係為將紅外線影像112藉由相同之灰度值(grey-scale)以藍色表示,前述之區域A對應於轉換後之高亮度區域A’,而區域B對應於低亮度區域B’。灰階影像將被存入記憶單元110。 The memory unit 110 is electrically connected to the image processing module 108 for storing the infrared image 112 and the visible light image 114. The analysis module 116 is electrically coupled to the image processing module 108 and configured to analyze the infrared image 112 to generate at least one focus area. For example, please refer to FIG. 4, which is an example of a processed infrared image of an embodiment of an endoscope imaging system in accordance with the present invention. As shown in the figure, the infrared image 112 itself is a grayscale image, and the fourth image shows that the infrared image 112 is represented by blue by the same gray-scale, and the aforementioned region A corresponds to the converted image. The high brightness area A' and the area B correspond to the low brightness area B'. The grayscale image will be stored in the memory unit 110.

請參考第5圖,其為根據本發明的內視鏡成像系統之實施例產生之疊加影像示例。在獲得灰階影像後,分析模組108可對紅外線影像112進行分 析,具體而言,分析模組108可根據紅外線影像112之灰度值分佈,將紅外線影像112劃分為複數個重點區域,且各重點區域各分別對應於不同之灰度值範圍。 如圖所示,紅外線影像112經分析模組108分析後,分為兩種灰度值範圍之重點區域,對於施術者而言,有興趣之部份僅為以高亮度顯示之臟器區域A’,因此,重點區域可分為兩部份,如區域A”及區域B”。其中,紅外線影像112之區域劃分方法可參考DL Pham等人所著之現代醫學圖像分割方法(Current methods in medical image segmentation 1,Annual Review of Biomedical Engineering 2000),其為本領域具有通常知識者習知之技術,故不在此贅述。 Please refer to FIG. 5, which is an example of superimposed images produced by an embodiment of an endoscope imaging system in accordance with the present invention. After obtaining the grayscale image, the analysis module 108 can divide the infrared image 112 In particular, the analysis module 108 can divide the infrared image 112 into a plurality of key regions according to the gray value distribution of the infrared image 112, and each of the key regions respectively corresponds to a different gray value range. As shown in the figure, the infrared image 112 is analyzed by the analysis module 108 and divided into two key areas of the gray value range. For the operator, the interested part is only the organ area A displayed with high brightness. ', therefore, the key area can be divided into two parts, such as area A" and area B". The method for dividing the area of the infrared image 112 can be referred to the "Current methods in medical image segmentation 1, "Annual Review of Biomedical Engineering 2000" by DL Pham et al. Knowing the technology, it is not described here.

藉著,將重點區域疊加至與紅外線影像112關聯之可見光影像114以產生疊加影像,顯示模組118電性連接分析模組116以顯示疊加影像。如圖所示,在疊加影像之各重點區域中,均以均勻色塊顯示區域A”及區域B”,提供施術者具有清楚的視野以及精確的標記出臟器區域,可省去重複在可見光影像模式以及紅外光影像模式之間切換耗費的時間,進一步提昇手術的安全性、精確性以及速度。 The display module 118 is electrically connected to the analysis module 116 to display the superimposed image by superimposing the focus area on the visible light image 114 associated with the infrared image 112 to generate the superimposed image. As shown in the figure, in each key area of the superimposed image, the area A" and the area B" are displayed in a uniform color block, providing the operator with a clear field of view and accurate marking of the organ area, which eliminates the repetition of visible light. The time spent switching between image mode and infrared image mode further enhances the safety, accuracy and speed of the operation.

請參考第6圖,其為根據本發明的內視鏡成像系統之另一實施例產生之經處理之紅外線影像示例。如圖所示,分析模組116可根據紅外線影像112之強度分佈,將紅外線影像112以三種強度範圍劃分,換言之,重點區域之數量為3。其中,較低亮度之區域以白色顯示,而臟器區域可分為區域A1及區域A2。 此處,使用者可根據需求設定不同數量以及不同強度範圍(即灰階影像之灰度值範圍),以提昇系統的靈活性,且不以本發明之說明書中所述的為限。 Please refer to Fig. 6, which is an example of a processed infrared image produced by another embodiment of an endoscope imaging system in accordance with the present invention. As shown, the analysis module 116 can divide the infrared image 112 into three intensity ranges according to the intensity distribution of the infrared image 112. In other words, the number of key regions is three. Among them, the area of lower brightness is displayed in white, and the area of the organ can be divided into area A1 and area A2. Here, the user can set different numbers and different intensity ranges (ie, gray value ranges of grayscale images) according to requirements to improve the flexibility of the system, and is not limited to the description in the specification of the present invention.

請參考第7圖,其為根據本發明的內視鏡成像系統之再一實施例產生之經處理之紅外線影像示例。除了如第5圖將重點區域以色塊的方式表示之 外,分析模組116可進一步擷取複數個重點區域之邊緣,如第6圖中區域A1及A2之邊緣,如圖中所示之色線區域A1’及A2’,並將複數個重點區域之邊緣以色線之方式疊加至與該紅外線影像112關聯之可見光影像114,以產生疊加影像。此處,分析模組116可先產生僅包含色線之影像並儲存至記憶單元110,亦可直接與可見光影像112疊加後產生疊加影像,不以此為限。值得一提的是,擷取重點區域邊緣之方法可參考Maini等人所著之「各種影像邊緣偵測技術之研究與比較(Study and comparison of various image edge detection techniques,International Journal of Image Processing 2009),其亦為本領域具有通常知識者熟知之技術,故不在此贅述。 Please refer to Fig. 7, which is an example of a processed infrared image produced by a further embodiment of an endoscope imaging system in accordance with the present invention. Except that as shown in Figure 5, the key areas are represented by color blocks. In addition, the analysis module 116 can further capture the edges of the plurality of key regions, such as the edges of the regions A1 and A2 in FIG. 6, the color line regions A1' and A2' as shown in the figure, and the plurality of key regions. The edges are superimposed in color lines onto the visible light image 114 associated with the infrared image 112 to produce a superimposed image. Here, the analysis module 116 may first generate an image containing only color lines and store it to the memory unit 110, and may directly superimpose the visible light image 112 to generate a superimposed image, which is not limited thereto. It is worth mentioning that the method of extracting the edge of the key area can be referred to the "Study and comparison of various image edge detection techniques" (International Journal of Image Processing 2009). It is also known to those skilled in the art and is not described here.

請參考第8圖,其為根據本發明的內視鏡成像系統計算匹配點示意圖。如先前所述,由於可見光影像114通常為具有連續畫框之影像,雖已對第一畫框之紅外線影像112與可見光影像114進行處理,然而為了顯示連續的影像,需要對第二畫框的可見光影像114進行分析以產生另一疊加影像。為此,分析模組116針對連續畫框之間之可見光影像進行匹配點計算,以產生轉換矩陣。 匹配點之計算需先對連續畫框之間之可見光影像擷取特徵點後,再根據特徵點的偏移量進行計算,以獲得轉換矩陣。其中,匹配點CP可藉由任何特徵偵測或特徵比對演算法來進行,可參考Li,Jing及Nigel M.Allinson等人所著之用於電腦影像之局部特徵之全面回顧(A comprehensive review of current local features for computer vision." Neurocomputing 71.10(2008):1771-1787),匹配點計算之範例如第8圖所示。 Please refer to Fig. 8, which is a schematic diagram of calculating matching points for the endoscope imaging system according to the present invention. As described above, since the visible light image 114 is usually an image with a continuous frame, although the infrared image 112 and the visible light image 114 of the first frame have been processed, in order to display a continuous image, the second frame is required. The visible light image 114 is analyzed to produce another superimposed image. To this end, the analysis module 116 performs a matching point calculation on the visible light image between successive frames to generate a conversion matrix. The calculation of the matching point needs to first extract the feature points from the visible light image between the continuous frames, and then calculate according to the offset of the feature points to obtain the conversion matrix. The matching point CP can be performed by any feature detection or feature comparison algorithm, and can be referred to Li, Jing and Nigel M. Allinson et al. for a comprehensive review of the local features of computer images (A comprehensive review) "The current local features for computer vision." Neurocomputing 71.10 (2008): 1771-1787), the matching point calculation is shown in Fig. 8, for example.

在獲得特徵點之偏移量後,可隨之計算轉換矩陣。此處,轉換矩陣可為連續畫框之間之可見光影像之剛體或非剛體轉換矩陣(rigid body or non-rigid body transformation matrix),其可藉由最小平方最佳化方法(見Zitova、Barbara及Jan Flusser等人所著之「研究:圖像對位方法(Image registration methods:a survey,Image and vision computing 21.11(2003):977-1000)」來計算,如圖所示之轉換矩陣計算如下式: After obtaining the offset of the feature points, the transformation matrix can be calculated accordingly. Here, the transformation matrix can be a rigid body or non-rigid body transformation matrix between successive frames, which can be optimized by least squares (see Zitova, Barbara, and According to Jan Flusser et al., "Image registration methods: a survey, Image and vision computing 21.11 (2003): 977-1000), the transformation matrix shown in the figure is calculated as follows :

請一併參考第9圖及第10圖,其分別為根據本發明的內視鏡成像之另一實施例及再一實施例產生之疊加影像示例。藉由將此矩陣應用於前述以色塊或色線表示之紅外線影像,可產生如第9圖或第10圖所示之疊加影像。此疊加影像可取代先前所產生之疊加影像,以形成具有連續圖像之疊加影像。 Please refer to FIG. 9 and FIG. 10 together, which are respectively an example of superimposed images generated by another embodiment of the endoscope imaging according to the present invention and another embodiment. By applying this matrix to the aforementioned infrared image represented by color patches or color lines, a superimposed image as shown in Fig. 9 or Fig. 10 can be produced. This superimposed image can replace the previously generated superimposed image to form a superimposed image with continuous images.

根據本發明的較佳實施例,在匹配點計算之過程中,還進一步進算匹配點之誤差值。當分析模組116判斷誤差值過大,亦即,匹配點偏移量過大,或難以找尋到相同的匹配點,則配置系統重新擷取患者體內之紅外線影像。 According to a preferred embodiment of the present invention, the error value of the matching point is further calculated during the calculation of the matching point. When the analysis module 116 determines that the error value is too large, that is, the matching point offset is too large, or it is difficult to find the same matching point, the configuration system recaptures the infrared image in the patient.

本發明還提供一種內視鏡成像方法,請參考第11圖,其為根據本發明之內視鏡成像方法之實施例繪示之流程圖。如圖所示,內視鏡成像方法係適用於上述內視鏡成像系統,其包含下列步驟:步驟S101:以光源照射患者體內之目標區域;步驟S102:以紅外線成像儀及影像擷取模組拍攝患者體內之目標區域,並分別產生紅外線影像訊號及可見光影像訊號,具體而言,可先以紅外線成像儀擷取螢光影像,再切換至影像擷取模組擷取可見光影像;步驟S103:影像處理模組接收紅外線影像訊號及可見光影像訊號後,產生紅外線影像及可見光影像,並將紅外線影像與可見光影像產生關聯; 步驟S104:以記憶單元儲存紅外線影像及可見光影像;步驟S105:以分析模組分析紅外線影像以產生重點區域,並將重點區域疊加至可見光影像以產生疊加影像;步驟S106:以顯示模組顯示疊加影像。 The present invention also provides an endoscope imaging method. Please refer to FIG. 11, which is a flow chart of an embodiment of an endoscope imaging method according to the present invention. As shown in the figure, the endoscope imaging method is applicable to the above-mentioned endoscope imaging system, and includes the following steps: Step S101: illuminating a target area in a patient with a light source; Step S102: using an infrared imager and an image capturing module The target area of the patient is photographed, and the infrared image signal and the visible light image signal are separately generated. Specifically, the infrared image is captured by the infrared imager, and then switched to the image capturing module to capture the visible light image; step S103: After receiving the infrared image signal and the visible light image signal, the image processing module generates an infrared image and a visible light image, and associates the infrared image with the visible light image; Step S104: storing the infrared image and the visible light image by the memory unit; step S105: analyzing the infrared image by the analysis module to generate the key area, and superimposing the key area on the visible light image to generate the superimposed image; Step S106: displaying the superimposed image by the display module image.

其中,各步驟之細節已如上所述,故省略重複敘述。 Here, the details of each step have been described above, and the repeated description is omitted.

本發明還提供一種內視鏡成像方法,請參考第12圖,其為根據本發明之內視鏡成像方法之另一實施例繪示之流程圖。如圖所示,內視鏡成像方法係適用於上述內視鏡成像系統,其接續於前一實施例之步驟S104,包含下列步驟: 步驟S201:在獲得紅外線影像後,分析模組根據紅外線影像之強度分佈,將紅外線影像劃分為複數個重點區域,具體而言,分析模組116可根據紅外線影像112之強度分佈,將紅外線影像112以數種強度範圍劃分,且紅外線影像所擷取之畫面主要在於醫師感興趣的區域。 The present invention also provides an endoscope imaging method. Please refer to FIG. 12, which is a flow chart of another embodiment of an endoscope imaging method according to the present invention. As shown, the endoscope imaging method is applicable to the above-described endoscope imaging system, which is continued from step S104 of the previous embodiment, and includes the following steps: Step S201: After obtaining the infrared image, the analysis module divides the infrared image into a plurality of key regions according to the intensity distribution of the infrared image. Specifically, the analysis module 116 can display the infrared image 112 according to the intensity distribution of the infrared image 112. It is divided into several intensity ranges, and the image captured by the infrared image mainly lies in the area of interest of the physician.

步驟S202:將複數個重點區域疊加至可見光影像以產生疊加影像,其中,重點區域可在疊加影像中以色塊表示。此外,可選的,在步驟S201之後,可先進入步驟S203,分析模組進一步擷取該複數個重點區域之邊緣,並且將複數個重點區域之邊緣以色線的方式疊加至可見光影像以產生疊加影像。 Step S202: superimposing a plurality of key regions on the visible light image to generate a superimposed image, wherein the key regions may be represented by color blocks in the superimposed image. In addition, optionally, after step S201, the method may first proceed to step S203, the analysis module further extracts edges of the plurality of key regions, and superimposes edges of the plurality of key regions to the visible light image by color lines to generate Superimpose the image.

步驟S204:以顯示模組顯示疊加影像,為此,目前僅針對第一畫框之可見光影像進行處理,為了顯示連續的影像,需要對第二畫框的可見光影像114進行分析以產生另一疊加影像。 Step S204: displaying the superimposed image by the display module. For this reason, only the visible light image of the first frame is currently processed. In order to display the continuous image, the visible image 114 of the second frame needs to be analyzed to generate another superposition. image.

步驟S205:以影像擷取模組拍攝患者體內之目標區域,產生可見光影像訊號; 步驟S206:影像處理模組接收可見光影像訊號後,產生可見光影像,分析模組進一步計算相鄰畫框之間之匹配點及誤差值; 步驟S207:配置分析模組判斷匹配點之誤差值是否大於預定範圍,若是,則進入步驟S208,以紅外線成像儀拍攝患者體內之目標區域產生紅外線影像訊號,並配置影像處理模組重新產生新的紅外線影像(步驟S209),亦即,一旦在利用可見光影像匹配區域下已經不同於原感興趣區域或匹配上產生誤差時,需要再次進行紅外線影像擷取以及紅外線影像分割的部分。並回到步驟S201;若判斷匹配點之誤差值在預定範圍內,則進入步驟S210,配置分析模組以根據匹配點計算轉換矩陣; 步驟S211:配置分析模組以將轉換矩陣應用於前畫框之複數個重點區域,需要說明的是,本發明之內視鏡成像方法可僅對紅外光影像進行第一畫面的影像匹配後,轉換至可見光採集,改以可見光影像匹配進行後續影像對位的功能,致使後續的畫面都能有特徵區域顯示之功能,接著可選擇的進入步驟S203,或直接回到步驟S202。 Step S205: capturing a target area in the patient's body by using an image capturing module to generate a visible light image signal; Step S206: After receiving the visible light image signal, the image processing module generates a visible light image, and the analysis module further calculates a matching point and an error value between the adjacent frames; Step S207: The configuration analysis module determines whether the error value of the matching point is greater than a predetermined range. If yes, the process proceeds to step S208, the infrared imager is used to capture the target area in the patient body to generate an infrared image signal, and the image processing module is configured to regenerate the new image. Infrared image (step S209), that is, when an error occurs in the use of the visible light image matching area that is different from the original region of interest or the matching, the infrared image capturing and the infrared image segmentation are required to be performed again. And returning to step S201; if it is determined that the error value of the matching point is within the predetermined range, proceeding to step S210, configuring the analysis module to calculate a conversion matrix according to the matching point; Step S211: The analysis module is configured to apply the transformation matrix to the plurality of key regions of the front frame. It should be noted that the image processing method of the present invention can only perform image matching on the first image of the infrared image. Switching to visible light acquisition, the function of subsequent image alignment is performed by matching the visible light image, so that the subsequent pictures can have the function of displaying the feature area, and then the process proceeds to step S203, or directly returns to step S202.

上述各步驟之細節均已在前述實施例中描述,為了避免模糊本發明,故省略其重複敘述。 The details of each of the above steps have been described in the foregoing embodiments, and the repeated description thereof is omitted in order to avoid obscuring the present invention.

綜上所述,藉由本發明的內視鏡成像系統及方法,在提供給施術者之疊加影像中,具有清楚的視野以及精確的標記出臟器區域,可省去重複在可見光影像模式以及紅外光影像模式之間切換耗費的時間,進一步提昇手術的安全性、精確性以及速度。此外,在系統中,藉由偵測匹配點及誤差並計算轉換矩陣,可省去重新擷取紅外線影像的時間及系統資源,除了可選擇性精確的 顯示重點區域,還可自動在後續影像中追蹤重點區域,可進一步提昇影像處理速度,並節省系統資源。 In summary, with the endoscope imaging system and method of the present invention, in the superimposed image provided to the operator, the clear field of view and the accurate marking of the organ region can be omitted, and the repeated image in visible light mode and infrared can be omitted. Switching between optical image modes takes time to further improve the safety, accuracy and speed of the operation. In addition, in the system, by detecting matching points and errors and calculating the conversion matrix, the time and system resources for retrieving the infrared image can be eliminated, except that it can be selectively and accurately Display key areas, and automatically track key areas in subsequent images, further improving image processing speed and saving system resources.

1‧‧‧內視鏡成像系統 1‧‧‧Endoscope Imaging System

100‧‧‧光源 100‧‧‧Light source

102‧‧‧內視鏡攝影模組 102‧‧‧Endoscope photography module

104‧‧‧紅外線成像儀 104‧‧‧Infrared imager

106‧‧‧影像擷取模組 106‧‧‧Image capture module

108‧‧‧影像處理模組 108‧‧‧Image Processing Module

110‧‧‧記憶單元 110‧‧‧ memory unit

116‧‧‧分析模組 116‧‧‧Analysis module

118‧‧‧顯示模組 118‧‧‧Display module

120‧‧‧電源模組 120‧‧‧Power Module

Claims (10)

一種內視鏡成像系統,適用於顯示一患者體內之影像,其包含:一內視鏡攝影模組,係包含:一光源,用於照射該患者體內;一紅外線成像儀,經配置以拍攝該患者體內之一目標區域,並產生一紅外線影像訊號;及一影像擷取模組,經配置以拍攝該目標區域並產生一可見光影像訊號;一影像處理模組,係電性連接於該內視鏡攝影模組,係接收該紅外線影像訊號及該可見光影像訊號並產生一紅外線影像及一可見光影像,並將該紅外線影像與該可見光影像產生關聯;一記憶單元,係電性連接該影像處理模組,係用於儲存該紅外線影像及該可見光影像;一分析模組,係電性連接該影像處理模組,經配置以分析該紅外線影像以產生至少一重點區域,並將該重點區域疊加至與該紅外線影像關聯之該可見光影像以產生一疊加影像;以及一顯示模組,係電性連接該分析模組,經配置於顯示該疊加影像,其中該分析模組進一步計算該可見光影像中之連續兩畫框之間之匹配點,並根據該匹配點產生一轉換矩陣,並將該轉換矩陣應用於已產生該至少一重點區域並對應於在前之該畫框之該紅外線影像,並將經轉換之該至少一重點區域疊加於 對應於在後之該畫框之該紅外線影像以產生與該疊加影像連續之另一疊加影像。 An endoscope imaging system for displaying an image of a patient, comprising: an endoscope photography module comprising: a light source for illuminating the patient; an infrared imager configured to capture the image a target area of the patient and generating an infrared image signal; and an image capture module configured to capture the target area and generate a visible light image signal; an image processing module electrically connected to the internal view The photographic camera module receives the infrared image signal and the visible light image signal and generates an infrared image and a visible light image, and associates the infrared image with the visible light image; a memory unit is electrically connected to the image processing mode The group is configured to store the infrared image and the visible light image; an analysis module is electrically connected to the image processing module, configured to analyze the infrared image to generate at least one key area, and superimpose the key area The visible light image associated with the infrared image to generate a superimposed image; and a display module electrically connected The analysis module is configured to display the superimposed image, wherein the analysis module further calculates a matching point between two consecutive frames in the visible light image, and generates a conversion matrix according to the matching point, and applies the conversion matrix Forming the infrared image of the at least one focus area and corresponding to the preceding frame, and superimposing the converted at least one key area on Corresponding to the infrared image of the frame afterwards to generate another superimposed image continuous with the superimposed image. 如申請專利範圍第1項所述之內視鏡成像系統,其中該分析模組係根據該紅外線影像之強度分佈將該紅外線影像劃分為複數個重點區域,且各該重點區域各分別對應於不同之強度範圍。 The endoscope imaging system of claim 1, wherein the analysis module divides the infrared image into a plurality of key regions according to an intensity distribution of the infrared image, and each of the key regions respectively corresponds to a different The range of strengths. 如申請專利範圍第2項所述之內視鏡成像系統,其中該分析模組係將該複數個重點區域以色塊之方式疊加至與該紅外線影像關聯之該可見光影像,以產生該疊加影像。 The endoscope imaging system of claim 2, wherein the analysis module superimposes the plurality of key regions in a color block on the visible light image associated with the infrared image to generate the superimposed image. . 如申請專利範圍第2項所述之內視鏡成像系統,其中該分析模組係進一步擷取該複數個重點區域之邊緣,並將該複數個重點區域之邊緣以色線之方式疊加至與該紅外線影像關聯之該可見光影像,以產生該疊加影像。 The endoscope imaging system of claim 2, wherein the analysis module further extracts edges of the plurality of key regions, and superimposes edges of the plurality of key regions by color lines to The infrared image is associated with the visible light image to generate the superimposed image. 如申請專利範圍第1項所述之內視鏡成像系統,其中該分析模組計算該匹配點之誤差值,若該誤差值超過一預定範圍,則該紅外線成像儀經配置以重新拍攝該目標物體,並產生另一紅外線影像訊號。 The endoscope imaging system of claim 1, wherein the analysis module calculates an error value of the matching point, and if the error value exceeds a predetermined range, the infrared imager is configured to retake the target The object produces another infrared image signal. 一種內視鏡成像方法,係適用於如申請專利範圍第1項所述之內視鏡成像系統,其包含下列步驟:以該光源照射一患者體內之一目標區域;以該紅外線成像儀及該影像擷取模組拍攝該患者體內之該目標區域,並分別產生一紅外線影像訊號及一可見光影像訊號;配置該影像處理模組接收該紅外線影像訊號及該可見光影像訊號並產生一紅外線影像及一可見光影像,並將該紅外線影像與該可見光影像產生關聯; 以該記憶單元儲存該紅外線影像及該可見光影像;配置該分析模組以分析該紅外線影像以產生至少一重點區域,並將該重點區域疊加至與該紅外線影像關聯之該可見光影像以產生一疊加影像;以及以該顯示模組顯示該疊加影像,其中在將該重點區域疊加至與該紅外線影像關聯之該可見光影像以產生一疊加影像之步驟後,該分析模組進一步計算該可見光影像中之連續兩畫框之間之匹配點,並根據該匹配點產生一轉換矩陣,且將該轉換矩陣應用於已產生該至少一重點區域並對應於在前之該畫框之該紅外線影像,並將經轉換之該至少一重點區域疊加於對應於在後之該畫框之該紅外線影像以產生與該疊加影像連續之另一疊加影像。 An endoscope imaging method is applicable to an endoscope imaging system according to claim 1, which comprises the steps of: illuminating a target area in a patient with the light source; The image capturing module captures the target area of the patient and generates an infrared image signal and a visible light image signal respectively. The image processing module is configured to receive the infrared image signal and the visible light image signal and generate an infrared image and a a visible light image, and correlating the infrared image with the visible light image; Storing the infrared image and the visible light image by the memory unit; configuring the analysis module to analyze the infrared image to generate at least one focus area, and superimposing the focus area on the visible light image associated with the infrared image to generate an overlay And displaying the superimposed image by the display module, wherein after the step of superimposing the focus area on the visible light image associated with the infrared image to generate a superimposed image, the analyzing module further calculates the visible image a matching point between two consecutive frames, and generating a conversion matrix according to the matching point, and applying the conversion matrix to the infrared image that has generated the at least one focus area and corresponding to the previous frame, and The converted at least one focus area is superimposed on the infrared image corresponding to the subsequent frame to generate another superimposed image continuous with the superimposed image. 如申請專利範圍第6項所述之內視鏡成像方法,其中在配置該分析模組以分析該紅外線影像以產生該至少一重點區域之步驟中,該分析模組係進一步根據該紅外線影像之強度分佈將該紅外線影像劃分為複數個重點區域,且各該重點區域各分別對應於不同之強度範圍。 The method of imaging an endoscope according to claim 6, wherein in the step of configuring the analysis module to analyze the infrared image to generate the at least one focus area, the analysis module is further based on the infrared image The intensity distribution divides the infrared image into a plurality of key regions, and each of the key regions respectively corresponds to a different intensity range. 如申請專利範圍第7項所述之內視鏡成像方法,其中該分析模組係將該複數個重點區域以色塊之方式疊加至與該紅外線影像關聯之該可見光影像,以產生該疊加影像。 The method for imaging an endoscope according to claim 7, wherein the analysis module superimposes the plurality of key regions as color patches on the visible light image associated with the infrared image to generate the superimposed image. . 如申請專利範圍第7項所述之內視鏡成像方法,其中該分析模組係進一步擷取該複數個重點區域之邊緣,並將該複數個重點區域之邊緣以色線之方式疊加至與該紅外線影像關聯之該可見光影像,以產生該疊加影像。 The method for imaging an endoscope according to claim 7, wherein the analysis module further extracts edges of the plurality of key regions, and superimposes edges of the plurality of key regions by color lines to The infrared image is associated with the visible light image to generate the superimposed image. 如申請專利範圍第9項所述之內視鏡成像方法,其中該分析模 組計算該匹配點之誤差值,若該誤差值超過一預定範圍,則該紅外線成像儀經配置以重新拍攝該目標物體,並產生另一紅外線影像訊號。 An endoscope imaging method according to claim 9, wherein the analysis mode The group calculates an error value for the matching point, and if the error value exceeds a predetermined range, the infrared imager is configured to retake the target object and generate another infrared image signal.
TW105100128A 2016-01-05 2016-01-05 Endoscope imaging system and method TWI581750B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW105100128A TWI581750B (en) 2016-01-05 2016-01-05 Endoscope imaging system and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW105100128A TWI581750B (en) 2016-01-05 2016-01-05 Endoscope imaging system and method

Publications (2)

Publication Number Publication Date
TWI581750B true TWI581750B (en) 2017-05-11
TW201808210A TW201808210A (en) 2018-03-16

Family

ID=59367431

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105100128A TWI581750B (en) 2016-01-05 2016-01-05 Endoscope imaging system and method

Country Status (1)

Country Link
TW (1) TWI581750B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6293911B1 (en) * 1996-11-20 2001-09-25 Olympus Optical Co., Ltd. Fluorescent endoscope system enabling simultaneous normal light observation and fluorescence observation in infrared spectrum
US20120257030A1 (en) * 2011-04-08 2012-10-11 Samsung Electronics Co., Ltd. Endoscope apparatus and image acquisition method of the endoscope apparatus
TW201427633A (en) * 2013-01-14 2014-07-16 Bruce Zheng-San Chou Endoscopic image capture system and method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6293911B1 (en) * 1996-11-20 2001-09-25 Olympus Optical Co., Ltd. Fluorescent endoscope system enabling simultaneous normal light observation and fluorescence observation in infrared spectrum
US20120257030A1 (en) * 2011-04-08 2012-10-11 Samsung Electronics Co., Ltd. Endoscope apparatus and image acquisition method of the endoscope apparatus
TW201427633A (en) * 2013-01-14 2014-07-16 Bruce Zheng-San Chou Endoscopic image capture system and method thereof

Also Published As

Publication number Publication date
TW201808210A (en) 2018-03-16

Similar Documents

Publication Publication Date Title
JP5592796B2 (en) System and method for quantitative 3DCEUS analysis
Bano et al. Deep placental vessel segmentation for fetoscopic mosaicking
WO2023103467A1 (en) Image processing method, apparatus and device
US11941768B2 (en) Methods and systems for alignment of a subject for medical imaging
CN105072968A (en) Image processing device, endoscopic device, program and image processing method
EP2800053A1 (en) Image processing device, image display system, image processing method, and image processing program
WO2012153568A1 (en) Medical image processing device and medical image processing method
US8902305B2 (en) System and method for managing face data
CN103975364A (en) Selection of images for optical examination of the cervix
US10401141B2 (en) Method and apparatus for obtaining a three-dimensional map of tympanic membrane thickness
WO2015105951A1 (en) System and method for intraoperative fluorescence imaging in ambient light
US10154778B2 (en) Endoscopic processor
TWI581750B (en) Endoscope imaging system and method
WO2017117710A1 (en) Imaging system and method for endoscopy
Lange et al. Computer-aided-diagnosis (CAD) for colposcopy
KR20210099237A (en) Method for fusing multi-modal image and multi-modal image surgery guided apparatus for performing the same
JP6519703B2 (en) Image processing method, diagnostic device, and program
WO2019088008A1 (en) Image processing apparatus, image processing method, program, and endoscope system
JPWO2019087969A1 (en) Endoscopic systems, notification methods, and programs
Ali et al. Robust bladder image registration by redefining data-term in total variational approach
Al-Fahdawi et al. An automatic corneal subbasal nerve registration system using FFT and phase correlation techniques for an accurate DPN diagnosis
CN115311405A (en) Three-dimensional reconstruction method of binocular endoscope
US10307209B1 (en) Boundary localization of an internal organ of a subject for providing assistance during surgery
Ahmad et al. 3D reconstruction of gastrointestinal regions using shape-from-focus
Yi et al. Achieving real-time capsule endoscopy (CE) video visualization through panoramic imaging

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees