TWI577344B - Calibrating method and system for three dimensional scanning - Google Patents

Calibrating method and system for three dimensional scanning Download PDF

Info

Publication number
TWI577344B
TWI577344B TW103107467A TW103107467A TWI577344B TW I577344 B TWI577344 B TW I577344B TW 103107467 A TW103107467 A TW 103107467A TW 103107467 A TW103107467 A TW 103107467A TW I577344 B TWI577344 B TW I577344B
Authority
TW
Taiwan
Prior art keywords
plane
coordinate system
image
correction
penetrating
Prior art date
Application number
TW103107467A
Other languages
Chinese (zh)
Other versions
TW201534278A (en
Inventor
盧伯誠
陳佳妍
簡祥任
官愛蓮
歐陽毅翔
黃聖文
黃柏森
Original Assignee
台灣騰協生醫股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 台灣騰協生醫股份有限公司 filed Critical 台灣騰協生醫股份有限公司
Priority to TW103107467A priority Critical patent/TWI577344B/en
Publication of TW201534278A publication Critical patent/TW201534278A/en
Application granted granted Critical
Publication of TWI577344B publication Critical patent/TWI577344B/en

Links

Description

三維掃描之校正方法及其系統 Three-dimensional scanning correction method and system thereof

本發明係有關於一種三維掃描之校正方法及其系統,特別是指藉由將穿透影像掃描機的座標系統與外觀影像擷取單元的座標系統對齊,使穿透影像構成的三維重建資料與外觀影像能夠表現於一致的座標系統。 The invention relates to a method for correcting a three-dimensional scan and a system thereof, in particular to aligning a coordinate system of a through-image scanner with a coordinate system of an appearance image capturing unit, so as to make a three-dimensional reconstruction data composed of a penetrating image and Appearance images can be represented in a consistent coordinate system.

按,現今電腦斷層掃描儀被廣泛地應用在醫學和工業領域上,即透過電腦斷層掃描儀可以取得人體內部結構的資訊,藉以讓醫生診斷人體內部的疾病,或透過電腦斷層掃描儀取得物件結構的資訊,藉以讓安檢人員對物件進行安全檢查等。 According to today, computer tomography scanners are widely used in medical and industrial fields, that is, through computer tomography scanners, information on the internal structure of the human body can be obtained, so that doctors can diagnose diseases inside the human body or obtain object structures through a computed tomography scanner. Information, so that security personnel can conduct security checks on objects.

而一般電腦斷層掃描儀包括一X射線源、一旋轉裝置和一X射線感測器,透過該旋轉裝置旋轉該X射線源和該X射線感測器,或是旋轉設置在該X射線源和該X射線感測器間的一待測物,以得到該待測物的投影影像,並藉由收集前述投影影像以進行重建該待測物的三維影像;關於電腦斷層掃描儀的的重建理論和算法目前仍持續發展中,而目前對於幾何參數的標定方式有對各個幾何參數進行逐次的標定和調整,由於參數之間的關連性,往往需要逐個參數反覆調整,使標定過程相當複雜,因此又有如大陸專利CN102743184B號「一種X射線錐束電腦層析成像系統的幾何參數標定方法」,係透過相機標定技術來呈現錐束CT系統中的X射線源、平板探測器和轉軸之間的幾何位置關係,從而對錐束CT的幾何參數及其誤差進行直接求解,是一種系統化的測量求 解方法,可以將錐束CT抽象為基本的相機系統模型,從而同時求解系統中相互關聯的多個幾何參數,藉此簡化了整個系統的標定測量的複雜程度,並同時提高了錐束CT幾何標定的穩定性。 The general computed tomography scanner includes an X-ray source, a rotating device, and an X-ray sensor, and the X-ray source and the X-ray sensor are rotated through the rotating device, or are rotated and disposed on the X-ray source and An object to be tested between the X-ray sensors to obtain a projection image of the object to be tested, and collecting the three-dimensional image of the object to be tested by collecting the projection image; reconstruction theory of the computed tomography scanner And the algorithm is still developing continuously. At present, the calibration method of geometric parameters has successively calibrated and adjusted each geometric parameter. Due to the correlation between parameters, it is often necessary to adjust the parameters one by one, making the calibration process quite complicated. Another example is the mainland patent CN102743184B "A method for calibrating geometric parameters of X-ray cone beam computer tomography system", which uses camera calibration technology to present the geometry between the X-ray source, the flat panel detector and the rotating shaft in the cone beam CT system. The positional relationship, which directly solves the geometric parameters of the cone beam CT and its error, is a systematic measurement The solution method can abstract the cone beam CT into a basic camera system model, thereby simultaneously solving multiple geometric parameters associated with each other in the system, thereby simplifying the complexity of the calibration measurement of the entire system and simultaneously improving the cone beam CT geometry. Calibration stability.

由於幾何參數和誤差的準確標定對於電腦斷層掃描儀的重建相當重要,因此除了提高了電腦斷層掃描儀幾何標定的準確性外,對於後續影像的校正,若能降低其誤差,則可提高成像品質,讓電腦斷層掃描儀的影像重建可以更為準確;是以,本發明主要在改善幾何參數的誤差,以確實發揮幾何校正的功能,避免重建的影像失真。 Since the accurate calibration of geometric parameters and errors is very important for the reconstruction of the computed tomography scanner, in addition to improving the accuracy of the geometric calibration of the computed tomography scanner, if the correction of subsequent images can reduce the error, the imaging quality can be improved. The image reconstruction of the computed tomography scanner can be more accurate; therefore, the invention mainly improves the error of the geometric parameters, so as to truly play the role of geometric correction and avoid reconstructed image distortion.

爰此,本發明提供一種三維掃描之校正方法,包含有以下步驟:步驟A.以一穿透影像掃描機掃描一校正物件,得到一穿透影像,根據該穿透影像定義一第一座標系統,並以一外觀影像擷取單元擷取該校正物件之一外觀影像,根據該外觀影像定義一第二座標系統;步驟B.將空間中的一平面定義為(,d),其中 S 2為平面法向量,d 為平面至原點最短距離,在該第一座標系統定義該校正物件上之一校正平面之一第一平面參數:(, x d),其中x代表該第一座標系統;步驟C.再取得該校正平面在該第二座標系統之一第二平面參數:(, c d),其中c代表該第二座標系統;步驟D.將(, x d)與(, c d)關聯,該第一座標系統及該第二座標系統的轉換關係定義為E=(R,t),其中R為旋轉矩陣,t為位移向量;前述平面定義(,d)中,平面上的一點m滿足〈m,n=d〉;利用E=(R,t)以及〈m,n=d〉的關係式,得到一位移關係式及一旋轉 關係式,其中q為四元數,q=v w +v x i+v y j+v z k,v為矩陣之最小特徵向量;步驟E.重複步驟D至取得N≧3組以上不同的該第一平面參數與該第二平面參數的對應關係,再將該第一平面參數及該第二平面參數帶入該位移關係式及該旋轉關係式即得到該第一座標系統及第二座標系統的轉換關係E=(R,t);步驟F.利用該第一座標系統及第二座標系統的轉換關係E=(R,t)得到該穿透影像及該外觀影像在該校正物件上的位置。 Therefore, the present invention provides a method for correcting a three-dimensional scan, comprising the following steps: Step A: scanning a calibration object by a penetrating image scanner to obtain a penetrating image, and defining a first coordinate system according to the penetrating image And capturing, by an appearance image capturing unit, an appearance image of the correction object, and defining a second coordinate system according to the appearance image; and step B. defining a plane in the space as ( , d ), where S 2 is a plane normal vector, d For the shortest distance from the plane to the origin, the first coordinate system defines one of the first plane parameters of one of the correction planes on the correction object: , x d ), where x represents the first coordinate system; and step C. takes the second plane parameter of the correction plane in one of the second coordinate systems: , c d ), where c represents the second coordinate system; step D. will ( , x d ) and ( , c d ) association, the conversion relationship of the first coordinate system and the second coordinate system is defined as E=(R, t), where R is a rotation matrix, t is a displacement vector; , d ), a point m on the plane satisfies <m, n=d>; using a relational expression of E=(R, t) and <m, n=d>, a displacement relation is obtained And a rotational relationship Where q is a quaternion, q = v w + v x i+ v y j+ v z k, v is a matrix The minimum eigenvector; step E. repeating step D to obtain the corresponding relationship between the first plane parameter and the second plane parameter different from N ≧ 3 groups, and then bringing the first plane parameter and the second plane parameter into The displacement relationship and the rotation relationship obtain the conversion relationship E=(R, t) of the first coordinate system and the second coordinate system; and step F. use the conversion relationship E of the first coordinate system and the second coordinate system = (R, t) to obtain the penetration image and the position of the appearance image on the correction object.

其中,步驟E中進一步包含誤差校正,假設空間中的一點m座標=(x,y,z),該點在該第一座標系統及第二座標系統分別表示為 x m c m,根據該第一座標系統及第二座標系統的轉換關係E=(R,t),因此 x m=R c m+t,將m以齊次座標改寫為,前式等價為,再將前述提及平面上的一點m滿足〈m,n=d〉帶入可得到一平面誤差函數,將該平面誤差函數施行非線性最佳化,藉此降低幾何誤差。 Wherein, step E further includes error correction, assuming that a point m in the space = (x, y, z), the point in the first coordinate system and the second coordinate system are represented as x m and c m respectively , according to The conversion relationship between the first standard system and the second coordinate system is E=(R,t), so x m = R c m + t , and m is rewritten as a homogeneous coordinate , the former is equivalent to And then bring a point m on the aforementioned plane to satisfy <m, n=d> a plane error function The plane error function is nonlinearly optimized, thereby reducing geometric errors.

在步驟A中,該穿透影像掃描機包含有一光源發射器及對應該光源發射器之一感測器,前述校正物件置於該光源發射器及該感測器之間,又該 光源發射器及該外觀影像擷取單元設置在該感測器的相對面上,該穿透影像掃描機在該感測器上形成該穿透影像,以該穿透影像的平面定義為一第一X-Y平面,並定義有一第一Z軸垂直該第一X-Y平面構成前述第一座標系統,而該外觀影像擷取單元以該外觀影像的平面定義為一第二X-Y平面,並定義有一第二Z軸垂直該第二X-Y平面構成前述第二座標系統。 In step A, the penetrating image scanner includes a light source emitter and a sensor corresponding to the light source emitter, and the correction object is disposed between the light source emitter and the sensor, and The light source emitter and the external image capturing unit are disposed on opposite sides of the sensor, and the penetrating image scanner forms the penetrating image on the sensor, and the plane of the penetrating image is defined as a first An XY plane, and defining a first Z axis perpendicular to the first XY plane to form the first coordinate system, and the appearance image capturing unit defines a plane of the appearance image as a second XY plane, and defines a second The Z axis is perpendicular to the second XY plane to form the aforementioned second coordinate system.

本發明使用於上述三維掃描之校正方法之三維掃描之校正系統,包含有:一旋轉裝置,有一造影空間,用以放置前述校正物件;該穿透影像掃描機設置在該旋轉裝置上並對準該校正物件;該外觀影像擷取單元設置在該旋轉裝置上並對準該校正物件。 The three-dimensional scanning correction system used in the above three-dimensional scanning correction method comprises: a rotating device having a contrast space for placing the correcting object; the penetrating image scanner is disposed on the rotating device and aligned The correction object; the appearance image capturing unit is disposed on the rotating device and aligned with the correction object.

其中,該旋轉裝置包含有一轉軸及樞接在該轉軸上的一旋轉臂,該旋轉臂有一第一懸臂及一第二懸臂,該第一懸臂上設置有該穿透影像掃描機的感測器,而該第二懸臂上設置有該穿透影像掃描機的光源發射器及該外觀影像擷取單元,該光源發射器及該外觀影像擷取單元與該感測器位在該轉軸的相對二端,並以該轉軸為中心繞該校正物件旋轉。 The rotating device includes a rotating shaft and a rotating arm pivotally connected to the rotating shaft, the rotating arm has a first cantilever and a second cantilever, and the first cantilever is provided with the sensor penetrating the image scanner The second cantilever is provided with the light source emitter of the image capturing machine and the external image capturing unit, and the light source emitter and the external image capturing unit and the sensor are located on the rotating shaft. And rotating around the correction object centering on the rotation axis.

其中,該校正物件為一棋盤格校正板,並於該棋盤格校正板的邊緣空白處塗上金屬漆或黏貼金屬薄片。 Wherein, the correction object is a checkerboard correction plate, and the metal blank or the adhesive metal foil is applied to the edge blank of the checkerboard correction plate.

其中,該穿透影像掃描機為電腦斷層掃描儀。 The penetrating image scanner is a computed tomography scanner.

其中,該外觀影像擷取單元為光學相機或攝影機。 The appearance image capturing unit is an optical camera or a camera.

本發明之三維掃描之校正方法及其系統,藉由將該穿透影像掃描機定義出的第一座標系統與該外觀影像擷取單元定義出的第二座標系統對齊,使該穿透影像掃描機產生的三維重建資料與該外觀影像擷取單元產生的光學影像能夠表現於一致的座標系統,進而達成資訊融合。 The method for correcting a three-dimensional scan of the present invention and the system thereof, by aligning a first coordinate system defined by the penetration image scanner with a second coordinate system defined by the appearance image capturing unit, so that the penetration image is scanned The three-dimensional reconstruction data generated by the machine and the optical image generated by the appearance image capturing unit can be expressed in a consistent coordinate system, thereby achieving information fusion.

本發明之三維掃描之校正方法及其系統,係透過關聯平面對應關係(, c d i )→(, x d i ),以前述求得代數解E=(R,t),再以前述代數解為初始解,配合關聯點、面對應關係 x m i →(, c d i ),對施行非線性最佳化,降低幾何誤差後,即可獲得更精確之座標系統轉換關係,進而提升成像品質。 The method for correcting three-dimensional scanning of the present invention and the system thereof are related to each other through an association plane ( , c d i )→( , x d i ), in the foregoing and Solve the algebraic solution E=( R , t ), and then use the algebraic solution as the initial solution, with the associated point and surface correspondence x m i →( , c d i ), right By performing nonlinear optimization and reducing geometric errors, a more accurate coordinate system conversion relationship can be obtained, thereby improving image quality.

(1)‧‧‧旋轉裝置 (1)‧‧‧Rotating device

(11)‧‧‧造影空間 (11) ‧ ‧ angiography space

(12)‧‧‧置物平台 (12)‧‧‧Store platform

(13)‧‧‧轉軸 (13) ‧‧‧ shaft

(14)‧‧‧旋轉臂 (14)‧‧‧Rotating arm

(141)‧‧‧第一懸臂 (141)‧‧‧First cantilever

(142)‧‧‧第二懸臂 (142)‧‧‧Second cantilever

(2)‧‧‧棋盤格校正板 (2) ‧‧‧ checkerboard correction board

(21)‧‧‧金屬薄片 (21)‧‧‧Sheet

(3)‧‧‧穿透影像掃描機 (3)‧‧‧ penetrating image scanner

(31)‧‧‧感測器 (31)‧‧‧ Sensors

(32)‧‧‧光源發射器 (32)‧‧‧Light source transmitter

(4)‧‧‧外觀影像擷取單元 (4)‧‧‧ Appearance image capture unit

(A)‧‧‧穿透影像的平面 (A) ‧‧‧ Plane that penetrates the image

(B)‧‧‧外觀影像的平面 (B) ‧ ‧ the plane of the appearance image

[第一圖]係為本發明較佳實施例的裝置示意圖。 [First Figure] is a schematic view of a device according to a preferred embodiment of the present invention.

[第二圖]係為本發明較佳實施例中該棋盤格校正板的構造示意圖。 [Second figure] is a schematic structural view of the checkerboard correction plate in the preferred embodiment of the present invention.

綜合上述技術特徵,本發明三維掃描之校正系統及其方法的主要功效可在下述實施例清楚呈現。 In summary of the above technical features, the main effects of the three-dimensional scanning correction system and method of the present invention can be clearly demonstrated in the following embodiments.

請參閱第一圖及第二圖所示,本發明較佳實施例之裝置包含:一旋轉裝置(1),有一造影空間(11),並在該造影空間(11)內設有一置物平台(12),用以放置一校正物件,該校正物件於本實施例中係為一棋盤格校正板(2),並於該棋盤格校正板(2)的邊緣空白處塗上金屬漆或黏貼金屬薄片(21);一穿透影像掃描機(3),例如電腦斷層掃描儀,設置在該旋轉裝置(1)上並對準該棋盤格校正板(2);一外觀影像擷取單元(4),例如光學相機或攝影機,設置在該旋轉裝置(1)上並對 準該棋盤格校正板(2);其中,該旋轉裝置(1)包含有一轉軸(13)及樞接在該轉軸(13)上的一旋轉臂(14),該旋轉臂(14)有一第一懸臂(141)及一第二懸臂(142),該第一懸臂(141)上設置有該穿透影像掃描機(3)的一感測器(31),而該第二懸臂(142)上設置有該穿透影像掃描機(3)的一光源發射器(32)及該外觀影像擷取單元(4),該光源發射器(32)及該外觀影像擷取單元(4)與該感測器(31)位在該轉軸(13)的相對二端,並以該轉軸(13)為中心繞該棋盤格校正板(2)旋轉。 Referring to the first and second figures, the apparatus of the preferred embodiment of the present invention comprises: a rotating device (1) having a contrast space (11) and a storage platform in the contrast space (11) ( 12), for placing a calibration object, which in this embodiment is a checkerboard correction plate (2), and is coated with metal paint or metal on the edge blank of the checkerboard correction plate (2). a sheet (21); a penetrating image scanner (3), such as a computed tomography scanner, disposed on the rotating device (1) and aligned with the checkerboard (2); an appearance image capturing unit (4) ), such as an optical camera or camera, disposed on the rotating device (1) and The checkerboard correction plate (2); wherein the rotating device (1) comprises a rotating shaft (13) and a rotating arm (14) pivotally connected to the rotating shaft (13), the rotating arm (14) has a first a cantilever (141) and a second cantilever (142), the first cantilever (141) is provided with a sensor (31) penetrating the image scanner (3), and the second cantilever (142) a light source emitter (32) and the appearance image capturing unit (4) disposed on the image capturing machine (3), the light source emitter (32) and the appearance image capturing unit (4) and the The sensor (31) is located at opposite ends of the rotating shaft (13), and rotates around the checkerboard (2) centering on the rotating shaft (13).

利用上述裝置執行三維掃描之校正方法,包含有以下步驟: The method for correcting a three-dimensional scan using the above apparatus includes the following steps:

步驟A.將該棋盤格校正板放置在該置物平台,以該穿透影像掃描機掃描該棋盤格校正板,在該穿透影像掃描機的感測器得到一穿透影像,根據該穿透影像定義一第一座標系統,並以設置在該感測器相對面上的該外觀影像擷取單元同步擷取該校正物件之一外觀影像,根據該外觀影像定義一第二座標系統;其中該第一座標系統係以該穿透影像的平面(A)定義為一第一X-Y平面,而垂直該第一X-Y平面定義有一第一Z軸所構成,該第二座標系統則係以該外觀影像的平面(B)定義為一第二X-Y平面,而垂直該第二X-Y平面定義有一第二Z軸所構成,請配合參閱第一圖所示。於本實施例中該第一座標系統及該第二座標系統分別以{X}與{C}表示,因此空間中一點m=(x,y,z),在該第一座標系統及該第二座標系統表示為 x m c mStep A. placing the checkerboard calibration plate on the storage platform, scanning the checkerboard correction plate with the penetrating image scanner, and obtaining a penetrating image on the sensor of the penetrating image scanner, according to the penetrating The image defines a first coordinate system, and the appearance image capturing unit of the correcting object is synchronously captured by the external image capturing unit disposed on the opposite surface of the sensor, and a second coordinate system is defined according to the image; The first standard system is defined by the plane (A) of the through image as a first XY plane, and the first XY plane is defined by a first Z axis, and the second coordinate system is formed by the appearance image. The plane (B) is defined as a second XY plane, and the second XY plane is defined by a second Z-axis. Please refer to the first figure. In the embodiment, the first coordinate system and the second coordinate system are respectively represented by { X } and { C }, so a point m = ( x , y , z ) in the space, in the first coordinate system and the first The two coordinate system is expressed as x m and c m .

步驟B.根據文獻『Geometric calibration of a multi-layer LiDAR system and image sensors using plane-based implicit laser parameters for textured 3-D depth reconstruction』提出之平面對應關係,於本實施例中將空間中的一平面定義為(,d),其中 S 2為平面法向量,d 為平面至原點最短距離,在該第一座標系統定義該校正物件上之一校正平面之一第一平面參數:(, x d),其中x代 表該第一座標系統;該第一平面參數係先由根據該校正物件上的金屬薄片產生的該穿透影像對應出多組金屬點座標 x m i ,然後計算前述金屬點最適平面參數所取得。 Step B. According to the plane correspondence relationship proposed by the document "Geometric calibration of a multi-layer LiDAR system and image sensors using plane-based implicit laser parameters for texture 3-D depth reconstruction", a plane in the space is used in this embodiment. defined as( , d ), where S 2 is a plane normal vector, d For the shortest distance from the plane to the origin, the first coordinate system defines one of the first plane parameters of one of the correction planes on the correction object: , x d ), where x represents the first coordinate system; the first plane parameter first corresponds to the plurality of sets of metal dot coordinates x m i by the penetration image generated according to the metal foil on the correction object, and then calculates the foregoing The optimum plane parameters of the metal points are obtained.

步驟C.再透過張氏相機校正演算法(Zhang’s calibration method)取得該校正平面在該第二座標系統之一第二平面參數:(, c d),其中c代表該第二座標系統。 Step C. Obtaining a second plane parameter of the calibration plane in the second coordinate system by using a Zhang's calibration method: , c d ), where c represents the second coordinate system.

步驟D.將(, x d)與(, c d)關聯,該第一座標系統及該第二座標系統的轉換關係以剛性變換(rigid transformation)描述,定義為E=(R,t),其中R SO(3)為一個3×3旋轉矩陣,而t 為3×1之位移向量,轉換過程如下: x m=R c m+t,若將m以齊次座標(homogeneous coordinates)改寫為,則前式等價於:,並且其逆變換為;當給定N組之點對應關係 c m i x m i 時,若N>3則的解不具唯一性,此時可改求其最小平方解:,其中∥.∥為歐氏距離函數(Euclidean distance),又根據文獻『Closed-form solution of absolute orientation using unit quaternions』算式推導,具有封閉解(close-formed solution)。然而,該穿透影像與該外觀影像間之空間點對應性不易取得,因此再結合文獻『Geometric calibration of a multi-layer LiDAR system and image sensors using plane-based implicit laser parameters for textured 3-D depth reconstruction』提出之平面對應關係,前述平面定義(,d)中,平面上的一點m滿 足〈m,n=d〉,其中〈.〉為向量內積。根據 x m=R c m+t與〈m,n=d〉之定義,向量 c d 為前述平面上一點,經座標系統變換後滿足,由於向量旋轉後與平行,故得,將相減整理得到一位移關係式,若已知3組以上之平面對應關係(, c d i )→(, x d i ),則可建構一組超定性線性系統(over-determined linear system),如下:,應用奇異值分解法(Singular Value Decomposition,SVD)求得t最小平方解。又,前述之平面對應性,亦可應用推導該第一座標系統及該第二座標系統轉換之旋轉關係,已知法向量旋轉後與平行,故兩者內積值應為1。考慮N>3組以上法向量,則旋轉矩陣R應滿足公式:,根據文獻『Closed-form solution of absolute orientation using unit quaternions』,具有相同形式之封閉解,欲求此解,先對矩陣進行特徵分解(eigendecomposition),得最小特徵值對應之特徵向量v S 3,轉換為四元數(quaternion)形式q=v w +v x i+v y j+v z k,再還原旋轉矩陣得到一旋轉關係式 Step D. Will ( , x d ) and ( , c d ) association, the conversion relationship between the first coordinate system and the second coordinate system is described by a rigid transformation, defined as E=(R, t), where R SO (3) is a 3 × 3 rotation matrix, and t For a displacement vector of 3 × 1, the conversion process is as follows: x m = R c m + t , if m is rewritten as a homogeneous coordinate , the former is equivalent to: And its inverse transform to When a point corresponding to the N group c m i x m i is given, if N > 3 The solution is not unique, and the least squares solution can be changed at this time: , where ∥. ∥ is the Euclidean distance, and is derived from the literature "Closed-form solution of absolute orientation using unit quaternions". Has a close-formed solution. However, the geometric point of the multi-layer LiDAR system and image sensors using plane-based implicit laser parameters for texture 3-D depth reconstruction is not easy to obtain. ”Proposed plane correspondence, the aforementioned plane definition ( , d ), a point m on the plane satisfies <m, n=d>, where <. 〉 is the inner product of the vector. According to the definition of x m = R c m + t and <m, n = d>, the vector c d A point on the aforementioned plane, which is transformed by the coordinate system Due to vector After rotation Parallel, so ,will versus Subtractive collation If more than three sets of plane correspondences are known ( , c d i )→( , x d i ), then construct a set of over-determined linear systems, as follows: The S-squared solution is obtained by applying Singular Value Decomposition (SVD). Moreover, the aforementioned plane correspondence may also be applied to derive a rotation relationship between the first coordinate system and the second coordinate system, a known normal vector After rotation Parallel, so the inner product value should be 1. Considering N > 3 sets of normal vectors, the rotation matrix R should satisfy the formula: According to the document "Closed-form solution of absolute orientation using unit quaternions", versus a closed solution of the same form, for this solution, first to the matrix Perform eigendecomposition to obtain the eigenvector v corresponding to the smallest eigenvalue S 3 , converted to a quaternion form q = v w + v x i+ v y j+ v z k, and then the rotation matrix is restored to obtain a rotation relationship

步驟E.重複步驟D至取得N≧3組以上不同的該第一平面參數與該第二平面參數的對應關係,再將該第一平面參數及該第二平面參數帶入該位移關係式及該旋轉關係式即得到該第一座標系統及第二座標系統的轉換關係E=(R,t)。 Step E: repeating step D to obtain a correspondence between the first plane parameter and the second plane parameter different from the N≧3 group, and then bringing the first plane parameter and the second plane parameter into the displacement relationship and The rotation relationship obtains the conversion relationship E=(R, t) of the first coordinate system and the second coordinate system.

其中,步驟E中進一步包含誤差校正,由於前述之演算方式求得(R,t)皆是代數最佳解(algebraic solution),因此在誤差存在時,此解不能反應空間之幾何性質。故,取得線性解後須再進行非線性最佳化,得到更精確之座標系統轉換關係。將已知N組該第一座標系統中一點 x m i 對應到該第二座標系統中一平面(, c d i )之點面對應關係 x m i →(, c d i ),根據與〈m,n〉=d定義,可建構成平面誤差函數,如下:,然後對施行非線性最佳化,降低幾何誤差後,即可獲得更精確之該第一座標系統及第二座標系統的轉換關係。 In step E, error correction is further included. Since the above calculation method finds that ( R , t ) is an algebraic solution, the solution cannot reflect the geometric properties of the space when the error exists. Therefore, after obtaining the linear solution, nonlinear optimization must be performed to obtain a more accurate coordinate system conversion relationship. N group known system the first coordinate point x m i corresponding to the second coordinate system to a plane ( , c d i ) point-to-face correspondence x m i →( , c d i ), according to With the definition of < m , n 〉= d , a plane error function can be constructed, as follows: And then By performing nonlinear optimization and reducing geometric errors, a more accurate conversion relationship between the first coordinate system and the second coordinate system can be obtained.

步驟F.利用該第一座標系統及第二座標系統的轉換關係E=(R,t)得到該穿透影像及該外觀影像在該校正物件上的位置。 Step F. Using the conversion relationship E=(R, t) of the first coordinate system and the second coordinate system, the penetration image and the position of the appearance image on the correction object are obtained.

綜合上述實施例之說明,當可充分瞭解本發明之操作、使用及本發明產生之功效,惟以上所述實施例僅係為本發明之較佳實施例,當不能以此限定本發明實施之範圍,即依本發明申請專利範圍及發明說明內容所作簡單的等效變化與修飾,皆屬本發明涵蓋之範圍內。 In view of the foregoing description of the embodiments, the operation and the use of the present invention and the effects of the present invention are fully understood, but the above described embodiments are merely preferred embodiments of the present invention, and the invention may not be limited thereto. Included within the scope of the present invention are the scope of the present invention.

(1)‧‧‧旋轉裝置 (1)‧‧‧Rotating device

(11)‧‧‧造影空間 (11) ‧ ‧ angiography space

(12)‧‧‧置物平台 (12)‧‧‧Store platform

(13)‧‧‧轉軸 (13) ‧‧‧ shaft

(14)‧‧‧旋轉臂 (14)‧‧‧Rotating arm

(141)‧‧‧第一懸臂 (141)‧‧‧First cantilever

(142)‧‧‧第二懸臂 (142)‧‧‧Second cantilever

(2)‧‧‧棋盤格校正板 (2) ‧‧‧ checkerboard correction board

(3)‧‧‧穿透影像掃描機 (3)‧‧‧ penetrating image scanner

(31)‧‧‧感測器 (31)‧‧‧ Sensors

(32)‧‧‧光源發射器 (32)‧‧‧Light source transmitter

(4)‧‧‧外觀影像擷取單元 (4)‧‧‧ Appearance image capture unit

(A)‧‧‧穿透影像的平面 (A) ‧‧‧ Plane that penetrates the image

(B)‧‧‧外觀影像的平面 (B) ‧ ‧ the plane of the appearance image

Claims (8)

一種三維掃描之校正方法,包含有以下步驟:步驟A.以一穿透影像掃描機掃描一校正物件,得到一穿透影像,根據該穿透影像定義一第一座標系統,並以一外觀影像擷取單元擷取該校正物件之一外觀影像,根據該外觀影像定義一第二座標系統;步驟B.將空間中的一平面定義為(,d),其中為平面法向量,d為平面至原點最短距離,在該第一座標系統定義該校正物件上之一校正平面之一第一平面參數:(, x d),其中x代表該第一座標系統;步驟C.再取得該校正平面在該第二座標系統之一第二平面參數:(, c d),其中c代表該第二座標系統;步驟D.將(, x d)與(, c d)關聯,該第一座標系統及該第二座標系統的轉換關係定義為E=(R,t),其中R為旋轉矩陣,t為位移向量;前述平面定義(,d)中,平面上的一點m滿足〈m,n=d〉;利用E=(R,t)以及〈m,n=d〉的關係式,得到一位移關係式及一旋轉關係式,其中q為四元數, 步驟E.重複步驟D至取得N≧3組以上不同的該第一平面參數與該第二平面參數的對應關係,再將該第一平面參數及該第二平面參數帶入該位移關係式及該旋轉關係式即得到該第一座標系統及第二座標系統的轉換關係E=(R,t);步驟F.利用該第一座標系統及第二座標系統的轉換關係E=(R,t)得到該穿透影像及該外觀影像在該校正物件上的位置。 A method for correcting a three-dimensional scan includes the following steps: Step A: scanning a calibration object by a penetrating image scanner to obtain a penetrating image, defining a first coordinate system according to the penetrating image, and using an appearance image The capture unit captures an appearance image of the correction object, and defines a second coordinate system according to the appearance image; step B. defines a plane in the space as ( , d ), where Is a plane normal vector, d is the shortest distance from the plane to the origin, and the first coordinate system defines one of the first plane parameters of one of the correction planes on the correction object: , x d ), where x represents the first coordinate system; and step C. takes the second plane parameter of the correction plane in one of the second coordinate systems: , c d ), where c represents the second coordinate system; step D. will ( , x d ) and ( , c d ) association, the conversion relationship of the first coordinate system and the second coordinate system is defined as E=(R, t), where R is a rotation matrix, t is a displacement vector; , d ), a point m on the plane satisfies <m, n=d>; using a relational expression of E=(R, t) and <m, n=d>, a displacement relation is obtained And a rotational relationship Where q is a quaternion, Step E: repeating step D to obtain a correspondence between the first plane parameter and the second plane parameter different from the N≧3 group, and then bringing the first plane parameter and the second plane parameter into the displacement relationship and The rotation relationship obtains the conversion relationship E=(R, t) of the first coordinate system and the second coordinate system; step F. uses the conversion relationship of the first coordinate system and the second coordinate system E=(R, t Obtaining the penetration image and the position of the appearance image on the correction object. 如申請專利範圍第1項所述之三維掃描之校正方法,其中,步驟E中進一步包含誤差校正,假設空間中的一點m座標=(x,y,z),該點在該第一座標系統及第二座標系統分別表示為 x m c m,根據該第一座標系統及第二座標系統的轉換關係E=(R,t),因此 x m=R c m+t,將m以齊次座標改寫為,前式等價為,再將前述提及平面上的一點m滿足〈m,n=d〉帶入可得到一平面誤差函數 ,將該平面誤差函數施行非線性最佳化,藉亦降低幾何誤差。 The method for correcting a three-dimensional scan as described in claim 1, wherein the step E further includes error correction, assuming that a point in the space is m coordinate = (x, y, z), the point is in the first coordinate system And the second coordinate system is represented as x m and c m respectively , according to the conversion relationship E=(R, t) of the first coordinate system and the second coordinate system, so x m = R c m + t , m is aligned The secondary coordinates are rewritten as , the former is equivalent to And then bring a point m on the aforementioned plane to satisfy <m, n=d> a plane error function The plane error function is nonlinearly optimized, and the geometric error is also reduced. 如申請專利範圍第1項所述之三維掃描之校正方法,在步驟A中,該穿透影像掃描機包含有一光源發射器及對應該光源發射器之一感測器,前述校正物件置於該光源發射器及該感測器之間,又該光源發射器及該外觀影像擷取單元設置在該感測器的相對面上,該穿透影像掃描機在該感測器上形成該穿透影像,以該穿透影像的平面定義為一第一X-Y平面,並定義有一第一Z軸垂直該第一X-Y平面構成前述第一座標系統,而該外觀影像擷取單元以該外觀影像的平 面定義為一第二X-Y平面,並定義有一第二Z軸垂直該第二X-Y平面構成前述第二座標系統。 The method for correcting a three-dimensional scan according to claim 1, wherein in step A, the penetrating image scanner comprises a light source emitter and a sensor corresponding to the light source emitter, wherein the correction object is placed in the Between the light source emitter and the sensor, the light source emitter and the appearance image capturing unit are disposed on opposite sides of the sensor, and the penetrating image scanner forms the penetration on the sensor The image is defined as a first XY plane by the plane of the through image, and defines a first Z axis perpendicular to the first XY plane to form the first coordinate system, and the appearance image capturing unit is flat with the appearance image The face is defined as a second X-Y plane and defines a second Z-axis perpendicular to the second X-Y plane to form the aforementioned second coordinate system. 一種使用於如申請專利範圍第1項至第3項任一項所述之三維掃描之校正方法之三維掃描之校正系統,包含有:一旋轉裝置,有一造影空間,用以放置前述校正物件;該穿透影像掃描機設置在該旋轉裝置上並對準該校正物件;該外觀影像擷取單元設置在該旋轉裝置上並對準該校正物件。 A three-dimensional scanning correction system for use in a three-dimensional scanning correction method according to any one of claims 1 to 3, comprising: a rotating device having a contrast space for placing the correction object; The through image scanner is disposed on the rotating device and aligned with the correcting object; the external image capturing unit is disposed on the rotating device and aligned with the correcting object. 如申請專利範圍第4項所述之三維掃描之校正系統,其中,該旋轉裝置包含有一轉軸及樞接在該轉軸上的一旋轉臂,該旋轉臂有一第一懸臂及一第二懸臂,該第一懸臂上設置有該穿透影像掃描機的感測器,而該第二懸臂上設置有該穿透影像掃描機的光源發射器及該外觀影像擷取單元,該光源發射器及該外觀影像擷取單元與該感測器位在該轉軸的相對二端,並以該轉軸為中心繞該校正物件旋轉。 The three-dimensional scanning correction system of claim 4, wherein the rotating device comprises a rotating shaft and a rotating arm pivotally connected to the rotating shaft, the rotating arm has a first cantilever and a second cantilever, The first cantilever is provided with the sensor penetrating the image scanner, and the second cantilever is provided with the light source emitter penetrating the image scanner and the appearance image capturing unit, the light source emitter and the appearance The image capturing unit and the sensor are located at opposite ends of the rotating shaft, and rotate around the correcting object around the rotating shaft. 如申請專利範圍第4項所述之三維掃描之校正系統,其中,該校正物件為一棋盤格校正板,並於該棋盤格校正板的邊緣空白處塗上金屬漆或黏貼金屬薄片。 The three-dimensional scanning correction system of claim 4, wherein the correction object is a checkerboard correction plate, and a metal paint or a metal foil is applied to the margin of the checkerboard correction plate. 如申請專利範圍第4項所述之三維掃描之校正系統,其中,該穿透影像掃描機為電腦斷層掃描儀。 The three-dimensional scanning correction system of claim 4, wherein the penetration image scanner is a computed tomography scanner. 如申請專利範圍第4項所述之三維掃描之校正系統,其中,該外觀影像擷取單元為光學相機或攝影機。 The three-dimensional scanning correction system of claim 4, wherein the external image capturing unit is an optical camera or a camera.
TW103107467A 2014-03-05 2014-03-05 Calibrating method and system for three dimensional scanning TWI577344B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW103107467A TWI577344B (en) 2014-03-05 2014-03-05 Calibrating method and system for three dimensional scanning

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW103107467A TWI577344B (en) 2014-03-05 2014-03-05 Calibrating method and system for three dimensional scanning

Publications (2)

Publication Number Publication Date
TW201534278A TW201534278A (en) 2015-09-16
TWI577344B true TWI577344B (en) 2017-04-11

Family

ID=54694998

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103107467A TWI577344B (en) 2014-03-05 2014-03-05 Calibrating method and system for three dimensional scanning

Country Status (1)

Country Link
TW (1) TWI577344B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114205483B (en) * 2022-02-17 2022-07-29 杭州思看科技有限公司 Scanner precision calibration method and device and computer equipment

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWM441358U (en) * 2012-03-22 2012-11-21 Jung-Tang Huang System for measurement of three-dimensional foot shape
TWM445961U (en) * 2012-08-31 2013-02-01 Taiwan Caretech Corp 3D tomography machine with automatic positioning function

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWM441358U (en) * 2012-03-22 2012-11-21 Jung-Tang Huang System for measurement of three-dimensional foot shape
TWM445961U (en) * 2012-08-31 2013-02-01 Taiwan Caretech Corp 3D tomography machine with automatic positioning function

Also Published As

Publication number Publication date
TW201534278A (en) 2015-09-16

Similar Documents

Publication Publication Date Title
US10507002B2 (en) X-ray system and method for standing subject
CN102506757B (en) Self-positioning method of binocular stereo measuring system in multiple-visual angle measurement
JP6092530B2 (en) Image processing apparatus and image processing method
JP6324025B2 (en) Information processing apparatus and information processing method
CN104537707A (en) Image space type stereo vision on-line movement real-time measurement system
JP2014169990A (en) Position/posture measuring apparatus and method
Pesce et al. A low-cost multi camera 3D scanning system for quality measurement of non-static subjects
CN109272555B (en) External parameter obtaining and calibrating method for RGB-D camera
CN111524174B (en) Binocular vision three-dimensional construction method for moving platform moving target
CN113658266B (en) Visual measurement method for rotation angle of moving shaft based on fixed camera and single target
JP2011086111A (en) Imaging apparatus calibration method and image synthesis device
WO2020208686A1 (en) Camera calibration device, camera calibration method, and non-transitory computer-readable medium having program stored thereon
JP2015106287A (en) Calibration device and method
KR20200025238A (en) Image generating apparatus, imaging system including image generating apparatus and operating method of imaging system
Zhao et al. A flexible method combining camera calibration and hand–eye calibration
JP2010186265A (en) Camera calibration device, camera calibration method, camera calibration program, and recording medium with the program recorded threin
CN110133014A (en) A kind of chip interior defect inspection method and system
CN111105467B (en) Image calibration method and device and electronic equipment
Wei et al. Flexible calibration of a portable structured light system through surface plane
CN116051659A (en) Linear array camera and 2D laser scanner combined calibration method
Schaller et al. Time-of-flight sensor for patient positioning
TWI577344B (en) Calibrating method and system for three dimensional scanning
JP5235842B2 (en) Optical system parameter calibration apparatus, optical system parameter calibration method, program, and recording medium
KR102285337B1 (en) Calibration method and apparatus of x-ray apparatus
CN115836875A (en) Correction method and system

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees