TWI580957B - A light-induced dielectrophoresis chip - Google Patents

A light-induced dielectrophoresis chip Download PDF

Info

Publication number
TWI580957B
TWI580957B TW104127622A TW104127622A TWI580957B TW I580957 B TWI580957 B TW I580957B TW 104127622 A TW104127622 A TW 104127622A TW 104127622 A TW104127622 A TW 104127622A TW I580957 B TWI580957 B TW I580957B
Authority
TW
Taiwan
Prior art keywords
transparent conductive
conductive film
layer
multilayer transparent
vapor phase
Prior art date
Application number
TW104127622A
Other languages
Chinese (zh)
Other versions
TW201708815A (en
Inventor
吳宏偉
蔡武翰
陳昱夫
洪永瀚
李欣縈
呂榮吉
陳冠宇
簡澧亦
Original Assignee
先峰醫研股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 先峰醫研股份有限公司 filed Critical 先峰醫研股份有限公司
Priority to TW104127622A priority Critical patent/TWI580957B/en
Publication of TW201708815A publication Critical patent/TW201708815A/en
Application granted granted Critical
Publication of TWI580957B publication Critical patent/TWI580957B/en

Links

Description

一種光誘發式介電泳晶片 Light-induced dielectrophoresis wafer

本發明細有關於一種光誘發式介電泳晶片,其特別有關於一種使用光誘發式介電泳力之透明感測晶片。 More particularly, the present invention relates to a light-induced dielectrophoresis wafer, and more particularly to a transparent sensing wafer using photoinduced dielectrophoretic force.

由於傳統的癌症分析法是利用擴散與沉降的方式使抗原抗體做專一性的結合,且通常的檢測試劑都是在較低濃度情況下,使得檢測必須是在搖晃下經兩個小時以上的作用時間,且檢測極限一般也僅概在1ng/ml的程度,此非但對於一些急性感染病症或初期癌症的病患,各有緩不濟急或檢測靈敏度無法達到的緣故,便難以爭取有效的治療黃金時間,導致諸多遺憾的結果;然而利用光誘發式介電泳力的技術,可幫助醫生在短短數分鐘內,檢測出初期的各種癌症,更可進一步了解病人的癌症遺傳因子,以作先期的防範。 Because traditional cancer analysis methods use diffusion and sedimentation to make antigen-antibody specific binding, and the usual detection reagents are at lower concentrations, so the detection must be shaken for more than two hours. Time, and the detection limit is generally only about 1 ng / ml, which is difficult for some patients with acute infections or early cancer, each of which is slow or the sensitivity of detection can not be achieved, it is difficult to fight for effective treatment of gold Time leads to many regrettable results; however, the use of light-induced dielectrophoretic force technology can help doctors detect early cancers in just a few minutes, and further understand the patient's cancer genetic factors for early development. Prevent.

在生化檢測上多利用分子間的專一性結合作用,例如AIDS(Acquired immune deficiency syndrome)患者經常檢測體內『輔助型T細胞(TH)』與『毒殺型T細胞(Tc)』數量,而這兩種細胞分別專一性表現CD4與CD8兩種蛋白質分子,因此利用可以和CD4或CD8具高親和力(affinity)之單株抗體(monoclonal antibody),便可以準確捉住這些細胞,此時單株抗體若標記(label)螢光分子,待量測後,便可依據螢光訊號強弱判讀輔助型T細胞或毒殺型T細胞數目之多寡。部分癌症必須發展至一定大小,其腫瘤標記 物質才能檢測出來,甚至部分癌症並不分泌腫瘤標記物質,因此腫瘤標記未必能夠靈敏篩檢出癌細胞的存在,同時無法確認到底是何種癌症發生,故此一方法的靈敏度(sensitivity)與特異性(specialty)需再加強。 In biochemical tests, the use of specific binding between molecules is often used. For example, patients with AIDS (Acquired immune deficiency syndrome) often detect the number of "helper T cells (TH)" and "toxic T cells (Tc)" in the body. The cells specifically express CD4 and CD8 protein molecules, so they can accurately capture these cells by using a monoclonal antibody with high affinity to CD4 or CD8. The fluorescent molecules are labeled, and after being measured, the number of helper T cells or poisonous T cells can be determined according to the intensity of the fluorescent signal. Some cancers must develop to a certain size and their tumor markers The substance can be detected, and even some cancers do not secrete tumor marker substances. Therefore, tumor markers may not be able to sensitively screen out the presence of cancer cells, and it is impossible to confirm which kind of cancer occurs. Therefore, the sensitivity and specificity of this method. (specialty) needs to be strengthened.

另一個生化檢測方法『DR-70』,不同於一般腫瘤標記。其原理為檢測人體細胞反應癌細胞存在時產生的物質,當癌細胞由原位癌開始進入細胞間質時,人體結締組織(connective tissues)會產生Fibrinogen Degradation Product(FDP,纖維蛋白原裂解產物),此裂解產物若超過正常值表示體內已經由原位癌進到侵襲癌階段。DR-70可以偵測到癌細胞小於106個細胞,為目前靈敏之生化檢測,不過此項分析會受到莢膜組織漿菌感染、肺炎、一般急性感染、自體免疫疾病、外創傷(truma<30days)、抽血時溶血、懷孕等生理狀態所干擾。因此,發展非侵入性、高靈敏度(high sensitivity)、高專一性(high specialty)、即時(real-time)且價錢便宜的檢測工具實為重要。 Another biochemical test method, "DR-70", is different from general tumor markers. The principle is to detect substances produced by human cells in response to the presence of cancer cells. When cancer cells start to enter the interstitial cells by carcinoma in situ, connective tissues of the human body produce Fibrinogen Degradation Product (FDP, fibrinogen cleavage product). If the cleavage product exceeds the normal value, it indicates that the body has progressed from the carcinoma in situ to the stage of invasion cancer. DR-70 can detect less than 106 cells in cancer cells, which is the current sensitive biochemical test, but this analysis will be affected by capsular plasmin infection, pneumonia, general acute infection, autoimmune disease, external trauma (truma< 30days), hemolysis during blood draw, pregnancy and other physiological conditions interfere. Therefore, it is important to develop non-invasive, high sensitivity, high specialty, real-time and inexpensive inspection tools.

以目前的檢測技術,當體內癌細胞數量發展到約>106個(約為0.2cm大小的腫瘤),癌細胞即可以透過誘導血管增生(angiogenesis)進行轉移(metastasis)。當癌細胞發展到腫瘤約1cm大小時,才可能經由儀器觀察(一般健康檢查),不過此時已經無法完全控制癌細胞之發展。有鑑於此,為了可以更精準、快速且即時地檢測癌症細胞。實有必要發展具有便宜、低成本、快速與準確的檢測晶片。特別是在癌細胞開始增長初期(癌細胞密度<5cells/μL)就可檢測出來,可大幅增加治癒的機率。 The current detection technology, when the number of cancer cells in vivo development to about> 106 (about 0.2cm tumor size), i.e., cancer cells can be transferred (Metastasis) through induction of angiogenesis (angiogenesis). When cancer cells develop to a tumor size of about 1 cm, it is possible to observe by instrument (general health check), but at this time it is impossible to completely control the development of cancer cells. In view of this, in order to detect cancer cells more accurately, quickly and instantly. It is necessary to develop inspection wafers that are inexpensive, low cost, fast and accurate. Especially in the early stage of cancer cell growth (cell density <5cells/μL), it can be detected, which can greatly increase the chance of cure.

在含有摻雜雜質矽薄膜中有分非晶矽和微晶矽兩種。非晶矽是利用濺鍍或是化學氣相沈積方式在玻璃或金屬基板上生成薄膜,這樣的 生產方式成熟且材料成本相對於其他化合物半導體材料也便宜許多,但缺點是會產生嚴重的光劣化現象(就是在受到UV照射後會使得轉換效率大幅降低)的問題。微晶矽結構(Nanocrystalline Silicon,nc-Si,也被稱為Microcrystalline Silicon,mc-Si);微晶矽是非晶矽的改良材料,其結構介於非晶矽和晶體矽之間,主要是在非晶體結構中具有微小的晶體粒子,其優點為:具有非晶矽容易薄膜化、製程便宜的特性、較高的電導率、低的活化能、晶體矽吸收光譜廣、不易出現光劣化效應以及轉換效率也較高。 There are two kinds of amorphous germanium and microcrystalline germanium in the thin film containing doping impurities. Amorphous germanium is a film formed on a glass or metal substrate by sputtering or chemical vapor deposition. The production method is mature and the material cost is also much cheaper than other compound semiconductor materials, but the disadvantage is that there is a problem of severe photodegradation (that is, the conversion efficiency is greatly reduced after being irradiated with UV). Microcrystalline silicon (nc-Si, also known as Microcrystalline Silicon, mc-Si); microcrystalline germanium is an improved material of amorphous germanium, the structure of which is between amorphous germanium and crystalline germanium, mainly in The amorphous crystal structure has minute crystal particles, and has the advantages of being easy to be thinned by amorphous germanium, having a low process, high electrical conductivity, low activation energy, wide crystal absorption spectrum, and low photodegradation effect. Conversion efficiency is also high.

有鑑於上述習知技藝之問題,本發明之主要目的在於提供一種光誘發式介電泳晶片,用以控制並分離癌症細胞與正常細胞。 In view of the above-mentioned problems of the prior art, it is a primary object of the present invention to provide a light-induced dielectrophoresis wafer for controlling and isolating cancer cells from normal cells.

為達上述之主要目的,本發明提出一種光誘發式介電泳晶片,其包括一第一玻璃基板、一第一多層透明導電薄膜、一微晶矽半導體層、一第二玻璃基板、一第二多層透明導電薄膜、一第一孔洞、一第二孔洞以及一交流訊號源。該第一玻璃基板作為該光誘發式介電泳晶片之承載本體。該第一多層透明導電薄膜以物理汽相法沈積於該第一玻璃基板上。 該微晶矽半導體層以物理汽相法沈積於該第一導電基板上。該第二玻璃基板配置於該第一導電基板上。該第二多層透明導電薄膜以物理汽相法沈積於該第二玻璃基板下。該第一孔洞貫穿該第二玻璃基板及該第二導電基板,用以讓癌症細胞通過之媒介。該第二孔洞貫穿該第二玻璃基板及該第二導電基板,用以讓空氣通過之媒介。以及該交流訊號源以電性連接於該第一導電基板與該第二導電基板。 In order to achieve the above-mentioned main purpose, the present invention provides a light-induced dielectrophoresis wafer comprising a first glass substrate, a first multilayer transparent conductive film, a microcrystalline germanium semiconductor layer, a second glass substrate, and a first The second multi-layer transparent conductive film, a first hole, a second hole and an AC signal source. The first glass substrate serves as a carrier body of the light-induced dielectrophoresis wafer. The first multilayer transparent conductive film is deposited on the first glass substrate by a physical vapor phase method. The microcrystalline germanium semiconductor layer is deposited on the first conductive substrate by a physical vapor phase method. The second glass substrate is disposed on the first conductive substrate. The second multilayer transparent conductive film is deposited under the second glass substrate by a physical vapor phase method. The first hole penetrates the second glass substrate and the second conductive substrate to allow a cancer cell to pass through the medium. The second hole penetrates the second glass substrate and the second conductive substrate to allow air to pass through the medium. And the source of the alternating current signal is electrically connected to the first conductive substrate and the second conductive substrate.

為達上述之另一目的,本發明所揭示之該第一多層透明導電 薄膜更包含一第一氧化鋅摻鋁層、一第一金屬薄膜層以及一第二氧化鋅摻鋁層。該第一氧化鋅摻鋁層以物理汽相法沈積於該第一玻璃基板之上,其厚度約為600nm。該第一金屬薄膜層以物理汽相法沈積於該第一氧化鋅摻鋁層上,其厚度約為5nm~10nm之間。以及該第二氧化鋅摻鋁層,係以物理汽相法沈積於該第一金屬薄膜層上,其厚度約為600nm。 For the other purpose of the above, the first multilayer transparent conductive disclosed by the present invention The film further comprises a first zinc oxide aluminum-doped layer, a first metal thin film layer and a second zinc oxide aluminum-doped layer. The first zinc oxide aluminum-doped layer is deposited on the first glass substrate by a physical vapor phase method and has a thickness of about 600 nm. The first metal thin film layer is deposited on the first zinc oxide aluminum-doped layer by a physical vapor phase method, and has a thickness of about 5 nm to 10 nm. And the second zinc oxide aluminum-doped layer is deposited on the first metal thin film layer by a physical vapor phase method, and has a thickness of about 600 nm.

達上述之另一目的,本發明所揭示之該該第二多層透明導電薄膜更包含一第三氧化鋅摻鋁層、一第二金屬薄膜層以及一第四氧化鋅摻鋁層。該第三氧化鋅摻鋁層以物理汽相法沈積於該第二玻璃基板之底部,其厚度為600nm。該第二金屬薄膜層以物理汽相法沈積於該第三氧化鋅摻鋁層上,其厚度約為5nm~10nm之間。以及該第四氧化鋅摻鋁層以物理汽相法沈積於該第二金屬薄膜層上,其厚度約為600nm。 For the above other purposes, the second multilayer transparent conductive film disclosed in the present invention further comprises a third zinc oxide aluminum-doped layer, a second metal thin film layer and a fourth zinc oxide aluminum-doped layer. The third zinc oxide aluminum-doped layer is deposited on the bottom of the second glass substrate by a physical vapor phase method and has a thickness of 600 nm. The second metal thin film layer is deposited on the third zinc oxide aluminum-doped layer by a physical vapor phase method, and has a thickness of about 5 nm to 10 nm. And depositing the fourth zinc oxide aluminum-doped layer on the second metal thin film layer by a physical vapor phase method, the thickness of which is about 600 nm.

為讓本發明之上述和其他目的、特徵、和優點能更明顯易懂,下文特舉數個較佳實施例,並配合所附圖式,作詳細說明如下。 The above and other objects, features, and advantages of the present invention will become more apparent and understood.

100‧‧‧光誘發式介電泳晶片 100‧‧‧Light-induced dielectrophoresis wafer

110‧‧‧第一玻璃基板 110‧‧‧First glass substrate

120‧‧‧第二玻璃基板 120‧‧‧Second glass substrate

130‧‧‧微晶矽半導體層 130‧‧‧Microcrystalline germanium semiconductor layer

140‧‧‧第一孔洞 140‧‧‧First hole

150‧‧‧第二孔洞 150‧‧‧Second hole

160‧‧‧交流訊號源 160‧‧‧Communication signal source

200‧‧‧第一多層透明導電薄膜 200‧‧‧First multilayer transparent conductive film

210‧‧‧第一氧化鋅摻鋁層 210‧‧‧First zinc oxide aluminum doped layer

220‧‧‧第一金屬薄膜層 220‧‧‧First metal film layer

230‧‧‧第二氧化鋅摻鋁層 230‧‧‧Second zinc oxide aluminum-doped layer

300‧‧‧第二多層透明導電薄膜 300‧‧‧Second multilayer transparent conductive film

310‧‧‧第三氧化鋅摻鋁層 310‧‧‧ Third zinc oxide aluminum layer

320‧‧‧第二金屬薄膜層 320‧‧‧Second metal film layer

330‧‧‧第四氧化鋅摻鋁層 330‧‧‧4th zinc oxide doped aluminum layer

第1圖顯示為光誘發式介電泳晶片之結構示意圖。 Figure 1 shows a schematic view of the structure of a light-induced dielectrophoresis wafer.

第2圖顯示為第一導電基板之結構示意圖。 Figure 2 is a schematic view showing the structure of the first conductive substrate.

第3圖顯示為第二導電基板之結構示意圖。 Figure 3 is a schematic view showing the structure of the second conductive substrate.

雖然本發明可表現為不同形式之實施例,但附圖所示者及於下文中說明者係為本發明可之較佳實施例,並請了解本文所揭示者係考量 為本發明之一範例,且並非意圖用以將本發明限制於圖示及/或所描述之特定實施例中。 The present invention may be embodied in various forms, and the embodiments shown in the drawings and the following description are preferred embodiments of the present invention. It is an exemplification of the invention and is not intended to limit the invention to the particular embodiments illustrated and/or described.

請參照第1圖示之該一種光誘發式介電泳晶片100之結構示意圖,其包括一第一玻璃基板110、一第一多層透明導電薄膜200、一微晶矽半導體層130、一第二玻璃基板120、一第二多層透明導電薄膜300、一第一孔洞140、一第二孔洞150以及一交流訊號源160。該第一多層透明導電薄膜200係以物理汽相法沈積於該第一玻璃基板110上。該一微晶矽半導體層130係以化學汽相法沈積於該第一多層透明導電薄膜200上。該第二玻璃基板120係配置於該第一多層透明導電薄膜200上。該第二多層透明導電薄膜300係以物理汽相法沈積於該第二玻璃基板120下。該第一孔洞140係貫穿該第二玻璃基板120及該第二多層透明導電薄膜300。該第二孔洞150係貫穿該第二玻璃基板120及該第二多層透明導電薄膜300。該一交流訊號源160係電性連接於該第一多層透明導電薄膜200與該第二多層透明導電薄膜300。需注意的是,其中該第一孔洞140用以讓癌症細胞通過之媒介。該第二孔洞150用以讓空氣通過之媒介。該微晶矽半導體層130之厚度為300nm。該第一多層透明導電薄膜200之厚度約為5-15um之間。該第二多層透明導電薄膜300之厚度約為5-15um之間。該微晶矽半導體層130之晶粒大小約為1-3um之間。 Please refer to the schematic diagram of the photo-induced dielectrophoresis wafer 100 of FIG. 1 , which includes a first glass substrate 110 , a first multilayer transparent conductive film 200 , a microcrystalline germanium semiconductor layer 130 , and a second The glass substrate 120, a second multilayer transparent conductive film 300, a first hole 140, a second hole 150, and an AC signal source 160. The first multilayer transparent conductive film 200 is deposited on the first glass substrate 110 by a physical vapor phase method. The microcrystalline germanium semiconductor layer 130 is deposited on the first multilayer transparent conductive film 200 by a chemical vapor phase method. The second glass substrate 120 is disposed on the first multilayer transparent conductive film 200. The second multilayer transparent conductive film 300 is deposited under the second glass substrate 120 by a physical vapor phase method. The first hole 140 extends through the second glass substrate 120 and the second multilayer transparent conductive film 300. The second hole 150 extends through the second glass substrate 120 and the second multilayer transparent conductive film 300. The AC signal source 160 is electrically connected to the first multilayer transparent conductive film 200 and the second multilayer transparent conductive film 300. It should be noted that the first hole 140 is used to allow cancer cells to pass through the medium. The second hole 150 is used to allow air to pass through the medium. The thickness of the microcrystalline germanium semiconductor layer 130 is 300 nm. The first multilayer transparent conductive film 200 has a thickness of between about 5 and 15 um. The second multilayer transparent conductive film 300 has a thickness of between about 5 and 15 um. The crystallite size of the microcrystalline germanium semiconductor layer 130 is between about 1-3 um.

請參照第2圖示之該第一多層透明導電薄膜200之結構之示意圖,其包括一第一氧化鋅摻鋁層210、一第一金屬薄膜層220以及一第二氧化鋅摻鋁層230。該第一氧化鋅摻鋁層210係以物理汽相法沈積於該第一玻璃基板110之上。該第一金屬薄膜層220係以物理汽相法沈積於該第一氧 化鋅摻鋁層210上。該第二氧化鋅摻鋁層230以物理汽相法沈積於該第一金屬薄膜層220上。需注意的是,其中該第一氧化鋅摻鋁層210其厚度約為600nm。該第一金屬薄膜層其220厚度約為5nm~10nm之間。該第二氧化鋅摻鋁層230其厚度約為600nm。該第一金屬薄膜層220之材料係為金(Au)。 Referring to FIG. 2, a schematic diagram of the structure of the first multilayer transparent conductive film 200 includes a first zinc oxide aluminum-doped layer 210, a first metal thin film layer 220, and a second zinc oxide aluminum-doped layer 230. . The first zinc oxide aluminum-doped layer 210 is deposited on the first glass substrate 110 by a physical vapor phase method. The first metal thin film layer 220 is deposited on the first oxygen by a physical vapor phase method The zinc is doped on the aluminum layer 210. The second zinc oxide aluminum-doped layer 230 is deposited on the first metal thin film layer 220 by a physical vapor phase method. It should be noted that the first zinc oxide aluminum doped layer 210 has a thickness of about 600 nm. The first metal thin film layer has a thickness of 220 between about 5 nm and 10 nm. The second zinc oxide aluminum doped layer 230 has a thickness of about 600 nm. The material of the first metal thin film layer 220 is gold (Au).

請參照第3圖示之該第二多層透明導電薄膜300之結構之示意圖,其包括一第三氧化鋅摻鋁層310、一第二金屬薄膜層320以及一第四氧化鋅摻鋁層330。該第三氧化鋅摻鋁層310係以物理汽相法沈積於該第二玻璃基板120之底部。該第二金屬薄膜層320係以物理汽相法沈積於該第三氧化鋅摻鋁層310上。該第四氧化鋅摻鋁層330係以物理汽相法沈積於該第二金屬薄膜層320上。需注意的是,其中該第三氧化鋅摻鋁層310其厚度為600nm;該第二金屬薄膜層320其厚度約為5nm~10nm之間;該第四氧化鋅摻鋁層330其厚度約為600nm。該第二金屬薄膜層320之材料係為金(Au)。 Referring to FIG. 3, a schematic diagram of the structure of the second multilayer transparent conductive film 300 includes a third zinc oxide aluminum-doped layer 310, a second metal thin film layer 320, and a fourth zinc oxide aluminum-doped layer 330. . The third zinc oxide aluminum-doped layer 310 is deposited on the bottom of the second glass substrate 120 by a physical vapor phase method. The second metal thin film layer 320 is deposited on the third zinc oxide aluminum-doped layer 310 by a physical vapor phase method. The fourth zinc oxide aluminum-doped layer 330 is deposited on the second metal thin film layer 320 by a physical vapor phase method. It should be noted that the third zinc oxide aluminum-doped layer 310 has a thickness of 600 nm; the second metal thin film layer 320 has a thickness of about 5 nm to 10 nm; and the fourth zinc oxide-doped aluminum layer 330 has a thickness of about 600nm. The material of the second metal thin film layer 320 is gold (Au).

在製程上,在製程方法上,該第一多層透明導電薄膜200與該二多層透明導電薄膜300係分別沉積於第一玻璃基板110及第二玻璃基板120(康寧的EAGLE XG)用氧化鋅(純度99.99%,直徑為100mm,厚度5mm)和金屬鋁的靶材(99.995%純度,直徑100mm,厚度5mm)在一個同軸磁控濺射沉積系統配備了射頻和直流電源。該尺寸的玻璃基板120為25×25×0.5mm3。濺射進行在壓力為7.9×10-3torr在純氬空氣與目標對底層距離70mm一個低溫泵,再加上一個旋轉泵相聯繫用來取得5.0×10-3torr,在實施氬氣體(99.99%的純度)之前。基板轉速為每分鐘2轉。該第一玻璃基板110及第二玻璃基板120溫度測量儀表用熱電偶和熱陰極計測量。溫度是控制使用反饋控制加熱器。在變化過程中,第一玻璃基板110及第二玻 璃基板120溫度維持在±5℃。第一玻璃基板110及第二玻璃基板120溫度控制在25~300℃範圍內。 In the process, in the process method, the first multilayer transparent conductive film 200 and the two-layer transparent conductive film 300 are respectively deposited on the first glass substrate 110 and the second glass substrate 120 (EAGLE XG of Corning) for oxidation Zinc (purity 99.99%, diameter 100mm, thickness 5mm) and metallic aluminum target (99.995% purity, diameter 100mm, thickness 5mm) are equipped with RF and DC power supplies in a coaxial magnetron sputtering deposition system. The glass substrate 120 of this size is 25 x 25 x 0.5 mm3. Sputtering was carried out at a pressure of 7.9 × 10 -3 torr in a pure argon air with a target to the bottom layer of a distance of 70 mm from a cryopump, plus a rotary pump associated with used to obtain 5.0 × 10 -3 torr, in the implementation of argon gas (99.99% Before purity). The substrate rotation speed is 2 revolutions per minute. The first glass substrate 110 and the second glass substrate 120 temperature measuring instrument are measured by a thermocouple and a thermal cathode meter. The temperature is controlled using feedback to control the heater. During the change, the first glass substrate 110 and the second glass The temperature of the glass substrate 120 is maintained at ±5 °C. The temperature of the first glass substrate 110 and the second glass substrate 120 is controlled within a range of 25 to 300 °C.

在操作上,一種光誘發式介電泳晶片100當投影機光源之圖像由頂部投影於下片的第一玻璃基板110時,則被較亮的圖型投影區域則可誘發出較多得電子電洞對分離,造成局部電場較強的區域,進而產生介電泳力所需的非均勻電場。動態式分離技術為以光誘發式介電泳力主要的之優勢之一。僅需以電腦繪圖軟體製作動畫,即可進行圖形的動態變換,以達到隨時變換電場強弱分佈的策略。以簡單的單根光棒進行連續移動,中存在著2μm與10μm的乳膠微粒懸浮於去離子水中。當施加交流電壓為40Vp-p,頻率為10kHz時,由於表電電荷密度與粒子尺寸成反比。在低頻範圍下(<100kHz)下,2μm粒子的極化率較10μm的極化率高,造成2μm的粒子呈現正介電泳力;10μm的粒子呈現負介電泳力。因此,光束投射的部分呈現較強的電場強度,2μm粒子可有效的聚集於光棒的地方;10μm粒子則被光棒排斥而遠離。當光棒不斷的以電腦滑鼠向右移動時,2μm的粒子不斷的被正介電泳吸引進光棒中,而10μm的粒子則連續的被負介電泳力推向右邊,可達成分離並同時濃縮的效果。 In operation, when a light-induced dielectrophoresis wafer 100 is projected from the top onto the first glass substrate 110 of the lower sheet, the brighter pattern projection area can induce more electrons. The hole pairs are separated, resulting in a region where the local electric field is strong, and thus a non-uniform electric field required for the dielectrophoretic force. Dynamic separation technology is one of the main advantages of light-induced dielectrophoresis. Just by making animations with computer graphics software, you can dynamically transform the graphics to achieve the strategy of transforming the strength of the electric field at any time. Continuous movement with a simple single rod, in which 2 μm and 10 μm latex particles are suspended in deionized water. When the applied alternating voltage is 40 Vp-p and the frequency is 10 kHz, the electric charge density is inversely proportional to the particle size. In the low frequency range (<100 kHz), the polarizability of 2 μm particles is higher than that of 10 μm, causing 2 μm particles to exhibit positive dielectrophoretic force; 10 μm particles exhibit negative dielectrophoretic force. Therefore, the portion projected by the beam exhibits a strong electric field strength, and 2 μm particles can be effectively concentrated on the light rod; 10 μm particles are repelled by the light rod and are far away. When the light bar is continuously moved to the right by the computer mouse, the 2 μm particles are continuously attracted into the light bar by positive dielectrophoresis, and the 10 μm particles are continuously pushed to the right by the negative dielectrophoretic force to achieve separation and simultaneous The effect of concentration.

雖然本發明已以前述較佳實施例揭示,然其並非用以限定本發明,任何熟習此技藝者,在不脫離本發明之精神和範圍內,當可作各種之更動與修改。如上述的解釋,都可以作各型式的修正與變化,而不會破壞此發明的精神。因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。 While the present invention has been described in its preferred embodiments, it is not intended to limit the scope of the invention, and various modifications and changes can be made without departing from the spirit and scope of the invention. As explained above, various modifications and variations can be made without departing from the spirit of the invention. Therefore, the scope of the invention is defined by the scope of the appended claims.

100‧‧‧光誘發式介電泳晶片 100‧‧‧Light-induced dielectrophoresis wafer

110‧‧‧第一玻璃基板 110‧‧‧First glass substrate

120‧‧‧第二玻璃基板 120‧‧‧Second glass substrate

130‧‧‧微晶矽半導體層 130‧‧‧Microcrystalline germanium semiconductor layer

140‧‧‧第一孔洞 140‧‧‧First hole

150‧‧‧第二孔洞 150‧‧‧Second hole

160‧‧‧交流訊號源 160‧‧‧Communication signal source

200‧‧‧第一多層透明導電薄膜 200‧‧‧First multilayer transparent conductive film

300‧‧‧第二多層透明導電薄膜 300‧‧‧Second multilayer transparent conductive film

Claims (8)

一種光誘發式介電泳晶片,其包括:一第一玻璃基板,該第一玻璃基板係作為該光誘發式介電泳晶片之承載本體;一第一多層透明導電薄膜,係以物理汽相法沈積於該第一玻璃基板上;一微晶矽半導體層,係以化學汽相法沈積於該第一多層透明導電薄膜上,該微晶矽半導體層之晶粒大小約為1-3um之間;一第二玻璃基板,係配置於該第一多層透明導電薄膜上;一第二多層透明導電薄膜,係以物理汽相法沈積於該第二玻璃基板下;一第一孔洞,係貫穿該第二玻璃基板及該第二多層透明導電薄膜,用以讓癌症細胞通過之媒介;一第二孔洞,係貫穿該第二玻璃基板及該第二多層透明導電薄膜,用以讓空氣通過之媒介;以及一交流訊號源,係電性連接於該第一多層透明導電薄膜與該第二多層透明導電薄膜。 A light-induced dielectrophoresis wafer comprising: a first glass substrate as a carrier body of the light-induced dielectrophoresis wafer; a first multilayer transparent conductive film by a physical vapor phase method Deposited on the first glass substrate; a microcrystalline germanium semiconductor layer is deposited on the first multilayer transparent conductive film by a chemical vapor phase method, and the crystal grain size of the microcrystalline germanium semiconductor layer is about 1-3 um a second glass substrate disposed on the first multilayer transparent conductive film; a second multilayer transparent conductive film deposited on the second glass substrate by a physical vapor phase method; a first hole, a second glass substrate and the second multilayer transparent conductive film for allowing a cancer cell to pass through the medium; a second hole penetrating the second glass substrate and the second multilayer transparent conductive film for a medium through which air passes; and an alternating current signal source electrically connected to the first multilayer transparent conductive film and the second multilayer transparent conductive film. 如申請專利範圍第1項所述之光誘發式介電泳晶片,其中該第一多層透明導電薄膜更包含:一第一氧化鋅摻鋁層,係以物理汽相法沈積於該第一玻璃基板之上,其厚度約為600nm;一第一金屬薄膜層,係以物理汽相法沈積於該第一氧化鋅摻鋁層上,其厚度約為5nm~10nm之間;以及一第二氧化鋅摻鋁層,係以物理汽相法沈積於該第一金屬薄膜層上,其 厚度約為600nm。 The light-induced dielectrophoresis wafer of claim 1, wherein the first multilayer transparent conductive film further comprises: a first zinc oxide aluminum-doped layer deposited on the first glass by a physical vapor phase method; a substrate having a thickness of about 600 nm; a first metal thin film layer deposited on the first zinc oxide aluminum-doped layer by a physical vapor phase method, having a thickness of about 5 nm to 10 nm; and a second oxidation a zinc-doped aluminum layer is deposited on the first metal thin film layer by a physical vapor phase method, The thickness is about 600 nm. 如申請專利範圍第1項所述之光誘發式介電泳晶片,其中該第二多層透明導電薄膜更包含:一第三氧化鋅摻鋁層,係以物理汽相法沈積於該第二玻璃基板之底部,其厚度為600nm;一第二金屬薄膜層,係以物理汽相法沈積於該第三氧化鋅摻鋁層上,其厚度約為5nm~10nm之間;以及一第四氧化鋅摻鋁層,係以物理汽相法沈積於該第二金屬薄膜層上,其厚度約為600nm。 The light-induced dielectrophoresis wafer according to claim 1, wherein the second multilayer transparent conductive film further comprises: a third zinc oxide aluminum-doped layer deposited on the second glass by a physical vapor phase method; a bottom of the substrate having a thickness of 600 nm; a second metal thin film layer deposited on the third zinc oxide aluminum-doped layer by a physical vapor phase method, having a thickness of about 5 nm to 10 nm; and a fourth zinc oxide layer The aluminum-doped layer is deposited on the second metal thin film layer by a physical vapor phase method, and has a thickness of about 600 nm. 如申請專利範圍第1項所述之光誘發式介電泳晶片,其中該微晶矽半導體層之厚度為300nm。 The photoinductive dielectrophoresis wafer according to claim 1, wherein the microcrystalline germanium semiconductor layer has a thickness of 300 nm. 如申請專利範圍第1項所述之光誘發式介電泳晶片,其中該第一多層透明導電薄膜之厚度約為5-15um之間。 The photoinductive dielectrophoresis wafer of claim 1, wherein the first multilayer transparent conductive film has a thickness of between about 5 and 15 um. 如申請專利範圍第1項所述之光誘發式介電泳晶片,其中該第二多層透明導電薄膜之厚度約為5-15um之間。 The light-induced dielectrophoresis wafer of claim 1, wherein the second multilayer transparent conductive film has a thickness of between about 5 and 15 μm. 如申請專利範圍第2項所述之光誘發式介電泳晶片,其中該第一金屬薄膜層之材料係為金(Au)。 The light-induced dielectrophoresis wafer according to claim 2, wherein the material of the first metal thin film layer is gold (Au). 如申請專利範圍第3項所述之光誘發式介電泳晶片,其中該第二金屬薄膜層之材料係為金(Au)。 The light-induced dielectrophoresis wafer according to claim 3, wherein the material of the second metal thin film layer is gold (Au).
TW104127622A 2015-08-25 2015-08-25 A light-induced dielectrophoresis chip TWI580957B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW104127622A TWI580957B (en) 2015-08-25 2015-08-25 A light-induced dielectrophoresis chip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW104127622A TWI580957B (en) 2015-08-25 2015-08-25 A light-induced dielectrophoresis chip

Publications (2)

Publication Number Publication Date
TW201708815A TW201708815A (en) 2017-03-01
TWI580957B true TWI580957B (en) 2017-05-01

Family

ID=58774535

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104127622A TWI580957B (en) 2015-08-25 2015-08-25 A light-induced dielectrophoresis chip

Country Status (1)

Country Link
TW (1) TWI580957B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI744667B (en) * 2019-07-18 2021-11-01 義守大學 Optically-induced dielectrophoresis system and its manufacturing method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101135680A (en) * 2007-07-13 2008-03-05 东南大学 Light-induction dielectrophoresis auxiliary unicellular dielectric spectrum automatic test equipment and testing method
US20090233327A1 (en) * 2005-10-27 2009-09-17 Life Technologies Corporation Surface Modification in a Manipulation Chamber
TWI393881B (en) * 2008-08-28 2013-04-21 Univ Nat Cheng Kung Photoinduced dielectric electrophoresis chip
CN102866193B (en) * 2012-09-04 2015-04-01 吴传勇 Device and method for controlling particles in liquid based on dielectrophoresis

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090233327A1 (en) * 2005-10-27 2009-09-17 Life Technologies Corporation Surface Modification in a Manipulation Chamber
CN101135680A (en) * 2007-07-13 2008-03-05 东南大学 Light-induction dielectrophoresis auxiliary unicellular dielectric spectrum automatic test equipment and testing method
TWI393881B (en) * 2008-08-28 2013-04-21 Univ Nat Cheng Kung Photoinduced dielectric electrophoresis chip
CN102866193B (en) * 2012-09-04 2015-04-01 吴传勇 Device and method for controlling particles in liquid based on dielectrophoresis

Also Published As

Publication number Publication date
TW201708815A (en) 2017-03-01

Similar Documents

Publication Publication Date Title
Li et al. Cathodic electrochemiluminescence immunosensor based on nanocomposites of semiconductor carboxylated g-C3N4 and graphene for the ultrasensitive detection of squamous cell carcinoma antigen
Ke et al. Low temperature annealed ZnO film UV photodetector with fast photoresponse
O'Brien et al. Zinc oxide thin films: Characterization and potential applications
KR101097205B1 (en) Fabrication method of substrate for surface enhanced raman scattering
US10591462B2 (en) Electrochemical method and device for detecting the effect of anticancer drugs
Huber et al. H2S sensing in the ppb regime with zinc oxide nanowires
Liu et al. Effects of nanoparticle size and cell type on high sensitivity cell detection using a localized surface plasmon resonance biosensor
US11203523B2 (en) Bionic SERS substrate with metal-based compound eye bowl structure and its construction method and application
CN104332513B (en) A kind of NiO nanowire ultraviolet light detector and preparation method and application
Akinwande et al. Large-Area Graphene Electrodes: Using CVD to facilitate applications in commercial touchscreens, flexible nanoelectronics, and neural interfaces
CN102180438A (en) Manufacturing method of tunable triangular metal nano particle array structure
Tong et al. The nanofabrication of Pt nanowire arrays at the wafer-scale and its application in glucose detection
Chu et al. Improving ZnO nanorod humidity sensors with Pt nanoparticle adsorption
CN111896523A (en) Surface-enhanced Raman scattering substrate and preparation method and application thereof
CN108333166A (en) The surface enhanced Raman scattering substrate and preparation method of induced with laser
TWI580957B (en) A light-induced dielectrophoresis chip
Zhu et al. Au nanocone array with 3D hotspots for biomarker chips
Adam et al. Recent advances in techniques for fabrication and characterization of nanogap biosensors: A review
Ge et al. Au/SiNCA-based SERS analysis coupled with machine learning for the early-stage diagnosis of cisplatin-induced liver injury
CN110568025A (en) humidity sensor based on candle ash nanoparticle layer and preparation method thereof
Cheng et al. Chemical stability of ZnO nanostructures in simulated physiological environments and its application in determining polar directions
Chao et al. Applications of field effect transistor biosensors integrated in microfluidic chips
Shashaani et al. Cyclic voltammetric biosensing of cellular ionic secretion based on silicon nanowires to detect the effect of paclitaxel on breast normal and cancer cells
CN111024775A (en) Gas-sensitive sensing device for ozone gas sensor and preparation method
TWI717020B (en) Cell sorting chip and method of fabricating the same

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees